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Abstract

In this paper, we considered the problem of Curriculum-Based Course Timetabling, i.e., assigning

weekly lectures to a time schedule and rooms. We developed a Column Generation algorithm based

on a pattern formulation of the time scheduling part of the problem by Bagger et al. (2016). The

pattern formulation is an enumeration of all schedules by which each course can be assigned on each

day; it is a lower bounding model. Pattern enumeration has also been considered in Burke et al.

(2008), where the authors enumerated all schedules to which each curriculum can be assigned on

each day. We applied the Dantzig-Wolfe reformulation, so each column corresponded to a schedule

for an entire day.

We solved the reformulation with the Column Generation algorithm, where each pricing prob-

lem generated a full schedule for a single day. We provided a pre-processing technique that, on

average, removed approximately 45% of the pattern variables in the pricing problems. We then

extended the pre-processing technique into inequalities that we added to the model. Lastly, we

describe how we applied Local Branching to the pricing problem by using the columns generated

in previous iterations.

We compare the lower bounds we obtained, with other methods from literature, on 20 data

instances of real-world applications. For 16 instances the optimal solutions are known, but the

remaining four are still open. Our approach improved the best-known lower bound for all four

open instances, and decreased the average gap from 24% to 11%.
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1. Introduction

In this paper we focus on the Curriculum-Based Course Timetabling problem (CCT) as de-

scribed by Di Gaspero et al. (2007). The problem has received much attention as it was used for

the Second International Timetabling Competition in 2007 (ITC2007) (Di Gaspero et al., 2007;

McCollum et al., 2010). Following the competition, a website (Bonutti et al., 2017) was created

where researchers can upload data instances, solutions and bounds. Most of the work conducted on

CCT is dominated by heuristic approaches (Aśın Aschá and Nieuwenhuis, 2014; Lübbecke, 2015).

Heuristic methods have provided most of the best-known solutions according to Bonutti et al.

(2017). For ITC2007, 21 data instances were provided arising from real-world applications. Four

of these instances are still open, meaning that the best-known upper bound does not equal the

best-known lower bound. The lower bounds are necessary, as the heuristics themselves do not pro-

vide a quality measurement. Our goal, in this work, is to strengthen the best-known lower bounds.

We have done this by applying a Dantzig-Wolfe reformulation of a previous formulation, which

is solved by Column Generation. We assume that the reader is familiar with the Dantzig-Wolfe

reformulation, the Column Generation algorithm, and the terms used in it: (restricted) master

problem, pricing problem, and reduced costs. Interested readers can refer to Martin (1999, chapter

11) and Desrosiers and Lübbecke (2010) for thorough and general descriptions. Column generation

approaches have been considered before by Cacchiani et al. (2013), but it is still worthwhile to

investigate such methods further (Lübbecke, 2015).

We have described the problem in detail in Section 1.1, and provided an overview of other

methods in literature that have considered CCT in Section 1.2. We have described the pattern

formulation suggested by Bagger et al. (2016) in Section 2, as this is the model which we have used

in our Dantzig-Wolfe reformulation. In the pattern formulation, each column corresponds to an

assignment of lectures for a course on a single day. In our reformulation, each column corresponds

to the full assignment of the patterns on a single day of all the courses. We have described

this reformulation in Section 3. We describe the pre-processing techniques we have applied in

Section 4, as well as some inequalities we have derived followed by the framework we have used in

the solution process: Local Branching (Fischetti and Lodi, 2003). We have reported the results of

our computational experiments in Section 5. Lastly, we have provided the conclusion in Section 6.

1.1. Curriculum-Based Course Timetabling

The CCT problem consists of the following entities: courses, days, time slots, lecturers, rooms

and curricula. Each course is taught by exactly one lecturer and contains lectures that must all be

scheduled in a weekly timetable and assigned to rooms. The week is divided into days and each

day is divided into time slots of equal duration. A day and time slot pair is referred to as a period,

so the total number of periods is the number of days multiplied by the number of time slots. The

length of one lecture corresponds to one period. A curriculum is a set of courses, where for every

pair of courses, there are students attending both courses.
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The hard constraints are as follows: all lectures of a course must be scheduled, and they must

be scheduled in distinct periods. If a lecture is not scheduled, then the Lectures (L) constraint

is violated, and two lectures of the same course scheduled in the same period is also considered

as a violation. A course can have specific periods defined as unavailable periods. Every lecture

scheduled in such a period is a violation of the Availability (A) constraint. We can say that two

courses are conflicting if they are taught by the same lecturer, or belong to the same curriculum, as

scheduling two courses in the same periods would create a conflict. If there exists a period where

two conflicting courses have a lecture scheduled, then the constraint Conflicts (C) is violated. A

room can accommodate only one lecture in any given period. If more than one lecture is scheduled

in the same room and the same period, then the constraint Room Occupancy (RO) is violated.

The problem contains four soft constraints: Room Capacity (RC), Room Stability (RStab),

Minimum Working Days (MWD), and Isolated Lectures (IL). We are allowed to schedule any

course in any room. However, a room is desired to be capable of accommodating as many students

as possible when scheduling the courses into rooms. Every room has a capacity, and if the number

of students attending a lecture is larger than the capacity of the room to which the lecture is

assigned, the constraint Room Capacity (RC) is violated by the number of students minus the

capacity. Furthermore, as the courses contain multiple lectures, it can also be an advantage that

the lectures are all scheduled in the same room during the week. For every course, the constraint

Room Stability (RStab) is violated by one for every distinct room to which the course is assigned

minus one. For every course, it is preferred to spread the lectures across a predetermined number

of days. This number is called minimum working days. If the lectures are scheduled in fewer days

than the minimum working days, then the constraint Minimum Working Days (MWD) is violated

by one for each day below the minimum working days. The last soft constraint is the Isolated

Lectures (IL) constraint. If two periods belong to the same day and are in consecutive time slots,

then we say that the periods are adjacent. Consider a curriculum and a course belonging to the

curriculum. If the course has a lecture scheduled in a period, and no lecture from any of the courses

belonging to the curriculum has been scheduled in an adjacent period, then we say that the lecture

is isolated. For every curriculum, the constraint Isolated Lectures (IL) is violated by one for every

isolated lecture.

The IL constraint is usually referred to as the curriculum compactness constraint in literature.

We use the name isolated lectures as Bonutti et al. (2012) mentions different ways of defining

curriculum compactness, and they use the name isolated lectures for the formulation used here and

in ITC2007.

Any feasible timetable must fulfill all the hard constraints, i.e., a timetable is considered feasible

if, and only if, no hard constraints are violated. The objective is to find a feasible timetable while

minimizing the soft constraints. Each soft constraint has a weight associated with it, so that a

single objective is defined by a weighted sum of all the soft constraints.
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1.2. Related Work

In this section, we describe the approaches from literature that consider CCT. As our method

is a lower bounding method, we focus on other lower bounding methods for CCT in literature. We

refer to Bettinelli et al. (2015) for a comprehensive overview.

Burke et al. (2010a) introduced an exact mixed integer programming (MIP) model of CCT.

They formulated the IL constraint by using a variable for each curriculum and each period. Burke

et al. (2008) removed these variables and instead they used just one variable for each curriculum

and each day. The value of this variable was then calculated by adding an exponential number

of constraints. The constraints are generated by enumerating patterns for each curriculum and

each day. In their study, Burke et al. (2012) kept a subset of the constraints from the enumerated

patterns in Burke et al. (2008), and then added the remaining ones dynamically, whenever they

were violated. Burke et al. (2010b) took the model from Burke et al. (2010a) and split it into two

stages; first, the courses were scheduled into periods and then they were assigned to rooms. This

approach was executed iteratively.

Splitting the problem into two stages was also considered by Lach and Lübbecke (2008, 2012):

the first stage schedules the courses to periods and assigns them as per capacities, and the second

stage then assigns the rooms with respect to the assigned capacities.

Hao and Benlic (2011) considered the first stage problem of Lach and Lübbecke (2012). They

relaxed some of the constraints, so that the problem could be divided into sub-problems. Then,

they computed a lower bound for each sub-problem and summed them up to get a lower bound

for the overall problem.

Cacchiani et al. (2013) also computed lower bounds. They did this by splitting the problem

into two parts: one part considered the time related constraints and the other part considered the

room related constraints. A lower bound was then calculated by summing up the lower bounds for

both parts. As some of the data instances were computationally time consuming to solve for the

time related part, they applied a Dantzig-Wolfe reformulation, so that there was a pricing problem

for each day and solved the model by column generation.

Aśın Aschá and Nieuwenhuis (2014) proposed multiple reformulations of the decision variant as

a propositional satisfiability test (SAT). They started by treating the soft constraints as hard con-

straints and solved the problem as a pure satisfiability problem. Then, they relaxed the constraints

one by one, to move toward a weighted partial maximum satisfiability encoding.

In their study, Bagger et al. (2017) considered decomposition of the problem similar to Lach

and Lübbecke (2012) and Burke et al. (2010b) where the problem was split into a time scheduling

model and a room allocation model. The two models were then reconnected by an underlying flow

problem to get an exact formulation.

In Bagger et al. (2016)’s research, the time scheduling part of the problem was considered,

i.e., the room assignment was disregarded. Here a pattern formulation was suggested where each

variable corresponds to a time schedule for one course on one day. The main difference between
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the formulation by Burke et al. (2008) and Bagger et al. (2016), was that Burke et al. (2008) added

the patterns as constraints, whereas Bagger et al. (2016) added the patterns as variables. In the

time schedule, it is possible to ensure that all the hard constraints, L, A, C, and RO, are fulfilled,

which has also also been noted by Lach and Lübbecke (2012). For the soft constraints, Bagger

et al. (2016) only accommodated the constraints MWD and IL, meaning that the model was a

lower bounding model for the overall problem.

In this paper, we have applied the Dantzig-Wolfe decomposition to the formulation presented by

Bagger et al. (2016). We have then solved the reformulation by a column generation algorithm. We

have decomposed the model, so that there is one pricing problem per day. Note that this is similar

to the work by Cacchiani et al. (2013). One of the main differences is that we have included the

RO constraints, which means that we can guarantee that there exists a feasible room assignment

for any integer solution we obtain. Another difference is the pricing problems. In each pricing

problem, we have a binary variable for each course and each feasible pattern that the course can be

assigned for an entire day, whereas Cacchiani et al. (2013) considered a formulation where they had

a binary variable for each course and each period. The benefit of the pattern formulation is that

when we apply the pre-processing by Bagger et al. (2016), we remove patterns from the pricing

problems, which will never be included in any columns. In a formulation similar to Cacchiani

et al. (2013), the patterns that are removed in our formulation can potentially be generated by

the pricing problems. This makes the pattern-based formulation stronger, in the sense that the

objective value of the Linear Programming (LP) relaxation of our master problem will be at least

as large as the LP relaxation of the master problem by Cacchiani et al. (2013).

2. Pattern Formulation

In this section, we have provided an overview of the pattern formulation provided by Bagger

et al. (2016). A pattern represents a schedule of lectures of a course to periods for an entire day.

