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Abstract 

Lifestyle diseases are expanding global health problems that are contributing to the global burden of 

chronic diseases. To link diet to metabolic outcome, it is necessary to understand the metabolic fate  

and interaction of the nutritional components in living organisms. The link between metabolic 

perturbations and human diseases has led to growing interest in metabolic research. The objective of 

this project is to study perturbed metabolism using dissolution Dynamic Nuclear Polarization (dDNP) 

in several disease models in vitro. By overcoming the sensitivity issues related to traditional magnetic 

resonance, dDNP offers the advantage of non-invasive metabolic visualization in vitro and in vivo. 

In the first part of the thesis, dDNP is used to probe slow biochemical reactions in combination with 

Stable Isotope-Resolved Metabolomics (SIRM). By application of this method, the timeframe of the 

experiment can be extended from minutes to hours or longer. The dDNP-SIRM approach is applied 

to investigate early handling of excess fuel in insulin producing β-cells before they reach a glucotoxic 

state which is a pathogenic factor in type 2 diabetes. Glucose-derived pyruvate is found to correlate 

with a high fuel burden for the cells and is hypothesized to be a potential biomarker in the 

development of insulin impairment. In conclusion, this study shows that -cells actively use different 

metabolic pathways to reduce excess metabolites formed due to uncontrolled glycolysis. Glycerol-  

and fatty acid metabolism is the most likely candidate for this deviation pathway. Further studies are 

needed to elucidate this fundamentally important and relatively overlooked defense mechanism 

important for protecting the -cell against glucotoxicity. 

In the second part of the thesis, dDNP is applied to study real time kinetics using hyperpolarized [1-

13C]pyruvate to visualize metabolism in cancer cells. The biological model represents pancreatic 

cancer, demonstrated by different cell lines representing various stages of the cancer. For this purpose, 

a bioreactor with a home-built flow cell was constructed and tested. It was demonstrated that the cells 

grown on microcarriers showed pyruvate to lactate conversion in the flow cell. Furthermore, the 

bioreactor was found suitable for longitudinal cell studies over several hours, but also revealed that 

flow stress is an important limitation for many cell systems on microcarriers.  

The third part of the thesis concerns three different bioprobes for novel applications, in vivo and in 

vitro. The sample formulation and solid-state DNP polarization were optimized for each bioprobe. 

Biological applications are discussed for each probe, and initial studies were performed to assess 

potential for hyperpolarization studies.  
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In summary, this thesis shows the versatility of dDNP for metabolic research and potential diagnost ic 

applications demonstrated by the polarization of 13C labeled substrates in vitro.  
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Resumé 

Livstilssygdomme er et stigende globalt sundhedsproblem, som bidrager til den globale byrde af 

kroniske sygdomme. For at linke diæt til metaboliske sygdomme, er det nødvendigt at forstå den 

metaboliske konsekvens og interaktion af næringsstoffer i levende organismer. Linket mellem 

metaboliske forstyrrelser og menneskesygdomme har medført en stigende interesse i metabolisk 

forskning. Formålet med dette projekt er at studere perturberet metabolisme ved brug af dissolut ion 

Dynamic Nuclear Polarization (dDNP) i adskillige sygdomsmodeller in vitro. Ved at overkomme 

sensitivitetsproblemerne forbundet med traditionel magnetisk resonans, er det med dDNP muligt at 

visualisere metabolisme non-invasivt både in vitro og in vivo. 

I første del af afhandlingen bliver dDNP anvendt til at undersøge langsomme biokemiske reaktioner 

i kombination med stable isotope-resolved metabolomics (SIRM). Ved at anvende denne metode kan 

tidshorisonten for forsøget øges fra minutter til timer eller længere. dDNP-SIRM metoden anvendes 

til at undersøge tidlig håndtering af overskudsnæringsstoffer i insulinproducerende β-celler inden de 

når et glukotoksisk stadium, som er en patogen faktor i type 2 diabetes. Mængden af glukose-derivere t 

pyruvat korrelerer med en høj næringsstofsbyrde, og derfor er hypotesen at pyruvat er en potentiel 

biomarkør i udviklingen af insulin dysfunktion. Opsummeret viser studiet at β-celler aktivt bruger 

forskellige metaboliske ruter for at formindske overskudsmetabolitter, som formes som følge af 

ukontrolleret glykolyse. Glycerol- og fedtsyremetabolismen er den mest sandsynlige kandidat for 

denne afledende rute. Yderligere studier skal udføres for at udlede denne fundementalt vigtige og 

relativt oversete forsvarsmekanisme, som er vigtig for at beskytte β-cellen mod glukotoksicitet.    

I anden del af afhandlingen er dDNP anvendt til at undersøge metabolisme i realtid ved brug af 

hyperpolariseret [1-13C]pyruvate til at studere metabolismen i kræftceller. Den biologiske model 

repræsenterer kræftceller fra bugspytkirtel, demonstreret ved forskellige cellelinjer der repræsenterer 

forskellige stadier af kræft. Til formålet blev en bioreaktor med en hjemmebygget flowcelle 

konstrueret og testet. Det blev vist at celler groet på microcarriers gav pyruvat til laktat omdanne lse 

i flowcellen. Ydermere viste bioreaktoren sig at være anvendelig til longitudinelle studier over 

adskillige timer, men viste også at flowstress er en vigtig begrænsning for mange cellesystemer på 

microcarriers.  

Tredje del af afhandlingen vedrører tre forskellige bioprober for nye anvendelser, in vivo og in vitro. 

Formuleringen og fastfase DNP polarisering for hver bioprobe blev optimeret. Biologiske 
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anvendelser diskuteres for hver probe, og initielle studier blev udført for at vurdere deres potentiale 

ved brug i hyperpolariseringstudier.  

Opsummeret viser denne afhandling mangfoldigheden af dDNP for metabolisk forskning og 

potentielle diagnostiske anvendelser demonstreret ved polarisering af 13C mærkede substrater in vitro.  
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1. Introduction  
 
 

Lifestyle diseases such as obesity [1], diabetes [2], specific cancers [3] [4] [5] and cardiovascular 

conditions [6] are expanding global health problems. The consumption of foods high in fat and sugar 

is increasing throughout in the developing world, contributing to the global burden of chronic diseases 

[7]. The result of this development is increased health expenses, reduced life quality and early death.  

In order to link diet to metabolic outcome, it is necessary to understand the metabolic fate of the 

nutritional components in living organisms. The connection between perturbed metabolism and 

human disease has led to a growing interest in metabolic research [8]. An example of pathogenic 

metabolism is the Warburg effect in cancerous cells [9], and by using analytical methods to quantify 

metabolites from cancerous tissues, the severity of cancer can be assessed. 

 

In this thesis, a novel magnetic resonance (MR) based method, dissolution dynamic nuclear 

polarization (dDNP), is used to examine metabolism non-invasively in biological systems. The 

inherently low signal in traditional MR based methods is overcome by ex situ polarization of isotope 

labeled molecules, enhancing their signal dramatically. There are several ways in which dDNP can 

be used to investigate metabolism in vitro among which are real time kinetics (non-invasively) and 

endpoint metabolomics (extracts). In the real time kinetic experiment, a biologically relevant 

substrate (bioprobe) is polarized and then injected into the cell system. The result of this is conversion 

of the bioprobe in real time, revealing uptake and enzymatic activity. The non-invasiveness of this 

approach makes it suitable for in vivo imaging [10] and the diagnostic properties of the method is 

being employed in clinical trials [11]. dDNP can also be used for endpoint metabolomics. In this type 

of experiment, the cell system is initially incubated with the isotope labeled substrate following an 

extraction procedure and hyperpolarization of the final sample. This approach makes it possible to 

extend the time frame of the dDNP experiment from minutes to hours or longer. 

 

This thesis demonstrates the use of dDNP for both types of metabolic studies on two different in vitro 

disease models: metabolism in insulin producing β-cell as a function of time and glucose stimulat ion, 

and real time kinetics in pancreatic cancer cells by exposure to hyperpolarized [1-13C]pyruvate. 

Furthermore, the potential of three novel bio-probes are investigated and discussed in last part of this 

thesis: 



2 
 

 

Part I  Endpoint metabolomics by dDNP of cell extracts:  

Early, transient changes of metabolites in the β-cell as a function of time and glucose 

concentration by dDNP of cell extracts and development of dDNP-SIRM method. 

 

Part II  Real time metabolism in living cells: 

  Using a dDNP/NMR compatible bioreactor for longitudinal studies in living pancreatic 

cancer cells to study metabolism in real time. 

 

Part III  Investigation of novel bioprobes: 

 Optimizing the polarization of 13C-labeled bioprobes for in vivo studies.  
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2. Metabolomics 

2.1 Metabolism 

Metabolism is the chemical engine responsible for driving the living process. Single and multicellular 

organisms support their existence through utilization of a massive repertoire of enzymatic reactions 

and transport processes. This allows the organism to process and convert thousands of organic 

compounds into essential biomolecules through an extensive map of pathways [12]. Metabolism can 

conveniently be divided into three types of functions; catabolism, the breakdown of molecules to 

produce energy and building blocks, anabolism, the synthesis of essential compounds for the cell e.g. 

proteins, DNA and cell structure, and waste disposal responsible for eliminating toxic compounds 

[13] [8]. Therefore, metabolism is closely linked to nutrition and the availability of nutrients, which 

are mainly gained through dietary carbohydrates, lipids and proteins [14]. The metabolic pathways 

are closely controlled by enzymes, which allows the reactions to proceed quickly and efficiently. The 

enzymes regulate the metabolic pathways in response to changes in the cells environment or signal 

from other cells, and this plasticity is useful for e.g. excessive or lack of nutrition, or other 

environmental changes in order to maintain normal cell function. 

2.2 Perturbed metabolism 

When biochemical pathways malfunction, either because of genetic or environmental reasons, it can 

lead to metabolic disturbances and disease, because the cells can no longer maintain normal function. 

As example, glucotoxicity is an established pathogenic process in the β-cell, that may lead to type 2 

diabetes [15]. β-cells, which are responsible for sensing glucose levels and respond with suitable 

amount of insulin, can lose or reduce their capability of insulin response after being exposed to excess 

fuels for longer duration. Excessive fuels require faster metabolism or metabolism through additiona l 

pathways, leading to formation of harmful products such as reactive oxygen species (ROS), which is 

harmful for cells, especially the β-cell, since it contains less anti-oxidant compared to other cell types 

[16]. The cell damage depends on exposure time and concentration of excessive fuels and the damage 

can be reversible to a certain extent in some conditions [17].  

The prime example of a common human disease with pathological metabolic perturbation is cancer. 

Altered cellular metabolism is the hallmark of cancer. The “Warburg effect”, named after the 

discoverer Otto Warburg [18], is the metabolic shift in cancer tissue in which the cells consume more 

glucose and secrete more lactate than normal tissue, even though they have access to sufficient O 2 to 
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metabolize glucose completely to CO2, Figure 1. The glycolysis is decoupled from pyruvate 

oxidation, such that carbohydrates are not used for maximum adenosine triphosphate (ATP) 

generation in the mitochondria [9]. Even though cancers are hugely diverse in type and etiology, they 

share this particular metabolic abnormality; a wasteful alteration of glycolysis.   

 

Figure 1 – Left: Two pathways for ATP production in healthy cells. If oxygen is available, the cells metabolize glucose to pyruvate, 

which is then oxidized to CO2 in the mitochondria, the most energy efficient pathway (aerobic pathway). If the oxygen levels are low, 

the cells can use the generated pyruvate for producing lactate (anaerobic pathway), a much less energy efficient pathway. Right: the 

Warburg effect. The cells convert most of the glucose to lactate regardless of oxygen levels. From [9]. Reprinted with permission from 

AAAS.  

Downstream the glycolysis the aerobic ATP generation takes place in the mitochondria through a 

series of chemical processes referred to as the tricarboxylic acid (TCA) cycle. TCA cycle and 

oxidative phosphorylation are central to metabolic energy production. In normal cells, a substantia l 

energy source for the TCA cycle is glucose-derived pyruvate from glycolysis [19]. Studies have 

revealed that perturbation in the TCA cycle is connected to many disease states [20] [21] [22]. In 

cancers, oncogenes impair some of the enzymes responsible for driving the TCA cycle [23]. Evidence 

suggest, that the TCA cycle is altered in many neurodegenerative diseases, such as Alzheimer’s, 

Parkinson’s, Huntington’s disease and amyotrophic lateral sclerosis [20].  
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The breakdown of ATP is the only immediate source of energy for the heart contraction, maintenance 

and other vital functions. Cardiac ATP is in very close interplay with the TCA cycle activity. Many 

pathological states in the heart creates a mismatch between the anaerobic and oxidative metabolism 

via the TCA cycle [24]. Some of these processes are connected to e.g. myocardial ischemia, where 

oxidative metabolism is suppressed even though glycolytic rate is maintained [25]. These metabolic 

differences between disease and normal tissue motivates the field of metabolic research in order to 

gain better understanding of developing metabolic disorders, diagnosis and potential treatment. 

 

The central process in the TCA cycle is the energy metabolism, in which acetyl coenzyme A (acetyl-

CoA) derived from carbohydrates, fats and proteins is oxidized to CO2. For the constant function of 

the cycle, intermediates are replenished (anaplerosis) or removed (cataplerosis) [26], Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – The TCA cycle and the interplay between anaplerosis and cataplerosis. Being the end product of glycolysis, pyruvate enters 

the TCA cycle and contributes to producing components for ATP production - one of the key processes in the energy production. From 

[26]. Reprinted with permission from ASBMB. 
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2.3 Metabolomics reveal altered metabolism 

The link between metabolic perturbations and human disease has led to growing interest in metabolic 

research [8]. By studying the unique, chemical fingerprints that specific cellular processes leave 

behind, a metabolic profile can be deduced. The profile represents a set of metabolites, which are 

products of cellular processes in the given cell model. A metabolic profile can give a snapshot of the 

cells physiological state and potentially lead to the discovery of clinically relevant biomarkers [27] 

such as the Warburg effect or TCA cycle impairment, as mention in previous section.  

