Broadband polarization degeneracy of guided waves in subwavelength structured ZnO pattern

Yermakov, Oleh Y.; Bogdanov, Andrey A.; Lavrinenko, Andrei

Published in: IEEE Journal of Selected Topics in Quantum Electronics

Link to article, DOI: 10.1109/JSTQE.2018.2886306

Publication date: 2019

Document Version
Peer reviewed version

Citation (APA):
Broadband Polarization Degeneracy of Guided Waves in Subwavelength Structured ZnO Pattern

Oleh Y. Yermakov, Student Member, IEEE, Andrey A. Bogdanov, and Andrei V. Lavrinenko

(Invited Paper)

Abstract—Polarization degeneracy of electromagnetic plane waves in vacuum and in any bulk isotropic media is the keynote operational principle of many optical devices such as polarizers and interferometers. However, surface and guided waves spectra are typically either not degenerated at all or meet degeneracy only at very specific dispersion points. In this paper, we offer a design of a periodic photonic structure based on zinc oxide (ZnO) nanocylinders providing the broadband polarization degeneracy of the guided waves in the near-IR frequency range. We analyze the impact of the spatial dispersion and substrate on the degeneracy breaking. We offer the design based on ZnO nanocylinders with aluminum-doped zinc oxide substrate, achieving the degeneracy in the vicinity of a telecommunication wavelength, for the practical implementation. Finally, we propose and verify numerically a potentially important device—waveguide polarizer, which is the analogue to the λ/4 plate for the guided waves.

Index Terms—Zinc oxide, photonic crystal waveguide, guided waves, degeneracy, polarization, dispersion, telecom, nonlocality, aluminum-doped zinc oxide.

I. INTRODUCTION

ALL-DIELECTRIC materials have recently become one of the main platforms in the nanophotonics due to their inimitable advantages such as low losses and high refractive index in the optical range and relatively simple fabrication process [1], [2]. Another important feature is a manifestation of the magnetic response of a resonant high-index dielectric nanoparticle in the visible and mid-IR frequency ranges [3], [4]. The interplay between Mie resonances of the dielectric nanoparticles paves a way to the nanostructures with extraordinary optical properties [5], [6], for instance, suppression of backward or forward scattering (optical nanoantennas [7], Huygens’ metasurfaces [8], [9]), enhanced Purcell factor (optical nanoantennas [7], [10]), total radiation suppression (anapole mode [11], [12]), polarization control of light at nanoscale [13], [14]. Besides, all-dielectric structures have significantly extended the opportunities to manipulate surface waves, namely Dyakonov surface waves, in anisotropic media [1], [15], [16].

It is worth noting that modern technologies assist the fabrication of the extremely precise, single-crystalline, sub-micron nanoparticles [2]. The determination of a specific material plays an important role for the further investigation. For this work we chose zinc oxide (ZnO) – a crucial technological material possessing numerous attractive characteristics for the optoelectronic and spintronic devices [17], photovoltaics [18] and sensing [19]. ZnO is a low-cost direct wide bandgap semiconductor (but in this work we consider it as the dielectric material) which has a number of advantages for the growth, synthesis and fabrication [20]. For example, zinc oxide can be grown on a substrate, such as glass, at low temperatures [17]. Nanostructured ZnO materials, such as nanowires, nanorods and nanoparticles, attracted attention due to their simplicity and prominent optical properties [20]. For instance, laser ablation in superfluid helium of ZnO allows to produce spheres with typical sizes of several tens of nanometers [21].

It is well-known that the light waves spectrum in free space is double degenerated with respect to the polarization degrees of freedom. One of the possible eigenmodes bases can be chosen with right- and left-handed circularly polarized plane waves. Many classical bulk optical devices, such as polarizers and interferometers, are based on the degeneracy breaking due to the birefringence. However, surface and waveguide modes are usually degenerated only for single fixed frequencies where the accidental degeneracy takes place due to the band crossing [22]–[24]. It significantly limits the development of flat optics devices. For instance, surface analogues of polarization devices cannot be implemented due to the lack of the polarization degeneracy of surface waves. If it can be achieved this will make a pronounced step towards the polarization switching, strong spin-orbit interactions and unprecedented wavefront control. In addition, degenerated TE and TM surface waves form a promising platform for the efficient silicon-on-insulator-based coupling [25]–[27] and surface-enhanced chiral sensing [28], [29].