Burke et al. (2008, 2012) reported that there are an exponential number of patterns. However, as

most of the data instances, used in the literature, have five or six time slots for each day, then

the number of patterns for each course and each day is only 32 or 64. For each course and each

day, we have a binary variable for each feasible schedule (pattern) of lectures of the given course

on the given day. Before we describe the pattern formulation, we start by providing the notation

used throughout this paper. The set of courses, days and time slots are denoted as C, D and T
respectively. The combination of a day d ∈ D and time slot t ∈ T is known as a period. For a

time slot t ∈ T , the time slot that is right before t is denoted by t− 1 and the time slot right after

t is denoted by t+ 1. The set of curricula is denoted by Q, and for each curriculum q ∈ Q, the set

Cq ⊆ C is the set of courses that belongs to the curriculum q.

For each course c ∈ C, the number of lectures to schedule is given by the parameter Lc, and the

requested minimum number of working days is given by the parameter Dmin
c . For each curricula

5



q ∈ Q, we define the parameter Lq as the total number of lectures that must be scheduled for the

courses Cq, i.e., Lq =
∑

c∈Cq Lc. The total number of rooms available is denoted by R. Lastly,

for each course c ∈ C, day d ∈ D and time slot t ∈ T the parameter Fc,d,t is one if the course is

available in the corresponding period; otherwise, it is zero. If time slot t ∈ T is the first time slot,

then the parameter Fc,d,t−1 is defined as zero and likewise if t is the last time slot, the parameter

Fc,d,t+1 is zero for each course c ∈ C and day d ∈ D.

As all periods are uniform, it is only necessary to generate different patterns that are possible

for the set of time slots T once and then apply them to each course and day. An example of all

the patterns is illustrated in Table 1 when |T | = 4.

Table 1: Illustration of all the patterns for |T | = 4. Each column corresponds to a pattern, and each row corresponds
to a time slot. The symbol ”×” indicates whether or not a pattern schedules a lecture in the corresponding time
slot.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 × × × × × × × ×
1 × × × × × × × ×
2 × × × × × × × ×
3 × × × × × × × ×

The set of all the patterns is denoted by K. For each pattern k ∈ K and time slot t ∈ T , the

parameter akt is set to one if k contains a lecture in t. If t ∈ T is the first time slot, then akt−1 is

defined as zero and likewise if t is the last time slot, then akt+1 is defined to be zero. The number

of lectures contained in pattern k ∈ K is denoted as Lk, i.e., Lk =
∑

t∈T a
k
t . For each course c ∈ C

and day d ∈ D, the set Kc,d ⊆ K denotes the set of patterns that c can be assigned on day d. A

pattern k ∈ K is feasible for a course c ∈ C and day d ∈ D if assigning course c to the pattern on

day d does not schedule c in any unavailable periods, i.e., if atk ≤ Fc,d,t, ∀t ∈ T , and if Lk ≤ Lc.

Bagger et al. (2016) explain pre-processing techniques used to decrease the sizes of the sets Kc,d.
See Section 2.2.

Let xkc,d be a binary variable taking value one if course c ∈ C is assigned pattern k ∈ Kc,d for

day d ∈ D. The following constraints ensure that every course selects exactly one pattern for each

day, that all lectures are scheduled and that no more than one lecture is scheduled in one room in

one period:

∑
k∈Kc,d

xkc,d = 1, ∀c ∈ C, d ∈ D (1)

∑
d∈D,k∈Kc,d

Lkx
k
c,d = Lc, ∀c ∈ C (2)

∑
c∈C,k∈Kc,d

akt x
k
c,d ≤ R, ∀d ∈ D, t ∈ T (3)
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The constraints (1) – (3) ensure that the constraints A, L and RO are not violated. To model

constraint C, a pattern conflict graph G = (V, E) is constructed. For every course c ∈ C, day d ∈ D
and pattern k ∈ Kc,d there is a node vkc,d ∈ V corresponding to the variable xkc,d. If course c1 ∈ C
chooses pattern k1 ∈ Kc1,d1 for day d1 ∈ D and course c2 ∈ C chooses pattern k2 ∈ Kc2,d2 for day

d2 ∈ D and this results in a conflict, then there is an edge e ∈ E between the two nodes vk1c1,d1
and vk2c2,d2 . Since each course c ∈ C must choose exactly one pattern for each day d ∈ D, we also

consider vk1c,d and vk2c,d to be conflicting for every pair of patterns k1 ∈ Kc,d and k2 ∈ Kc,d\ {k1}.
Furthermore, as each course c ∈ C must be assigned to Lc periods, we also consider vk1c,d1 and vk2c,d1
to be conflicting if Lk1 + Lk2 > Lc, for day d1 ∈ D, day d2 ∈ D\ {d1}, pattern k1 ∈ Kc,d1 , and

pattern k2 ∈ Kc,d2 . Bagger et al. (2016) identify more conflicts by extending the pre-processing

techniques to add more edges to the graph. We have described these extensions in Section 2.2.

Let Θ be a set of cliques that covers all edges, i.e., for each edge there is at least one clique in

Θ where both endpoints of the edge are included. For each clique θ ∈ Θ in the graph let Vθ be the

set of nodes in the clique. Adding the following constraints ensures that the C constraints are not

violated:

∑
vkc,d∈Vθ

xkc,d ≤ 1, ∀θ ∈ Θ (4)

To generate the clique edge cover, Bagger et al. (2016) ran the heuristic by Kou et al. (1978),

that is trying to minimize the cardinality of the set Θ.

Let wc be an integer variable calculating how much the soft constraint MWD is violated. The

value of these variables can be calculated by the following constraints:

∑
d∈D,k∈Kc,d:Lk≥1

xkc,d + wc ≥ Dmin
c , ∀c ∈ C (5)

To calculate the violation of the soft constraint IL the parameter akt is defined for each pattern

k ∈ K and time slot t ∈ T :

akt :=


1, if akt = 1 ∧ akt−1 = akt+1 = 0

−1, if akt = 0 ∧
(
akt−1 = 1 ∨ akt+1 = 1

)
0, otherwise

(6)

The variable sq,d,t is introduced for each curriculum q ∈ Q, day d ∈ D and time slot t ∈ T .

The variable sq,d,t is a binary variable that takes value one if q has an isolated lecture in time slot

t for day d:

∑
c∈Cq ,k∈Kc,d

akt x
k
c,d ≤ sq,d,t, ∀q ∈ Q, d ∈ D, t ∈ T (7)
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Due to the constraints (4), the left-hand-side of (7) is less than or equal to one.

Let WMWD and W IL be the non-negative weights of the soft constraints MWD and IL

respectively. Then the objective function to minimize can be formulated as follows:∑
q∈Q,d∈D,t∈T

W ILsq,d,t +
∑
c∈C

WMWDwc (8)

Bagger et al. (2016) show that when Dmin
c = Lc or Dmin

c = 2 for a course c ∈ C, then the

following substitutions can be made:

wc =
∑
d∈D,

k∈Kc,d:Lk≥2

(Lk − 1)xkc,d, ∀c ∈ C : Dmin
c = Lc (9)

wc =
∑
d∈D,

k∈Kc,d:Lk=Lc

xkc,d, ∀c ∈ C : Dmin
c = 2 (10)

We replace the variable wc in the objective function with the right-hand side of either (9) or

(10) and remove the associated constraints (5) from the model.

Consider a curriculum q ∈ Q, a day d ∈ D and time slot t ∈ T . Let the set of courses Cq,d,t be

defined as follows:

Cq,d,t :=

c ∈ Cq
∣∣∣∣∣∣

∑
t′∈{t−1,t,t+1}

Fc,d,t′ ≥ 1

 (11)

Bagger et al. (2016) make the following substitution when the number of courses in Cq,d,t equals

one:

sq,d,t =
∑

c∈Cq ,k∈Kc,d:akt=1

xkc,d, ∀q ∈ Q, d ∈ D,∈ T : |Cq,d,t| = 1 (12)

We replace the variable sq,d,t with the right-hand side of (12) in the objective function and

remove the associated constraints (7) from the model.

Bagger et al. (2016) also described valid inequalities that are added to the model. We have

provided an overview of these inequalities in Section 2.1.

2.1. Valid inequalities

In this section, we have provided an overview of the valid inequalities described by Bagger

et al. (2016). We have defined a working day of a course to be a day where at least one lecture

is scheduled. We can calculate the minimum and maximum number of working days that course
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c ∈ C can have, which leads to the following valid inequalities:

min
D′⊆D

|D′| :
∑
d∈D′,
t∈T

Fc,d,t ≥ Lc

 ≤
∑
d∈D,
k∈Kc,d:
Lk≥1

xkc,d ≤ min

{
Lc,

∣∣∣∣∣
{
d ∈ D :

∑
t∈T

Fc,d,t ≥ 1

}∣∣∣∣∣
}

(13)

For the next inequalities, we have introduced the course cliques. Construct a graph, that

contains a node for each course. For two conflicting courses, connect the corresponding nodes with

an edge. The maximal cliques are enumerated in the graph, using the algorithm by Bron and

Kerbosch (1973). We denote this set of course cliques Γ. For each clique γ ∈ Γ, we have denoted

the set of courses Cγ . Let Lγ be the total number of lectures to be scheduled for all the courses

Cγ : Lγ :=
∑

c∈Cγ Lc. For course clique γ ∈ Γ, and for i ∈
{

2, 3, . . . ,
⌊
Lγ
2

⌋
+ 1
}

, the following

inequalities are valid: ∑
c∈Cγ ,d∈D,
k∈Kc,d:Lk≥i

xkc,d ≤
⌊
Lγ
i

⌋
(14)

For each course c ∈ C, day d ∈ D, and pattern k ∈ Kc,d, let L
k
c,d := maxk′∈Kc,d {Lk′} − Lk. For

each course clique γ ∈ Γ, let Lγ :=
∑

c∈Cγ ,d∈Dmaxk∈Kc,d {Lk}−
∑

c∈Cγ Lc. For i ∈
{

2, 3, . . . ,
⌊
Lγ
2

⌋}
,

the following inequalities are valid:

∑
c∈Cγ ,d∈D,

k∈Kc,d:L
k
c,d≥i

xkc,d ≤
⌊
Lγ
i

⌋
(15)

The inequalities (14) and (15) are valid for any set of courses. However, as there are 2|C|

potential sets of courses, we only add the inequalities for the maximal course cliques, as the

number of maximal course cliques is at most 3|C|/3 (Moon and Moser, 1965).

The last valid inequalities by Bagger et al. (2016) are to consider the pattern variables that

are within the support of the constraints (7). We say that a variable is within the support of a

constraint, if the coefficient of the variable is non-zero in the constraint. The variables are split

into two sets:

V+
q,d,t:=

{
vkc,d ∈ V : c ∈ Cq, k ∈ Kc,d, akt = 1

}
(16)

V−q,d,t:=
{
vkc,d ∈ V : c ∈ Cq, k ∈ Kc,d, akt = −1

}
(17)

Let Hq,d,t ⊆ V be a clique, where every node in Hq,d,t is a neighbour of every node in V−q,d,t, i.e.,(
vkc,d, v

k′
c′,d′

)
∈ E , ∀vkc,d ∈ V

−
q,d,t, v

k′
c′,d′ ∈ Hq,d,t and

(
vkc,d, v

k′
c′,d′

)
∈ E , ∀vkc,d, vk

′
c′,d′ ∈ Hq,d,t : vkc,d 6= vk

′
c′,d′ .
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Then the following is a valid inequality:∑
vkc,d∈V

+
q,d,t

xkc,d +
∑

vk
c,d′∈Hq,d,t

xkc,d′ − sq,d,t ≤ 1 (18)

For each day d ∈ D, we let Vd ⊆ V denote the nodes that correspond to day d. Bagger

et al. (2016) consider cliques Hq,d,t, that are a subset of V, which means that there may be

nodes vk
′
c′,d′ ∈ Hq,d,t where vk

′
c′,d′ /∈ Vd. We restrict the cliques Hq,d,t to be a subset of Vd in our

implementation. The reason we do this is to make it possible to include these inequalities in our

pricing problems, as we consider a pricing problem for each day d ∈ D.

