Distribution and quantitative analyses of drugs loaded by supercritical CO2 in microcontainers

Mazzoni, Chiara; Tentor, Fabio; Antalaki, Anastasia; Jacobsen, Rasmus Due; Mortensen, Jacob; Slipets, Roman; Ilchenko, Oleksii; Keller, Stephan Sylvest; Nielsen, Line Hagner; Boisen, Anja

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
Distribution and quantitative analyses of drugs loaded by supercritical CO₂ in microcontainers

Chiara Mazzoni, Fabio Tentor, Anastasia Antalaki, Rasmus Due Jacobsen, Jacob Mortensen, Roman Slipets, Olekii Ilichenko, Stephan Sylvest Keller, Line Hagner Nielsen, Anja Boisen

The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN) - Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
e-mail: chimaz@nanotech.dtu.dk

Keywords: Oral drug delivery, micro devices, supercritical CO₂ impregnation

Purpose
The aim of this study was to investigate the quantity, distribution and solid state form of the poorly water soluble drugs, ketoprofen and naproxen loaded into three different sizes of polymer-filled polymeric cylindrical microdevices (microcontainers) using supercritical CO₂ (scCO₂) impregnation. The different diameters of the microcontainers (MCs) provided different surface areas of polymer exposed to the scCO₂ during the drug loading process.

Introduction
Among the various administration routes, oral drug delivery is the most preferred, as it is non-invasive, simple and has high patient compliance [1]. However, the administration of drugs with low aqueous solubility has proven to be challenging [2]. One way to improve the solubility and dissolution rate of the poorly soluble drugs is to prepare the amorphous form of the drug; however, it is often necessary to stabilize this form. Microcontainers (MCs) can be used for this purpose [3]. MCs are cylindrical microdevices with only the top side open, fabricated in SU-8 [2]. MCs can be loaded with drugs using scCO₂ impregnation into a polymer matrix previously loaded into them [4].

Methods
MCs of different diameters were fabricated in SU-8 (Fig. 1a) using two steps of photolithography resulting in cylinders (Table 1). The MCs were filled manually with polyvinylpyrrolidone (PVP) K10 powder and subsequently impregnated with ketoprofen or naproxen by means of scCO₂ impregnation. The different diameters of the microcontainers (MCs) provided different surface areas of polymer exposed to the scCO₂ during the drug loading process.

Results
For both drugs, the quantity of the drug loaded into the different sizes of MCs was not found to be statistically different (Table 1). The release of naproxen or ketoprofen from the MCs showed similar kinetics for the different sizes and for both drugs, reaching 90% release within the first 10 min. By the use of Raman microscopy, it was evaluated if the exposed surface area influenced the distribution of the drugs in the MCs. An example with ketoprofen can be seen in Fig. 2, where the distribution of the drug in the uppermost layers inside the MCs was evaluated. Ketoprofen loaded into the MCs was found to be in its amorphous form, whereas naproxen was in a metastable form. We are currently working on a 3D chemical map of the MCs to understand how the drugs are distributed inside MCs of different sizes.

References:

<table>
<thead>
<tr>
<th>Ø int. [µm]</th>
<th>h int. [µm]</th>
<th>Number of MC per chip</th>
<th>Total amount of ketoprofen loaded [µg] (n=3, STD)</th>
<th>Total amount of naproxen loaded [µg] (n=3, STD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>110</td>
<td>225</td>
<td>1024</td>
<td>300.4 ± 110.7</td>
</tr>
<tr>
<td>Medium</td>
<td>220</td>
<td>225</td>
<td>256</td>
<td>195.4 ± 50.21</td>
</tr>
<tr>
<td>Large</td>
<td>440</td>
<td>225</td>
<td>64</td>
<td>187.0 ± 63.0</td>
</tr>
</tbody>
</table>

Figure 1. SEM images of a) small empty MCs and b) ketoprofen-loaded medium MCs.

Figure 2. Raman map on peak 1003 cm⁻¹ representing the distribution of ketoprofen in the uppermost layers inside the of a) small, b) medium and c) large MCs.