 

2.3.1 Methods 

No single analytical technique covers the entire spectrum of the human metabolome [28]. Exist ing 

platforms for metabolomics studies commonly involve mass spectrometry (MS) and chromatography 

for separation of compounds [29], Fourier-transform infrared spectroscopy (FT-IR) [30] and nuclear 

magnetic resonance (NMR). Once optimized, these methods may produce quantitative or semi-

quantitative data on many metabolites simultaneously. MS can analyze hundreds of small molecular 

weight metabolites according to their molecular mass with a higher detection sensitivity than NMR. 

However, due to variations in ionization properties of instrument and molecules, neither absolute nor 

relative concentrations can be accurately determined [29]. NMR is a non-destructive method, which 

is capable of interrogating all molecules simultaneously in the sample if they contain NMR active 

nuclei. NMR can be quantitative, and is capable of producing high-resolution spectra of biologica l 

samples, such as biological fluids, cells and intact tissues. A unique feature of NMR is its ability to 

determine stable isotope labeling at specific atomic position within the molecule 

(molecular/isotopomer analysis) [31]. The non-invasiveness of NMR combined with the molecular 

analysis makes it a desirable method of in vitro or in vivo metabolic studies.  

 

The term “molecular imaging” has been used to describe the methods that directly or indirect ly 

monitor the spatiotemporal distribution of molecular or cellular processes for biological, biochemica l, 

diagnostic or therapeutic applications. A variety of techniques fits this category: positron emission 

tomography (PET), single-photon emission computed tomography (SPECT), optical imaging and 

Raman spectroscopy [32]. Magnetic resonance spectroscopic imaging (MRSI) originating from 

magnetic resonance imaging (MRI) and NMR has been applied for clinical use since the 80s [30]. A 

limitation of MR based methods is the sensitivity. The inherently low sensitivity of NMR makes it 
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impossible to track important metabolic intermediates at their physiological concentrations. This 

problem has been addressed by recent advancement in hyperpolarization, which allows spin 

polarization of the nucleus to be enhanced beyond the thermal equilibrium. This creates a dramatic, 

yet short-lived, increase of signal from the substrate molecule, making it possible to interrogate 

metabolism in real time. Among several hyperpolarization techniques, two have been used for in vivo 

work using 13C-containing organic molecules: para-hydrogen-induced hyperpolarization (PHIP) [33]  

and dissolution dynamic nuclear polarization (dDNP) [34]. PHIP requires simpler equipment than 

dDNP, but can only be used for polarization of 13C in a limited number of molecules, whereas  dDNP 

is more versatile, and can be applied to many molecules and other nuclei as well (1H, 13C, 15N, etc.).  
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2.4 Overcoming low sensitivity: dDNP 

 

2.4.1 Enhancement of SNR by hyperpolarization of nuclear spins 

In magnetic resonance the signal-to-noise ratio (SNR) is correlated to the gyromagnetic ratio of the 

given nuclei (γ), the polarization (P) and concentration of spins (c), equation (1) [35]: 

𝑆𝑁𝑅 ∝  𝛾 𝑃 𝑐                                                                    (1) 

The polarization can be defined as the difference in population between the two possible energy 

states, where the nuclei are either parallel or anti-parallel to the external magnetic field based on 

Boltzmann’s law. Nuclei with spin quantum number I = ½ (e.g. 1H, 3He, 13C, 129Xe) have two 

eigenstates in a magnetic field. The polarization can then be defined by equation (2) [36]:  

𝑃 =
𝑁+ − 𝑁−

𝑁+ + 𝑁−
= 𝑡𝑎𝑛ℎ (

𝛾ℏ𝐵0

2𝑘𝐵𝑇
)                                     (2) 

Besides kB being the Boltzmann constant and ℏ the reduced Planck constant, contributing parameters 

are the gyromagnetic ratio γ of the given nucleus, applied magnetic field B0 and temperature T. At 

room temperature the equation can be reduced to equation (3): 

𝑃 = (
𝛾ℏ𝐵0

2𝑘𝐵𝑇
)                                                                     (3) 

 

 
From this expression it is evident, that the polarization of protons in a 1.5 T MR scanner is ~5.0∙10-6 

– meaning that 5 out of 1000000 nuclear spins contribute to the net signal in a traditional NMR 

experiment. For carbon this number is even less because of the low gyromagnetic ratio, ~1.3∙10-6. 

This effect is the major cause for the low sensitivity of MR, generally defined as SNR per square root 

unit of measurement time. For this reason, accumulation of scans in order to achieve useful SNR can 

become very time-consuming. If the polarization reaches unity, this means a 200.000 times 

improvement of proton polarization and 800.000 times for carbon. By hyperpolarization it is possible 

to force this population difference much further from thermal equilibrium, resulting in a dramatically 

increase in SNR. 
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2.4.2 Principles behind dDNP 

 

The underlying mechanism of DNP is transferring the high electron spin polarization to the nuclear 

spin via microwaves, thereby creating larger differences in spin population. The microwave-dr iven 

polarization transfer process occurs at temperatures of few Kelvin and magnetic fields of several 

Tesla [37]. Under these conditions, the electrons are almost fully polarized, and a nuclear polarizat ion 

of unity can in principle be reached. By irradiating the sample with microwaves close to the resonance 

frequency of the electron spin, it is possible to transfer the spin to the nuclei. DNP can occur through 

several fundamental mechanisms which are active under different experimental conditions: the solid 

effect (SE) involving hyperfine interactions between nucleus and electron pairs, the cross effect (CE) 

relying on a three-spin electron-electron-nucleus interaction and thermal mixing (TM), a multi spin 

effect [38]. As effect, the bulk nuclei gain polarization from the electrons, Figure 3 (left). Hence, the 

polarization efficiency depends both on parameters characterizing the various spin systems but also 

on technical factors such as microwave frequency and power [39].   

 

 

 

 

Figure 3 – Left: principle of dDNP. At room temperature at e.g. 3T, the 13C nuclei are very weekly polarized. By lowering the 

temperature to around 1K, polarization increases, but the electron spin has a 2700 times stronger magnetic moment, hence it is easily 

polarized and will reach almost 100% polarization under these conditions. Microwaves can then induce electron-nuclear transitions, 

and the nuclear spin polarization will be increased. The hyperpolarized molecule is obtained after a quick dissolution in super-heated 

buffer, after which the relaxation starts with a time constant T1 of typically 40-80 s for carboxylic acids. Right: A) Naturally abundant 

hyperpolarized urea 13C spectrum (20% polarization) vs B) Thermal equilibrium of same sample after average of 232128 scans, 65 h. 

at 9.4 T spectrometer. From [40]. Copyright 2003 by National Academy of Science, reprinted with permission. 
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For the hyperpolarized molecule to be useful for living systems, it has to be dissolved in a buffer after 

the solid-state polarization has reached its maximum. This process ensures physiological temperature, 

desired concentration of substrate and pH correction if the hyperpolarized (HP) agent is either acidic 

or basic. Unlike in traditional NMR spectroscopy, where non-equilibrium polarizations can be 

regenerated by repeating the microwave irradiation and NMR acquisition, the hyperpolarized signal 

will decay irreversibly after dissolution until it reaches the thermal equilibrium, Figure 3 (right): A) 

hyperpolarized sample vs B) relaxed sample. The relaxation happens with a speed determined by the 

T1 of the molecule, hence it is desirable that the dissolution process and transfer to NMR spectrometer 

happens as fast as possible, where highest possible spin polarization is retained.   

2.4.3 Instrumentation for dDNP 

The process of irradiating a sample with microwaves while keeping a temperature of 1 K, and then 

being able to dissolve it to reach a physiological temperature within seconds requires specialized 

equipment. The method was initially described by Ardenkjær-Larsen in 2003 [40]. Most solid-state 

DNP is performed at magnetic field between 0.35 – 16.5 T and at temperatures from below 1K to 

room temperature [41] [42]. The essential components for dDNP experiment are: a superconducting 

magnet, mechanical pumps to achieve a temperature around 1 K, a microwave source and a 

dissolution stick to bring the sample to physiological temperature. Two commercially availab le 

systems are Hypersense and GE SpinLab. The HyperSense is mostly suitable for small samples but 

can be modified to successfully polarize samples of up to 1000 mg, with specially made sample cups 

[43]. GE SpinLab requires sample loading by use of a fluid path, where sample and dissolution media 

are both placed, and the whole fluid path is placed in the polarizer [44]. This system can accommodate 

large samples for human patients, and can be sealed in a sterile way, which makes it possible for 

translation to clinical applications. Furthermore, it is equipped with a quality control (QC) module, 

which can check the parameters of the hyperpolarized solution (temperature, pH, concentration of 

electron paramagnetic agent, concentration of substrate), to ensure safe injection. The analyses are 

preformed instantly upon dissolution not to lose valuable seconds for highest possible polarizat ion, 

when the solution reaches the subject, Figure 4. 
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2.4.4 Sample preparation 

The components of a dDNP sample include the MR-active molecular probe of interest, an organic 

free radical and a solvent that creates an amorphous solid at cryogenic temperatures, which ensures a 

homogeneous distribution of the radical. For polarization of 13C nuclei, radicals with narrow electron 

paramagnetic resonance (EPR) line width such as trityls usually lead to best polarization (OX063, 

BDPA), whereas radicals with broad EPR line width such as TEMPO are suitable for both 1H and 

13C, but results in a lower polarization of carbon than a trityl radical [45]. Bringing the solid sample 

into solution from 1K requires dissolution in super-heated buffer, resulting in physiologica l 

temperature. For biological samples, an aqueous buffer is used. A chelating agent, usually 

ethylenedinitrotetraacetic acid (EDTA), is added to the buffer to bind paramagnetic ions that might 

increase relaxation. Furthermore, acid or base can be added to the dissolution media to ensure neutral 

pH in the final sample. The major consideration when choosing a molecular probe for dDNP is how 

its T1 relates to the speed of the biological reaction it is intended to undergo. The time frame in which 

Figure 4 – Left: GE SPINlab polarizer, operating at 5 T and 0.9 K. The polarizer is equipped with four independent channels able to 

accommodate four samples (fluid paths) simultaneously. The cylindrical black unit is the quality control (QC) module, capable of 

measuring relevant parameters for the product (post dissolution), before the sample is released and injected into the subject. Right: 

Fluid path. The sample is sealed in a vial and the dissolution media is placed separately in a dissolution syringe, which is loaded into 

the SPINlab polarizer. Adapted from Malinowski et al. (Paper III).  
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it is possible to capture metabolic reactions is less than three times T1 of probes developed today (30-

180 s) [46], which makes small molecules desirable because of long T1. Furthermore, in vivo 

applications of HP molecules require 10-150 mM sample concentration, so the components of the 

samples should be biologically tolerable.   

2.4.5 Molecular probes for dDNP 

HP 13C agents, which are endogenous molecules modified only by 13C or 2H enrichment are used to 

follow basic biochemistry, and have many potential applications in oncologic imaging [32]. The 

information from these agents, or bioprobes, are fluxes through metabolic pathways to help 

understanding disease and improve treatment. Most 13C dDNP bioprobes are carbonyls, includ ing 

carboxylic acids, ketones, esters and amides. Especially carboxylic acids are useful since they are 

abundant in endogenous molecules. They are typically water-soluble, often amenable to 13C 

enrichment, have relatively long T1’s and are usually involved in or located near sites of biochemica l 

modifications. This is critical, because a change in chemical shift is the method to observe reactions 

in vivo and in vitro. The most widely used bioprobe is pyruvate because of its interesting biochemis try 

and advantageously long T1. Choosing the position of the 13C labeling depends on the biochemis try 

the probe is intended to investigate, Figure 5 [32].  

 

 

  

Figure 5 – Scheme representing labeling resulting from HP pyruvate. Red star indicates carbon in the [1-13C] position, while blue star 

is the [2-13C] position. ALA: alanine PYR: pyruvate LAC: lactate, LDH: lactate dehydrogenase ALT: alanine transaminase CA: 

carbonic anhydrase PC: pyruvate carboxylate PDH: pyruvate dehydrogenase complex CoA: coenzyme A. 
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Pyruvate with [1-13C] labeled position is particularly useful for probing the flux through lactate 

dehydrogenase (LDH) to lactate, to probe e.g. Warburg effect in cancerous tissue. On the other hand, 

if the target is to measure TCA cycle intermediate, the [2-13C] position is more suited. Other studies 

have probed pyruvate production by using [1-13C]lactate or [1-13C]alanine to probe the backward 

reaction [47] [48] [49]. 

 

2.4.5 Clinical translation 

The standard approach to diagnosing cancer is tissue biopsy and subsequent histopathology. Once the 

diagnosis is established, therapeutic decisions usually rely on a combination of clinical evaluat ion 

and radiologic imaging. Invasive sampling methods are inconvenient for longitudinal monitoring and 

screening programs. For these reasons there is an interest in minimally invasive techniques [10]. The 

non-invasiveness of dDNP makes it an attractive technique for molecular imaging in human patients 

because of the potential of assessing prognosis in disease development. Currently, there is no widely 

accepted modality that provides information about aggressiveness and response to therapy in prostate 

cancer [50]. The first-in-human study of hyperpolarized [1-13C]pyruvate was carried out in 2013, 

demonstrating safety and feasibility of the method [11]. The study involved 31 patients with 

untreated, biopsy-proven localized prostate cancer. The MRSI data showed higher [1-13C]lactate 

signal in slices including the tumor, which was low or undetectable in slices from regions of the 

prostate that did not include tumor.  Interestingly, in one patient the study showed an additional tumor 

that was not detected by conventional anatomic imaging methods. An MR guided biopsy performed 

subsequent to the study confirmed this finding, fueling the motivation for hyperpolarized [1-

13C]pyruvate being useful for assessing cancer development in slow growing cancers, where active 

surveillance is performed prior to potential surgical removal.  

