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Quantum key distribution (QKD) provides ultimate cryptographic security based on the laws of quantum
mechanics. For point-to-point QKD protocols, the security of the generated key is compromised by detector side
channel attacks. This problem can be solved with measurement-device-independent QKD (mdi-QKD). However,
mdi-QKD has shown limited performances in terms of the secret key generation rate, due to postselection in
the Bell measurements. We show that high-dimensional (Hi-D) encoding (qudits) improves the performance of
current mdi-QKD implementations. The scheme is proven to be unconditionally secure even for weak coherent
pulses with decoy states, while the secret key rate is derived in the single-photon case. Our analysis includes
phase errors, imperfect sources, and dark counts to mimic real systems. Compared to the standard bidimensional
case, we show an improvement in the key generation rate.

DOI: 10.1103/PhysRevA.98.062301

I. INTRODUCTION

Digital security is important for several aspects of modern
life. Classical cryptography only promises to make decryption
hard, but not impossible. On the contrary, quantum key distri-
bution (QKD) is based on the laws of physics, theoretically
allowing parties to share cryptographic keys in an uncondi-
tionally secure way [1]. However, several physical require-
ments have to be satisfied to provide unconditional security,
and most experimental implementations of QKD have proven
to be vulnerable to attacks [2–11]. These attacks mainly
exploit weaknesses in the detectors, whereas the sources
are less vulnerable. To overcome this limitation, device-
independent QKD (di-QKD) [1,12–14] and measurement-
device-independent QKD (mdi-QKD) [15] were introduced
to decrease the reliance on the physical setup. While di-QKD
remains challenging due to technical limitations, including the
need for extremely efficient detection [1], mdi-QKD is ready
to be implemented in real networks.

Mdi-QKD was introduced by Lo et al. in Ref. [15]. Here,
the two parties Alice and Bob only use photon sources, while
the detection is performed by a third party, Charlie. Differ-
ent degrees of freedom have been used to demonstrate the
feasibility of this scheme (e.g., polarization, phase, time, and
space) [15–17]. Compared to other QKD protocols, however,
mdi-QKD has shown low key generation rates. To reduce
this limitation, high-dimensional (Hi-D) encoding can be used
to improve the photon information efficiency (PIE) [18].
Recent results have shown how spatial or temporal modes
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can be used to increase the dimension of the Hilbert space
[19–23] for standard QKD. We propose a protocol, where
Alice and Bob generate qudits (quantum states in N dimen-
sions) encoded in different paths or time slots of the photons.
These photons then interfere at Charlie’s beam splitters (BSs),
as shown in Fig. 1. As discussed below, the measurement
projects the qubits into a two-dimensional subspace, which
can be used for QKD. In the following, we analyze this
high-dimensional mdi–QKD protocol, considering the main
sources of errors, such as, imperfect photon generation, dark
counts, and (unknown) phase shifts. We prove that high-
dimensional mdi-QKD is unconditionally secure for coherent
states with the decoy state technique [15,24], and we analyze
the key generation rate for single-photon sources. In analogy
to a similar result for standard QKD [23], we find that our
Hi-D mdi-QKD protocol is advantageous, particularly in the
detector saturation regime, where the time between photon
clicks at Charlie’s detectors is comparable to the detectors’
dead time τd . We study the protocol both for time and space
encoding, and we analyze the practical constraints that make
one encoding better than the other. A different Hi-D mdi-QKD
scheme was proposed in Ref. [18], but remains experimentally
unfeasible, since discriminating Bell states in high dimensions
is impossible by simple means [25,26]. In comparison, our
protocol can be implemented without significant increase in
the complexity of existing setups. In particular, for weak
coherent states and time encoding, no change in the hardware
is required.