2.2. Pre-processing and Conflict Detection

In this section, we have provided an overview of the pre-processing techniques, and the detection

of conflicts in the pattern graph by Bagger et al. (2016). The pre-processing techniques remove

nodes from the pattern graph G = (V, E). Since each node vkc,d ∈ V corresponds to a variable xkc,d in

the pattern formulation, we remove the variable also if the node is removed. All these variables are

put into the pricing problems in our Dantzig-Wolfe decomposition, thus, removing variables in the

pattern formulation corresponds to removing variables from the pricing problems. The detection

of conflicts is an extension of the pre-processing techniques, so we go through the conflict detection

as we go through the pre-processing.

Consider a course c ∈ C, day d ∈ D, and pattern k ∈ Kc,d. The course c can only be assigned

to pattern k on day d if the following holds:∑
d′∈D\{d}

min
k′∈Kc,d′

{Lk′} ≤ Lc − Lk ≤
∑

d′∈D\{d}

max
k′∈Kc,d′

{Lk′} (19)

If (19) is not fulfilled then pattern k is removed from the set Kc,d, along with the corresponding

node vkc,d ∈ V and variable xkc,d. Note that when we remove patterns from the sets Kc,d, then the

sums in condition (19) are changed for other days and patterns. So, whenever a pattern is removed

from a set Kc,d, condition (19) is checked again for the other patterns. The condition (19) can

be extended to identify a conflict, by considering a course c ∈ C, day d1 ∈ D, day d2 ∈ D\ {d1},
pattern k1 ∈ Kc,d1 , and pattern k2 ∈ Kc,d2 . The course c can only be assigned to pattern k1 on day

d1 and to pattern k2 on day d2, at the same time, if the following holds:∑
d∈D\{d1,d2}

min
k∈Kc,d

{Lk} ≤ Lc − Lk1 − Lk2 ≤
∑

d∈D\{d1,d2}

max
k∈Kc,d

{Lk} (20)

If (20) does not hold, then we add an edge to E between the nodes, vk1c,d1 and vk2c,d1 .

Consider the periods that the lectures are scheduled for when assigning the courses to the

patterns. We introduce the notation of all feasible periods Pc for course c ∈ C, and all the periods
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Pkd that have lectures scheduled if a course is assigned to the pattern k ∈ K, on day d ∈ D:

Pc := {(d, t) ∈ D × T : Fc,d,t = 1} (21)

Pkd := {d} ×
{
t ∈ T : akt = 1

}
(22)

A course c ∈ C cannot be assigned to pattern k ∈ Kc,d on day d ∈ D, if there exists a course

c′ ∈ C\{c}, that is conflicting with c, where the following is not satisfied:

Lc′ ≤
∣∣∣Pc′\Pkd ∣∣∣ (23)

Condition (23) implies that the number of feasible periods for c′, that is not overlapping with

the periods in the selected pattern, must be able to accommodate all the lectures of c′.

Consider a clique γ ∈ Γ, and a course c ∈ Cγ . We cannot assign c to a pattern k ∈ Kc,d, on day

d ∈ D, if the periods that are not occupied by c, are not enough to schedule all the lectures of the

remaining courses in the clique, i.e., if the following is not satisfied:

∑
c′∈Cγ\{c}

Lc′ ≤

∣∣∣∣∣∣
⋃

c′∈Cγ\{c}

Pc′\Pkd

∣∣∣∣∣∣ (24)

The period coverage conditions (23) and (24) can be extended to identify pattern conflicts.

Consider a course c1 ∈ C, and a course c2 ∈ C\{c1}, which is conflicting with c1. Assume that c1

is assigned to pattern k1 ∈ Kc1,d1 on day d1 ∈ D, and that c2 is assigned to pattern k2 ∈ Kc2,d2
on day d2 ∈ Kc2,d2 . The remaining lectures of c2 must be scheduled in periods that do not belong

to d2 as only one pattern can be assigned per day. Thus, the pair of assignments is infeasible if

the remaining lectures of c2 cannot be covered by the periods, not belonging to d2, that are not

occupied by c1, i.e., an edge is added between vk1c1,d2 and vk2c2,d2 if the following does not hold:

Lc2 − Lk2 ≤
∣∣∣Pc2\(Pd2 ∩ Pk1d1)∣∣∣ (25)

Consider two courses again, c1 ∈ C and c2 ∈ C, but this time the courses do not need to be

conflicting, nor do they need to be distinct. Let c3 ∈ C\{c1, c2} be a course that is conflicting with

both c1 and c2. Assume that c1 is assigned to k1 ∈ Kc1,d1 on day d1 ∈ D, and that c2 is assigned

to k2 ∈ Kc2,d2 on day d2 ∈ D. If c1 = c2, then we only consider d1 6= d2. As c3 is conflicting with

both c1 and c2, then all the lectures of c3 must be scheduled in periods that are not occupied by

c1 or c2. If the following is not valid, then the pair of assignments are conflicting, and we add and

edge between vk1c1,d2 and vk2c2,d2 :

Lc3 ≤
∣∣∣Pc3\(Pk1d1 ∪ Pk2d2)∣∣∣ (26)

The condition (26) can be extended by considering another course c4 ∈ C\{c1, c2, c3}, which is

11



conflicting with all three courses, c1, c2, and c3:

Lc3 + Lc4 ≤
∣∣∣(Pc3 ∪ Pc4) \

(
Pk1d1 ∪ P

k2
d2

)∣∣∣ (27)

The condition (27) can be extended even further, by using the course cliques Γ. Consider a

clique γ ∈ Γ, where the courses c1 and c2, may or may not be part of Cγ , but where every node

in Cγ\{c1, c2} is conflicting with both c1 and c2. We add an edge between vk1c1,d2 and vk2c2,d2 , if the

following does not hold:

∑
c∈Cγ\{c1,c2}

Lc ≤

∣∣∣∣∣∣
⋃

c∈Cγ\{c1,c2}

Pc\
(
Pk1d1 ∪ P

k2
d2

)∣∣∣∣∣∣ (28)

Next, Bagger et al. (2016) used a directed graph and solved a series of Maximum Flow Problems

(MFP), as a pre-processing technique and for conflict detection. The graph contains a source node

(s), a sink node (t), and a dummy source node (s′). For each period p ∈ P, there is a node (p),

and for each course c ∈ C, there is a node (c). From the source node (s), there is an outgoing arc

to the dummy source node (s′), and to the node (p) for each period p ∈ P. For each courses c ∈ C,
there is an outgoing arc from (c) to the sink (t), and an ingoing arc from (p) for each period p ∈ P.

The graph is illustrated in Figure 1.

s

s′

pj

...

p|P|

...

p1 c1

ci

c|C|

...

...

t

Figure 1: Illustration of the maximum flow graph, that is used for removing patterns, and detecting cliques.

Consider course clique γ ∈ Γ. For each course c ∈ C, set the capacity of the arc (c, t) to Lc if

c ∈ Cγ ; otherwise, set it to zero. Consider now course c ∈ Cγ , day d ∈ D, and pattern k ∈ Kc,d. Set

the capacity of the arc (s, s′) to Lγ −Lk. For each period p ∈ P, if p ∈ Pkd then set the capacity of

the arc (s, p) to one and the capacity of (s′, p) to zero, and if p /∈ Pkd then set the capacity of (s, p)

to zero and the capacity of (s′, p) to one. For each period p ∈ P and course c′ ∈ C, set the capacity

of the arc (p, c′) to one if c′ = c ∧ p ∈ Pc′\
(
Pd\Pkd

)
or if c′ 6= c ∧ p ∈ Pc′\Pkd ; otherwise, set it to

zero. Now, solve the MFP, and if the value of the flow is less than Lγ , then assigning c to k ∈ Kc,d
12



on day d ∈ D is infeasible, and we remove the node vkc,d from V and the corresponding variable.

The graph can also be used for identifying a conflict. Consider course clique γ ∈ Γ. For each

course c ∈ C, set the capacity of the arc (c, t) to Lc if c ∈ Cγ ; otherwise, set it to zero. Consider

now course c1 ∈ Cγ , day d1 ∈ D, pattern k1 ∈ Kc1,d1 , course c2 ∈ Cγ , day d2 ∈ D, and pattern

k2 ∈ Kc2,d2 . If c1 = c2 then we only consider d1 6= d2. Set the capacity of the arc (s, s′) to

Lγ − Lk1 − Lk2 . For each period p ∈ P, if p ∈ Pk1d1 ∪ P
k2
d2

then set the capacity of the arc (s, p) to

one and the capacity of (s′, p) to zero, and if p /∈ Pk1d1 ∪ P
k2
d2

then set the capacity of (s, p) to zero

and the capacity of (s′, p) to one. For each period p ∈ P and course c′ ∈ C, set the capacity of the

arc (p, c′) to one if p ∈ Pc′\ (Pd1 ∪ Pd2) or if c′ = c1 ∧ p ∈ Pc′ ∩ Pk1d1 or if c′ = c2 ∧ p ∈ Pc′ ∩ Pk2d2 or

if c′ /∈ {c1, c2} ∧ p ∈ Pc′\
(
Pk1d1 ∪ P

k2
d2

)
; otherwise, set it to zero. Solve the MFP on the graph, and

if the value of the flow is less than Lγ , then there is a conflict and we add an edge to E between

vk1c1,d1 and vk1c2,d2 .

We applied all the pre-processing techniques that we have described in this section to the

model first, and then we detected the conflicts afterwards, as conflict detection is affected by the

pre-processed model. In this paper, we have applied an additional pre-processing technique that has

not been described by Bagger et al. (2016). We considered the model after the pre-processing and

conflict detection, including all the valid inequalities presented in Section 2.1, with the exception

of the w and s variables and their associated constraints, i.e., we only consider the feasibility part

of the model. We then iterated through each variable xkc,d and set the lower bound to one. Then

we solved the LP relaxation; if the model was infeasible, we removed the variable. Otherwise, we

reset the lower bound of xkc,d to zero.

3. Dantzig-Wolfe Decomposition

Martin (1999, chapter 11) states that the Dantzig-Wolfe decomposition should be chosen, so

that the pricing problem contains a vast majority of the constraints, and so that the pricing problem

has a special structure. The model we have reformulated is the model from Section 2 with the

additional pre-processing, based on solving a series of LP-relaxations, as we have mentioned in the

end of Section 2.2. However, we have not included all the valid inequalities described by Bagger

et al. (2016). We have only included the ones where all the variables that are within the support

can be associated with a single day. We have reformulated the model, so that we have a pricing

problem for each day d ∈ D. We want to keep the master problem simple. Hence, we only keep

the constraints that ensure integer feasibility, or where the variables that are within the support

correspond to the same day.