In 2016, the first experiment visualizing cardiac metabolism using [1-13C]pyruvate was performed in 

four healthy individuals [51]. This study showed the first 13C images of the human heart, where the 

main products of [1-13C]pyruvate are 13C bicarbonate and [1-13C]lactate. As altered cardiac 

metabolism plays a role in the progression towards heart failure, potential bio-markers of such can be 

monitored longitudinally, representing another clinically relevant use of hyperpolarization for 

molecular imaging.  
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3. Part I – Stable isotope-resolved analysis of metabolites by dDNP 

Paper I - “Stable Isotope-Resolved Analysis with Quantitative Dissolution Dynamic Nuclear 

Polarization” was carried out at Center for Hyperpolarization in Magnetic Resonance 

(HYPERMAG) at Technical University of Denmark, and concerns the technical development of 

metabolite extract assay.  

Paper II “Pancreatic -cells respond with early metabolic switch to fuel pressure” is a result of a 

collaboration with Thomas Mandrup-Poulsen and Seyed M. Ghiasi from the Dept. of Biomedical 

Sciences, University of Copenhagen, and concerns the metabolic profile of the β-cells exposed to 

supra physiological glucose concentrations using the developed dDNP assay. 

3.1 Stable Isotope-Resolved Analysis with Quantitative Dissolution Dynamic Nuclear 

Polarization (Paper I) 

The classical dDNP experiment offers detection of real time conversion of the hyperpolar ized 

substrate in a cell suspension with subsecond resolution [52]. Since the hyperpolarized signal is short 

lived (~1 min.) it requires high uptake and turnover rates. Changing the order of events gives the 

possibility of expanding the timeframe of such experiments. Cells can be incubated for hours with 

isotope labeled substrates followed by an extraction of metabolites, and the metabolite extract can 

then undergo dDNP and NMR detection to allow quantification. Such an approach has previous ly 

been described for drug therapy monitoring by excreted metabolites in blood and urine [53], for 

investigating physical parameters of metabolites such as redox state [54] and for metabolomics 

approach in analysis of breast cancer and plant cells [55]. In this study, two cancer cell lines, MCF7 

and PC3, are used to show the labeling pattern obtained by dDNP of extracts, when cells are incubated 

with uniformly labeled glucose at different time points. A robust protocol is demonstrated for 

obtaining cancer type specific metabolic pathways by metabolite analysis.  

3.1.1 Sample preparation and optimization of polarization time 

Human prostate adenocarcinoma cells (PC3) and human mammary adenocarcinoma cells (MCF7) 

were used as model systems for this study. At 90% confluence the cells were harvested and placed in 

Eppendorf tubes at a concentration of 10 ∙ 106 cells in 500 µL. 100 µL of 120 mM [U-13C,U-

D7]glucose was added to the Eppendorf tubes, and the cells were incubated in a shaking thermostat 

at 37⁰ C for 0, 1, 3, 10 or 30 min. respectively. The entire cell suspension was then quenched by 

addition of 400 μL 2.2 M perchloric acid (PCA), and the metabolites were neutralized with KOH and 
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placed on ice for 10 min. After centrifugation, the supernatant was freeze-dried to yield the final 

lyophilized sample. The lyophilized samples were dissolved in 150 µL polarization medium (70 mg 

OX063, 1227 mg glycerol, 944 mg Milli-Q water, 28.8 mg Gadoteridol (100 µmol/g)), and 5 µL 50 

mM HP001 (250 nmol) was added as an internal standard. The sample was polarized in a HyperSense 

polarizer at 3.35 K and 1.4 K with microwave frequency of 94 GHz. Upon dissolution, the samples 

were dissolved in 5 mL phosphate buffer (40 mM, pH 7.4) and quickly transferred to a 9.4 T Varian 

NMR spectrometer into a 5 mm NMR tube. The transfer time was approximately 12 s. 1D 13C spectra 

of the metabolites were recorded with a 70⁰ pulse. 

To find the optimal time for dissolution, test samples were polarized for 30, 90 and 240 min. The test 

samples contained 60 µmol [U-13C,D] glucose in polarization medium with HP001 as interna l 

standard, Figure 6. 

 

 

 

 

 

  

  

 

After 90 min. 93% of the maximal achievable polarization is reached and therefore chosen as optimal 

dissolution time as a tradeoff between maximum SNR and throughput.  It has been assumed that all 

metabolites polarize with approximately the same time constant, but this may not be the case in 

practice.  

 

  

Figure 6 – Solid-state buildup of samples containing [U-13C,D]glucose in polarization medium with HP001 as internal standard, n=3 

for 30 and 90 min., n=2 for 240 min. Red symbols show liquid state polarization of HP001. From paper I [156]. 
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3.1.2 Correlation between relative quantification and absolute concentration of metabolites 

In order to quantify the metabolites in a sample, the integrals of the peaks are measured with respect 

to the HP001 peak which is conveniently placed up-field and does not interfere with the carbonyl 

carbon chemical shift range. This leads to a relative concentration of metabolites. Since the integra ls 

are affected by relaxation which depends on factors such as T1, an uncontrolled magnetic environment 

during transfer from polarizer to spectrometer, temperature, transfer time, some signal loss, individua l 

for each molecule is expected. For the method to be able to quantify the metabolite concentration, 

this loss should be known. Hence, a sample with four commonly occurring metabolites, acetate, 

lactate, alanine and pyruvate, was polarized and compared with thermal spectra of an aliquot of the 

same sample achieved after 4096 scans (repetition time 2 s) on a Bruker 800 MHz spectrometer. Since 

thermal NMR signal does not suffer from signal relaxation loss, the signal loss coefficient (SLC) is 

calculated as ratio between DNP signal and thermal signal, Figure 7. 

 

 

 
 

 
 
 

 
 

 

 

 

 

 

The SLC varies from 55-108 %, depending on the molecules specific relaxation behavior, and this 

suggests that SLC should be determined for each metabolite in order to calculate absolute 

concentrations.  

 

  

Figure 7 – Top: liquid spectrum of the four metabolites after 90 min. polarization. The carbonyl carbons are detected because of their 

advantageously long T1. Bottom: table with metabolite ratios relative to HP001 from the DNP experiment calibrated to values obtained 

with thermal NMR. From paper I [156]. 
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3.1.3 Applying the method in vitro  

The lyophilized samples from PC3 and MCF7 cells at time points 0, 3, 10, and 30 min (n=3), were 

polarized to yield spectra with a specific metabolic profile for each time point. As seen in figure 

Figure 8, five different metabolites were identified based on chemical shift referenced to HP001 at 

23.7 ppm, namely pyruvate, lactate, alanine, 3-phosphoglycerate (3PG), phosphoenolpyruvate (PEP), 

and dihydroxyacetone phosphate (DHAP), furthermore 3PG was identified based on pH dependent 

chemical shift [56]. Lactate is the far most abundant metabolite, which is expected for cancerous cells 

due to the Warburg effect. The metabolic pattern becomes clearer over time (from 1 min. to 30 min.), 

and it is evident that after 30 min. the two cells lines show a distinct cell type dependent metabolic 

pattern. By measuring the SLC of the relevant metabolites, it is possible to quantify the absolute 

amount of metabolites.  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 8 – dDNP-NMR spectra from incubations with [U-13C,D]glucose in the two cell lines, A) MCF7 and B) PC3. The cells were 

incubated for 0, 1, 3, 10 and 30 min. From paper I [156]. 
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In Figure 9 the absolute concentration is shown for the two cancer cell lines, PC3 and MCF7. MCF7 

mainly produces pyruvate and its downstream metabolites, alanine and lactate, whereas PC3 

accumulates PEP and DHAP. Both cell lines produce 3PG, but PC3 produced 6 times more 3PG than 

MCF7. Accumulation of glycolytic intermediates in the PC3 cell line could indicate an alternat ive 

use of glucose metabolism. These findings support the highly glycolytic nature of MCF7 cells, while 

the metabolism in PC3 is more complex. PEP and DHAP accumulate, which supports that the active 

isoform of pyruvate kinase (PKM2) in cancer is inhibited in aggressive prostate cancer cells [57]. 

 

 

 

 

 

 

 

 

 

 

3.1.4 Discussion and conclusion of stable isotope-resolved analysis 

The developed quantitative dDNP analysis for metabolic extracts allows for prolongation of the 

experiment time. Whereas the classical DNP experiment is limited by the T1 of the bioprobe, this 

experiment is rather dependent of the biological model, pushing the time frame for experiment from 

minutes to hours. The analysis can be performed quantitatively, provided that internal standard is 

applied with laboratory dependent calibration (SLC). This loss is not universal, since it is affected by 

factors that may vary from set-up to set-up. As can be seen in this case, specific metabolic fingerpr ints 

supporting the two cancer cells behavior, can be seen after 30 min of incubation. Whereas certain 

cells are suitable for the classical dDNP experiment because of rapid turnover rate, other cell lines 

will have metabolites that will not yet have reached a sufficient isotope enriched concentration for 

detection within 1 min. At longer time frames (e.g. 30 min. of incubation) they may become visible. 

Figure 9 – Metabolites quantified with respect to HP001 and corrected with SLC to result in an absolute concentration in the two cell 

lines PC3 and MCF7. From paper I [156]. 
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HP001 is conveniently used as internal standard, since it is soluble in water, has a long T1, and up-

field chemical shift (23.7 ppm) that does not interfere with the region of interest, which is usually the 

carbonyl carbon region, and polarizes well with DNP. OX063 was used as electron paramagnetic 

source added in 15 mM concentration, since a relatively broad maximum around 15 mM OX063 has 

been reported in literature for polarization matrices [58]. A mixture of 50% water and 50% glycero l 

was used as glassing agent, and gadolinium-DOTA complex, to benefit from the gadolinium effect 

in order to get maximum polarization [59]. In this type of experiment only a single time point (single 

spectrum) is needed, and therefore maximum detection of signal is important without saturating the 

receiver. Hence, a 70⁰ pulse was used to acquire the spectrum. Optimization of this system could 

include a faster transfer system, e.g. automated transfer as implemented in other laboratories [60] [61] 

to reduce signal loss on the way from polarizer to NMR spectrometer. Furthermore, the HyperSense 

is commonly used with 5 mL dissolution buffer. This leads to a dilution of metabolites. Since it is not 

possible to reduce the dissolution media buffer in order for the dissolution to work properly, a two-

phase system could be applied containing total 5 mL mixture of apolar and aqueous dissolut ion 

medium, forcing the metabolites to remain in the aqueous fraction. Higher concentration would lead 

to more magnetic spin in same volume, and hence better SNR.   

A unique feature of the NMR based metabolic approaches is the isotope coupling patterns in the up-

field region. In some cases, this can be used to extract further information about which biochemica l 

route the metabolite is the result of. Unfortunately, such carbons have very short T1 since they have 

directly attached protons, making this approach difficult for hyperpolarization, unless the 

experimental process is optimized e.g. automated transfer to reduce transfer time. 
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3.2 Pancreatic -cells respond with early metabolic switch to fuel pressure (Paper II) 

Glucotoxicity is a well-understood pathogenic factor that leads to pancreatic β-cell failure in diabetes 

type 2, one of the most rapidly increasing disease of our time [62] [63] [15]. Glucotoxicity is 

developed when cells take potentially irreversible damage due to chronic exposure to elevated glucose 

levels. It is thus crucial to understand insulin release and lack thereof in the development of 

glucotoxicity and diabetes. Understanding early metabolic markers in β-cells under developing 

glucotoxicity could lead to earlier diagnosis. Substantial literature describe metabolomics in β-cells 

under established glucotoxicity, e.g. 16.7 mM glucose for 48 h [15] [64] or 25 mM for 20 h [65] since 

the development of glucotoxicity is dependent on time of exposure and glucose concentration. Short 

exposure times, 1-4 h, has been described as well [66] [67] [68] [69] [70]. The mechanism by which 

β-cells handle excess fuel to avoid glucotoxicity is however not fully understood [66].  

β-cell metabolism is particular compared to other cell types. They sense glucose levels in a narrow 

concentration range and respond accordingly with insulin secretion. The uptake of glucose within 

these cells are not regulated, which results in a quick equilibration between intra and extracellular 

glucose [71]. The β-cell cannot block the glucose uptake and must rely on metabolic reactions to get 

rid of the glucose. In this study, the very early metabolic response to elevated glucose was investiga ted 

by dDNP combined with stable isotope resolved metabolomics (SIRM). Exposing β-cells to high 

concentrations for short timepoints (2-8 h) allowed for insight into the biochemistry of the glucose-

diverting function of the β-cell, before any impairment of insulin secretion was observed. 

3.2.1 Glucose-stimulated insulin secretion in the β-cell 

Insulin release as response to elevated glucose levels is the most remarkable feature of the β-cell and 

has hence been widely studies. The initial mechanism of glucose-stimulated insulin secretion is well-

known, Figure 10; pyruvate is generated from glycolysis and enters the TCA cycle. This results in a 

rise in ATP:ADP ratio, causing the ATP-regulated K+ channels (KATP) to close, depolarization of the 

plasma membrane, activation of the Ca2+ channels which opens the Ca2+ influx, resulting in 

exocytosis of stored insulin [72] [73]. However, the second and sustained phase of insulin secretion 

in which new insulin vesicles are recruited, are not known in detail [74]. A body of work supports a 

pathway that is independent of the KATP channels [75]. It has been proposed that pyruvate, which is 

taken up by the anaplerotic enzyme pyruvate carboxylase (PC) into the TCA cycle, creates an efflux 

of intermediates from the mitochondria. These intermediates are the used to synthesize important 
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coupling factors for stimulation of insulin release [76] [77]. The pathways, in which pyruvate is 

recycled, has been suggested: pyruvate-malate cycle [76] [78], pyruvate-citrate cycle [79] and 

pyruvate-isocitrate cycle [80]. They all have the same by-product in common: NADPH, and this has 

been suggested to serve as signal for insulin release. This is supported by the fact that pyruvate cycling 

is directly correlated with GSIS in a panel of INS-1 type cell-lines and NADPH/NADP+ ratio 

increases proportionally with glucose concentration and GSIS in rodent islets [81] [69] [82]. 

 

 

 

 

 

 

 

3.2.2 Glucotoxicity  

When β-cells are incapable of releasing sufficient insulin to elevated glucose levels, glucotoxicity has 

been established [15]. The initial stage of glucotoxicity involves a defected insulin gene expression. 