II. PROTOCOL DEFINITION

Most QKD protocols are based on mutually unbiased
bases (MUBs). Usually, the computational Z basis ({|0〉, |1〉}
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FIG. 1. Schematic of the proposed setup for Hi-D-mdi QKD.
(a) Space is used to encode information in different paths (multicore
fibers can be used as transmission channels). 2N single-photon
detectors are necessary for this configuration. (b) Time-encoding
scheme, where different time slots are used to encode the qudits. The
number of detectors is independent of the dimension N .

for qubits) is less susceptible to errors than the X basis
({|φ0〉, |φ1〉}, with |φ0〉 = (|0〉 + |1〉)/

√
2 and |φ1〉 = (|0〉 −

|1〉)/
√

2). This is also the case for the encodings in Fig. 1,
where different wave packets may dephase, but are unlikely
to switch from one bin to another. Thus, the Z basis is
used for key generation, and the X basis for error estima-
tion. Generalizations of the Z and X bases are, respectively,
{|0〉, |1〉, . . . , |N − 1〉} and {|φ0〉, . . . , |φN−1〉}. Here, |φi〉 are
the N orthonormal superpositions of all the elements of the Z

basis, with equal and real weights. As an example, for N = 4:

|φ0〉 = 1
2 (|0〉 + |1〉 + |2〉 + |3〉), (1a)

|φ1〉 = 1
2 (|0〉 − |1〉 − |2〉 + |3〉), (1b)

|φ2〉 = 1
2 (|0〉 + |1〉 − |2〉 − |3〉), (1c)

|φ3〉 = 1
2 (|0〉 − |1〉 + |2〉 − |3〉). (1d)

Our N -dimensional mdi-QKD protocol for two MUBs is
given by the following procedure.

(i) Alice and Bob choose, with probability Pb ∈ (0, 1), the
Z basis and, with probability 1 − Pb, the X basis.

(ii) Alice and Bob randomly generate one of the N qudits
in the chosen basis and send it to Charlie.

(iii) Whenever Charlie gets a coincidence click of two
detectors, he publicly announces the outcome of his measure-
ment. Otherwise, the event is discarded.

(iv) Steps (i) to (iv) are repeated to have enough statistics
to estimate the quantum bit error rate (QBER) and sufficiently
many bits of key.

(v) Alice and Bob announce their bases and estimate the
QBER. If the QBER is too high, they abort the protocol.

(vi) Alice and Bob proceed with classical error correction
and privacy amplification.

For simplicity (when not otherwise specified), we de-
scribe the protocol in the space encoding of Fig. 1(a), with
straightforward generalization to the time encoding. Assume
first that Alice and Bob both choose the Z basis. Whenever
they send the same element |i〉, two photons arrive at the
same BS and bunch together. There is thus no coincidence
event, and the outcome is discarded. When Alice and Bob

generate different states |i〉 and |j 〉 (i �= j ), these photons
necessarily end up in different detectors, and Charlie gets
a coincidence click. The measurement collapses the state
onto the two-dimensional space {|i〉A ⊗ |j 〉B ; |j 〉A ⊗ |i〉B},
with the first state being Alice’s and the latter Bob’s. As
an eavesdropper, Eve cannot distinguish whether Alice sent
the state |i〉 and Bob |j 〉 or vice versa and thus can only
guess with 50% probability the bit of key. In the X basis,
interference only allows half of all possible coincidence clicks
to happen, and this permits determining the QBER relative
to all two-dimensional subspaces. For example, consider the
case N = 2, and assume that both Alice and Bob send states
with the same phase. Then, only coincidences on the same
side of the BSs of Fig. 1(a) are allowed. If Alice and Bob
choose different phases, opposite outcomes are permitted.
This concept is generalizable to N > 2, considering that the
detection collapses the state onto a two-dimensional subspace,
so that only the relative phases within this subspace matter.
Alice and Bob can thus determine the contributions ε

i,j
x to the

QBER εx , where i, j = 0, . . . , N − 1 are all possible indices
of the two-dimensional subspaces of the composite Hilbert
space. For finite key length and high dimensions, there may
be insufficient statistics to estimate each individual error rate,
ε

i,j
x . In this case, the QBER can be determined by merging all

X measurements into a single error rate, εx . The QBER for
the N -dimensional protocol can thus be estimated with the
same resources as for the standard two-dimensional protocol
[27]. If the error rates ε

i,j
x are different (e.g., due to different

detectors), a better key rate can be obtained by treating the
errors independently. For simplicity, we restrict ourselves to
the simplest strategy and only consider a single error rate, εx .