For each day d ∈ D, let Hd be the set of columns associated with d. In our reformulation, a

column h ∈ Hd represents a full pattern assignment for day d. Let λhb be a binary variable that

takes value one if column h ∈ Hd is selected for day d ∈ D and let αhd be the associated cost. For

each day d ∈ D and column h ∈ Hd the parameter xk,hc,d is one if the column assigns course c ∈ C

13



to pattern k ∈ Kc,d. Furthermore, we have defined the set Cmin ⊆ C as the set of courses where

substitutions (9) and (10) do not apply. Lastly, we have defined the set Θ≥2 ⊆ Θ, which is the

set of the pattern cliques in Θ that contains variables from at least two different days. We have

formulated the LP-relaxation of our master problem (MP) as follows:

min
∑
c∈Cmin

WMWDwc +
∑

d∈D,h∈Hd

αhdλ
h
d (29)

s.t.
∑

d∈D,h∈Hd,
k∈Kc,d

Lkx
k,h
c,d λ

h
d = Lc, ∀c ∈ C (30)

∑
d∈D,h∈Hd,
k∈Kc,d:Lk≥1

xk,hc,d λ
h
d + wc ≥ Dmin

c , ∀c ∈ Cmin (31)

∑
h∈Hd,c∈C,k∈Kc,d

akt x
k,h
c,d λ

h
d ≤ R, ∀d ∈ D, t ∈ T (32)

∑
vkc,d∈Vθ,h∈Hd

xk,hc,d λ
h
d ≤ 1, ∀θ ∈ Θ≥2 (33)

∑
h∈Hd

λhd ≤ 1, ∀d ∈ D (34)

wc ≥ 0, ∀c ∈ Cmin (35)

λhd ≥ 0, ∀d ∈ D, h ∈ Hd (36)

Constraints (30) ensure that all lectures are assigned for each course. Constraints (31) calculate

the violations of the MWD constraints, for the courses where the substitutions (9) and (10) do not

apply. Constraints (32) ensure that no more lectures are scheduled in each period than the number

of rooms available. Constraints (33) ensure that all the conflicts that spread over multiple pricing

problems are not violated. Constraints (34) ensure that at most one column is chosen for each

day. We could make the constraints as equalities. The reason that we have kept the constraints

as inequalities, is that if we consider a column for a day where no lecture is scheduled, then this

column has a cost of zero and it will not be within the support of any other constraints. We have

solved the model with a Column Generation algorithm where we have only considered a restricted

set of columns in the master problem, i.e., the restricted master problem (RMP). The first columns

we added to RMP were found by solving the model described in Section 2 excluding the variables

w and s and all the associated constraints to these variables, i.e., we have considered only the

feasibility part. The solution of the model was then the first set of columns.

Let the dual variables of the constraints (30), (31), (32), (33) and (34) be denoted βc, φc, µd,t,

ζθ and π0
d respectively. Consider an optimal dual solution

(
β, φ, µ, ζ, π0

)
of the restricted master

problem in some iteration of the column generation algorithm. We define the parameter φ
k
c to be
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equal to φc if c ∈ Cmin and Lk ≥ 1; otherwise, we set it to zero. For each course c ∈ C, day d ∈ D
and pattern k ∈ Kc,d we define πkc,d:

πkc,d := Lkβc + φ
k
c +

∑
t∈T

akt µd,t +
∑

θ∈Θ≥2:vkc,d∈Vθ

ζθ (37)

For a day d ∈ D we describe the associated pricing problem in the following manner. Let xkc be

a binary variable taking value one if course c ∈ C is assigned to pattern k ∈ Kc,d and zero otherwise.

Let sq,t be a binary variable taking value one if curriculum q ∈ Q has an isolated lecture scheduled

in time slot t ∈ T . For each day d ∈ D, let Θd be a set of cliques found in the same way as the

cliques Θ in Section 2. However, here we restricted the cliques to be in the sub-graph of the pattern

clique graph induced by considering only the nodes belonging to day d. Note that, as we applied

the substitutions mentioned in Section 2, the variable sq,t is only defined for |Cq,d,t| > 1. Lastly,

let αkc,d be the cost of pattern k ∈ Kc,d for course c ∈ C and day d ∈ D after the substitutions (9),

(10) and (12). We can then formulate the pricing problem for day d ∈ D:

min
∑

q∈Q,t∈T :

|Cq,d,t|>1

W ILsq,t +
∑

c∈C,k∈Kc,d

(
αkc,d − πkc,d

)
xkc − π0

d (38)

s.t.
∑
k∈Kc,d

xkc = 1, ∀c ∈ C (39)

∑
vkc,d∈Vθ

xkc ≤ 1, ∀θ ∈ Θd (40)

∑
c∈Cq ,k∈K

akt x
k
c ≤ sq,t, ∀q ∈ Q, t ∈ T : |Cq,d,t| > 1 (41)

xkc ∈ B, ∀c ∈ C, k ∈ Kc,d (42)

sq,t ∈ B, ∀q ∈ Q, t ∈ T (43)

Consider a solution (x, s) of the pricing problem (38) – (43) for day d ∈ D. If the solution has

a negative objective value then we can add it to the master problem as a new column h ∈ Hd by

setting xk,hc,d = xkc for every course c ∈ C and pattern k ∈ Kc,d.
We also included the valid inequalities (18) from Bagger et al. (2016) that can be associated

with the specific day. The constraints (32) could be included in the pricing problem instead of

the master problem as each of them can be associated with a specific day. However, keeping these

constraints in the MP ensures that the pricing problem has a special structure. We have described

how we can exploit this special structure in Section 4.
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4. Pre-processing, Inequalities and Solution Method for the Pricing Problem

The pricing problems described in Section 3 can be difficult to solve for a generic MIP solver. In

this section, we describe the techniques we used to speed up the solution process. We describe how

we removed some of the variables of the pricing problem in an iteration of the column generation

algorithm in Section 4.1. Next, we describe how we used the pre-solving technique to derive

inequalities in Section 4.2. Lastly, we describe how we used Local Branching as described by

Fischetti and Lodi (2003) to solve the pricing problem in Section 4.3.

4.1. Pre-processing

In this section, we describe a pre-processing technique to eliminate some of the variables from

the pricing problems. The technique is based on the objective function coefficients of the x variables.

Since the coefficients change in each iteration of the column generation algorithm, the variables we

removed in one iteration must be reinserted for the next iteration.

Consider some course c ∈ C in the pricing problem for the day d ∈ D in any iteration of the

column generation algorithm. Consider the patterns k1, k2 ∈ Kc,d where k1 6= k2. In the pre-

processing technique, we consider a feasible solution where c is assigned to k2. Then we check

if the solution is still feasible if we reassign c to pattern k1. If the solution is still feasible, then

we check whether the objective value increased after the reassignment. Here, we exploit that

the room occupancy constraints are part of the master problem, so we only have to consider the

constraints (39) and (40) in the pricing problem for feasibility. When c is assigned to k2, then the

value of the variable xk2c is one. Assigning c to k1 instead of k2 corresponds to setting the value of

xk2c to zero, and the value of xk1c to one. Both xk1c and xk2c are in the constraint (39) associated with

c, which implies that since the solution was feasible before, then this constraint cannot be violated

in the new solution. Let Gd = (Vd, Ed) ⊆ G be the sub-graph, where Vd ⊆ V is the set of nodes

associated with day d and Ed ⊆ E is the set of edges where both end points are in Vd. Every edge in

Ed is contained in at least one of the constraints (40). To check if the constraints (40) are fulfilled,

we need to consider the neighbourhoods in Gd of the nodes vk1c,d, v
k2
c,d ∈ Vd. Let the neighbourhood of

vkc,d in Vd, excluding every node that corresponds to c, be denoted by N k
c,d ⊆ Vd for every k ∈ Kc,d.

Note that vk1c,d and vk2c,d must be connected by an edge since c cannot be assigned to more than one

pattern. Assume that every node in N k1
c,d is also a neighbour of vk2c,d, so, N k1

c,d ⊆ N
k2
c,d. This case is

illustrated in Figure 2.

For any solution where c is assigned to k2, the values of all the variables that correspond to

the neighbours of vk2c,d must be zero. Since N k1
c,d is contained in the neighbourhood of vk2c,d, then all

the variables in N k1
c,d must also be zero. When we reassign c from k2 to k1 it means that we are

changing the value for xk2c from one to zero, and the value for xk1c from zero to one. As all of the

variables in N k1
c,d are zero, and we have now changed xk2c to zero, then in all the constraints (40)

where xk1c is within the support, all other variables must be zero, which means that the solution
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vk1c,d vk2c,d

N k1
c,d

Figure 2: Illustration of the nodes in the pattern conflict graph, Gd, corresponding to the patterns, k1 and k2 for
course c, and the neighbourhood N k1

c,d ⊆ Vd.

must be feasible. We did not account for the nodes vkc,d for k ∈ Kc,d\{k1, k2}, but as c is assigned

to exactly one pattern, then all these variables must be zero as well. Now, we need to check if we

can guarantee that the objective value does not increase.

Consider the objective function (38), which consists of a sum of the s variables followed by a

sum of the x variables and a constant. The change of the sum of the x variables is the difference

between the coefficients of xk1c and xk2c . The change in the sum of the s variables is unknown, as

it depends on the assigned patterns of the other courses. However, if we assume that we know

an upper bound δk1,k2c,d on how much the value can increase, then the total objective value cannot

increase under the following condition:

(
αk2c,d − π

k2
c,d

)
−
(
αk1c,d − π

k1
c,d

)
≥ δk1,k2c,d (44)

The upper bound δk1,k2c,d is determined by the maximum number of isolated lectures that are

introduced when we make the reassignment. Consider the difference in the time slots that are

contained in the two patterns. As an example, let |T | = 6 and let pattern k2 contain lectures in

time slots t2 and t3, and let pattern k1 contain lectures in time slots t2, t3, and t5. This example

is illustrated in a matrix in Figure 3. Each row in the matrix corresponds to a pattern and the

columns correspond to the time slots. The symbol ”×” denotes that the pattern contains a lecture

in the corresponding time slot.

t1 t2 t3 t4 t5 t6

k2

k1

Figure 3: Illustration of the example of changing out pattern k2 with k1. Here a lecture is added.
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As we are reassigning c from k2 to k1, then this means that c is assigned an extra lecture in

time slot t5. Since the pattern k1 does not contain a lecture in either time slot t4 nor in time slot

t6, then the lecture in t5 is potentially a new isolated lecture for every curriculum that c belongs to.

So for every lecture that is added in the reassignment, if k1 does not have a lecture in an adjacent

time slot, then there is a potentially isolated lecture.

The next step is to consider the case where lectures are removed. Consider an example where k2

contains lectures in time slots t3 and t5, and k1 contains a lecture in t3. This example is illustrated

in Figure 4.

t1 t2 t3 t4 t5 t6

k2

k1

Figure 4: Illustration of the example of changing out pattern k2 with k1. Here a lecture is removed.

When we reassign c from k2 to k1, time slot t5 is removed and the time slots that are adjacent,

t4 and t6 can become potentially isolated lectures. Since k1 contains a lecture in time slot t3, which

is adjacent to t4, then only t6 is counted as a potential isolated lecture. So, when a lecture gets

removed from the reassignment, we consider the adjacent time slots as potentially isolated lectures,

unless there are lectures adjacent to those time slots in the new pattern.