If cells are exposed to elevated glucose for longer periods of time they might be irreversibly damaged 

and undergo apoptosis [16]. This can be detected by insulin ELISA, in which cells are exposed to 

basal glucose levels (2 mM) and the high glucose levels (16.7 mM), and their insulin response or lack 

thereof can tell whether the cells are damaged. For in vitro studies glucotoxicity is commonly 

achieved after 48 h at 16.7 mM glucose after which GSIS is reduced compared to cells cultured at 

lower glucose concentrations [15] [83]. At concentrations of 30 mM glucotoxicity is reported to occur 

hours into exposure [84]. Evidently, it is both concentration and exposure time that plays a role in 

development of glucotoxicity, making it a complex task to pinpoint the exact point in which the cells 

undergo irreversible damage.  

Figure 10 – β-cell upon exposure to high glucose concentration. Glucose is transported into the cell and metabolized into pyruvate. A 

fraction of pyruvate is then channeled into the TCA cycle, where it creates signals leading to insulin exocytosis. From [65] Copyright 

2013 by Elsevier, reprinted with permission. 
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3.2.3 Sample preparation 

Immortalized insulin producing β-cells derived from rat (INS1) were used as a model system for this 

study. At 90% confluence, the cells were harvested and placed in Eppendorf tubes at a concentration 

of 10 ∙ 106 cells in 333 µL phosphate buffer (40 mM). 167 µL [U-13C,D]glucose (7, 11.7, 17 or 35 

mM, final concentration) was added and the cells were incubated in a shaking thermostat at 37⁰ C for 

respectively 2, 4 and 8 h. The entire cell suspension was then quenched with PCA, and the metabolites 

were neutralized, extracted and finally freeze-dried. The lyophilized samples were dissolved in 50 µL 

Milli-Q water and mixed with 92.5 mg glycerol containing 15 mM OX063, Omniscan and 5 µL 

HP001 (50 mM) as an internal standard. The sample was polarized in a HyperSense polarizer at 3.35 

K and 1.4 K. Upon dissolution, the samples were dissolved in 5 mL phosphate buffer (40 mM, pH 

7.4) and quickly transferred to a 9.4 T Varian NMR spectrometer into a 5 mm NMR tube. The transfer 

time was approximately 12 s. 1D 13C spectra of the metabolites were recorded with a 70⁰ pulse. 

3.2.4 Hyperpolarized SIRM of β-cells 

Initially, the concentration ranges of glucose were defined based on a literature survey. Three 

different concentrations were chosen: 3 mM representing basal glucose levels also termed “low 

concentration”, 11.7 mM termed “normal concentration” with respect to glucose concentration in 

growth medium, and 17 mM termed “high concentration”, since this concentration is able to induce 

glucotoxicity in β-cells [15]. Initially, 4 h incubations were performed on cells with 11.7 mM glucose 

to investigate their metabolic profile. Four metabolites were identified based on their chemical shift  

derived from uniformly labeled glucose, namely pyruvate, alanine, glutamate and lactate. Their 

distinct chemical shifts were identified as followed: 2-13C-pyruvate (Pyr, 205.8 ppm), 1-13C-lactate 

(Lac, 183.4 ppm), 5-13C-glutamate (Glu-C5, 182.2 ppm), 1-13C-alanine (Ala, 176.8 ppm), 1-13C-

glutamate (Glu-C1, 175.6 ppm) and 1-13C-pyruvate (Pyr, 171.2 ppm). The metabolites were 

quantified with respect to HP001, Figure 11. 
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Using the PCA extraction method, it should be noted that only the polar metabolites are visualized. 

Furthermore, since the whole cell suspension is used for these extracts, the sample shows the sum of 

both intra- and extra cellular metabolites and does not take the separate pools into account.    

3.2.5 Concentration dependent development of metabolic profile 

Extending the concentration range while keeping the incubation time constant allowed for the 

investigation of concentration effect on the metabolic fingerprint. Incubations at 3, 11.7 and 17 mM 

glucose after 4 h can be seen in Figure 12, A. It is clear by a mere comparison of the spectra, that the 

measured metabolites increase with increasing glucose concentration. The insulin release and content 

from the supernatant and cell pellet respectively for the corresponding incubation can be seen in 

Figure 12, B. The insulin release is increasing with increasing glucose concentration whereas insulin 

content decreases, which is in accordance with literature [72]. 

  

Figure 11 – 13C 1D spectrum of hyperpolarized metabolites after 4 h of incubation with 11.7 mM [13C6-d7]glucose. Four metabolites  

were observed with distinct carbonyl shifts, namely pyruvate, lactate, alanine, glutamate. The full spectrum can be seen in the insert. 

Other components in the sample are residual labeled glucose, glycerol to mediate the hyperpolarization and an internal standard for 

quantification. From Paper II [157]. 
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Motivated by the changes in metabolite concentrations as response to glucose concentration, the 

extracts ranging from concentrations of 3 – 35 mM, representing basal to very high glucose 

concentration, were performed on 4 h incubations. The dose response of A) sum of metabolites and 

B) glucose consumption, correlated with glucose concentration can be seen in Figure 13. 

Figure 12 – A) Metabolic fingerprint developing across concentrations (3, 11.7, and 17 mM) after 4 h incubation with fully labeled 

glucose. The four metabolites appear in varying concentration. B) Corresponding insulin release and content based on insulin ELISA 

on the extracts used for dDNP SIRM. From Paper II [157]. 
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Two interesting features should be noted; the sum of metabolites increases linearly from 3-17 mM, 

after which a stagnation is observed, and the trend seen in the metabolite sum is directly reflected in 

the glucose consumption. This points towards increase in glycolytic flux with increasing glucose 

concentration, which is in accordance with literature [85]. However, the shift in metabolic conversion 

after 17 mM points towards the possibility of shift in in metabolism.  

3.2.6 Time dependent development of metabolic profile 

To explore the effect of exposure time, the concentration was held constant and the incubation time 

was varied at 2, 4 and 8 h. Two concentrations were chosen, 11.7 and 17 mM glucose, representing 

normal and high glucose concentrations. The change in metabolite concentration can be seen in Figure 

14, A) and the corresponding insulin release and content B). 

 

 

 

 

 

 

 

Figure 13 – A) The sum of metabolites quantified on spectra based on 4 h incubations from 3 – 35 mM labeled glucose B) 

Corresponding glucose consumption in mM measured by glucose assay. From Paper II [157]. 
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Lactate accumulated over time in both cases, but more prominent in the case of 17 mM Glc. Being 

the end product of glycolysis, lactate is formed and exported out of the cell leading to an accumulat ion 

which is more pronounced when glycolysis is faster. Pyruvate on the other hand, seems to decrease 

over time. Alanine is stable in the 11.7 mM case but increasing in the 17 mM case. This could be 

explained by the exchange between pyruvate and alanine by alanine transaminase (ALT), so when 

the pyruvate pool is increased, the alanine pool will increase as well. The last observed metabolite is 

glutamate, which seems to be stable in 11.7 mM but increasing in 17 mM case. Glutamate is a direct 

readout of the TCA cycle and the flux through the TCA cycle is increasing with increased glycolys is, 

which is reflected in the accumulation of glutamate in the 17 mM incubation.  

Figure 14 – A) Change in the four metabolites over time at 11.7 mM and 17 mM glucose concentration for 2, 4 and 8 h incubations, 

quantified with regard to internal standard B) corresponding insulin release and content. From Paper II [157]. 
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Intrigued by the significant changes in lactate and pyruvate, three conditions were investiga ted 

further; 11.7 mM, 17 mM and 35 mM glucose concentrations, and the metabolites were depicted 

individually and as a sum, Figure 15.  

 

 

 

 

 

 

 

 

 

 

The total sum of pyruvate and lactate is constant in the case of 11.7 mM and 17 mM across all the 

time points. Individually, pyruvate and lactate change over time. The intersection of these, or the 

point when the pyruvate/lactate ratio is 1, seems to depend on glucose concentration. This becomes 

apparent in the case of 35 mM glucose incubation. Here, the total sum is increasing, and so is both 

pyruvate and lactate throughout the time course of 8 h with no intersection. This metabolic profile is 

different from the two other cases. However, the insulin secretion does not seem to be affected in any 

of the three cases, Figure 15 D) – F). This is the ratio between low and high Glc exposure during 

GSIS on cells (ΔGSIS), that have undergone incubation with 11.7 – 35 mM Glc for 2 and 8 h 

compared.  This points toward the fact that the metabolism is perturbed before the insulin secretion 

is affected at these time-points and concentrations. Viability did not change dramatically throughout 

the experiment, Table 1. 
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Figure 15 – A-C) sum of metabolites (AU) as function of time during incubation with three different concentrations of glucose (11.7, 

17 and 35 mM respectively) D-F) Insulin release based on ELISA assay ratio between low/high glucose. From Paper II [157]. 
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Table 1 – Viability of INS1 cells under various conditions (n=2).  

Viability, 40 mM phosphate buffer 2 h. 4 h. 8 h. 

11.7 mM 94% 94% 90% 

17 mM 94% 94% 92% 

35 mM 93% 94% 94% 

 

In summary, this data indicate that the β-cells cannot control the uptake of glucose. Pyruvate seems 

to be accumulated until a certain threshold, after which the cells start to respond with a metabolic 

switch to reduce the pyruvate pool and by this way, adjusting the glycolytic flux. This abilit y is lost 

at very high glucose concentrations (35 mM). Since the ΔGSIS was not affected, these metabolic 

perturbations appear before insulin impairment, and must be the early response of the normal 

funtioning β-cell to excessive glucose concentration.  

 

3.2.5 Discussion of metabolic switch in β-cell  

 

This study investigated the energy metabolism of β-cells exposed to glucose concentrations ranging 

from 3-35 mM over the time course of 2-8 h with the aim of investigating early metabolic events of 

excess fuel handling and observed a significant pyruvate accumulation over a large span of glucose 

concentrations from 3 to 35 mM. An increase of the pyruvate metabolite has been described in 

literature at various glucose concentrations (2.8 mM – 16.7 mM) at short exposure times, 1 h [66] 

and long exposure times [15]. However, this switch observed with 13C flux revealed by the change in 

pyruvate metabolism has not been described previously.  

On its own, pyruvate is not increasing GSIS and can therefore not be considered a direct coupling 

factor for GSIS. A by-product of pyruvate cycling reaction is NADPH, which is proposed to be a 

coupling factor [86] [87] [88]. Mugabo et al. [66] has suggested that metabolic ways of handling 

excess fuel before insulin impairment could involve glycerol production and lipid synthesis. Here, 

pyruvate was observed to increase after 17 mM glucose, and could potentially qualify as an important 

biomarker for early excess fuel handling. Metabolism of pyruvate can occur through glucose 

oxidation via TCA, anaplerosis via pyruvate cycling and glycerol/fatty acid cycling [89]. Since no 

pronounced changes in TCA activity is observed in terms of glutamate concentration in this study, 
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and GSIS is also constant, we suggest that glycerolipid/fatty acid cycling is the pathway coupled to 

pyruvate change.  

The consumption of the accumulated pyruvate at hour timescale points to an upregulation of a 

diverging pathway, which we hypothesize is the glycerol/fatty acid cycle.  

An important observation of this study is that no changes in GSIS was observed. Hence, the metabolic 

changes occur before insulin impairment, and can be considered early events prior to β-cell failure. 

On very high glucose concentrations (35 mM) this diverging pathway is lost, and pyruvate is 

accumulated over the timeframe of 8 h. We suggest that when exposed to excess fuels, the β-cell 

initially protects itself by modulating the pyruvate pool while upregulating the divergence pathway – 

a process that occurs before insulin secretion is impaired. In conclusion this study shows that the -

cells use different metabolic pathways to reduce excess metabolites formed from uncontrolled 

glycolysis. Glycerol/fatty acid metabolism is the most likely candidate responsible for this deviation 

pathway. Further studies are needed to deduce this fundamentally important and not yet well-

described defense mechanism against glucotoxicity.  
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3.3 Discussion and conclusion of part I 

In part I, a stable isotope-resolved quantitative dDNP assay was developed to enable the use of dDNP 

for end point metabolomics. Initially, the method was developed by polarization of samples 

“mimicking” common metabolites, lactate, pyruvate, alanine and acetate. After polarizing these, it 

was evident that the T1 decay in the hyperpolarized samples were slightly different then the T1 

measured by thermal NMR on the same molecules. This T1 disagreement was attributed to the 

relaxation mechanisms, which affects the molecule during transfer from polarizer to spectrometer. 

To correct for this, a signal loss coefficient (SLC) was introduced, based on the difference between 

thermal and polarized T1. The SLC was necessary for converting the integrals to concentrations, based 

on a known amount of internal standard, HP001. The method was then demonstrated on PC3 and 

MCF7 cells, and showed cell line specific metabolic patterns after up to 30 min. incubation with fully 

labeled glucose. 

The method was then applied on a different cell system, INS1, an insulin responsive cell line. The 

cells were treated with 3-35 mM fully labeled glucose, and the end point metabolomics scan were 

acquired after 2, 4 and 8 h to get insight into the very early metabolic events in the β-cells when 

exposed to excessive glucose. From the spectra it was possible to see, that glucose-derived pyruvate 

accumulated initially but was consumed within the timeframe of the experiment (8 h) at 11.7 and 17 

mM glucose concentrations, but at 35 mM glucose, pyruvate accumulated throughout the duration of 

the experiment. The pyruvate pool was hypothesized to be a potential biomarker for excessive fuel 

handling, and the consumption of pyruvate was thought to occur through glycerol/fatty acid cycle. 

However, at very high glucose concentrations (35 mM) this divergence pathway was diminished, 

which resulted in constant accumulation of pyruvate. Importantly, these metabolic changes occurred 

before insulin impairment and are therefore hypothesized to be early metabolic events before 

established glucotoxicity.  

