Advanced Wound Care Adhesives with New Functional Properties

Chiaula, Valeria; Mazurek, Piotr; Nielsen, Anders Christian; Tornøe, Jens; Skov, Anne Ladegaard

Publication date: 2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Advanced Wound Care Adhesives with New Functional Properties

Valeria Chiaula1,2, Piotr Mazurek1, Anders Christian Nielsen2, Jens Tornøe2, Anne Ladegaard Skov1

1. Danmarks Tekniske Universitet, Department of Chemical and Biochemical Engineering, The Danish Polymer Centre, Lyngby, Denmark
2. Coloplast A/S, Wound & Skin Care, Humlebæk, Denmark

Wound healing is a dynamic process characterized by three overlapping cellular phases: inflammation, new tissue formation, and remodeling. Chronic wounds, which are often manifested in elderly and diabetic patients, result from anomalies in the cellular and molecular wound repair mechanism. Such wounds can lead to significant disability, amputation and increased mortality. The understanding of the normal wound healing mechanism and the consideration of the complexity of the wound environment, given by, e.g., hypoxia or bacterial infections, are crucial factors in order to develop an effective therapeutic approach.

Systemic drug delivery systems, such as oral and intravenous delivery, are the most common routes for drug administration. Nevertheless, these routes are characterized by several significant drawbacks. For instance, systemic delivery requires an appropriate blood perfusion of the target tissue, often insufficient in chronic wounds, and carries with it a high risk for systemic toxicity, which can limit dosing and duration of the medical treatment. Therefore, localized drug delivery is a promising approach to improve bioavailability and maintenance of a therapeutic drug concentration, while minimizing systemic drug toxicity.

Here, we propose a novel, skin-friendly, industrially relevant silicone/glycerol hybrid adhesive with new functional properties, including: improved moisture handling due to the incorporation of emulsified glycerol and dispersion of an antimicrobial agent by glycerol-embedding. This particular matrix paves the way for an innovative drug delivery system. Various parameters will be taken into account in order to develop a relevant adhesive, in particular glycerol content, glycerol domain size and adhesive thickness.
References