After we have found all the potentially isolated lectures, we iterate through every curriculum

that c belongs to, i.e., Qc. For each q ∈ Qc we consider all the potentially isolated lectures

previously found. We then remove every time slot t where akt = 0 for every k ∈ Kc′,d and every

c′ ∈ Cq, i.e., if no course can be scheduled in t, this means that there cannot be an isolated lecture.

As an example let the potential isolated lectures for q be in time slots t2, t3, and t5 after the

reassignment. This example is illustrated in Figure 5.

t1 t2 t3 t4 t5 t6

Figure 5: Illustration of the potential isolated lectures.

Let a sequence of these potentially isolated lectures be a set of consecutive time slots where

there is a lecture in each of them but no lecture after the last and before the first lecture. In the

example in Figure 5 there are two sequences; the first sequence consists of time slots t2 and t3,

and the second sequence consists of time slot t5. It is not possible to have two isolated lectures in

adjacent time slots, so the maximum number of isolated lectures in each sequence is the number

of time slots in the sequence divided by two and rounded up to the nearest integer.

We calculate the value of δk1,k2c,d iteratively, and we initially set it at zero. Then we iterate over

all the curricula Qc. For each curriculum we iterate over every sequence {ti, ti+1, . . . , tj}, after we
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removed some of the time slots as mentioned before, and then we add the cost of the maximum

number of isolated lectures in this sequence to δk1,k2c,d :

δk1,k2c,d ← δk1,k2c,d +W IL

⌈
j − i+ 1

2

⌉
(45)

Now we have calculated an upper bound on the increase in the cost of the isolated lectures.

For a course c ∈ C and pattern k1, k2 ∈ Kc,d, we say that k1 dominates k2, if N k1
c,d ⊆ N

k2
c,d and (44)

is fulfilled. If one pattern dominates another, then it implies that we can remove the dominated

pattern from the solution and the node from the graph. Note that every time we remove a node

from the graph, the graph is changed. The change of the graph can affect the dominance of some

pairs of nodes. As an example, consider course c ∈ C, day d ∈ D, and patterns k1, k2 ∈ Kc,d where

(44) applies and N k1
c,d\N

k2
c,d =

{
vkc′,d

}
, i.e., there exists a node vkc′,d ∈ N

k1
c,d where vkc′,d /∈ N

k2
c,d, so k1

does not dominate k2. Assume that during the pre-process, we removed the node vkc′,d from the

graph. Then N k1
c,d ⊆ N

k2
c,d is valid after the removal, and k1 now dominates k2. Therefore, whenever

a node is removed, we can potentially create more dominated nodes that can be removed. Instead

of checking the entire graph over, whenever we remove a node, we iterate through the nodes one at a

time and check if it can be removed, while we take the previously removed nodes into consideration.

The order in which we processed the nodes was based on a lexicographical decreasing order. For

the lexicographical ordering we defined an indicator variable Ikc,d for each node vkc,d. The indicator

variable is set to one, if there exists any pattern k′ ∈ Kc,d, where the neighbourhood of vkc,d is

contained in the neighbourhood of vk
′
c,d:

Ikc,d =

1, ∃k′ ∈ Kc,d : N k′
c,d ⊆ N k

c,d

0, otherwise

We then say that for two nodes vkc,d, v
k′
c′,d ∈ Vd, vkc,d is lexicographically larger than or equal to

vk
′
c′,d, denoted by vkc,d ≥lex vk

′
c′,d, if the following holds:

Ikc,d > Ik
′
c′,d ∨

(
Ikc,d = Ik

′
c′,d ∧

∣∣∣N k
c,d

∣∣∣ ≥ ∣∣∣N k′
c′,d

∣∣∣) (46)

Instead of actually removing the nodes from the graph, we kept track of which nodes that were

in the graph by the parameter UBk
c for each course c ∈ C and pattern k ∈ Kc,d. First, we initialized

UBk
c to be one for every c ∈ C and every k ∈ Kc,d. Then, when a node vkc,d was removed from the

graph, we changed the corresponding value to zero: UBk
c ← 0. The values UBk

c were then used as

upper bounds for the corresponding variables in the pricing-problem. The process is summarized

in Algorithm 1.

We applied the pre-processing technique in Algorithm 1 before we solved the pricing problem

in every iteration of the column generation algorithm. When we solved the pricing problem, we

then unfixed the variables again, i.e., we changed the upper bounds of the variables back to one,
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Algorithm 1: PreProcessPricingProblem

input: The nodes Vsortd in lexicographical decreasing order according to (46), the value

δk1,k2c,d for each course c ∈ C and patterns k1, k2 ∈ Kc,d where k1 6= k2

Initialise the upper bounds UBk
c ← 1 for all the variables

// Iterate over all the nodes in the sorted order

for vk2c,d ∈ V
sort
d do

// Iterate over all the other feasible patterns for the course

for k1 ∈ Kc,d\ {k2} do
if UBk1

c = 1 and condition (44) is met then

// If N k1\k2
c,d is empty or all the upper bounds for the corresponding

variables are set to zero, then the upper bound of the variable

associated with vk2c,d can be set to zero

if N k1\k2
c,d = ∅ ∨

(
UBk′

c′ = 1, ∀vk′c′,d ∈ N
k1\k2
c,d

)
then

UBk2
c ← 0

break

so they were ready for the next iteration.

4.2. Optimality Inequalities

In this section, we describe an extension to the pre-processing technique from Section 4.1. Like

in the pre-processing phase, the inequalities we derive here are only applicable in a single iteration

of the column generation algorithm. Consider some course c ∈ C in the pricing-problem for day

d ∈ D in any iteration of the column generation algorithm. Consider the patterns k1, k2 ∈ Kc,d,
where k1 6= k2. We only considered the patterns k1 and k2, in Section 4.1, where we could guarantee

that if we had a feasible solution when c was assigned to k2, then we could create a new feasible

solution by reassigning c to k1. In this section we do not keep this restriction, but consider every

pair of patterns k1 and k2 where the condition (44) is fulfilled.

Let the neighbourhood of the node vk1c,d in Gd, except for the nodes corresponding to c, be

denoted N k1
c,d ⊆ Vd. Every node in N k1

c,d was a neighbour of vk2c,d in Section 4.1. As we have removed

this restriction in this section, then there might be some nodes in N k1
c,d which are not neighbours

of vk2c,d. We denote these nodes by N k1\k2
c,d , i.e., every node in N k1\k2

c,d is a neighbour of vk1c,d, but not

a neighbour of vk2c,d.

Given any feasible solution where c is assigned to k2 then reassigning c to k1 is a feasible solution

only if the values of the variables corresponding to the nodes in N k1\k2
c,d are all zero. This means

that if none of the variables in N k1\k2
c,d are selected (have a value of one), then we can reassign c to

k1 without increasing the objective value. So it cannot be beneficial to assign c to k2, if none of

the variables in N k1\k2
c,d are selected, which leads us to the following inequality:
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xk2c ≤
∑

vk
c′,d∈N

k1\k2
c,d

xkc′ (47)

Note that if N k1\k2
c,d = ∅, then the right-hand side of the inequality is zero, and we have the

case from the pre-processing in Section 4.1. Hence, we only consider k1 and k2 where N k1\k2
c,d 6= ∅.

We do not add the inequalities (47) to the pricing-problem as the number of these constraints is

O
(
|Kc,d|2

)
. Instead, we do an aggregation. Consider again the course c and pattern k1 ∈ Kc,d. Let

V ′ ⊆ Kc,d be the set of patterns where N k1\k2
c,d 6= ∅ and where (44) is fulfilled for every k2 ∈ V ′. We

let N k1\V ′
c,d ⊆ N k1

c,d denote the union of all the sets N k1\k2
c,d for k2 ∈ V ′, i.e., N k1\V ′

c,d =
⋃
k2∈V ′ N

k1\k2
c,d .

We illustrate this in Figure 6.

vk1c,d

V ′

N k1\V ′
c,d

Figure 6: Illustration of the nodes in the pattern conflict graph Gd corresponding to the course c, the pattern k1, the

set of patterns V ′, and the set of nodes N k1\V′

c,d =
⋃
k2∈V′ N k1\k2

c,d .

Consider any feasible solution where none of the nodes in N k1\V ′
c,d are selected, i.e., the corre-

sponding variables are all set to zero. In this solution it is not beneficial to assign c to any of

the patterns in V ′, as we can create a new solution by reassigning c to k1 without increasing the

objective value. So we can add the following inequality:

∑
vk
′
c,d∈V ′

xk
′
c ≤

∑
vk
′
c′,d∈N

k1\V′
c,d

xk
′
c′ (48)

We have to be careful when we add these constraints as they can cut away the optimal

solution. As an example, consider the pricing problem for day d ∈ D, and a course c1 ∈
C where Kc1,d = {k1, k2}. Assume that both

(
αk2c1,d − π

k2
c1,d

)
−
(
αk1c1,d − π

k1
c1,d

)
≥ δk1,k2c1,d

and(
αk1c1,d − π

k1
c1,d

)
−
(
αk2c1,d − π

k2
c1,d

)
≥ δk2,k1c1,d

holds. Let vk3c2,d be the only neighbour of vk1c1,d, which

is not a neighbour of vk2c1,d, and likewise, let vk4c3,d be the only neighbour of vk2c1,d, which is not a
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neighbour of vk1c1,d. The example is illustrated in Figure 7.

vk1c1,d vk2c1,d

vk3c2,d vk4c3,d

Figure 7: Illustration of the example for the pricing problem for d ∈ D, and course c1 ∈ C, where Kc1,d = {k1, k2}.
vk3c2,d is the only neighbour of vk1c1,d, which is not a neighbour of vk2c1,d, and vk4c3,d is the only neighbour of vk2c1,d, which

is not a neighbour of vk1c1,d.

In the example in Figure 7 the constraints (48) are: vk1c1,d ≤ v
k4
c3,d

and vk2c1,d ≤ v
k3
c2,d

. Assume that

xk3c2 = xk4c3 = 0 in any optimal solution. Due to constraints (39), we must assign c1 to either k1 or

k2 as these are the only feasible patterns, however, the constraints (48) implies that xk1c1 = xk2c1 = 0

in the optimal solution, which is infeasible.

The way we avoid this issue is to create a list L of all the patterns that we allow to be included

in the left-hand side of the inequality (48). Initially this list contains all the patterns of c, i.e.,

L ← Kc,d. We then iterate through every pattern k1 ∈ Kc,d, and construct the set V ′. We then

remove the patterns from V ′ that are not in the set L. If V ′ is non-empty, then we add the

inequality (48), and remove k1 from L. We continue this procedure until all courses and patterns

have been processed. If we use the example from Figure 7, then we initialize the list L← {k1, k2}.
We then process k1 ∈ L, and construct the set V ′ ← {k2} ∩ L = {k2}. As V ′ 6= ∅, we add the

constraint xk2c1 ≤ xk3c2,d and remove k1 from L, i.e., L ← L\ {k1} = {k2}. Next, we process k2 ∈ L,

and construct the set V ′ ← {k1} ∩ L = ∅. As V ′ = ∅, then the constraint xk1d1 ≤ xk4c1 is not added,

and the optimal solution is not cut away. The process is summarised in Algorithm 2.