III. SECRET KEY RATE

We first prove that our Hi-D protocol is unconditionally
secure, both for single-photon sources and for coherent states
with the decoy state method [24]. Then, we investigate all
elements of the setup—sources, channels, and detectors—to
determine the QBER and the raw key generation rate per
application of the protocol (Rp) in the single-photon case and
for realistic experimental conditions. Finally, we consider the
detector saturation regime.

In order to prove that Hi-D mdi-QKD is unconditionally se-
cure, we show that the security of the N -dimensional protocol
follows from the two-dimensional case [15,28–30]. The key
argument is that, whenever Charlie announces a coincidence
click, the wave function is projected onto a two-dimensional
subspace, with all other states being erased by the measure-
ment. As an example, consider Fig. 1(a), and assume that
one of detectors 1 and 2 and one of detectors 7 and 8 click.
The system is thus projected onto the Bell states (|0〉A|3〉B ±
|3〉A|0〉B )/

√
2, with the sign determined by the parity of the

measurement (clicks in 1 and 7 or in 2 and 8 lead to a plus,
clicks in 1 and 8 or in 2 and 7 lead to a minus). It follows
that, if Alice and Bob both choose the X basis, all states other
than |0〉 and |3〉 are erased by the measurement. On the other
hand, if the Z basis is used, the parties have to have chosen
these particular states as qudits. Every successful realization
of the Hi-D protocol is thus equivalent to an application of the

062301-2



HIGH-DIMENSIONAL MEASUREMENT-DEVICE- … PHYSICAL REVIEW A 98, 062301 (2018)

two-dimensional protocol, with the specific states identified
by Charlie’s measurement.

To complete the security proof, we follow Ref. [15] and
consider the virtual qudit approach [31]. We imagine that both
parties prepare an entangled state of two qudits, of which
one is sent to Charlie and the other (the virtual one) is kept.
The traveling photons are then encoded in the basis states by
measuring the virtual qudits. Since these measurements can
be postponed until after Charlie’s outcome is revealed, and
since this outcome projects the state onto a two-dimensional
subsystem, the protocol is equivalent to the entanglement-
based protocol for qubits [32,33].

The secret key rate r can be derived from
Refs. [15,31,34,35] as

r = R[1 − H (εx ) − f (εz)H (εz)], (2)

where R is the raw key rate, f (x) � 1 is an inefficiency
function for the error correction, and H (x) is the binary
entropy. The same security proof can be adapted to the
case of weak coherent pulses with the decoy state technique
[15]. Since the measurement collapses the system to a two-
dimensional subspace, high-dimensional entanglement cannot
be fully exploited with the current settings. It is thus not
surprising that the Hi-D protocol can be described in terms
of standard mdi-QKD protocols. However, as we see in the
following, our protocol still allows for improvements.

With the protocol proven to be unconditionally secure,
we now estimate the key rate taking into account realistic
sources, channels, and detectors. Above and in the following
we assume identical channels and detectors [36].

Sources. In Hi-D mdi-QKD both Alice and Bob are re-
quired to generate qudits. These Hi-D photons have to inter-
fere to generate the key and therefore need to be identical.
We quantify the errors introduced by distinguishable photons,
assuming different shapes of the emitted photons. This can be
described by expanding Alice’s state |iA〉A (i = 0, . . . , N −
1) in terms of Bob’s wave function according to |iA〉A →
β|iB〉A +

√
1 − |β|2|I 〉A, where |I 〉A shares the encoding of

Bob’s state (meaning that is in the same path or time slot),
but is in one or more modes other than |iB〉A. If both parties
use the Z basis, there should never be coincidences between
detectors associated with the same BS in Fig. 1(a), and if
the photons are in different paths it does not matter if they
are distinguishable. Hence, the influence of distinguishable
photons can be identified and never leads to errors in the key
rate. However, for the X basis, there is a probability |β|2 that
the photons interfere correctly and a probability 1 − |β|2 that
they click at random detectors, thus incrementing the QBER
εx by (1 − |β|2)/2.

