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A Nonlinear Model Predictive Control
Strategy for Glucose Control in People
with Type 1 Diabetes

Dimitri Boiroux, John Bagterp Jdrgensen

Department of Applied Mathematics and Computer Science,
Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.

Abstract: In this paper, we evaluate the closed-loop performance of a control algorithm for the
treatment of type 1 diabetes (T1D) identified from prior continuous glucose monitor (CGM)
data. The control algorithm is based on nonlinear model predictive control (NMPC). At each
iteration, we solve an optimal control problem (OCP) using a sequential quadratic programming
algorithm with multiple shooting and sensitivity computation. The control algorithm uses a
physiological model of T1D to predict future blood glucose (BG) concentrations. The T1D
physiological model takes into account the dynamics between subcutaneously administered
insulin and blood glucose, the contribution of meal absorption and the lag and noise of
CGM measurements. The model parameters have been identified using prior data. Numerical
simulations on 10 patients show that the NMPC algorithm is safe and is able to optimize the

insulin delivery in patients with T1D.

© 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Type 1 diabetes, diabetes technology, nonlinear model predictive control,

continuous-discrete extended Kalman filter.

1. INTRODUCTION

Type 1 diabetes (T1D) is an autoimmune disease causing
the destruction of the insulin-producing -cells of the pan-
creas. People with T1D rely on exogenously administered
insulin to regulate their blood glucose (BG) concentration.
Usual insulin therapy consists of a combination of basal
insulin and insulin boluses. Basal insulin compensates for
endogenous glucose production from the liver, whereas
boluses are administered at mealtimes to mitigate post-
prandial glucose excursions. Currently, the decision on the
amounts of insulin to administer is made by the patient
him /herself.

The artificial pancreas (AP) refers to closed-loop of BG
concentration for T1D, and has the potential to partially
or fully automate the insulin therapy for people with T1D.
Current AP prototypes comprise a CGM, a control algo-
rithm and an insulin pump. The CGM provides frequent
interstitial glucose measurements (al least every 5 minutes,
but more frequent measurements are also possible). The
estimator computes the state estimates and predictions
through an extended Kalman filter (EKF) and identifies
the parameters of the T1D model using maximum like-
lihood. The detector detects faulty CGM measurements,
eg. drifts, as well as meal time and size by using a spe-
cific algorithm for meal estimation (Turksoy et al. (2016);
Mahmoudi et al. (2016, 2017); Samadi et al. (2018)). The
MPC algorithm uses the model and states provided by the
Kalman filter and meal information to predict and opti-
mize future insulin injections. Smart bolus calculators may
be used to compute prandial insulin boluses (Marchetti

* This paper is funded by The Danish Diabetes Academy supported
by the Novo Nordisk Foundation.

et al. (2008); Schmidt et al. (2012); Boiroux et al. (2015,
2017)). A continuous subcutaneous insulin infusion (CSII)
pump implements the suggested basal and/or boluses us-
ing the subcutaneous (sc.) route. Fig. 1 illustrates the AP.

Model predictive control (MPC) is a model-based con-
trol technology. At each iteration, the control algorithm
optimizes the predicted outcome of a given system by
solving an optimal control problem (OCP). Nonlinear
model predictive control (NMPC) algorithms have al-
ready shown promising closed-loop performance in the
case where full state information is available (Boiroux
et al. (2010a)). Nonlinear filters such as the extended and
unscented Kalman filters can estimate the meal size and
track the insulin sensitivity (Boiroux et al. (2015)). The
NMPC-based approach has the advantage to incorporate
the physiological model of the patient, the constraints
on insulin injections, the insulin on board, the effects of
CHO absorption, the physiological lags and delays in an
intuitive, unified and straightforward manner.

In this paper, we present and evaluate the closed-loop
performance of a NMPC-based control algorithm for T1D
with parameters identified from prior data. The physiolog-
ical T1D is formulated as a stochastic model in continuous
time with discrete-time measurements. We assess the per-
formance of our control algorithm on a virtual population
of 10 patients with T1D.