Huygens-like dielectric metasurfaces support near-unity transmission with full phase control in the visible [9], [30], [31] and radiofrequency ranges [8], [32], [33] opening new routes for the wavefront manipulation. The efficient beam steering with
Huygens’ metasurface has been recently demonstrated at the telecommunication wavelength [34]. The operational principle of Huygens’ surfaces is based on the degeneracy of the electric and magnetic dipole resonances in the far-field, but they are not configured to achieve the degeneracy of the surface or guided waves spectra.

In this work, we demonstrate the broadband TE and TM guided modes degeneracy with the periodic subwavelength pattern of ZnO cylinders. We show that the degeneracy can be achieved via tuning the period of the structure and the related cylinder dimensions. These results can be conveniently scaled to any frequency range in the near IR following the rules adopted for photonic crystals. We analyze the dependence of the guided modes dispersion and degeneracy breaking on the propagation direction due to the nonlocality and the effect of the substrate. Besides, we offer a special design of a ZnO structure on the aluminum-doped zinc oxide (AZO) substrate, which can potentially support the guided modes degeneracy in the vicinity of the telecommunication wavelength 1.55 μm. Finally, we propose the conceptually new practical application based on the guided modes degeneracy, namely linear-to-circular waveguide polarizer.

II. RESULTS AND DISCUSSION

A. Broadband Polarization Degeneracy of Guided Modes

In order to implement the broadband guided modes degeneracy for the near-IR range we choose ZnO nanocylinders in a homogeneous dielectric medium since they can be potentially fabricated with high quality [21], and they allow to configure dispersion via controlling their aspect ratio. We calculate the guided modes dispersion numerically by using the Eigenmode Solver of the CST Microwave Studio. We assume that the refractive index of ZnO is dispersionless, lossless and equals 1.95 since its dispersion changes very smoothly for the studied wavelength range (n = 1.95 ± 0.03 in the frequency range from 140 to 430 THz [35]).

We found that optimized diameter D and height H of the ZnO cylinder surrounded by air (ε = 1) should be 0.64 a and 0.825 a, respectively, where a is the period of the structure (see Fig. 1). It leads to the almost ideal coincidence of TE- and TM-polarized guided modes dispersion for the frequencies up to 0.42 c/a in the dimensionless units [Fig. 2(a)]. Since the cylinder dimensions are directly connected to the period of the structure, we can scale the geometric parameters to address the desired operation frequency range. One can see that the maximum frequency can change from 254 THz for a = 500 nm to 424 THz for a = 300 nm [Fig. 2(b)]. The appropriate difference between the wavevectors values of the TE and TM modes δk does not exceed 0.003 π/a as shown in Fig. 2(c). It means that achieving a phase shift up to 0.3 π requires the maximum structure size up to 100 × 100 unit cells. The increase of this difference in the vicinity of the first Brillouin zone boundary is related to almost horizontal disposition of the dispersion curves. However, the dispersion degeneracy is still very high, which is confirmed by the difference between the values of the frequency of both modes [Fig. 2(d)].
YERMAKOV et al.: BROADBAND POLARIZATION DEGENERACY OF GUIDED WAVES IN SUBWAVELENGTH STRUCTURED ZnO PATTERN

According to the dispersion diagrams [Fig. 2(b)] the structure is nothing else but a photonic crystal supporting the index-guided modes below the first bandgap. The eigenmodes can be classified as the guided waves of TM and TE polarizations. The spatial distribution of the electric and magnetic fields for both modes in the vicinity of the telecommunication wavelength is shown in Fig. 3. The amplitudes of the electromagnetic fields are approximately the same for both polarizations.