4.3. Local Branching

In this section, we provide a brief introduction to Local Branching introduced by Fischetti and

Lodi (2003), and how we applied it to the pricing problem. Local Branching is a framework for

general MIPs, that explores solution neighbourhoods by adding invalid inequalities. The neighbour-

hoods are searched by a general MIP solver. In our description of the local branching framework

we focus on our implementation and do not cover every aspect of the techniques described by

Fischetti and Lodi (2003). We refer to Fischetti and Lodi (2003) for details, and a more general

description.

Given a feasible solution x let ∆ (x, x) be the distance between the solution x and any other

solution x. The idea of the local branching framework is then to explore the neighbourhood of the

solution x by applying the constraint ∆ (x, x) ≤ κ to the MIP model for some value κ and then

solve the model with a generic MIP solver. Hopefully this model is much easier to solve than the
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Algorithm 2: AddOptimalityInequalities

input : The pricing-problem d ∈ D, an upper bound UBk
c for each course c ∈ C and

pattern k ∈ Kc,d, and the value δk1,k2c,d and the set of nodes N k1\k2
c,d for each course

c ∈ C, pattern k1 ∈ Kc,d, and pattern k2 ∈ Kc,d\ {k1}

// Iterate over all the courses

for c ∈ C do
// Initialise the list L to contain all the patterns of c
L← Kc,d
// Iterate over all the patterns that are feasible for the course c
for k1 ∈ Kc,d do

// Initialise the sets V ′ and N k1\V ′
c,d to be empty

V ′ ← ∅
N k1\V ′
c,d ← ∅

// Iterate over all the patterns that have not been removed from L
for k2 ∈ L\ {k1} do

if UBk2
c = 1 and condition (44) is met then

// Add vk2c,d to V ′

V ′ ← V ′ ∪
{
vk2c,d

}
// Add every node in N k1\k2

c,d , where the upper bound is one, to

N k1\V ′
c,d

N k1\V ′
c,d ← N k1\V ′

c,d ∪
{
vk
′
c′,d ∈ N

k1\k2
c,d |UBk′

c′ = 1
}

if V ′ 6= ∅ then
Add the constraint (48) to the pricing-problem
// Remove k1 from the set L to avoid cutting away optimal solutions

L← L\ {k1}

original model, and hopefully, there is a better solution inside the neighbourhood of x. Since the

variables x are binary, then a distance measurement can be the Hamming Distance:

∆ (x, x) :=
∑

c∈C,k∈K:xkc=0

xkc +
∑

c∈C,k∈K:xkc=1

(
1− xkc

)

and κ can be any non-negative integer value. This distance measurement counts the number of

variables in x that change value compared to the solution x. Due to the constraints (39), we know

that if one variable changes value from one to zero, then another variable must change value from

zero to one. Therefore, we redefine the distance measurement to only count the number of binary
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variables that change value from zero to one (Fischetti and Lodi, 2003):

∆ (x, x) :=
∑

c∈C,k∈K:xkc=0

xkc

This distance measurement is referred to as the Asymmetric Hamming Distance. When a neigh-

bourhood of a solution has been explored we can then replace the constraint by ∆ (x, x) ≥ κ + 1

which leads to a branching framework, i.e., given a solution x we can branch the problem into two

sub-problems:

∆ (x, x) ≤ κ

(left branch)

∨ ∆ (x, x) ≥ κ+ 1

(right branch)

In the basic local branching framework the left branch is solved by a generic MIP solver to opti-

mality. If the optimal solution is an improvement of x, then it is used as the branching solution in

the right branch to create two new sub-problems.

When the basic local branching framework cannot find improving solutions, then Fischetti and

Lodi (2003) described methods to diversify. In its essence, the goal of the diversification is to find

a new solution outside of the explored neighbourhoods. If such a solution can be found, then the

local branching framework can be reapplied on that solution.

The question that remains is how to select the solutions on which to apply the local branching

framework. The goal of the pricing problem is to find solutions with a negative objective value. So

if we consider some solutions which almost have a negative objective value, then we can use them

in the local branching framework.

Assume that we are in some iteration of the column generation algorithm, where we have

added columns to the RMP in previous iterations. As we are considering an optimal solution of

the RMP, none of these columns has a negative reduced cost, but some of them might have a

reduced cost of zero, e.g., the columns that are basic. The reduced costs of these columns are

equal to the objective values of the corresponding solutions in the pricing-problem. Hence, the

previously generated columns with a reduced cost of zero, can be used as the branching solutions

for the local branching framework.

In our implementation, we took all the previously generated columns that are basic in the RMP,

as we know that the reduced costs of these columns are zero. For each of these columns we let z be

the number of variables that are set to one in the column and fixed to zero in the pre-processing

from Section 4.1. When we add the local branching constraint on that column, then if z ≥ κ+ 1,

the model becomes infeasible. Therefore, we only consider columns where z ≤ κ. We then put the

columns where z ≤ κ in a ordered list, so that the first column in the list is the last column that was

generated in a previous iteration, and the last column in the list is the first column to be generated

in a previous iteration. We use the first column in the list as the initial solution for the basic
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local branching framework, and the remaining columns are used for diversification. To illustrate

this, consider an example of four previously generated feasible columns with a reduced cost of

zero; x1, x2, x3 and x4. We denote these columns as 0-columns. In Figure 8a a two-dimensional

representation of the solution space of the pricing problem is represented with the four 0-columns.

(a) The beginning of the search

x1
x2

x3

x4

(b) During the search (c) The end of the search

Previously generated 0-column

Current solution

Next solution

Negative reduced cost column

Removed neighbourhood

Current neighbourhood

Next neighbourhood

Figure 8: Illustration of the solution space of the example.

We first add ∆
(
x, x1

)
≤ k to the model and solve it to optimality. Assume that the optimal

solution x1
1 has a lower objective value than x1. We then replace ∆

(
x, x1

)
≤ k by ∆

(
x, x1

)
≥ k+1

and add ∆
(
x, x1

1

)
≤ k to the model. Again, we solve the model to optimality and find the solution

x1
2. In Figure 8b the current state of the search is illustrated. The solution x1

1 is illustrated as a

triangle and denoted as the current solution. The solution x1
2 is illustrated as a small diamond and

denoted as the next solution.

After the neighbourhood of x1
2 is explored, then no further improving solutions are found. The

solution x2 is skipped as it is inside the searched neighbourhoods. Next, the solution x3, which

is outside the neighbourhoods, is provided. The local branching framework is applied once again,

leading to the improved solution x2
1. No improved solutions are found in the neighbourhood of

x2
1, and so the neighbourhood of the last solution x4 is searched. Here no improving solutions are

found, and the local branching is stopped. In Figure 8c the solution space after running the local

branching framework on all the 0-columns is illustrated. The squares mark the 0-columns, and the

dots mark the columns found with a negative reduced cost.

If any columns with a negative reduced cost were found during the local branching search,

then we added these to the RMP and stopped. We did not search for solutions in the remaining

solution space in that iteration of the column generation algorithm. If no columns with a negative
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reduced cost were generated, then we solved the model to optimality, with all the added right local

branching constraints ∆ (x, x) ≥ κ+ 1, and any columns found here with a negative reduced cost

was added to the RMP. Our implementation of the Local Branching heuristic is summarized in

Algorithm 3.

Algorithm 3: LocalBranching

input : The pricing problem d ∈ D, the basic columns basicColumnsd from RMP for d,
and the upper bound UBk

c for each course c ∈ C and for each pattern k ∈ Kc,d

output: The columns columnsd with a negative reduced cost
columnsd ← ∅
// We initialise the set considered to be empty, as we have not processed any

basic columns yet

considered← ∅
// best = 0
// We iterate over all the basic columns

for col ∈ basicColumnsd do
// Let x by the solution corresponding to the column col
// Calculate the z value to check if the neighbourhood is infeasible

z ←
∑

c∈C,k∈Kc,d
(
1− UBk

c

)
xkc

// Iterate over the previously considered basic columns

for col′ ∈ considered do
// Let x̂ by the solution corresponding to the column col′

// Update the z value to check if col′ is inside a previously explored

neighbourhood

z ← max
{
z,
∑

c∈C,k∈Kc,d
(
1− UBk

c

)
x̂kc

}
if z ≤ κ then

considered← considered ∪ {col}
Solve the pricing problem with the added local branching constraint ∆ (x, x) ≤ κ
// Let localColumns be all the columns found by the MIP solver, in

decreasing order of the reduced costs

for col′ ∈ localColumns do
// Let Rcol′ be the reduced cost of the generated column col′

if Rcol′ < best then
columnsd ← columnsd ∪ {col′}
best = Rcol′

5. Computational Results

In this section, we describe our computational experiments and compare our results with other

approaches from literature. We have conducted all tests on an Intel R© Core
TM

i7-6700K CPU
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@ 4.00GHz processor with four cores, each with two threads, and 32GB memory, and running

Windows 10. We used Gurobi version 7.5.1 provided by Gurobi Optimization, Inc. (2016) both

for the RMP and for the pricing problems. We set the pre-solver to the most aggressive setting

(Presolve=2), the number of threads that can be run in parallel to be equal to the number of

threads of the computer (Threads = 8), and the MIP gap to zero (MIPGap = 0.0). The cut-off

value was set to −10−5 (CUTOFF = -1e-5) in the pricing problems, so the solver will not return

solutions with objective values, which are greater than −10−5. We set the limit on the solutions

to be returned to be the maximum possible (PoolSolutions = int.MaxValue), so we can extract

all the columns that Gurobi generates with a negative reduced cost. The remaining parameters

were set to their default values. We implemented our code in C# and used the Parallel.ForEach

method from the System.Threading.Tasks library to solve the pricing problems in parallel as they

are independent.

We followed Cacchiani et al. (2013) and tested our algorithm on 20 of the 21 data instances

from ITC2007 named comp01 through comp21. The instance that we did not include in the tests

was comp11, as the best-known upper bound is zero, thus we cannot improve the trivial lower

bound of zero.

We built the models for the pricing problems in Gurobi once, and then changed the objective

function accordingly in each iteration, because the pricing problems are the same, except for the

objective function, in each iteration. We solved the RMP in every iteration, and retrieved the dual

information. For each pricing problem, we started by running the pre-processing from Section 4.1.