This paper is structured as follows. Section 2 presents the
identifiable physiological model of T1D and the identified
parameters for 10 virtual patients. Section 3 presents the
continuous-discrete extended Kalman filter. In Section 4,
we briefly state the OCP used in our control algorithm.
In Section 5, we discuss the formulation of the objective

2405-8963 © 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
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Fig. 1. Diagram of the artificial pancreas. The estimator
uses an EKF to estimate states, parameters, and to
compute the state predictions. The detector estimates
the meals times and size and detects the CGM drifts
based on the identified model and innovations pro-
vided by the estimator. The MPC algorithm optimizes
the future insulin injections and computes the state
predictions.

function. Section 6 illustrates the closed-loop performance
of our control algorithm on a population of 10 patients.
Section 7 summarizes the main contribution of this paper.

2. PHYSIOLOGICAL MODEL OF
GLUCOSE-INSULIN DYNAMICS

In this section, we present a minimal physiological model
derived from the model by Kanderian et al. (2009). This
model describes the glucose-insulin dynamics, the meal
absorption, and the lag and noise from CGMs. Fig. 2 illus-
trates the MVP model. The CGM noise model has been
developed by Facchinetti et al. (2014). We add diffusion
terms to reformulate the MVP model as a stochastic model
in the form
dz(t) = f(t, x(t), u(t),d(t),0)dt + o(0)dw(t),  (la)
Yk = g(z) + vk, (1b)
in which z(¢t) € R" is a vector containing the states
variables, and y; € R™ is a vector containing the output
variables measured at discrete times. u(t) € R"™ is a
vector containing the manipulated inputs, and d(t) €
R™ is a vector containing the uncontrolled disturbances.
{w(t), t > 0} is a standard Wiener process, i.e. dw(t) ~
N(0,Idt). @ € R™ is a vector containing the parameters
to be estimated. The matrix o(f) is time-invariant and
assumed to be diagonal. The measurement noise, vy, is
independently normally distributed, vy ~ N;;q(0, R(6)).
Also, we assume that the initial state, g, is normally
distributed with a known mean and covariance, xg ~

N (&o)-1(8), Poj-1(8)).
2.1 Insulin Absorption Subsystem

The insulin absorption subsystem is given by the following
two-compartment model

dIsc = k1 (u(t) - Isc(t)> dt + o1dwy, (2a)

Cr
d[p :kg (Isc(t) 7IP(t))dt+(72dw2, (2b)

where Igc(t) [mU/L/min] is the subcutaneous insulin
concentration, and Ip(t) [mU/L] is the plasma insulin
concentration. u(¢) [mU/min] is the insulin infusion rate,
C71 [L/min] is the clearance rate.

Glucose-insulin

CGM
subsystem 7

CHO subsystem

d@®

Sc. insulin
subsystem

u(t)

Fig. 2. The MVP model. This model simulates the ac-
tion of subcutaneously administered insulin on BG
concentration, the effects of meals, interstitial glucose
and CGM measurements.

2.2 Insulin-Glucose Dynamics

The effect of insulin on blood glucose is described by the
following SDEs

dIEFF = (_pQIEFF(t) +p251Ip(t))dt+03dw37 (20)
dG = (—(Igrr(t) + GEZD)G(t)+
EGP+RA(t))dt+O’4dW4. (2(1)

Igpr(t) [min~!] is the effect of insulin. S; [mL/mU] re-
flects the insulin sensitivity. The glucose concentration
G(t) [mg/dL] is also affected by the endogenous glucose
production (EGP) [mg/dL/min] and the rate of appear-
ance contribution from the meals, R(t) [mg/dL/min].

2.8 CHO Absorption Model

We use the two-compartment model introduced by Hov-
orka et al. Hovorka et al. (2004) to describe the carbo-
hydrates (CHO) absorption from meals and conversion to
glucose. The model describes the effect of orally ingested
carbohydrates on the rate of appearance of glucose R4 ()
[mg/dL/min] in the blood stream. The CHO absorption
model is

dDq = <d(t) — D;C(:t)) dt + osdws, (26)
1= (PO=POY o
Ra(t) = Dalt) 2 (28)

d(t) [mg/min] is the meal intake. k,, [min] is the inverse
of the meal absorption time constant and Vg [dL ] is the
glucose distribution volume.