There is an interesting continuation of the β-cell study; since the INS1 cells are an immortalized cell 

line, it can be expected to show some cancer-like features. For instance, it is known for β-cells that 

they contain very little LDH [85] [90], still a stable lactate production was observed. This could be 

explained by the Warburg-effect in the immortalized cells. To be able to generalize these observations 

it should be shown in primary β-cells. For insulin studies, it is common to extract primary islet tissues 

from mice. It was investigated that in order to make a sample with sufficient SNR for metabolite 

quantification, no less than 10 ∙ 106 cells should be used per sample, at least with current set-up in 



31 
 

our lab. 10 ∙ 106 cells will correspond to sacrificing a substantial number of mice, and since islet 

extraction is a delicate procedure requiring experience and time, this would not be a sustainab le 

solution for a vast number of experiments. Therefore, the attention should be turned to the set up to 

improve SNR such that even smaller samples could be investigated. E.g. the dissolution occurs in 5 

mL buffer, of which only 600 μL is used in the NMR tube, rest is discarded. This dissolution media 

could be reduced, e.g. by a two-phase system as previously mentioned. Also, the transfer could be 

optimized, e.g. by automated transfer or magnetic shielding.  

Furthermore, since the cells were incubated in Eppendorph tubes, hypoxia could have played a role. 

It is therefore not known if hypoxia could have affected the cell system. Viability and glucose intake 

were stable throughout the 8 h of experiment, which indicates the cells are viable at the given scan 

times. 

Potentially, it is an interesting discovery, since glucotoxicity can be reversible. It can be shown in 

vitro, that cells, if they are removed from high glucose media and allowed to recover in basal glucose 

media, can fully restore their function [91]. But since glucotoxicity developing across a parameter 

span between glucose concentration and time of exposure, the exact stage on when cells start to suffer 

from permanent damage could be useful information.  

The unique feature of stable isotope method compared to other analytical tools is the additiona l 

information that can be extracted from coupling patterns arising from the tracer molecule. In this 

project, only fully labeled glucose was used, resulting in all other carbons derived from glucose being 

labeled, which involves upper glycolysis and TCA cycle. For further information about specific 

biochemical pathways, specifically labeled glucose could be applied.  
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4. Part II – Bioreactor for visualization of real time metabolism in 

pancreatic cancer cells 

The study was carried out partially at Center for Hyperpolarization in Magnetic Resonance 

(HYPERMAG) at Technical University of Denmark and partially at National Institutes of Health, 

Bethesda, Maryland U.S., National Cancer Institute, Radiation Biology Branch in the laboratory of 

Dr. Murali Cherukuri. In vitro data by bioreactor was generated at HYPERMAG using a home-built  

flow cell and a bioreactor purchased from Medorex, Germany.  

4.1 Living cell metabolism by dDNP 

The easiest and most common approach to study live cell metabolism by dDNP is by suspending 

living cells in medium directly in the NMR tube and then add the HP substrate [92] [93] [94]. The 

metabolic conversion of the HP substrate can then be monitored dynamically by NMR. The simplic ity 

of this set up makes it practical and easy to mix the cell suspension with the HP substrate. However, 

in contrast to in vivo experiments, where the same animal can be used several times for mult ip le 

metabolic measurements (repeated injections of HP bioprobe), in vitro experiments require new cells 

for each measurement [95]. Growing new cells or extracting primary cells from tissues can be a 

tedious process. Furthermore, the time between preparation of experiment (placing cells in NMR tube  

and setting up NMR experiment) and conduction of experiment is typically minutes, during which 

time the cell suspension may become hypoxic and metabolism may be altered. 

To address these issues, cell perfusion, or “bioreactors” have been developed during the last three 

decades [95]. Such systems have been used to monitor steady state metabolites and their changes as 

a factor of time [96]. dDNP offers the signal enhancement necessary to gain temporal resolution to 

monitor fast kinetic reactions in real time. Therefore, dDNP compatible bioreactors have started 

emerging: 

Various bioreactor designs can be found in the literature that are specifically designed for dDNP 

experiments: 

 Keshari et al. (2010) [95] and Sriram et al. (2015) [97] have developed a system in which the 

cells are placed in the NMR tube in the spectrometer, while the medium is circulated by a 

peristaltic pump from a vessel. A gas exchanging module is regulating the atmosphere to 95% 

air and 5% CO2, and all medium containing tubes are heated by water in surrounding tubes. 
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The cells are fixed in the NMR tube by electrostatic encapsulation in alginate [97]. The inlet 

tube is placed in the suspension with the cell containing alginate beads, creating an upward 

flow while a restrictive baffle is keeping the cells in the active volume of the tube, Figure 16. 

   

 

 

 

 

 

 

 

 

 

 

 Lauritsen et al. (2015) [98] describe a perfusion system, where cells are grown on 3D printed 

scaffolds from polycaprolacetone (PCL) plastic. The scaffolds are placed in a bioreactor cell, 

which is subsequently perfused. There is no circulation within the bioreactor itself, since the 

medium passes through and exits the other end of the chamber.   

 

 Breukels et al. (2015) [99] describe a flow cell for a non-perfused system with resolution, 

sufficient to differentiate between intra- and extra cellular lactate on two million cells. This 

flow cell consists of a 5 mm Shigemi NMR tube with a modified plunger for injection of HP 

substrate. A polytetrafluoroethylene (PTFE) capillary (O.D. 0.7 mm, I.D. 0.5 mm) is placed 

through the plunger and placed just above the active volume.   

  

Figure 16 – Graphical representation of the 5 mm MR compatible bioreactor flow cell with alginate encapsulated cells. The flow cell is 

equipped with a susceptibility matched plug and restrictive baffle, to keep the encapsulated cells within the active volume during perfusion. 

From [97]. Copyright 2015 by John Wiley and Sons. Reprinted  with permission. 
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4.2 Objective of the study and experimental design 

 

Within most solid tumors, significant areas of hypoxia exist containing cancer cells that are resistant 

to traditional chemotherapy and radiation treatment. Thus, therapeutics which are specifica lly 

targeting these areas may provide clinical benefits [100]. TH-302 is a hypoxia-activated prodrug 

(HAP) known to activate selectively under the hypoxic conditions. Currently, the drug is undergoing 

clinical trials, including Pancreatic Ductal Adenocarcinomas (PDAC) trials. Studies have 

demonstrated varying sensitivity towards the TH-302 drug in several human PDAC cell lines in 

xenograft models (Hs766t>MiaPaCa-2>Su.86.86) involving metabolic response in vivo and in vitro 

[101] using HP pyruvate and 13C MRI. In this study, the cell lines Hs766t and MiaPaCa-2 are used 

for in vitro study with HP-13C pyruvate to show early metabolic changes as response to the TH-302 

treatment. The longitudinal studies will be carried out using a bioreactor set up, which is NMR 

compatible and able to carry out experiments under hypoxic atmosphere to potentiate the TH-302 

drug effect. The two pancreatic cancer cell lines (Hs776t and MiaPaCa-2) of varying glycolyt ic 

activity were chosen as a model system of PDACs. The two cell lines represent pancreatic cancers 

from two different metastatic sites: MiaPaCa-2 from primary site and Hs766t from lymph node 

metastatic site [102].  

TH-302 is activated in severely hypoxic regions, < 0.5% O2. In the presence of oxygen, the radical 

anion prodrug reacts rapidly with oxygen to generate the original prodrug. Therefore, TH-302 is 

relatively inert under normal oxygen conditions. When exposed to hypoxic conditions similar to those 

found in tumors, the radical undergoes irreversible fragmentation releasing the active drug Br-IPM, 

an azole derivative. This is a cytotoxin, capable of alkylating DNA, Figure 17 [103].  
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In this project, cancer cells are exposed to TH-302 for 2 h, after which, early metabolic changes can 

be monitored non-invasively by HP pyruvate. These early metabolic changes are thought to occur 

before cell viability starts decreasing after days [101]. For this in vitro study the experiment is 

designed as seen on Figure 18. Two hours of treatment has been described in literature [104].  

 

 

  

Figure 17 – TH-302 is activated by a 1-electron reduction mediated by cellular reductases e.g. NADPH cytochrome or P450 reductase.  

A) Under normoxic conditions, the formed radical quickly reverts back to the original prodrug while generating superoxide. B) under 

hypoxia, the radical is either directly fragmenting or endures further reduction before eventually fragment into the active drug, Br-

IPM. From [103]. Copyright 2011 by American Association for Cancer Research. Reprinted with permission. 

Figure 18 – Experimental design for early drug treatment response in vitro. Initially, cells are placed in the bioreactor under perfusion 

under either normoxic or hypoxic atmosphere. A baseline spectrum is recorded with HP 13C-Pyruvate after 30 min. After 2 h of 

equilibration, treatment with TH-302 is initiated for 2 h after which point HP 13C-Pyruvate is injected and the metabolism is compared 

to the baseline spectrum. Furthermore, viability is measured at start and after 4 h of experiment. 
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This study requires the combination of several components: 

 

 Construction of dDNP-NMR compatible bioreactor and flow cell, capable of creating and 

maintaining a hypoxic atmosphere, section 4.3 – 4.4. 

 Strategy for cell adherence onto surface for longitudinal studies, section 4.5. 

 A reliable method for cell quantification in flow cell, section 4.6. 

 Treatment with TH-302, IC50 and the potentiation under hypoxia, section 4.7. 

 Good SNR from cells in flow cell, which entails quick injection and sufficient mixing of HP 

substrate, section 4.8. 

 Perfusion behavior of cell and viability in bioreactor, section 4.9.  
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4.3 Construction of dDNP-NMR compatible bioreactor 

 
The goal of the desired perfusion system is to be able to perform longitudinal studies on cell cultures. 

Additionally, it is desired to construct a system that is capable of controlling the atmosphere to e.g. 

prevent or induce hypoxia for the duration of the experiment, since cell metabolism is known to be 

affected by hypoxic conditions [9]. To achieve this, a closed, circulating perfusion system with 

atmosphere control was designed, Figure 19. In this section, the vessel controlling the media 

parameters (A) is referred to as “bioreactor” and the NMR tube (B) in which the cells are fixed is 

referred to as “flow cell”.  

 

 

 

 

  

  

4.3.1 Part A (bioreactor) 

A Vario 500 bioreactor was purchased from Medorex, Germany. The main vessel consisted of an 

outer vessel (500 mL) and a conical inner vessel, which could accommodate 50-125 mL of liquid. 

The vessel lid was equipped with 10 ports for probes and stirred by an axial stirring system. The 

bioreactor compatible probes were temperature probe (Pt1000), DO-sensor (Medorex), pH sensor 

(Medorex) and a heater. Furthermore, a gas inlet was submerged in the medium to create the desired 

atmosphere, which was either air or nitrogen for hypoxia experiments from separate bottles attached 

to flow meters. pH was controlled by automatic addition of either KOH or HCl (1 M), with a 

sensitivity in the range of pH 7 ± 0.1 through a separate inlet.  The probes were connected to a control 

system, which could be controlled by a PC. The gas exchange module had to be controlled manually 

and could mix up to three gases by three different flow meters. The gas pass through a sterile filter, 

Figure 19 – Simple schematic of the perfusion system. Part A) is the bioreactor chamber, a vessel, which is responsible for conditioning 

the medium by controlling temperature, atmosphere and pH. The medium is then circulated from the vessel A) to the flow cell B) by a 

peristaltic pump. The flow cell is an NMR tube, which can be placed directly in the spectrometer with the living cell at 37⁰C. 
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before reaching the medium to avoid contamination. The software used for controlling the bioreactor 

allowed for monitoring of all the above-mentioned parameters, and could be automated, Figure 20.  

4.3.2 Part B (flow cell) 

The flow cell consisted of an NMR tube, either 5 or 10 mm. The flow cell top consisted of polyether 

ether ketone (PEEK) material, modified to accommodate both 5 and 10 mm tubes, Figure 21. A gas 

chromatography (GC) tube was centered and placed such that the inlet created a bottom up flow, as 

seen in literature [97]. A filter was placed above the active volume to avoid cells escaping the active 

volume. Just above the filter, an exit tube was placed to keep the volume in the NMR tube constant. 

The cells were kept at 37 ⁰C in a water bath during the experiment.  

 

 

 

Figure 20 - Medorex bioreactor, set up to perfuse living cells. From left to right: 1) flow cell with living cells, here demonstrated with 

a 5 mm NMR tube. The inlet tube perfuses the cells while an exit tube removes excess medium from the top of the NMR tube. 2) 

Bioreactor with probes, stirrer and inlet tubes. Here, medium is provided with the right parameters such as temperature, pH and 

atmosphere. 3) The peristaltic pump with two channels, responsible for creating the flow to and from the flow cell placed on the control 

unit. All probes are plugged into the control unit which is also responsible for mixing the gases through the flow meters. 4)  Full set-

up. The NMR tube is submerged into a water bath at 37⁰ C.  
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4.4 Putting the bioreactor to test 

To test the bioreactor reliability, cell viability test was run for up to 30 h. Hs766t cells (20 ∙ 106) were 

harvested and placed in the NMR tube in suspension. The bioreactor was switched on, and the flow 

was regulated to 100 μL/min which ensured a steady low flow to avoid cells being evacuated from 

the flow cell through the exit tube. Three conditions were tested: 1) flow with normoxia 2) flow with 

hypoxia 3) no perfusion. At given time points, 10 µL medium with cells was removed, dyed with 

trypan blue, and viability was based on viable cells in conjunction with total cell number, Figure 22.  

 

 

 

 

  

Figure 21 Flow cell with A) PEEK top with adaptors for tubes B) GC-tube centered in the NMR tube C) the top can be placed on a 5 

or 10 mm tube D) a 10 mm tube with a PEEK plug to reduce the dead volume of the tube and ensure homogeneous flow through cells.  
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Evidently, after 4 h the cells start losing viability drastically in all the conditions. When adherent cell 

lines, such as cells from epithelial origin cannot adhere, they will undergo anoikis – a particular type 

of apoptosis [105]. Therefore, for longitudinal experiments cells need to adhere to a surface.  

 

4.5 Strategies for cell adherence  

 

2D cell cultures, involving monolayers adhered to a plastic surface, is the most easy and convenient 

to set up with good cell viability. A way to use this approach for bioreactors has been developed 

decades ago, involving growing cells on microcarriers [106]. A further development of this method 

could involve scaffolds modified to fit into the given flow cell [98]. Innovative approaches describe 

3D methods which entails spheroid formation, either by encapsulating cells in a viscous matrix such 

as alginate [97] or by growing the cells into larger aggregates [107].  