After the pre-processing, the inequalities from Section 4.2 were added and then the local branching

was applied to the resulting model. As the values δk1,k2c,d and the sets N k1\k2
c,d from Section 4.1

and 4.2 are static, i.e., they do not change between iterations, we calculated all of these values

and sets, before we started the column generation algorithm. We extracted all columns found by

Gurobi, that had a negative reduced cost, and added them to the RMP. Afterwards, we removed

all the constraints that we may have added in the pricing problems, and reset the upper bounds

to one. We stopped the algorithm if no columns were generated, or if the lower bound of the MP

was greater than or equal to the upper bound of the LP-relaxation of the MP. In each iteration

of the column generation algorithm, the objective value of the RMP is an upper bound to the

LP-relaxation of the MP. The lower bound of the MP is equal to the objective value of the RMP,

plus the sum of the lower bounds of all the pricing problems (Desrosiers and Lübbecke, 2010). We

know that the objective value for any integer solution is an integer, so we rounded up the lower

bound to the nearest integer. The process is summarized in Algorithm 4 and 5. In both of the
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algorithms, we use the following notations:

δ :=
{
δk1,k2c,d

}
c∈C,k1∈Kc,d,k2∈Kc,d\{k1}

(49)

N :=
{
N k1\k2
c,d

}
c∈C,k1∈Kc,d,k2∈Kc,d\{k1}

(50)

In Algorithm 5 we use the notation:

UB :=
{
UBk

c

}
c∈C,k∈Kc,d

(51)

Algorithm 4: ColumnGeneration

// The following nested loops pre-calculate all the δk1,k2c,d and the sets N k1\k2
c,d

for d ∈ D do

for every node vk1c,d ∈ Vd do

for k2 ∈ Kc,d\ {k1} do
Calculate δk1,k2c,d from (45)

Compute the set of nodes N k1\k2
c,d

Let Vsortd be the nodes Vd, sorted in the lexicographical decreasing order (46) for each d ∈ D
// Initialise the variable columnsGenerated to be one

columnsGenerated← 1
// Initialise the upper and lower bound

UBMP ←∞, LBMP ← −∞
while columnsGenerated > 0 ∧ LBMP < UBMP do

columnsGenerated← 0
Solve RMP and let UBMP be the objective value

Retrieve the dual solution
(
β, φ, µ, ζ, π0

)
and compute the values πkc,d according to (37)

// Iterate over all the pricing problems in parallel

for d ∈ D do
// LBd and columnsd is the lower bound and the columns returned by the

pricing problem d ∈ D
(LBd, columnsd)← SolvePricingProblem

(
d,Vsortd , π, π0, δ,N

)
// The following loop may not be possible to run in parallel

for d ∈ D do
Add all the columns in columnsd to the RMP

// Recalculate the lower bound

LBMP ← max
{
LBMP ,

⌈
UBMP +

∑
d∈D LBd

⌉}
// Calculate the total number of columns generated in this iteration

columnsGenerated←
∑

d∈D |columnsd|

In Table 2 we have reported the timings of the algorithm with three different settings: BASIC,
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Algorithm 5: SolvePricingProblem

input : The day d ∈ D associated with the pricing problem, the nodes Vsortd in sorted

order, the dual values
(
π, π0

)
, and the value δk1,k2c,d and the set of nodes N k1\k2

c,d for
each course c ∈ C, pattern k1 ∈ Kc,d, and pattern k2 ∈ Kc,d\ {k1}

output: A lower bound LBd of the pricing problem, and the generated columns columnsd

for vk1c,d ∈ V do

// Initialise the upper bound to one

UBk
c ← 1

if pre-processing is activated then
// Run Algorithm 1

UB ← PreProcessPricingProblem (d, UB, π, δ,N )

if optimality inequalities are activated then
// Run Algorithm 2

AddOptimalityInequalities(d, UB, π, δ,N )

columnsd ← ∅
if local branching is activated then

Extract the basic columns basicColumnsd from RMP for d
// Run Algorithm 3

columnsd = LocalBranching (d, basicColumnsd, UB)

if columnsd = ∅ then
Solve the pricing problem to optimality
Extract all solutions where the objective value is negative and add them to columnsd
if columnsd 6= ∅ then

Set LBd to the most negative objective value of the solutions in columnsd
else

// Set the lower bound to zero, as no columns were generated

LBd ← 0

else
// Calculate a lower bound, by using the information that every course

must select exactly one pattern, that has an upper bound of one

LBd ← π0
d +

∑
c∈C mink∈Kc,d

{
αkc,d − πkc,d |UBk

c = 1
}

Remove all optimality inequalities and local branching constraints, if any were added

Reset all the upper bounds UBk
c to one

PREPRO, and PREINEQ. In BASIC, we solved the pricing problems without the pre-processing,

inequalities or local branching. In PREPRO, we solved the pricing problems with the pre-processing

activated, and without the inequalities and the local branching. In PREINEQ, we solved the pricing

problems with the pre-processing and the optimality inequalities, and without the local branching.

The timings have been reported in the format hh:mm:ss where hh is the amount of hours, mm is
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the amount of minutes, and ss is the seconds.

Table 2: The total time spent in the column generation algorithm for the basic implementation (BASIC), with
pre-processing in the pricing problem (PREPRO), and with pre-processing and inequalities in the pricing problem
(PREINEQ).

Instance BASIC PREPRO PREINEQ

comp01 1:43 2:41 3:37
comp02 21:42 13:37 20:17
comp03 21:14 14:57 22:45
comp04 2:23 2:31 3:51
comp05 3:08:19 1:53:53 2:14:56
comp06 19:29 20:05 27:43
comp07 11:53 11:31 14:55
comp08 2:33 2:51 3:46
comp09 3:33 3:50 5:16
comp10 9:23 8:26 11:50
comp12 49:33:18 31:31:44 49:59:54
comp13 3:36 3:58 5:47
comp14 5:19 4:57 6:41
comp15 20:10 15:06 21:06
comp16 24:56 21:08 27:06
comp17 36:58 28:44 49:34
comp18 38:53 34:11 44:12
comp19 3:37 3:36 5:33
comp20 13:26 14:38 19:51
comp21 50:59 36:07 1:05:16
Total 57:33:23 37:28:32 58:13:57
Best 7 13 0

In Table 2, we see that the pre-processing improves the running time for 13 of the 20 instances.

The additional time for the 7 instances where the running time is not improved is within a few

minutes. This is due to the time spent on calculating the δ values and the sets N . Overall, we

observe that the pre-processing reduces the total running time of all the instances, by nearly 20

hours. We also see that adding the optimality inequalities does not help the algorithm, in fact it

makes the running time longer. The reason for this is that these constraints are generated and

added in every iteration. In any given iteration, we create thousands of these constraints, so most

of the time is spent on altering the pricing problems. Another thing we can see in Table 2 is

that instance comp12 has a significantly longer running time. The reason for this is related to the

curricula and the IL constraints.

In Table 3 we have reported the results of the column generation algorithm when the IL

constraints have been removed. For each instance, we have reported the total number of variables in

the pricing problems (s) used to model the IL constraints. In the next two columns (CG w/o IL), we

have reported the lower bound obtained (LB), and the total running time of the column generation
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algorithm (Time), when all the IL constraints have been removed from the pricing problems. In the

last three columns (Pricing problem components), we have reported the statistics of the connected

components of the graphs Gd = (Vd, Ed) for the pricing problems. We have reported the statistics

of the connected components, as the nodes are related to variables in the pricing problems, and

the edges are related to the C constraints. So, if the graph Gd has many connected components,

then we can expect the associated pricing problem to be highly decomposable. Gurobi is able

to automatically detect, and exploit when the models can be decomposed. For each instance, we

report the total number of connected components for all the pricing problems (Total), the average

number of nodes in each connected component (Avg. nodes), and the average number of edges in

each connected component (Avg. edges).

Table 3: Statistics of the pricing problems (Pricing problems), and the column generation algorithm when the IL
constraints are removed (CG w/o IL). For each instance the number of variables to model the IL constraints is
reported (s).

CG w/o IL Pricing problem components
Instance s LB Time Total Avg. nodes Avg. edges

comp01 390 0 1:35 10 792.7 116750.1
comp02 1579 0 2:16 15 492.5 38794.9
comp03 1463 0 1:29 34 192.3 14074.2
comp04 1118 0 1:17 50 156.7 9461.3
comp05 3357 15 2:26 14 410.6 49266.2
comp06 1593 0 2:29 44 225.9 16193.5
comp07 1810 0 3:52 19 654.5 46654.7
comp08 1219 0 1:14 41 199.5 9707.2
comp09 1412 0 1:13 22 338.8 21074.2
comp10 1570 0 2:45 15 675.3 47143.9
comp12 3934 0 3:30 7 1163.3 141774.7
comp13 1265 0 1:11 50 157.4 8655.6
comp14 1312 0 1:41 28 266.9 21217.6
comp15 1463 0 1:31 34 192.3 14074.2
comp16 1651 0 2:36 25 419.6 29989.2
comp17 1546 0 2:16 35 267.5 18819.3
comp18 1355 0 1:08 12 489.0 50973.7
comp19 1287 0 1:23 39 168.9 10818.8
comp20 1863 0 3:13 12 915.6 66151.5
comp21 1639 0 3:07 36 261.9 19704.5

In Table 3, we see that when we removed the IL constraints, the column generation algorithm

was significantly faster for all the instances. We also see that the number of variables to model the

IL constraints, is largest for instance comp12, which was also the most time consuming instance.

We see that the number of variables to model the IL constraints, is not much larger in comp12

than in comp05. However, when we consider the connected components in the pricing problems,

we see that comp12 has the lowest number of connected components in total, and the average size
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of the connected components is largest for comp12 both in terms of nodes and edges, which makes

the pricing problems intractable.

Next, we activated the local branching heuristic in the pricing problems. We need to decide the

value for κ in the local branching framework. Fischetti and Lodi (2003) suggest to set it between 10

and 20, which in our case is between 5 and 10, as we are using the Asymmetric Hamming Distance.

So we have tested the algorithm for κ = 5 and κ = 10. Furthermore, we have also tested for κ = 2

to mimic a 2-exchange heuristic (Wolsey, 1998). The total running time, including the time for

building the model, the pre-processing and the enumeration of cliques, is reported in Table 4 for

κ ∈ {2, 5, 10}, and for the algorithm without local branching (PREPRO). In the line (Total), the

total amount of time spent is reported for each value of κ, and (Best) counts the number of times

each value of κ has the lowest running time.

Table 4: The total time spent in the column generation algorithm without local branching (PREPRO) compared to
local branching for different values of κ.

Instance PREPRO κ = 2 κ = 5 κ = 10

comp01 2:41 3:37 2:57 2:54
comp02 13:37 42:16 43:19 29:44
comp03 14:57 20:22 28:08 23:25
comp04 2:31 18:06 8:34 6:41
comp05 1:53:53 1:31:38 2:31:57 4:29:03
comp06 20:05 50:14 51:33 54:43
comp07 11:31 1:20:48 41:14 35:51
comp08 2:51 18:59 9:06 9:28
comp09 3:50 25:51 14:32 14:13
comp10 8:26 1:26:17 40:31 30:58
comp12 31:31:44 18:43:19 22:56:24 52:43:50
comp13 3:58 26:59 17:20 16:04
comp14 4:57 22:05 17:11 15:05
comp15 15:06 17:50 21:56 18:56
comp16 21:08 1:22:25 1:09:42 40:06
comp17 28:44 49:57 1:04:27 1:10:50
comp18 34:11 57:12 39:53 3:37:03
comp19 3:36 15:37 12:23 10:10
comp20 14:38 2:26:58 1:41:10 1:12:05
comp21 36:07 51:27 1:15:31 1:26:43
Total 37:28:32 33:51:54 36:27:48 69:47:49
Best 18 2 0 0

In Table 4 we see that for most of the instances, our implementation of the local branching

framework did not help to reduce the computational time. The reason is that the time it took for

Gurobi to solve the pricing problems for these instances was very close to the time it took to solve

a single neighbourhood (∆(x, x) ≤ κ), and since we solved multiple neighbourhoods in the local
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branching framework, the algorithm was slowed down. If we look at the total running time for all

the instances it can be seen that the algorithm was fastest for κ = 2. Most of that improvement

of the running time was due to instance comp12, where the running time was improved by almost

13 hours.