2.4 CGM Model

We use here the CGM model from Facchinetti et al. (2014).
This model represents the glucose transport from plasma
to interstitial tissues and the sensor noise. The equation
describing glucose transport is

1
dG; = — (G(t) — G](t)) dt + o7dwr,
TG,I

(2h)



194 Dimitri Boiroux et al. / IFAC PapersOnLine 51-27 (2018) 192—197

° —BG

>
£ 200 |——CGM
E200 A Meal + bolus

insulin

Basal

S0k
E10
25

0
00:00

| | E—
12:00 18:00
Time

06:00 00:00 06:00

Fig. 3. Example of dataset used for identification.

where the time constant 7,7 is 6.7 min. The sensor noise is
represented by the sum of the two following autoregressive
processes

cep = 1.23ce—1 — 0.3995¢ck—2 + Wee ks (3a)
b, = 1.0130,_1 — 0.213504_5 + wy,, (3b)

in which wee ~ N(0,11.3 mg?/dL?) and wy ~ N(0,14.45
mg?/dL?). Thus, the discrete noise-corrupted value re-
turned by the glucose sensor and used in (1b) at the time
tk is

yr = Gr(ty) + ccp + . (4)

2.5 Model identification

The terms related to time constants, ki, ko and po, as
well as the glucose effectiveness at zero insulin, GEZI, are
highly uncertain. Therefore, based on our previous work
and these observations in Boiroux et al. (2016), we suggest
the following simplifications: (i) We use only one term to
describe the inverse of the time constants, ki, ko and po,
(ii) we fix the insulin clearance rate, C, because it cannot
be distinguished from the insulin sensitivity when only
CGM measurements are available, (iii) we set GEZI = 0
and (iv) we only identify the diffusion term related to
blood glucose concentration, oy4.

We identify the model parameters in our model using max-
imum likelihood combined with the continuous-discrete
extended Kalman filter described in the next section (Kris-
tensen et al. (2004)). The full details regarding the model
identification are provided in Boiroux et al. (2018). Table 1
provides a summary of the identified model parameters for
the 10 virtual patients. Fig. 3 shows the BG concentration
and CGM measurements, the insulin concentration and
the sc. insulin concentration for Patient 1.

3. CONTINUOUS-DISCRETE EXTENDED KALMAN
FILTER

The CDEKF is used for state estimation of continuous-
discrete grey-box models (Jazwinski (1970); Ngrgaard
et al. (2000)). In this paper, we use the CDEKF for model
identification and in the control algorithm. The filtering
in the CDEKF describes the steps used to compute the

filtered state, yx, and the corresponding covariance, Pj|i.-
The filter step assumes availability of the one-step predic-
tiOHS7 i‘k‘k,1 and Pk|k71~

The predictive filter gain is computed by

Rei = CiPyp—1C), + R, (5a)
Ky = Pop—1CrR_ (5b)
and the innovation is obtained by
er = Yk — Crlrp—1, (6)
where 9
Cr = %(flﬂk—l) (7)

provides a linearization of the output function g evaluated
at i'k|k71 .
The filtered state, Iy, and its covariance Py are given
by
gk = Trjp—1 + Kreg (8a)
Py = Pyji—1 — KiRe kK. (8b)
The predicted mean-covariance pair of the state estimate,
Tpg1p = Tr(try1) and Pypqjp = Pr(tgs1), is computed as
the solution to the system of coupled ordinary differential
equations (Jgrgensen and Jgrgensen (2007))

diy(t)

= (2R, w), (9a)
PO _ ac)Pt) + POAD) + 00, (0D)
with
Ap(t) = A(t, & (t), ur) = %(L:ﬁk(t),uk). (10)
The initial conditions for (9a)-(9b) are
Tk (te) = Tk, (11a)
Py(ti) = Py (11b)

4. OPTIMAL CONTROL PROBLEM

We assume a zero-order hold parametrization of the input
vector, u(t) and the disturbance vector, d(t). At each
iteration, the NMPC algorithm will have to solve an
optimal control problem in the form