 

Initial strategy involved growing the cell line MiaPaCa-2 on microcarriers and test the SNR 

achievable for HP experiment in a 5 and 10 mm tube. 500 mg microcarriers (Cytodex III) were placed 

in a 15 mL falcon tube. The tube was filled with ethanol (70%), shaken well and left for at least 24 h.  

The ethanol was aspirated carefully. The tube was filled with the respective medium, shaken well, 

Figure 22 – Viability of Hs766t cells in suspension under three different conditions. After 4 h, a drastic decrease in viability can be 

seen as consequence of anoikis.  
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and the microcarriers were allowed to sediment. The medium was removed carefully. This was 

repeated twice, at which point the ethanol was considered to be washed out. Medium was added until 

10 mL, such that 1 mL medium contained 50 mg microcarriers. A confluent flask of MiaPaCa-2 was 

harvested. 5 ∙ 106 cells in 1 mL were placed in a petri dish with 8 mL medium and 1 mL microcarrie rs. 

The petri dish was incubated for 48 h, at which point the cells covered the microcarriers, Figure 23. 

 

  

 

 

 

 

 

 

 

4.6 Quantification of cells on microcarriers 

To quantify cells on microcarriers, a method based on 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay was developed. Since trypsinization of cells from 

microcarriers showed to be non-reproducible because of the difficulties of separating microcarrie rs 

from cells, MTT offered a less invasive quantification based on cell number and viability directly on 

the microcarriers with cells. MTT is a yellow tetrazole, which is reduced to a purple formazan in 

living cells by mitochondrial reductases [108]. The formed formazan is insoluble in the medium. The 

reaction is quenched by addition of dimethyl sulfoxide, which stops the reaction and dissolves the 

formazan. This yields a purple solution with a maximum absorbance at the wavelength of 540 nm, 

and the absorbance corresponds directly to the amount of viable cells. A standard curve was prepared 

on a known number of cells such that the absorbance measured on microcarriers could be correlated 

to the cell number, Figure 24. 

Figure 23 – Microcarriers covered with MiaPaCa-2 cells after 48 h of incubation. The confluence of the microcarriers after 48 h 

depends on the cells doubling time.  

https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Methyl
https://en.wikipedia.org/wiki/Thiazole
https://en.wikipedia.org/wiki/Phenyl
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Figure 24 – Standard curve correlating absorbance and cell number in the MTT assay. The linear range was designed for cell numbers 

up to 6∙105 after 3 h of incubation following 20 min incubation with DMSO. The absorbance was measured at 540 nm. 

 

The experiment was based on a known number of MiaPaCa-2 cells in 24-well plate after adherence 

(1.5 h). Cells on microcarriers were subjected to MTT assay directly, since they were already adhered. 

The wells were incubated in 500 μL MTT medium (0.5 mg/mL MTT in minimal medium) for 3 h 

after which 300 μL medium from each well was discarded and 500 μL DMSO was added following 

20 min of incubation. 100 μL from each well was used in a 96-well plate and the absorbance was 

measured at 540 nm on a BioTek EPOCH 2 microplate reader (Holm & Halby, Brøndby, Denmark).  

The procedure was adapted from [109]. 

 

Other approaches involving separating trypsinized cells from microcarriers by sedimentation speed 

and protein determination did not show reproducibility and were abandoned.  
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4.7 TH-302 treatment study 

 
TH-302 was acquired from MedChemExpress. It has been shown that the IC50 for MiaPaCa-2 cells 

was 2.10.7 μmol/L TH-302 under hypoxia and 21049 μmol/L TH-302 under normoxia [104] after 

2 h of treatment and followed by 3 days of incubation. This experiment was reproduced under 

normoxic conditions. Based on the doubling time, MiaPaCa-2 cells were seeded in a 24-well plate at 

a density of 7.5∙104 cells. After 24 h the cells were treated with medium containing 210 μL TH-302 

for 2 h after which the medium was discarded and the cells were incubated in full medium for 72 h 

(n=2). Conditions and results are summarized in Table 2. 

 

Table 2 – Conditions and results from TH-302 treatment study on MiaPaCa-2 cells in wells.  

Condition Cell line Viability (%) Seeding conc.  Experimental 
time (h) 

Drug conc. 
(µM) 

24-well Mia PaCa-2 51.9 75,000 72 210 

24-well Mia PaCa-2 54.2 75,000 72 210 

  

 

The experiment resulted in an average viability of 53%, which is close to the IC50 reported in the 

literature, which confirms the reported efficiency of the drug in MiaPaCa-2 cells. For Hs766t, the 

reported IC50 is 607.5 μmol/L TH302 under hypoxia and 1400 μmol/L TH-302 under normoxia, 

which we were not able to reproduce, Table 3, and further experiments were not possible within the 

timeframe of this study. 

 
Table 3 – Conditions and results from TH-302 treatment study on Hs776t cells in wells. 

Condition Cell line Viability (%) Seeding conc.  Experimental 

time (h) 

Drug conc. 

(µM) 

24-well Hs776t 96.4 100,000 72 1400 
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4.8 HP [1-13C]Pyruvate to visualize metabolism in MiaPaCa-2 cells on microcarriers 

The conversion in MiaPaCa-2 cells was investigated by HP-pyruvate. The conversion of pyruvate to 

lactate in a suspension experiment was compared to the conversion on microcarriers. 10∙106 MiaPaCa 

cells (either suspension or microcarriers) were placed in 1000 μL in a 10 mm NMR tube, equipped 

with a PEEK plug to simulate a Shigemi set up. 1000 μL HP-pyruvate was added, yielding a final 

concentration of 2 mM, acquired with a flip angle of 10⁰ and a repetition time of 2 s, Figure 25.  

 

An important consideration in this experiment was good mixing of HP-pyruvate in the flow cell. The 

experiment was performed in a 5 mm NMR tube several times, but achieving conversion of 5% 

required 50∙106 cells in suspension. This number of cells was not achievable within the active volume 

when adhered to microcarriers, leading to too poor SNR for further studies in the 5 mm NMR tube 

(<1% conversion). Furthermore, the microcarriers packed very tightly in the 5 mm tube, preventing 

homogeneous distribution of HP-pyruvate throughout the cells. For these reasons, the 10 mm flow-

cell was selected for further studies. 

Figure 25 – Suspension (n=1) vs. microcarriers (n=2). Microcarriers induced magnetic field inhomogeneity due to sedimentation 

during injection. Conversion (Lacmax/PyrLacMax) ~ 5%. 10∙106 MiaPaCa cells were placed in 1000 μL in a 10 mm NMR tube, equipped 

with a PEEK plug. 1000 μL HP-PA was added, yielding a final concentration of 2 mM, acquired with a flip angle of 10⁰ and a 

repetition time of 2 s. 
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4.9 Viability in bioreactor  

Viability of cells on microcarriers was examined to ensure no loss in viability occurred during sole 

perfusion with no treatment. Since the measurement of viability was based on the MTT assay directly 

on microcarriers it would mean that cells detached from the microcarrier would not contribute to the 

viability measurement. Therefore, it was examined whether mechanical stress would result in cell 

detachment, and hence lower viability during perfusion. All data from the perfusion study can be 

found in Table 4. 

Cells were grown on microcarriers in petri dishes. For each dish, a fraction of microcarriers was 

placed in the flow cell; remaining microcarriers were used for determination of cell number and 

viability, referred to as control. Viability and cell number for each experiment was determined as 

percentage of absorbance after experiment compared to control. Initially, a validation of this 

procedure was required: microcarriers were placed in the flow cell and removed without perfusion to 

validate that perfusion (t = 0) is equal to control. Table 4 demonstrates that a 10 mm flow cell yields 

better recovery and Hs766t cells yields better recovery.  

Table 4 – Results from perfusion study. Results are collected from study with both MiaPaca-2 and Hs766t cells in flow cells of varying 

diameter with or without perfusion. Viability is calculated as MTT absorbance after experiment compared to start absorbance 

(control).     

Cell line Sample size Flow cell (mm) Flow (mL/min) Time (h) Viability (%) 

MiaPaCa-2 2 5 - - 40.5 

MiaPaCa-2 1 5 0.5 1 39 

MiaPaCa-2 6 10 - - 101.2 

MiaPaCa-2 1 10 0.5 1 60 

MiaPaCa-2 3 10 1 2 72.7 

      

Hs766t 2 5 - - 91.5 

Hs766t 2 5 0.5 1 99 

Hs766t 2 5 0.5 4 88.5 

Hs766t 1 5 0.5 20 57 

Hs766t 2 10 - - 102.5 

Hs766t 2 10 1 2 101.5 

Hs766t 1 10 1 4 85 
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This observation could be explained by the potential cell loss during recovery in a 10 mm flow cell 

which was a lesser fraction of the total volume compared to cell loss in a 5 mm flow cell. Furthermore, 

it was observed that MiaPaCa-2 cells were less adherent than Hs766t cells, which could also be 

observed during trypsinization. Hs766t cells required longer exposure to trypsin than MiaPaCa-2 

cells. Few more perfusion studies were carried out with the 5 mm flow cell, yielding better results 

with the Hs766t cell line, but after HP experiments showed much better mixing in the 10 mm flow 

cell, the 5 mm flow cell was abandoned, and systematic studies with 10 mm flow cell were carried 

out. At t = 0, a recovery of MiaPaCa-2 cells were found to be 10120% and Hs766t cells 1034%. 

Upon perfusion, MiaPaCa-2 cells showed poor recovery after 2 h, which was attributed to their poor 

adherence to the microcarriers. Hs766t cells stayed within a recovery range of 15% after 4 h and was 

thought to be more resistant to mechanical stress.  

The originally designed experiments of 4 h would only be able to be carried out on the Hs766t cells 

and not MiaPaCa-2 cells because of adherence issues. Unfortunately, the slow doubling time of 

Hs766t cells did not allow time for more experiment within the time frame of the study.  
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4.9 Discussion and conclusion of part II 

In this study, a circulating bioreactor with atmosphere, pH and nutrition control and an NMR 

compatible flow cell was assembled and tested. Results combining the TH-302 study and longitud ina l 

bioreactor experiments could not be accomplished within the time frame of the PhD study, and will 

be future work. However, the separate components have been tested: 

The bioreactor has shown to be reliable within the time frames of up to 30 h, controlling pH, 

atmosphere and temperature in the vessel. With correct tubing, the peristaltic pump performed 

reliably, ensuring constant flow in and out of the vessel and NMR flow cell. The flow cell was 

compatible with both a 5 and 10 mm NMR tube. Cell detachment was observed as response to 

mechanical stress when cells were perfused in certain conditions, and flow rate should be regulated 

as a tradeoff between mechanical stress and hypoxia, since hypoxia was created within minutes 

without perfusion.  

To avoid cells being detached from microcarriers, a different approach could be used for cell 

adherence, such as spheroids. These methods might require specialized equipment but may offer 

several advantages. Potentially eliminating the issue with mechanical stress, 3D methods such as 

spheroids may allow higher cell density in the active volume, since there are no microcarriers / 

scaffolds to take up the space which is convenient from an SNR point of view. Hs766t cells were 

more adherent to the microcarriers, which would make it possible to carry out the initially planned 4 

h experiment. This would however not be possible with MiaPaCa-2 cells, which detached after only 

1 h of perfusion. There is a wide span of parameters that could be responsible for cell adherence and 

lack thereof such as cell specific genes responsible for adherence in the different cell lines, protein in 

circulating medium, mechanical stress due to flow etc. making the monolayer approach challenging 

in a bioreactor set up.  

For this specific approach, a 10 mm flow cell showed the most promising results compared to a 5 mm 

flow cell: sufficient mixing of HP pyruvate to monitor lactate conversion in living cells on 

microcarriers, and better cell recovery for quantification. Further continuation of this project would 

involve injection of HP pyruvate after 4 h of circulation to validate that cell metabolism does not 

change as a response to the perfusion with and without hypoxia. Finally, treatment with TH-302 could 

be integrated, and a hyperpolarized 13C-pyruvate spectrum before and after treatment should reveal 

metabolic response to treatment.  
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With further development, a bioreactor with control of medium offers a sophisticated platform for 

drug treatment testing without the need for animal models. The hypoxic regions in tumors can be 

simulated by introducing hypoxia in vitro, and the possibility for longitudinal studies makes it more 

attractive to use valuable cells for experiments. With the correct cell adherence protocol, such 

perfusion system could be able to maintain viable cells for days allowing for numerous screenings 

with HP probes in the same cell system. However, extending the time frame to days would introduce 

new parameters such as cell growth, posing new challenges to cell quantification and confluence of 

cells on microcarriers.  

In conclusion, part II showed potential application of bioreactors for longitudinal studies, but also 

revealed that flow stress is an important limitation for many cell systems on microcarriers. 
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5. Part III – Development of new bioprobes for in vivo imaging 

Part III was carried out at National Institutes of Health, Bethesda, Maryland U.S., National Cancer 

Institute, Radiation Biology Branch in the group of Dr. Murali Cherukuri. The data will be included 

in several publications currently in preparation. 

5.1 Requirements to bioprobes for hyperpolarized metabolic MR 

For a bioprobe to be successful for hyperpolarization, a vast number of parameters need to be 

balanced. The ultimate goal is to achieve the highest possible level of polarization (Php) and the 

longest possible spin-lattice relaxation time (T1) [46]. Maximum Php and T1 depend on chemical and 

physical factors of the bioprobe and the sample formulation: solubility of the bioprobe, molecular 

weight, deuteration, glassing agent, radical etc. Furthermore, using a bioprobe on biological systems 

requires high uptake, conversion rate and biological tolerance towards the sample. Pyruvate is an 

example of an excellent bioprobe; it has an advantageous long T1, capable of achieving high 

polarization levels and since it is the end product of glycolysis, it is key intersection of several 

metabolic pathways. An important biological feature of pyruvate is the abundance of the 

transmembrane transporters - monocarboxylate transporters (MCTs) - that facilitate the cellular 

uptake of pyruvate and efflux of lactate [110] [111]. This ensures a fast conversion of pyruvate 

suitable for HP experiments. It is especially the conversion of pyruvate into lactate that has been the 

selling point for DNP-MR, since abnormal lactate production correlates with the Warburg effect and 

can be used as a metabolic readout for cancer in tissues [112].  