In Table 5 we report the statistics of the fastest version of the column generation algorithm

for each instance. For all of the instances, we report the statistics when the pre-processing was

activated, and the optimality inequalities were deactivated. For the instances, comp05 and comp12,

we also activated the local branching framework for κ = 2. For each instance we report the

number of iterations (Iter.). Then in the two following columns (Columns), we report the number

of columns that were generated in total (Total), and, for comp05 and comp12, how many of them

that were generated by local branching (LocBra.). In the next four columns (Time) we report

the timings of the algorithm. The total time spent by the algorithm is reported in the column

(Total). The time spent on building the models, enumerating the cliques, and pre-processing the

pattern formulation is reported in the column (Build). The next two columns, report the total

time spent on solving the RMP (Master), and the total time spent on solving the pricing problems

(Pricing). In the time spent on the pricing problems, the pre-processing, constraint generation and

local branching is included. The timings are given in the format hh:mm:ss as in Table 2. The

last two columns (Patterns), report the total number of pattern variables in the pricing problems

(Total), and the average number of pattern variables that were removed by the pre-processing in

the pricing problems. The last line reports the average time spent in each part, compared to the

total time, and the average number of pattern variables removed, compared to the total number

of pattern variables in the pricing problems.

In Table 5 we see that for comp05 and comp12, the local branching framework was responsible

for almost all of the columns generated. We also see that more than 96% of the total running

time was spent on solving the pricing problems. Thus, more research on solution methods for the

pricing problems are needed before the column generation algorithm can effectively be extended to

a Branch & Price algorithm. Furthermore, we see that 0.4% of the time, on average, was spent on

solving the RMP, and lastly, 2.2% of the time, on average, was spent on building all the models, and

making the pre-calculations. We also see that almost half of the pattern variables were removed,

on average, in each iteration of the algorithm. Next, we compared the lower bounds obtained for

the four open instances with the best-known bounds found, reported on the website Bonutti et al.

(2017). We report the results in Table 6, where we have updated the best-known lower bounds

with the bounds by Bagger et al. (2016). The last line in the table reports the average gap from

the best-known upper bound.

In Table 6 we see that our approach obtained a lower bound, which is an improvement of the

best-known lower bound for all four of the open instances. These improvements reduce the average

gap from the best-known upper bounds on these four instances from 24% to 11%.

In Table 7 we compare the lower bounds we obtained with the existing literature on the instances
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Table 5: Statistics of the column generation algorithm, where the pre-processing is activated, the optimality inequal-
ities are deactivated, and the local branching is only activated for comp05 and comp12, with κ = 2.

Columns Time Patterns
Instance Iter. Total LocBra. Total Build Master Pricing Total Removed

comp01 45 578 2:41 2:23 0 14 7927 3722.3
comp02 176 6303 13:37 1:51 7 11:23 7387 3004.8
comp03 165 5632 14:57 1:17 5 13:21 6539 2652.5
comp04 246 5446 2:31 54 8 1:08 7835 4003.7
comp05 170 5819 5320 1:31:38 2:33 4 1:28:37 5495 1589.9
comp06 254 11062 20:05 1:33 30 17:34 9941 4791.9
comp07 221 9876 11:31 2:10 39 8:11 12436 5893.0
comp08 315 6906 2:51 48 12 1:24 8180 4276.4
comp09 224 4682 3:50 54 5 2:33 7453 3438.5
comp10 225 9150 8:26 1:36 28 5:56 10129 4682.3
comp12 287 14553 13381 18:43:19 3:20 40 18:38:09 8143 2278.0
comp13 280 6660 3:58 51 11 2:33 7870 3776.0
comp14 162 5640 4:57 1:09 6 3:27 7472 3474.4
comp15 164 5345 15:06 1:17 4 13:30 6539 2684.7
comp16 244 10178 21:08 1:34 28 18:36 10491 5189.0
comp17 250 10998 28:44 1:29 27 26:21 9362 4526.9
comp18 185 4411 34:11 1:19 3 32:22 5868 2654.7
comp19 220 5446 3:36 1:06 6 2:07 6588 3003.0
comp20 263 11432 14:38 1:55 44 11:24 10987 5023.6
comp21 276 11175 36:07 2:24 24 32:51 9429 4137.0
Avg. 2.2% 0.4% 96.8% 45.0%

Table 6: Comparison with the best-known bounds for the four open instances. *Updated value from Bagger et al.
(2016).

Best DW
Instance UB LB Gap LB Gap

comp03 64 54* 16% 58 9%
comp05 284 211 26% 247 13%

comp12 294 175* 40% 248 16%

comp15 62 54* 13% 58 6%
Avg. 24% 11%

comp01–comp10 and comp12–comp14, as these were the only instances, out of the 20 instances

we tested, that were available for all the methods in literature. We compare the lower bounds

obtained by our approach (DW) with BMPR10 (Burke et al., 2010b), BMPR12 (Burke et al.,

2012), LL12 (Lach and Lübbecke, 2012), HB11 (Hao and Benlic, 2011), CCRT13 (Cacchiani et al.,

2013), BKSS17 (Bagger et al., 2017) and BDD16 (Bagger et al., 2016). If a paper reported multiple

lower bounds, then we took the highest lower bound obtained for each instance. We mark the lower

bound obtained in bold font, if the bound is at least as good as the other published approaches,
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for each approach and each instance. If an approach obtained a lower bound which is better than

all the other approaches in the same table then we have marked it with an underline. In the table,

we also report the average gap from the best-known upper bounds (Avg.). In the second last line

(Best), we report the number of times each approach obtained a lower bound which is at least

as good as the other approaches. In the last line we report the number of times each approach

obtained a lower bound which is better than the other approaches. We have used the same notation

throughout all the remaining tables.

Table 7: Comparison of the lower bounds for the different approaches.

In
st
an

ce

U
B

B
M

PR
10

B
M

PR
12

LL12
H
B
11

C
C
RT

13

A
N
14

B
K
SS

17

B
D
D
16

D
W

comp01 5 5 5 4 4 5 0 5 0 0
comp02 24 1 6 11 12 16 16 8 24 20
comp03 64 33 43 25 38 52 28 38 54 58
comp04 35 35 2 28 35 35 35 35 35 35
comp05 284 119 183 108 183 166 48 186 210 247
comp06 27 16 6 10 22 11 27 16 26 23
comp07 6 6 0 6 6 6 6 6 6 6
comp08 37 37 2 37 37 37 37 37 37 37
comp09 96 68 0 46 72 92 35 74 96 92
comp10 4 4 0 4 4 2 4 4 4 4
comp12 294 101 7 53 109 100 99 142 175 248
comp13 59 54 0 41 59 57 59 59 59 59
comp14 51 42 0 46 51 48 51 44 51 49

Avg. 28.0% 77.5% 35.0% 19.4% 21.7% 31.0% 20.8% 14.3% 13.7%

Best 5 1 3 6 4 7 6 8 8
1 2 3

In Table 7, we see that our approach obtained a lower bound which is at least as good as the

lower bounds of the other approaches on eight of the instances. On three of these instances the

lower bound we obtained is better than for the other approaches. Furthermore, we see that our

approach has the lowest average gap (13.7%) to the best-known upper bounds.

In Table 8, we compare our results for all 20 instances to HB11, CCRT13, AN14, BKSS17, and

BDD16 since they reported results for all these instances.

In Table 8, we see that our approach obtained a lower bound which is at least as good as the

lower bound obtained by the other approaches, for 11 of the instances. On four of these instances,

our approach obtained a higher lower bound than the other approaches. These four instances

are the open instances. Lastly, we see that our approach obtained the second lowest average gap

(12.2%) to the best-known upper bounds, where the original pattern formulation has the lowest
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Table 8: Comparison of the lower bounds for the different approaches for all 20 instances.

Instance UB HB11 CCRT13 AN14 BKSS17 BDD16 DW

comp01 5 4 5 0 5 0 0
comp02 24 12 16 16 8 24 20
comp03 64 38 52 28 38 54 58
comp04 35 35 35 35 35 35 35
comp05 284 183 166 48 186 210 247
comp06 27 22 11 27 16 26 23
comp07 6 6 6 6 6 6 6
comp08 37 37 37 37 37 37 37
comp09 96 72 92 35 74 96 92
comp10 4 4 2 4 4 4 4
comp12 294 109 100 99 142 175 248
comp13 59 59 57 59 59 59 59
comp14 51 51 48 51 44 51 49
comp15 62 38 52 28 38 54 58
comp16 18 16 13 18 13 18 17
comp17 56 48 48 56 44 53 56
comp18 61 24 52 27 36 52 52
comp19 57 56 48 46 56 57 51
comp20 4 2 4 4 0 4 3
comp21 74 61 68 42 57 74 71

Avg. 22.3% 19.0% 28.8% 26.2% 10.9% 12.2%

Best 6 6 10 6 13 11
1 4 4

average gap (10.9%).

We realize that even better results might be achieved by extending the Column Generation

algorithm into a full Branch & Price algorithm. This, combined with cutting plane techniques in

the column generation algorithm, could potentially increase the lower bounds. Local branching is

a generic method, that can be used in pricing problems for other column generation algorithms. To

the best of our knowledge, this work is the first implementation of local branching in the pricing

problem for a column generation algorithm. We think that many pricing problems, in general,

work well with local branching since every iteration of the column generation algorithm provides

new solutions to be used in the framework.

6. Conclusion

In this paper, we applied the Dantzig-Wolfe decomposition to a pattern formulation for the

Curriculum-based Course Timetabling (CCT) problem. The pattern formulation is based on enu-
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merating all the time schedules to which the courses can be assigned each day. The pattern

formulation only considers the time schedule of the problem, while ensuring that a feasible room

assignment can be found, but does not calculate the violations of the room related soft constraints.

Thus, the pattern formulation provides feasible time schedules and a lower bound, i.e., solutions

where there exists feasible room assignments, and a guarantee that feasible solutions for CCT of

costs better than a certain value does not exist. The decomposition resulted in a pricing problem

for each day, where each pricing problem generated a schedule for an entire day. We showed that

the pricing problem contained a special structure, which we utilized in a pre-processing phase. We

then showed how the pre-processing technique could be used to derive inequalities for the pric-

ing problem. Lastly, we described how we applied Local Branching to solve the pricing problem.

To the best of our knowledge, this is the first time Local Branching is implemented in a pricing

problem, but it is general enough to be applied in other column generation algorithms. We tested

our algorithm on 20 data instances used in the Second International Timetabling Competition.

On these instances, the pre-processing technique we applied removed approximately 45% of the

pattern variables from the pricing problem on average. We compared the lower bounds that we

obtained with other approaches from literature. Our algorithm obtained a lower bound, in 11 of

the instances, which was at least as good as the other approaches. Four of these instances are

still open, meaning that the best-known upper bound does not equal the best-known lower bound.

In all of these four instances, our algorithm improved the lower bound, so, the average gap was

decreased from 24% to 11%. We showed that more than 96% of the total time of the algorithm was

spent on solving the pricing problem, and concluded that more research is needed in the pricing

problems before the algorithm can be extended into a full Branch & Price algorithm.
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