High energy radiation profile of Jupiter as observed by the JunoASC

Jørgensen, Finn E.; Jørgensen, J. L.; Jørgensen, P. S.; Herceg, M.; Denver, T.; Benn, M.; Shushkova, J.; Connerney, J. E. P.; Oliversen, R. J.; Gershman, D. J.

Total number of authors: 11

Publication date: 2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
High energy radiation profile of Jupiter as observed by the JunoASC

Finn E. Jørgensen¹, J.L. Jørgensen¹, P.S. Jørgensen¹, M. Herceg¹, T. Denver¹, M. Benn¹, J. Shushkova¹, J.E.P. Connerney²,³, R.J. Oliversen², D. J. Gershman², S. Kotsiaros²

¹ Technical University of Denmark (Denmark), ² NASA Goddard Space Flight Center (USA), ³ Space Research Corporation (USA)

The Magnetometer Investigation’s star trackers (ASCs) on Juno spacecraft are collocated with the magnetometer sensors on a boom. Magnetometer optical bench allowed for limited radiation shielding of the cameras.

In addition to suppressing the undesirable effects of penetrating energetic particles, the morphological filters in the instrument flight software provide a measurement of the actual penetrating flux at all times.

In addition to suppressing the undesirable effects of The ASC has probed the distinct regions of high energy particle fluxes: the main plasma torus, the plasma populating the magnetic field lines reaching the auroral region, and, particle fluxes on near open field lines. We present a map of the regions probed this far, and their associated fluxes, we show the high energy fluxes observed on field lines connecting to the Jovian satellites, and we discuss the particle nature observed on open field lines.

micro Advanced Stellar Compass μASC
- Designed and produced by the Measurement and Instrumentation Systems (GDU)
- one of the most successful star tracker worldwide
- autonomously calculates altitude based on all bright stars in the CHUs Field of View
- provides 22 true solutions per second with one single CHU
- absolute accuracy of < 1 arc second
- operating on many satellite missions without a single hardware or functional failure

Observations
The wiggle plot below shows Juno’s position in magnetic coordinates (ρ, ζ) in [R_J]. In the trace of the orbit, the flux measured by the μASC is displayed with a color scale. The major Jovian moons radial distance have been also added in the plot in addition to the model of the magnetodisc.

Juno’s crossing of the magnetic field lines which intersect the Jovian moon orbits is shown. These crossings are correlated with observations of the μASC particle counter.

Jovian magnetic field
Jupiter’s magnetic field model (JRM09) by Connerney (2018) describes the field with spherical harmonics up to degree 10. It is based on measurements performed near Jupiter by the Juno mission. The JRM09 model shows a more complex Jovian magnetic field in comparison to earlier models (eg. VFP4), and a clear asymmetry within the northern and southern hemispheres. For larger distances to the planet (>10R_J), the magnetic field can be represented well by a 10.5° tilted magnetic dipole and there is no apparent differences wtp FP4 model.

Image analysis. Deposited energy
A track left by an energetic particle that hit the CCD is ~50 pixels long (~0.7 mm or 160 MeV/cm²) and has 4 or 5 splits due to recoil nuclei produced by the incident particle in silicon. Estimation of the primary energy of a particle that could traverse at least 0.7 mm in Si behind the heavy shielding will involve the transport flux modelling for the μASC, the calibration curves of the CCD and in-flight image analysis.

Highlights
- Model of the high energy electron radiation environment near the
- Better constrains on the Jupiter’s current sheet
- Magnetic footprint of the Jupiter’s inner planet

Ref.

American Geophysical Union, Fall meeting, Washington, D.C., 10-14 Dec 2018

fj@space.dtu.dk