The use of pyruvate as a bioprobe is not limited to cancer research. [1-13C]pyruvate has been used for 

studying differences between a healthy heart and heart diseases [113] [114] [115] as well as other 

organs under healthy and pathological conditions [116] [117] [118]. Variations in HP lactate, alanine 

and bicarbonate have been linked to activity of LDH, ALT and PDH [119].  

 

Besides pyruvate, other bioprobes are applied to probe various biological pathways. HP [1,4-

13C2]fumarate has been used to probe cell necrosis [120], fully or specifically labeled glucose has 

been used for carbohydrate metabolism [121] and Saccharomyces cerevisiae yeast [122], and many 

other bioprobes for a variety of biological models exist. 
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With only a decade of research, dDNP hyperpolarization of compounds for metabolic studies is still 

in its infancy, and further bioprobes and applications are likely to emerge [46]. When designing new 

bioprobes for HP experiments, several important parameters should be considered for potential 

biological application, Table 5. 

 

Table 5 – Considerations for bioprobe design 

Biological considerations Chemical considerations 

Uptake rate and transporters Molecular weight 

Biological tolerance  Labeling pattern 

Biodistribution Relaxation time T1 and deuteration 

Enzymatic activity Solubility 

 Stability 

 

Biological considerations include: 

 

Uptake rate and transporters are important parameters, since HP experiments are limited by a time 

frame relating to T1 of the bioprobe, which usually limits the experiment time to minutes. To achieve 

fast uptake, dedicated transporters for fast transport from the extracellular space to the cytoplasm are 

essential, e.g. MCTs for [1-13C]pyruvate. Slow reactions are not suited for this experiment and other 

approaches could be considered (see Part I for dDNP-SIRM method).  

 

Biological tolerance needs to be considered, since a dose of HP substrate for in vivo imaging requires 

a concentration in the range of 10-150 mM. In comparison, PET only requires few nanomoles or less 

of the radioactive tracer [46]. Toxicity should therefore be excluded under the development of a new 

bioprobes and sample formulation. 

 

Molecular weight favors small molecules to be most useful for hyperpolarization, primarily because 

T1 decreases with increasing molecular weight, but also ease of synthesis and solubility favors 

relatively low molecular weight [123]. 

 

Biodistribution is an important consideration because the bioprobe requires a fast transport to the 

organ of interest. This is not a problem in vitro in cell systems or in vivo in highly perfused organs 
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such as kidneys [124], but becomes challenging in poorly perfused organs or penetration of brain-

blood-barrier (BBB) for delivery to brain [125]. Whereas the HP sample reaches the cells immediate ly 

during injection in vitro, in vivo experiments depend on the blood circulation, and in a human body 

the transport time from the intravenous injection site to the area of interest is 2-4 s for lungs, 4-6 s for 

heart and 15-30 s for most major organs [34]. 

 

Enzymatic activity for a fast conversion of the bioprobe to its product is necessary because of the 

short time frame of the experiment. Furthermore, enzyme activity is used to reveal whether the tissue 

metabolism deviates from the healthy tissue metabolism e.g. LDH in various cancer models or ALT 

and PDH in heart disease models and other pathological conditions [116] [118]. 

 

Chemical considerations include: 
 

Molecular weight. Small molecules have an advantageously long T1 since T1 decreases with 

increasing molecular weight. Furthermore, ease of synthesis and solubility can also favor relatively 

low molecular weight [32].  

 

Labeling pattern can be positioned as desired by selective synthesis. The choice of the position is 

mainly driven by the effort to maximize T1 and the chemical shift difference between substrate and 

product. The most common relaxation process affecting T1 is dipolar couplings. For 13C probes, 

dipolar couplings originate mainly from 1H nuclei coupled to the 13C nuclei and as a consequence, 

13C nuclei directly attached to 1H are poor probes because of short T1. The isotope label should 

therefore be placed in a chemical group free of direct proton bond, e.g. at a carbonyl position. Such 

probes include carboxylic acids, ketones, and amides [32]. Carbonyl compounds are abundant in 

cellular metabolism, making them a good choice as HP bioprobes. 

 

Deuteration contributes to prolonging T1 on HP probes by exchanging the protons with the low 

magnetic moment deuteron 2H, reducing the dipolar relaxation [126] [127]. Care should be taken 

since exchanging protons with deuterons can impact metabolism and enzyme function because of the 

kinetic isotope effect [121]. 
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5.2 Requirements to sample formulation of bioprobes 

 

A successful polarization of a given bioprobe requires a proper sample formulation. This involves 

achieving highest possible PHP and longest possible T1 after dissolution while performing a quick 

adjustment of sample parameters (if needed) to ensure physiological pH, temperature, potential 

removal of radical, adjustment of bioprobe concentration etc. 

 

Formulation of sample requires a free electron source to facilitate hyperpolarization by DNP. The 

selection of radical is determined by the electron paramagnetic resonance (EPR) line width (and other 

spectral properties), solubility and stability. Among commonly applied and efficient radicals are trityl 

compounds, e.g. OX063 (tris[8-carboxyl-2,2,6,6-benzo(1,2-d:4,5-d)-bis(1,3)dithiole-4-yl] methyl 

sodium salt [128], BDPA (1,3-bisdiphenylene-2-phenylallyl) [129], nitroxides e.g. TEMPO (2,2,6,6-

tetramethylpiperidin- 1-oxyl) [130], and galvinoxyl (2,6-di-tert-butyl-α-(3,5-di-tert-butyl-4-oxo-2,5-

cyclohexadien-1-ylidene)- p-tolyloxy) [131] although many other radicals exist. Trityls and BDPA 

have narrow EPR linewidth [132], which allows for higher polarization of 13C nuclei [133] [134]. 

Solubility should be optimized to achieve a homogenous mixing of the bioprobe and radical. The 

most commonly used trityl radical, OX063, is soluble in water, which makes it suitable for aqueous 

bioprobes. As a rule of thumb, a concentration of 15-45 mM radical has proven sufficient for good 

DNP efficiency and relatively short build-up time [46]. It is not beneficial to increase the 

concentration of radical, since the paramagnetic effect can decrease T1 of the 13C in solution and 

toxicity of the radical can in some cases be an issue.    

 

In order for the DNP process to work efficiently, the homogenous mixture of bioprobe and free radical 

has to form an amorphous glass at cryogenic temperatures. This is usually achieved by a solvent or a 

solvent mixture. An interesting exception is pyruvic acid, which is self-glassing and can be used neat, 

with the free radical directly dissolved in the pyruvic acid [135]. The concentrations of the 13C nuclei 

are typically in the in the range of 1-15 M, resulting in post dissolution concentrations of 10-500 mM 

suitable for in vivo use [46]. Increasing the solubility of the bioprobe is often desired, and modulat ion 

of pH, temperature and solvent can improve solubility [136]. If the sample is not self-glassing, which 

can be assessed by freezing the sample in liquid nitrogen and observe if it crystallizes, a glassing 

agent should be added. The most commonly added glassing agent is glycerol. 
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Finally, polarization enhancing molecules can be added to the sample formulation. Addition of 

gadolinium based paramagnetic molecules has been shown to increase the polarization level of 13C 

labeled compounds [128] [137]. The gadolinium effect is case specific, depending on sample 

formulation, but for pyruvate, studies have shown that a maximum polarization enhancement is 

observed at concentrations of 4-5 mM Gd3+. Gd3+ doping can lead to an increase of 300% polarizat ion 

in preparations of pyruvate and OX063 [137]. 

 

Final step in the HP experiment is the dissolution, and a proper dissolution buffer should be designed. 

The pH and volume of the buffer should be adjusted such that the final HP solution is physiologica lly 

isotonic with a physiological pH for in vivo use [138].  

 

In the next section, the probe development process is demonstrated on three new probes for in vitro 

and in vivo HP 13C experiments. The formulation of the bioprobes were optimized, and initia l 

experiments were performed. This study was a part of a collaborations with Dr. Cherukuri’s group, 

and concerns following bioprobes: 

 

Case 1: N-acetylcysteine (NAC) 

Case 2: alpha-keto glutarate (KG) 

Case 3: γ-Glu-[1-13C]Gly 
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5.3 N-acetylcysteine (NAC) 

N-acetylcysteine (NAC) is a precursor of L-cysteine, which is a building block of glutathione (GSH), 

an essential anti-oxidant found in human cells [139]. NAC is deacetylated by cytosolic esterases to 

provide cysteine and thereby support the synthesis of GSH. The synthesis of GSH occurs through γ-

glutamylcysteine synthetase (GCS) and GSH synthetase enzymes [140] mainly produced in the liver, 

Figure 26. 

 

 

 

 

Figure 26 – Deacetylation of NAC to form L-cysteine, which is a building block for GSH, an essential anti-oxidant in human cells.  

The red star indicates the position in which NAC is labeled with 13C. 

 
NAC is used as a medical drug for several purposes including paracetamol overdose. Following an 

excessive intake of paracetamol, the toxic metabolite N-acetyl-p-benzoquinoneimine (NAPB) is 

formed in the liver. This metabolite is detoxified by GSH, but if the NAPB is present in amounts that 

are much greater than GSH as a consequence of a very high paracetamol intake, this can result in 

hepatic toxicity [141]. NAC is administered as a source to assist production of GSH in such cases. 

Other uses of NAC involve application as mucolytic agent, for cancer chemotherapy, obstructive lung 

diseases and in psychiatry [142].   

NAC was obtained as a pure white powder, specifically 13C-labeled on the cysteine residue. Naturally 

abundant NAC was used for formulation and glassing experiments, whereas 13C-labeled NAC was 

used for HP experiment, since the generation of labeled NAC required a specialized synthes is 

performed by the chemistry team at NIH.   

Formulation of NAC as a bioprobe for HP experiments 

The first step was to dissolve NAC in a suitable solvent. Dissolving NAC in DMSO resulted in a 

maximum concentration of 200 mg/ mL (1.2 M) with the ability of forming an amorphous glass. For 
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polarization, 17 mM Ox063 was added and 2.5 mM ProHance, as a source of gadolinium. The DNP 

buildup can be seen on Figure 27. All experiments were performed on HyperSense. 

 

 

 

 

 

 

 

 

 

  

 

 

 

In order to achieve most efficient PHP for in vivo experiments, the sample formulation was optimized. 

Manipulating the pH can be an approach to increase the concentration [136]. Dissolving NAC in 

water yielded an acidic solution, but when NAC was dissolved in 5 M NaOH until neutral pH, the 

solubility was improved. A solubility of 880 mg/mL was achieved (5.4 M), and the formulation was 

self-glassing. The improvement of polarization compared to the formulation in DMSO can be seen in 

Figure 27. The dissolution was performed in 4 mL PBS buffer, yielding a final concentration of 27 

mM. A T1 of 16.5 s was recorded under these conditions, Figure 28. 

A thermal spectrum was recorded to check the chemical stability of the compound. Liquid state 

spectra of hyperpolarized natural abundance NAC that had been formulated in 5 M NaOH can be 

seen in Figure 28. 

 

Figure 27 – Two different sample formulations of NAC were tested. The first formulation was based on dissolving NAC in DMSO, 

resulting in a 1.2 M concentration. Increasing the concentration of NAC to 5.4 M by dissolution in 5 M NaOH resulted in a higher 

polarization. Both samples contained 17 mM OX063 as a source of EPA, and 2.5 mM ProHance as Gd-source. 
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Figure 28 – left: post dissolution 13C NMR signal decay of the hyperpolarized signal from NAC in PBS buffer. This data was used for 

calculation of T1. Right: thermal spectra of NAC (natural abundant) in 5 M NaOH dissolved in PBS buffer. No decomposition of NAC 

was observed during sample preparation in NaOH. The spectra were recorded using Magritek 1 T NMR spectrometer. 

 

Enzymatic deacetylation of NAC 
 
For a substrate to be useful as a bioprobe, it needs to be converted to its products within a reasonable 

timeframe relative to T1. The initial reaction in which NAC is deacetylated to yield cysteine was 

therefore investigated enzymatically. Acylase I, which has been used to study deacetylation of various 

S-alkyl-N-acetyl-L-cysteines including NAC [143], was chosen. 

 

40 µL NAC in 5 M NaOH, 17 mM Ox063 and 2.5 mM Gd was polarized in a SpinLab for 2.5 h. 

Meanwhile, 250 µL Acylase I solution (1 mg/mL enzyme corresponding to 120 U per 100 µL) was 

placed in a 5 mm NMR tube in the Magritek 1 T NMR spectrometer. HP-NAC was added 20 s post 

dissolution and the spectra recorded, Figure 29. As can be seen on the figure, the product peak 

changed chemical shift over time. This can be due to pH changes because of a very high concentration 

of enzyme. 

 

 

  

1 4                                             2          3 5 
urea 
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Pilot study in vivo – biodistribution 

To investigate the feasibility of using NAC in vivo, an experiment visualizing biodistribution was 

designed using a healthy mouse model. The sample was polarized in the SpinLab and transferred to 

a Phillips scanner, where it was injected into the mouse through the tail vein. The acquisition was 

started 20 s post injection. A volume head coil was applied for this set-up to monitor potential signal 

in the brain, Figure 30. 

 

 

 

 

 

 

Figure 29 – HP-NAC (176.5 ppm) converted into N-cysteine (approx 175 ppm) by acylase I. A change in pH affected the ppm of the 

product, resulting in a change of ppm over time.  