Channels. The most general errors affecting qudits in
transmission lines are bit flips and phase shifts [37]. We
neglect the first ones, since the probability that a photon
disappears and reappears in another spatially or temporally
separated slot is small [20,21]. Instead, within the transmis-
sion channel any state |i〉J acquires a random phase, such
that |i〉J → eiθJ

i |i〉J . Here, i = 0, . . . , N − 1 and J = A and
B indicates whether the qudit was generated by Alice or
Bob. Like before, the Z basis is unaffected by phase noise,
since bits of key are only exchanged when photons do not

interfere. However, for any pair of elements in the X basis,
interference prevents half of the allowed coincidence clicks.
Whenever phase noise affects the qudits, wrong clicks hap-
pen with a probability [1 − 〈cos (θA

i − θA
j − θB

i + θB
j )〉]/2,

with i �= j (the case i = j is automatically discarded). To
quantify this effect, a noise model for the random variables
θA
i − θA

j and θB
j − θB

i is required. Different models are better
suited for different transmission lines and encoding schemes.
In the space model, we consider a homogeneous situation,
such that relative phases θA

i − θA
j and θB

j − θB
i are Gaussian

distributed, with zero average and identical variance σ 2. In
the time domain, phase drifts in the sources can be added
as independent noise contributions. Here, we assume white
noise between subsequent pulses, such that the variances
of θA

i − θA
j and θB

j − θB
i are |i − j |σ 2. Alternatively, if the

interferometer is slowly drifting, an appropriate model would
be |i − j |2σ 2.

Detection. For long distances, dark counts prevail over real
clicks, increasing the QBER. We define Pdc as the probability
that a single detector clicks without a photon, and we define
Ps = η10−α0d/10 as the probability that a photon arrives at a
detector and clicks. Here, η is the detector’s efficiency, α0 the
fiber loss coefficient, and d the distance separating both Alice
and Bob from Charlie. In the Z basis, Alice and Bob verify
if Charlie’s announcement is compatible with the qudit they
sent. A wrong bit of key is shared if and only if Alice and Bob
send the same state and a bit flip (induced by dark counts)
occurs. If none or one photon arrives, a random bit of key
is shared with probabilities 4N−1

N
(1 − Ps )2P 2

dc(1 − Pdc)2N−2

(zero photons arrive) and 4 N−1
N

Ps (1 − Ps )Pdc(1 − Pdc)2N−2

(one photon arrives). In case both photons click at the de-
tectors, the probability to share a correct bit is N−1

N
P 2

s (1 −
Pdc)2N−2. A wrong bit is produced by two photons bunching
together and a different detector firing, which happens with
probability 2 N−1

N
P 2

s Pdc(1 − Pdc)2N−2. From these, it is possi-
ble to find how many wrong bits of key are shared on average
and thus to find the QBER εz and the raw rate per application
of the protocol Rp in the Z basis.

We now explicitly calculate the QBER εx in the X

basis, including phase noise and distinguishability. If no
photons arrive at Charlie, half the coincidence clicks are
correct and half are wrong, both occurring with probabil-
ity (1 − Ps )2N (N − 1)P 2

dc(1 − Pdc)2N−2. With a single pho-
ton clicking, the probability to have a correct or a wrong
coincidence click is 2Ps (1 − Ps )(N − 1)Pdc(1 − Pdc)2N−2.
When both photons click at Charlie’s detectors, the proba-
bilities for the outcome to be correct or wrong are P 2

s (1 −
Pdc)2N−2[P (X)

good + (N − 1)PdcP
(X)
double] and P 2

s (1 − Pdc)2N−2

[P (X)
bad + (N − 1)PdcP

(X)
double], respectively. Here, P

(X)
double =

(1 + |β|2)/N is the probability that both photons end
up in the same detector. P

(X)
bad = [N (N − 1) − 2|β|2fN ]

