Swarm Optical Bench Stability

Herceg, Matija; Jørgensen, Peter Siegbjørn; Jørgensen, John Leif; Floberghagen, Rune

Publication date: 2018

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Swarm Optical Bench Stability

Matija Herceg¹, Peter Siegbjörn Jørgensen¹, John Leif Jørgensen¹, Rune Floberghagen²

¹DTU Space, Measurement & Instrumentation Systems, Technical University of Denmark, Copenhagen, Denmark. ²European Space Agency, Frascati, Rome, Italy

Poster number: EGU2018-14478

Introduction

Swarm mission constellation, launched into orbit on November 22, 2013, consists of three satellites that precisely measure magnetic signal of the Earth. Each of the three satellites is equipped with three µASC Camera Head Units (CHU) mounted on a common optical bench (OB), which has a purpose of transference of the precisely determined attitude from the star trackers to the vector magnetometer (VFM) measurements. Although pre-launch analyses were made to minimize thermal and mechanical instabilities of the OB, significant signal with thermal signature is discovered when comparing relative attitude between the three CHU’s. These misalignments between CHU’s, and consequently geomagnetic reference frame, are found to be correlated with the optical bench temperature variation.

In this paper, we investigate the propagation of thermal effects into the µASC-attitude observations and demonstrate how thermally induced attitude variation can be predicted and corrected in the Swarm data processing. The results after applying thermal model significantly improves attitude determination which, after correction, meets the requirements of Swarm satellite mission. This study demonstrates the importance of the OB pre-launch analysis to ensure minimum thermal gradient on satellite optical system and therefore maximum attitude accuracy.

micro Advanced Stellar Compass µASC

- Designed and produced by the Measurement and Instrumentation (DTU)
- to date one of the most successful star tracker worldwide
- autonomously calculates attitude based on all bright stars in the CHUs
- Running a single CHU, µASC can provide 22 true solutions per second
- absolute accuracy of < 1 arc second
- operating on many satellite missions without a single hardware or functional failure

Swarm optical Bench

Swarm optical bench (OB) is an ultra-stable silicon carbide-carbon fiber compound structure installed on a deployable conical tube of square cross section. Its purpose is transference of the precisely determined attitude using star trackers to the magnetometer field components.

Observed thermo-elastic instabilities

The three CHU’s are placed on OB and arranged with the Inter Boresight Angle (IBA) of around 90° from each other. Ideally, IBA is expected to be constant. However, IBA variation shows periodicity, which is correlated with temperatures measured on three Swarm satellites.

The fixed frame is defined as:

\[\begin{align*}
X_F &= \frac{x_F + y_F}{\sqrt{x_F^2 + y_F^2}} \\
Y_F &= \frac{x_F - y_F}{\sqrt{x_F^2 + y_F^2}} \\
Z_F &= \frac{z_F}{\sqrt{x_F^2 + y_F^2 + z_F^2}}
\end{align*} \]

Each rotation is described by:

\[\begin{align*}
\alpha &= 0 \\
\sin(\alpha) &= 0 \\
\cos(\alpha) &= 1
\end{align*} \]

\[\begin{align*}
\beta &= 0 \\
\sin(\beta) &= 0 \\
\cos(\beta) &= 1
\end{align*} \]

\[\begin{align*}
\gamma &= 0 \\
\sin(\gamma) &= 0 \\
\cos(\gamma) &= 1
\end{align*} \]

Thermal model is found by Singular Value Decomposition (SVD) fitting of IBA orbital averages and observed temperatures, and it describes how each CHU moves relative to its pre-light calibrated frame due to the thermal gradients. It is defined as:

\[\begin{align*}
R_{\text{CHU corrected}} &= R_3(y) R_2(x) R_1(\alpha) R_4(\gamma) \end{align*} \]

Discussion

The analysis and thermal model presented herein, shows that the origin of the IBA variation is thermal gradient driven, and fully recoverable by a simple thermal model. We present the model for correction of the thermo-elastic instabilities on Swarm satellites optical benches, which cause misalignments between the CHU’s relative orientation.

The results after applying thermal corrections show decrease in RMS for all the Swarm satellites. Therefore, the technique presented here shows improvement in attitude determination which, after correction, meets the 2-arcsecond requirements of Swarm satellite mission.

Presented model is now being implemented in the Swarm data processing.

References

Telfer-Clausen, L., HolmSbahl Olsen, P. E., 2015, Swarm Level 1b Processor Algorithm. SW-RS-DSC-SY-0002.