Figure 30 – Signal originating from HP-NAC distributed within the brain of a healthy mouse. The sample was formulated as described 

previously and polarized in a fluid path by SpinLab. Spectra were recorded 20 s post dissolution. 
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Conclusion of study and future perspectives 

Further work with NAC as bioprobe for HP experiments would entail finding a suitable biologica l 

system, in which NAC could be applied for reporting the biological state. The use of NAC is primarily 

to treat conditions that require increase of the antioxidant GSH by providing NAC as a building block 

for this synthesis. However, this reaction is not suited for HP experiments, which requires fast 

biochemical reactions. Therefore, if NAC is to be used as a reporter molecule for a biological system, 

it needs to be converted fast, as seen during the deacetylation. NAC can serve as an anti-oxidant by 

itself directly to scavenge oxidant species, even though its far less potent than GSH [144]. Being a 

thiol, it can quickly react with ●OH, ●NO2 and ●CO3
- and thiyl radicals [145].  

An interesting observation was that NAC seemed to cross the BBB in the in vivo pilot study in mouse. 

From literature, it is evident that there is controversy regarding whether NAC is able to cross the 

BBB, since studies have reported contradictory results: 1) small fraction NAC being able to cross the 

BBB [146] 2) NAC not being able to cross BBB [147] or 3) NAC being able to cross BBB very well 

[148]. NAC is converted into L-cysteine, which has been demonstrated to penetrate the BBB [145], 

so the signal could originate from L-cysteine, which has been formed through deacetylation in the 

blood stream. Further work would involve addition of reference molecule to establish which specie 

is able to cross BBB in the in vivo study. 
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5.4 α-ketoglutarate (αKG) 

The catalysis of the oxidative decarboxylation of isocitrate to produce CO2, NADPH and α-

ketoglutarate (αKG), is mediated by a family of isocitrate dehydrogenases (IDHs), including the two 

isoforms IDH1 and IDH2 [149]. Studies show that mutations in IDH1 are present in more than 70% 

of grade II-III gliomas and secondary glioblastomas as well as in approximately 10-15% of patients 

suffering from acute myeloid leukemia (AML) [150]. This mutation results in dysfunction of the 

oxidative carboxylation of isocitrate, and results in production of the oncometabolite 2-

hydroxygluterate (2HG), Figure 31.  IDH1 mutation is an early genetic event in gliomagenesis and 

2HG is believed to further promote tumorigenesis. Gliomas are rarely curable tumors with a low 

survival rate (34%) at 5 years [151].  

The unique biology of 2HG makes this metabolite a very specific biomarker that can be used for 

diagnosis, prognosis and treatment response in the mutant IDH1 gliomas. 2HG can be detected non-

invasively by in vivo magnetic resonance spectroscopy (MRS), which offers clear advantages 

compared to biopsies and 2HG in blood, urine and cerebrospinal fluid (CSF) samples have shown 

mixed results [151]. Using αKG as a bioprobe to visualize the IDH1 mutant activity could reveal 

glioma pathogenicity of a biological system by monitoring the αKG to 2HG conversion. The probe 

is available with 13C labeling at the C-1 position, Figure 31:  

 

 

Figure 31 – αKG transformed into the oncometabolite 2HG by IDH mutant, resulting in accumulation of 2HG. Using αKG as bioprobe 

would reveal the accumulation of 2HG related to development of glioma. Unfortunately, the chemical shift of the carbonyl in 2HG 

have similar chemical shift to [5-C] carbonyl on αKG resulting in an inaccurate quantification.  

However, after αKG is reduced to 2HG, the labeled position has a very similar chemical shift as the 

carbonyl at the C-5 position of αKG itself. This may pose a problem for the quantification, since 

naturally occurring carbon isotopes contain 1.1% 13C, and quantification of the product peak will be 

incorrect. Therefore, the chemistry team at NIH synthesized KG, which was 100% 12C at the C-5 

position.  
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Formulation of αKG as a bioprobe for HP experiments 

 

αKG was dissolved in water/glycerol 1:1 yielding a concentration of 5.9 M with 17 mM OX063 and 

2.5 mM Gd. The DNP build-up curve is shown in Figure 32. The concentration was improved by 

dissolving αKG in 2 M NaOH until neutral pH, at which point the concentration was closer to 8 M, 

and the sample became self-glassing. The signal scales approximately with the increase in 

concentration, and ~ 30% higher signal was achieved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The αKG formulation polarized slowly which is problematic for throughput, but also if the 

experiment has to be carried out using a SpinLab, since typically the polarization time increases 

further with field strength [40]. Therefore, a further improvement of the polarization and time 

constant would involve increasing the radical concentration and optimizing the Gd concentration to 

find the best tradeoff between satisfactory polarization and acceptable polarization time. Within the 

time frame of the study αKG was not applied on a biological model, and this is left for future work. 

  

Figure 32 – DNP build-up recorded for two different sample formulations of αKG, both with 17 mM Ox063 and 2.5 mM ProHance. The 

formulation based on NaOH reached a higher polarization proportionally with the increase in concentration of αKG. 
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5.5 γ-Glu-[1-13C]Gly for γ-Glutamyl Transpeptidase (GGT)  

The γ-Glutamyl Transpeptidase (GGT) enzyme is a surface enzyme which plays a role in the 

glutathione (GSH) homeostasis [152]. It is most abundant on the surface of epithelial-cell lining ducts, 

such as kidney and liver biliary ducts. The role of GGT is to catalyze the cleavage of γ-peptide bond 

between glutamyl and cysteinyl residues of GSH, Figure 33 (a) [153]. Elevated GGT levels are 

connected to diseases affecting the liver [154].  

 

 

 

 

 

 

 

 

 

Furthermore, GGT has been implicated in the development and progression of malignant tumors. It 

is often overexpressed in cancerous tissues including tissues that do not normally express much GGT 

such as soft tissue sarcoma and ovarian adenocarcinoma [155]. This - together with the fact that GGT 

is a cell surface enzyme, and therefore easily accessible for a bioprobe - makes GGT an attractive 

enzyme for imaging applications. To achieve this, a GGT probe (γ-Glu-[1-13C]Gly) was developed 

by Nishihara et al. [153], with a long T1, chemical shift difference between substrate and product, and 

high biological tolerance for in vivo application. γ-Glu-[1-13C]Gly will be a substrate for the GGT 

enzyme, and the substrate and product can be seen on Figure 33, (b).  

Figure 33 – a) The GGT mediated cleavage of γ-peptide bond. b) The action of the GGT probe. After interaction with the GGT enzyme, 

the bioprobe is converted to glycine, resulting in chemical shift difference. From [153]. Copyright 2016 by John Wiley and Sons. 

Reprinted with permission. 
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Formulation of γ-Glu-[1-13C]Gly for HP experiments 

In the original formulation for HP experiments described in literature, γ-Glu-[1-13C]Gly was 

dissolved in 85:15 D2O/NaOH (1M) and glycerol-d8 to yield a 1 M concentration [153]. The 

concentration was attempted optimized by dissolution of the probe in NaOH (5M) to a point where it 

became self-glassing, and glycerol was obsolete. Solid-state build-ups were recorded for several 

formulations of γ-Glu-[1-13C]Gly on a HyperSense in order to find the optimal formulation of the 

sample. On Figure 34, five different formulations can be seen. The formulation resulting in highest 

PHP (b) was chosen for further experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In vivo experiment with γ-Glu-[1-13C]Gly 

The formulation was tested in vivo to observe a potential conversion of γ-Glu-[1-13C]Gly. 80 µL of 

the sample, corresponding to a final concentration of 52 mM, was dissolved in 40 mM TRIS buffer 

and 300 µL was injected through the tail vein of a mouse carrying a MiaPaCa-2 tumor xenograft on 

Figure 34 – DNP enhancement for five different formulations of the GGT probe. The formulation was optimized in terms of 

concentration of probe, radical and gadolinium, and the optimal condition was found to be formulation (b). 
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the leg. GGT activity was detected in the tumor from the glycine signal, Figure 35. The experiment 

showed successful conversion in vivo in mouse tumor xenograft in the MiaPaCa-2 cancer cell model. 

In summary, the formulation of the γ-Glu-[1-13C]Gly was increased from the original 1 M to 2.6 M 

leading to higher polarization useful for in vivo studies. The initial demonstration of the use in vivo 

was performed, showing the feasibility for γ-Glu-[1-13C]Gly to be used as a bioprobe in biologica l 

systems with overexpressed GGT enzyme, correlating with tumor malignancy. The distinct change 

in ppm from substrate to product serves as a readout of the activity levels of GGT. Further studies 

will involve more in vivo data to investigate the scope of biological applications.  

Figure 35 – γ-Glu-[1-13C]Gly injected into mouse with MiaPaCa-2 tumor. GGT activity was detected as glycine was formed from γ-

Glu-[1-13C]Gly, showing the potential for in vivo applications of the probe. 
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5.6 Discussion and conclusion of part III 

 

Three novel bioprobes for HP experiments were presented: NAC, αKG and γ-Glu-[1-13C]Gly. They 

were all optimized for highest possible DNP build-up for further in vivo studies. By manipulat ing 

with the pH of the sample, a high concentration could be achieved and the bioprobes became self-

glassing, making the need for glassing agent unnecessary. This is advantageous for in vivo 

experiments, where biological tolerance of glycerol can pose an issue.  

 

For each probe, a biological system was considered. Biodistribution experiment with NAC showed 

HP signal in the brain, meaning that either NAC itself or a derivative such as cysteine, did cross the 

BBB. A suitable biological system for NAC is still to be found. However, it would be interesting to 

determine whether NAC crosses the BBB, since literature describes contradictory results. αKG 

formulation was optimized, but it was not tested on any biological system. The potential for αKG to 

serve as a probe for the oncometabolite 2HG is promising, since the biochemistry of 2HG is unique 

and connected to certain cancers. The final probe, γ-Glu-[1-13C]Gly, was optimized and tested in vivo 

on MiaPaCa-2 xenograft on mouse. The experiment showed a conversion of the probe to its glycine 

residue, showing promising results for applying this to other biological systems. 

 

Development of new bioprobes allows for investigation of interesting metabolic patterns, which may 

be readout of a pathological state and therefore serve as a diagnostic tool. However, challenges are 

involved when developing a new probe for in vivo use. The metabolism of the probe needs to take 

place within a time frame determined by the molecule T1. The components of the sample need to be 

tolerated by the animal, and the HP signal should be sufficient for the molecule to reach the place of 

interest despite the decay of HP signal on its way through the blood stream. Chemical modificat ions 

of molecules involving specific labeling, deuterations etc., are useful tools to improve readout of these 

experiments, opening a research area in the field of probe development for HP experiments.  
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6. Overall conclusion 

Lifestyle diseases are expanding global health problems that are contributing to the global burden of 

chronic diseases. To link diet to metabolic outcome, it is necessary to understand the metabolic fate 

and interaction of the nutritional components in living organisms. The objective of this project was 

to study perturbed metabolism using dissolution Dynamic Nuclear Polarization (dDNP) in several 

disease models in vitro: 

In the first part of the thesis, dDNP is used to probe slow biochemical reactions in combination with 

Stable Isotope Resolved Metabolomics (SIRM). By application of this method, the timeframe of the 

experiment can be extended from minutes to hours or longer. This part was based on two papers: 

Paper I concern the development of the stable isotope-resolved analysis combined with dDNP. The 

paper describes technical optimization of the experiment (polarization time, polarization medium etc.) 

and the extraction protocol for cell experiments. The paper furthermore discusses the possibility of 

quantification by introducing signal loss coefficient (SLC), a set up specific parameter. The analys is 

is eventually demonstrated on incubations ranging from 0-30 min performed on two different cancer 

cell lines, PC3 and MCF7, which shows cell line specific metabolic profiles, that develop with 

incubation time. The paper demonstrates how dDNP can be used for studying slow biochemica l 

reaction which is not possible with the classical dDNP experiments, where the timeframe is limited 

to minutes. 

In paper II, this approach is applied to investigate early handling of excess fuel in insulin producing 

β-cells before they reach a glucotoxic state which is a pathogenic factor in type 2 diabetes. Glucose -

derived pyruvate is found to correlate with a high fuel burden for the cells and is hypothesized to be 

a potential biomarker in the development of insulin impairment. In conclusion, this study shows that 

-cells actively use different metabolic pathways to reduce excess metabolites formed due to 

uncontrolled glycolysis. Glycerol- and fatty acid metabolism is the most likely candidate for this 

deviation pathway. Further studies are needed to elucidate this fundamentally important and relative ly 

overlooked defense mechanism important for protecting the -cell against glucotoxicity. 

In the second part of the thesis, dDNP was applied to study real time kinetics using hyperpolar ized 

[1-13C]pyruvate to visualize metabolism in cancer cells. The biological model represented pancreatic 

cancer, demonstrated by two different cell lines representing different stages of the cancer. For this 
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purpose, a bioreactor with a home-built flow cell was constructed and tested. Adherence of cells to 

avoid anoikis, quantification of cells on microcarriers, flow stress experiments etc. were all important 

factors that needed to be optimized before a longitudinal experiment involving treatment with TH-

302 could be performed. It was demonstrated that the cells grown on microcarriers showed pyruvate 

to lactate conversion in the flow cell. Furthermore, the bioreactor was found suitable for longitud ina l 

cell studies over several hours, but also revealed that flow stress is an important limitation for many 

cell systems on microcarriers.  

The third part of the thesis concerns three different bioprobes (NAC, αKG and GGT probe) for novel 

applications, in vivo and in vitro. Designing novel probes requires a fine interplay between chemistry, 

physics and biology. The formulation and solid-state build up for each sample was optimized for in 

vivo applications. NAC was further tested in vivo to explore biological distribution, since literature 

describes contradictory results. HP signal was observed in the brain using a head-coil, which was an 

interesting result. αKG polarization was optimized, but the application on relevant biological system 

is still to be conducted. GGT probe was optimized in terms of solid-state build up as well, and was 

tested on mouse xenograft showing conversion, suggesting it is capable of being a bioprobe for HP 

experiments. These results will appear in several publications, which are currently in preparation.  

In conclusion, this study showed the versatility of dDNP for metabolic research and potential 

diagnostic applications demonstrated by the polarization of 13C labeled substrates in vitro. However, 

dDNP has a much wider application range, involving other nuclei, in vivo applications and capability 

of clinical translation, with many more applications yet to be explored. 
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