Impact on wind turbine loads from different down regulation control strategies

Galinos, Christos; Larsen, Torben J.; Mirzaei, Mahmood

Publication date: 2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Impact on wind turbine loads from different down regulation control strategies

Christos Galinos, Torben J. Larsen and Mahmood Mirzaei

Technical University of Denmark, Department of Wind Energy, Loads and Control, DTU Risø Campus, Fredriksborgvej 399, 4000 Roskilde

Abstract

Three characteristic derating strategies on the upstream wind Turbine are studied and the load impact to the downstream one is assessed. These are defined as minimum/maximum rotor speeds (minRS, maxRS) and minimum thrust (minT) modes. Derating factors of 20% and 40% on available power are applied together with 4 and 7 diameters WT interspace. The study is based on aeroelastic simulations of a 2MW generic WT model including wake effects. The results show that below rated wind speed (8m/s) the downstream WT blade flap fatigue loads are minimized when the upfront WT is derated with the minRS strategy. The maxRS mode returns always the highest loads. When the WTS are aligned with the wind direction (full wake situation) the load levels for minRS and mint strategies are almost equal. Above rated wind speed (16m/s) the tendency is the same as at 8m/s. Finally, the fore-aft fatigue loads on the tower base and the main bearing yaw moment follow the same trends as the blade for both below and above rated wind speed.

Objective

Power down regulation can be done in different ways by adjusting the rotor speed and blade pitch angle on the individual turbines, which affect the fatigue loads on the turbine components. Until now the main focus was on power optimization [7, 8] and there has been limited documentation on the load variations as a result of different down-regulation strategies on wind turbines under wakes.

Main objective: Load impact for three characteristic derating strategies on the upstream WT to the downstream one

Method

- High fidelity aeroelastic simulations
 - HAWC2 - Including the Dynamic Wake Meander model (DWM) [3, 4, 5]
 - Generic 2MW Wind Turbine (WT)
 - Two WTs in wind farm configuration
 - Upfront WT-2 is down-regulated, downstream WT-1 normal operation
- Wind farm derating control strategies
 - minimum/maximum rotor speeds (minRS, maxRS)
 - Minimum thrust (minT)
- Cases
 - Down regulation by 20% and 40% on available power
 - WT interspaces of 4 and 7 Diameters (D)
 - Ambient wind speed and direction: 8m/s, 16m/s and ±15 degrees

Results

- Equivalent fatigue loads on downstream WT-1
 - Blade root flapwise BM
 - Tower base fore-aft BM
 - Main bearing yaw moment
 - Wind speed (4D)

Conclusions

- Below rated wind speed (8m/s) the downstream WT blade flap loads are minimized when the upfront WT is derated with the minRS and minT strategy
- The maxRS mode returns always the highest loads variations
- The load levels for minRS and minT strategies are almost equal when the WTS are aligned with the wind direction (full wake situation)
- Above rated wind speed (16m/s) the tendency is the same as at 8m/s
- Control strategies are directly linked with the deficit strength of the upstream turbine operation

References

Acknowledgments: This work is part of the CONCERT project - EERA DeepWind/18 Transnational, Norway 12-19 Himose