B. Dependence on the Propagation Angles

The main principle of the guided modes dispersion coincidence is the same as for the Huygens surfaces – the overlapping of electric and magnetic resonances of the structure [9]. Effective electric $\tilde{\alpha}_e^{\text{eff}}$ and magnetic $\tilde{\alpha}_m^{\text{eff}}$ polarizabilities of this periodic structure result from two contributions - the polarizability of a single cylinder $\tilde{\alpha}_0(\omega)$ and the non-local interaction between the different cylinders $\tilde{C}(\omega, k)$:

$$\tilde{\alpha}_i^{\text{eff}}(\omega, k) = \tilde{\alpha}_0(\omega) + \tilde{C}(\omega, k),$$

$$i = e \text{(electric)}, \ m \text{(magnetic)}.$$

The first term depends on the cylinder dimensions and material parameters, while the second one is characterized by the mutual arrangement of the cylinders. In contrast to conventional Huygens’ metasurfaces, we investigate the eigenmodes under the light line, i.e. with the wavevectors larger than ones for light in free space. It means that interaction term in our case has greater impact comparing to Huygens’ surfaces. Unlike the polarizability of the single cylinder, the interaction term is not radially symmetric and possesses the in-plane anisotropy. It can be explained by the different distances between the neighboring cylinders for the different directions and, therefore, it results in the different effective index. As a consequence, dispersion of guided waves depends on the propagation angle as well, which is shown in Fig. 4. One can see that the degeneracy is lifted as the degree of the anisotropy increases. The propagation angle $\alpha = 45^\circ$ corresponds to the highest degree of anisotropy. So, the proposed design based on the ZnO cylinders offers the TE and TM guided modes degeneracy within full frequency range only in the limited range of the propagation angles.

C. Role of Substrate

It is necessary to analyze the effect of the substrate on the eigenmodes spectrum to suggest the practical implementation.
possibility. At first, the substrate changes the effective refractive index differently for TE and TM modes, which can lead to the fast degeneracy breaking. Secondly, with the presence of the substrate we have an asymmetric waveguide which can support guided modes only if the dielectric contrast or nanoparticles thickness are big enough. Thus, the emergence of the substrate leads to the asymmetric problem and decreases the permittivity contrast between the scatterer and the environment, which can result in the degeneracy breaking and eigenmodes vanishing. Figure 5(a) shows the guided modes dispersion for the different values of the substrate permittivity. One can observe the degeneracy breaking with the increase of the substrate permittivity [Figs. 5(b)–5(c)] and strong delocalization of the guided waves. The resonant frequency decreases due to the effective permittivity increase.

It is worth noting that the substrate does not have a significant impact for the high-index materials such as silicon. It is possible to design silicon nanocylinders on the fused silica substrate (in this case, silicon particle permittivity is approximately 6 times higher than substrate’s one) in order to achieve the broad-band degeneracy. Polarization degeneracy in a narrow band for silicon-on-insulator structure has been reported in Ref. [36]. For the ZnO nanocylinders the substrate leads to the degeneracy breaking. Nevertheless, the practical design can be implemented by using optically transparent artificial structures exhibiting refractive index close to one, for instance, heavily doped oxide semiconductors such as indium tin oxide (ITO) and aluminum-doped zinc oxide (AZO) [37], [38]. Specifically, we claim that it is possible to achieve the guided waves degeneracy (δk is around $0.002 \pi/a$) with the AZO substrate, described in the Ref. [39], namely $\varepsilon \approx 1.38 + 0.28i$ at 1.55 μm, in the vicinity of the telecommunication wavelength by appropriately designing the ZnO cylinders as follows: $D = 0.72a$; $H = 0.88a$.

D. Waveguide Polarizer

Discovering polarization degrees of freedom for guided and surface waves leads to a number of potential applications in light technologies. In this Section we analyze the opportunity to create a polarizer for guided waves similar to the one for bulk waves. Specifically, we elaborate the concept of a quarter-wave plate (linear-to-circular polarizer) for guided waves.