N—-1
min . ¢ = Z Gk(l‘k,uk,dk) + h(l‘N) (12&)
{zrt1,un}, k=0
s.t. bk = Fk(xk,uk,dk) — Th+1 :0, (12b)
(to) = o, (12¢)
Umin < Uk < Umax. (12d)

The function describing the state dynamics is
Fy(zr, ug, di) = {x(tp41) + 2(t) = f(2(t), uk, di),
The discrete time stage cost is

tht1
Gr(xk, ug, dy) = {/ g(@(t), u)dt :
tk

i(t) = f(x(t), uk, di), x(tx) = xx}. (14)
In this paper, we use a multiple-shooting based sequential
quadratic programming (SQP) algorithm (Bock and Plitt
(1984); Diehl et al. (2009); Boiroux et al. (2010a)). The
SQP algorithm is used for the numerical solution of (12).
We use an explicit Runge-Kutta scheme with fixed stepsize

(13)
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Table 1. Numerical value of the estimated parameters for the 10 patients.

Patient k1, ko, p2 S EGPy 1/VG km o4 k‘1/km
(min~!)  (mL/mU/min) (mg/dL/min) (dL~!) (min~!) (mg/dL/min) )
1 0.023 0.0017 1.17 0.0082 0.0226 2.91 1.02
2 0.015 0.0011 0.98 0.004 0.022 3.15 0.68
3 0.021 0.0014 0.87 0.007 0.026 3.15 0.81
4 0.018 0.0019 1.47 0.0059 0.018 3.07 1.00
5 0.012 0.0024 1.57 0.021 0.015 3.28 0.80
6 0.012 0.0018 1.49 0.0020 0.014 3.60 0.86
7 0.014 0.0016 1.07 0.013 0.017 3.13 0.82
8 0.016 0.0011 0.94 0.0036 0.040 3.08 0.44
9 0.014 0.0005 0.35 0.0044 0.041 2.78 0.34
10 0.017 0.0008 0.67 0.0039 0.034 3.14 0.50
Mean 0.017 0.0013 0.958 0.0074 0.027 3.05 0.63
for the numerical integration of the state dynamics, the
objective function and for computation of the sensitivities 12000 |
of the objective function and the constraints. The initial I
state, xg, is estimated by the CDEKF. 10000 r 1
c |
4.1 SQP algorithm -% 8000 r :
< 1
We define the parameter vector, p, as “i 6000 r :
p=[uyzy vl xy ..y g Uy x’N]I (15) T I
. S 4000 - |
We compute the residuals as a .
b(p) = b(p, o, d) 2000 | :
Fo(wo, uo, do) — 21 kl
Fi(z1,u1,d1) — 22 (16) : : : :
= . 100 150 200 250

Fyoi(en—1,un—1,dN-1) — TN
Using these notations, we reformulate the discrete-time

OCP (12) as a constrained optimization problem in the
standard SQP form

N-1
min - ¢ = ¢(p = Grlwk,up,d) + h(zy),  (17a)
k=0

st b(p) = (17b)
c(p) >0 (17¢)

in which ¢(p) corresponds to the bound constraints
Upnin < Uk < Umnag- (18)

5. OBJECTIVE FUNCTION

In this section, we present and discuss the choice of the
objective function. The objective function, ¢, is a function
of the BG concentration, z(¢), and the variations in insulin
infusion rates, Auyg. It is

BG penalty function
—_—~

o= / o)+ pa(Bup)

The BG penalty function penalizes the deviation of the
predicted BG concentration, z(t), to a given setpoint, Z.

Insulin penalty term

(19)

The quadratic glucose penalty function are defined as

pelz) = 5z — 27, (20a)
prun(2) = 5 (min = 20, 0%, (200)
P (2) = % (max {z — Zmax, 0})2 , (20c)

Glucose [mg/dL]

Fig. 4. The asymmetric penalty function.

where z is the desired glucose target. zmi, and z,a.x are
thresholds for hypoglycemia (BG<70 mg/dL) and hyper-
glycemia (BG>180 mg/dL), respectively. The resulting
penalty function is

p=(2) = zpz(2) + Qi Prin (2) + Qzn Pz (2), - (21)
in which a3, a,,,, and . are weights. Since hypo-
glycemia is much more undesirable than hyperglycemia
and postprandial hyperglycemia is unavoidable, we set
high penalties for BG concentrations below 4 mmol/L and
we do not set any additional penalty on hyperglycemic
BG concentrations, ie. a,,_, = 0. Fig. 4 illustrates the
asymmetrical cost function.