/(2N2) and P
(X)
good = [N (N − 1) + 2|β|2fN ]/(2N2) are the

probabilities to have or not have the photonic interference
spoiled by phase noise and distinguishability. The func-
tion fN depends on the considered phase noise model.
For the space encoding, we find fN = N (N − 1)e−σ 2

/2.
For the time encoding, we find fN = [N (1 − e−σ 2

) +
e−Nσ 2 − 1]/[2 sinh(σ 2/2)]2. With these results, it is possible
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FIG. 2. Secure key rate as a function of distance. Plain lines refer
to N = 2, dash-dotted lines to N = 3, dashed lines to N = 4, and
dotted lines to N = 8. (a,b) No detector dead time, τd = 0. The secret
key rate without detector dead time r̃ is found using Eq. (2), with R

substituted by Rp , i.e., r̃ is in bit per application of the protocol.
(c) Secret key rate per second r as a function of distance. The dead
time is τd = 20 ns, and the minimum pulse separation is T̃p = 200 ps
(τd/T̃p = 100). Common parameters are Pdc = 1 × 10−6, f (εz ) = 1,
|β|2 = 0.85, η = 0.145, and σ equal to 0.175 (time) or 0.325 (space).
σ is chosen such that, for N = 2 when only including dephasing,
there is a QBER εx of 1.5% (time) or 5% (space).

to find how many bits of key are wrong on average and thus
to find the QBER εx in the X basis.

By merging the results above for sources, channel, and
detection imperfection, we derive Figs. 2(a) and 2(b), where
the secret key rate per application of the protocol is deter-
mined using Eq. (2), with R substituted by the raw key rate
per application of the protocol Rp. From the plot we find
the advantage of Hi-D mdi-QKD, as compared to standard
mdi-QKD. The probability that Alice and Bob send the same
state |i〉 (resulting in a useless event) asymptotically goes
to zero. This implies that, for small Pdc, the performance is
improved by a factor of 2(N − 1)/N compared to the standard
mdi-QKD protocol, where half of the events are lost even if
Alice and Bob select the same basis.

In the following, we study the regime where the detector’s
dead time τd is comparable to the timescale at which photons
click at Charlie’s detectors, and dark counts are negligible. We
assume that during τd Alice and Bob send n pulses separated
by Tp = τd/n. In this regime, ordinary QKD has proven to
gain advantage from high-dimensional encoding [23,38]. In
the following, we extend this result to mdi-QKD, considering
space and time encodings separately.

Space. For any dimension N of the Hilbert space,
2N detectors are used (see Fig. 1). The probability per
pulse Phit that a detector is hit by a photon is Phit =

1
2N

[2Ps (1 − Ps ) + P 2
s (2N − 1)/N ]. In the continuous limit

(t 	 Tp), the cumulative distribution for a detector being hit
within a time t is 1 − e−Phitt/Tp . From this, the probability

FIG. 3. Raw key per detector Rdet = R/ndet as a function of the
dimension N , in the detector saturation regime. Violet circles (solid
and empty) are used for the space encoding. Blue squares (solid
and empty) are used for the time encoding. The number of pulses
n within τd is optimized to achieve the highest rate. The maximum
possible number of qubits τd/T̃p is equal to either 20 (empty circles
and squares) or 100 (solid circles and squares). Ps = 0.2, τd = 20 ns,
and ndet = 2N (space) or ndet = 2 (time).

Palive that a detector is not dark can be found to be Palive =
P −1

hit /(P −1
hit + n), where we assume that a detector remains

dark for a time τd , no matter how many photons arrive while
it is dark. The average number of raw bits Nraw exchanged
during a dead time τd is therefore

Nraw = τd

Tp

(N − 1)P 2
s P 2

alive

N
. (3)

Maximizing Nraw with respect to Tp, we find the maximum of
Nraw (assuming Ps 
 N ):

N (M )
raw

τd

= max
Tp

{
Nraw(Tp, Ps,N )

τd

}
= Ps (N − 1)

4τd

. (4)