The operational principle of a conventional quarter-wave plate is based on the withdrawal of the polarization degeneracy within a finite propagation region. Initially, an electromagnetic wave of linear polarization propagates in vacuum supporting the polarization degenerated spectrum. Then, it enters an uniaxial crystal breaking the degeneracy due to the medium anisotropy. The phase difference between two modes reaches $\pi/2$, when wave is coming out from the uniaxial crystal to vacuum, i.e. its polarization becomes circular (or elliptical). This concept is sketched in Fig. 6(a). We propose to implement the analogue of the quarter-wave plate for guided waves, ‘waveguide polarizer’, by using two types of waveguides supporting degenerated and fairly non-degenerated spectra as the analogues of vacuum and uniaxial crystal, respectively. The waveguide with the degenerated spectrum has been investigated above, while the waveguide with lifted degeneracy can be obtained by changing the cylinders aspect ratio [Fig. 6(b)]. The dispersion of TE- and TM-polarized modes in both waveguides is shown in Fig. 6(c).

Figure 7 shows the electric field distributions before [cross-section A in Fig. 6(b)] and after [cross-section B in Fig. 6(b)] the waveguide polarizer. It unambiguously demonstrates the polarization transformation of guided waves from linear (at the input) to the elliptical one (at the output). The polarization device proposed exhibits great opportunities for conceptually new integrated circuits and on-chip devices using the polarization
degree of freedom of localized waves for the optical encoding, transfer and processing information.

III. CONCLUSION

To conclude, we have shown that a photonic crystal structure based on a square lattice of the high-index dielectric cylinders in the homogeneous low-index dielectric medium supports the broadband TE and TM guided modes degeneracy with high accuracy. We have calculated the appropriate design for the ZnO cylinders surrounded by air. This effect persists only in the limited range of the propagation angles as a consequence of the strong nonlocal impact. The substrate with permittivity greater than 1.3 breaks the degeneracy and leads to the guided waves vanishing. However, we have offered the practical design based on the ZnO cylinders on the AZO substrate in order to achieve the degeneracy in the vicinity of the telecommunications wavelength. Finally, the concept of the waveguide polarizer based on the polarization-degenerated eigenmodes spectrum has been presented. These results can be easily extended on a single-roll structure, other shapes and lattice types of the ZnO
pattern, holes in the ZnO matrix and other dielectric materials such as silicon, titanium dioxide, sapphire, etc. We consider this work as a significant milestone towards the development and creation of the flat optics and on-chip devices.

ACKNOWLEDGMENT

The authors would like to thank Yu. S. Kivshar for the fruitful discussions.

REFERENCES

Andrey A. Bogdanov was born in Saint Petersburg, Russia, in 1986. He received the B.Sc. and M.Sc. degrees in Solid State Physics from the Saint Petersburg State Polytechnical University, Saint Petersburg, Russia, in 2007 and 2009, respectively, and the Ph.D. degree in Physics of Semiconductors from the Ioffe Institute, Saint Petersburg, Russia, in 2013.

In 2014, he got a Postdoc position with the International Research Center for Nanophotonics and Metamaterials, ITMO University, Saint Petersburg, Russia, where he is currently an Assistant Professor. His research interests include the theory of surface waves, bound states in the continuum, optomechanics, semiconductor lasers, nonlinear optics, and photonic structures.

Dr. Bogdanov is the Chair of the Annual Doctoral Summer School on Nanophotonics and Metamaterials.

Andrei V. Lavrinenko received the M.S., Ph.D., and D.Sci. degrees from the Belarusian State University (BSU), Minsk, Belarus, in 1982, 1989, and 2004, respectively.

From 1990 to 2004, he was an Assistant Professor and Associate Professor with the Department of Physics, BSU. Since 2004, he has been an Associate Professor with the Department of Photonics Engineering, Technical University of Denmark, Kongens Lyngby, Denmark. Since 2008, he has been leading the Metamaterials Group of this department. He is the author of five textbooks, ten book chapters, and more than 180 journal papers. His research interests include metamaterials, plasmonics, photonic crystals, quasicrystals and photonic circuits, slow light, and numerical methods in electromagnetics and photonics.