It is possible to normalize the weight on the ¢5 penalty for
Aw by setting the following scaling

PAu (AU)

in which Ty is the sampling time, such that the tuning of
the controller remains identical regardless of the sampling
time.

lozAu

Au?, (22a)

6. RESULTS

In this section, we evaluate the closed-loop performance of
our NMPC-based control algorithm using numerical simu-
lations of a stochastic model. To simulate the intra-patient
variability, we consider a SDE version of the T1D model
in the form of (1). The model for simulation is derived
from the model and the parameter distribution developed
by (Hovorka et al., 2002). We use the Euler-Maruyama
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Fig. 5. BG concentration and insulin traces for the 10
virtual patients.

method for numerical integration, see eg. Higham (2001).
The patients have the following meals: a 75g CHO break-
fast at 6:00, a 100g CHO lunch at 12:00 and a 75g CHO
dinner at 18:00. The meals are announced to the controller
at mealtimes only. We set up;,, = 0 to allow insulin
suspension and we set the maximal insulin infusion rate,
Umax, t0 & large value such that it is not limiting the
performance of the control algorithm.

Fig. 5 shows the BG concentration traces and the insulin
infusion rates for the 10 virtual patients. The variability
between the patients becomes large after meals, depending
on the sc. insulin and meal absorption time constants. The
insulin profile shows a bolus-like impulse followed by a
suspension of insulin delivery for all patients, sometimes
referred to as a super-bolus. Clinical studies have shown
that using a super-bolus strategy tightens the regulation of
BG concentration and reduces the occurrence of postpran-
dial hypoglycemia (Rossetti et al. (2012); Boronat et al.
(2015)).

Fig. 6 depicts the control variability grid analysis (CVGA)
plot for the 10 patients. Only one patient had a mild hy-
poglycemic event before breakfast. The large postprandial
glucose excursions are mainly caused by the large meal
sizes and the ratio between time-to-peak of meal absorp-
tion and time-to-peak of insulin absorption (Boiroux et al.
(2010b); El Fathi et al. (2018)).

S
S
S
(]

@w
o
o

180

Maximum Glucose Concentration [mg/dL]

-
o

110 96 70 50
Minimum Glucose Concentration [mg/dL]

Fig. 6. Control variability grid analysis (CVGA) for the 10
virtual patients (Magni et al. (2008)).

Table 2. Percentage of time spent in different
BG concentration ranges. The numbers show
the median and the interquartile range (IQR).

Median IQR
BG > 180 mg/dL (%) 166  9.0253
70 < BG < 180 mg/dL (%)  82.2  74.7-91.0
70 < BG < 140 mg/dL (%)  73.0  61.8-81.3
BG < 70 mg/dL (%) 0 0-0

The simulation results provide insight into the ideal insulin
delivery profile and the maximum achievable performance
of an AP system. For patients with elevated postprandial
peaks, safety considerations would preclude from adminis-
tering large amounts of insulin ahead of meals. Instead, an
adapted diet consisting of lower CHO amounts and slower
sugars could reduce postprandial glucose excursions.

Table 2 shows the BG concentration median percentage of
time spent in target, hypo- and hyperglycemia. The table
shows the median and interquartile range. We see that
most of the time is spent in euglycemic range. However,
the time spent in hyperglycemia varies and highly depends
on the meal and insulin absorption dynamics.

7. CONCLUSION

In this paper we developed an NMPC-based control al-
gorithm. Parameter identification is used to handle inter-
patient variability and to adjust for long-term metabolic
variations. We numerically evaluated the performance of
our control algorithm. The results suggest that the estima-
tion of model parameters involved in NMPC algorithms
using CGM data is promising for the design of an AP.
Currently, the slow insulin dynamics compared to CHO
absorption dynamics limit the performance of the AP.
Personalized diet in complement to control algorithms
could further improve glucose regulation by reducing post-
prandial peaks.
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