Time. In the time encoding, two detectors are used [see
Fig. 1(b)], and the minimum time separation between two
consecutive qudits is NTp. Following the same procedure
outlined above, we find Nraw, which is the same as in Eq. (3),
but divided by a factor of 2. This follows from the fact that,
during a train of N pulses, the same detector cannot click
twice, leading to a better performance of the space protocol
for short distances (see Fig. 3). The maximum number of
bits exchanged during the detector’s dead time τd is thus
(Ps 
 N )

N (M )
raw

τd

= Ps (N − 1)

8τdN
. (5)

Including the results found for the saturation regime,
and limiting the interval Tp between consecutive pulses to
some minimal value T̃p, the raw key rate R can finally be
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determined to be

R = N (M )
raw

τd

Rp, (6)

where the raw key rate per application of the protocol Rp

assumes no detector dead time, τd = 0. Here, N (M )
raw is either

Eq. (4) (space encoding) or Eq. (5) (time encoding) when
the optimal Tp is bigger than T̃p. Otherwise, N (M )

raw is given
by Eq. (3) with the substitution Tp → T̃p. Since the number
of pulses is varied to reach the optimal performance, we
evaluate the raw key rate in units of the detector dead time
τd . Therefore, while Rp is in units of bits/pulse, R is in units
of bits/s.

Since detectors are usually the limiting resource, we renor-
malize the raw key rate R in Eq. (6) with respect to the number
of detectors ndet employed. This renormalization takes into
account that 2N detectors could be used to perform N parallel
applications of a two-dimensional protocol, possibly outper-
forming the Hi-D setup. The rates per resource are shown
in Fig. 3, with the plain dots referring to T̃p = τd/100and
the empty ones to T̃p = τd/20. Figure 3 shows that, with a
limited rate of pulse generation (and thus finite T̃p), there
exists an optimal dimension Nopt for the best key rate: Nopt =
2 + Psτd/T̃p (for Ps 
 N ). For Psτd/Tp � 1, we see that
with Hi-D mdi-QKD we increase the key rate per detector,
due to the factor of 2(N − 1)/N found above.

Our work allows, for given experimental conditions, one to
evaluate a priori which is the best setting to be employed in
order to achieve the highest secret key rate. As an example,
Fig. 2(c) shows the secret key rate r as a function of distance.
For these curves, we used Eqs. (6) and (2) to determine the
raw (R) and the secret (r) key rates, respectively. With the
chosen parameters, for short distances it is better to use Hi-D
mdi-QKD in the space encoding, while for very long distances
low-dimensional time encoding is preferable. Three regimes
are visible in the plot. In the central region the rate scales
as P 2

s , as two clicks are required. In the detector saturation
regime, the probability for the detectors not to be dark is P −1

s ,
meaning that the rate is linear in Ps . Finally, for large distances

dark counts prevail, making QKD impossible. Note that for an
accurate cost analysis the number of detectors employed must
also be considered, as in Fig. 3.

IV. CONCLUSION

In conclusion, we have generalized the standard mdi-QKD
protocol to higher dimensions N . In our analysis we consider
the main sources of errors, and we prove the advantages
of Hi-D mdi-QKD, particularly in the detector saturation
regime. This result improves previous mdi-QKD schemes,
allowing for higher communication rates. The considered
generalization to Hi-D mdi-QKD is only one out of many
possibilities (for instance, see Ref. [39]). An attractive feature
of our proposal is that it can directly be implemented with
existing technology. The protocol works by projecting the
state onto a two-dimensional Hilbert space, through the Bell
state measurement performed by Charlie. Genuine Hi-D Bell-
state analyzers would allow higher key rates, by increasing the
PIE and reducing the information acquired by Eve. However,
discriminating Bell states with linear optics is challenging,
leaving the Hi-D ones inaccessible [25]. The proposals in
Refs. [40–42] for Hi-D Bell-state analysis may allow for
genuine exploitation of high-dimensional Bell states, but they
remain experimentally challenging. The present approach is
thus the most attractive from a practical perspective.
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