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RESEARCH

Integration of enzymatic data in Bacillus 
subtilis genome‑scale metabolic model 
improves phenotype predictions and enables 
in silico design of poly‑γ‑glutamic acid 
production strains
Ilaria Massaiu1,2, Lorenzo Pasotti1,2, Nikolaus Sonnenschein3, Erlinda Rama4, Matteo Cavaletti4, Paolo Magni1,2, 
Cinzia Calvio4 and Markus J. Herrgård3*

Abstract 

Background:  Genome-scale metabolic models (GEMs) allow predicting metabolic phenotypes from limited data on 
uptake and secretion fluxes by defining the space of all the feasible solutions and excluding physio-chemically and 
biologically unfeasible behaviors. The integration of additional biological information in genome-scale models, e.g., 
transcriptomic or proteomic profiles, has the potential to improve phenotype prediction accuracy. This is particularly 
important for metabolic engineering applications where more accurate model predictions can translate to more reli-
able model-based strain design.

Results:  Here we present a GEM with Enzymatic Constraints using Kinetic and Omics data (GECKO) model of Bacillus 
subtilis, which uses publicly available proteomic data and enzyme kinetic parameters for central carbon (CC) meta-
bolic reactions to constrain the flux solution space. This model allows more accurate prediction of the flux distribu-
tion and growth rate of wild-type and single-gene/operon deletion strains compared to a standard genome-scale 
metabolic model. The flux prediction error decreased by 43% and 36% for wild-type and mutants respectively. The 
model additionally increased the number of correctly predicted essential genes in CC pathways by 2.5-fold and sig-
nificantly decreased flux variability in more than 80% of the reactions with variable flux. Finally, the model was used to 
find new gene deletion targets to optimize the flux toward the biosynthesis of poly-γ-glutamic acid (γ-PGA) polymer 
in engineered B. subtilis. We implemented the single-reaction deletion targets identified by the model experimentally 
and showed that the new strains have a twofold higher γ-PGA concentration and production rate compared to the 
ancestral strain.

Conclusions:  This work confirms that integration of enzyme constraints is a powerful tool to improve existing 
genome-scale models, and demonstrates the successful use of enzyme-constrained models in B. subtilis metabolic 
engineering. We expect that the new model can be used to guide future metabolic engineering efforts in the impor-
tant industrial production host B. subtilis.

Keywords:  Genome-scale metabolic model, Enzymatic data, Bacillus subtilis, Constraint-based methods,  
Poly-γ-glutamic acid

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Open Access

Microbial Cell Factories

*Correspondence:  herrgard@biosustain.dtu.dk 
3 The Novo Nordisk Foundation Center for Biosustainability, Technical 
University of Denmark, 2800 Kgs. Lyngby, Denmark
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12934-018-1052-2&domain=pdf


Page 2 of 20Massaiu et al. Microb Cell Fact            (2019) 18:3 

Background
Bacillus subtilis is the model organism for Gram-positive 
bacteria and one of the best-characterized bacteria. Its 
genome has been sequenced and the microbiological, 
molecular and genetic methodologies for its cultivation 
and manipulation are well established [1]. Recent stud-
ies have generated comprehensive absolute proteome 
[2] and transcriptome datasets under multiple di�er-
ent growth conditions [3�5]. B. subtilis grows e�ciently 
with low-cost carbon and nitrogen sources, it is Gen-
erally Recognized as Safe (GRAS) by the US Food and 
Drug Administration (FDA), and is an attractive chassis 
for synthetic biology applications thanks to its natural 
competence, easy chromosomal integration, and capa-
bility to e�ciently secrete products such as enzymes and 
vitamins even without engineering [6, 7]. Moreover, B. 
subtilis has important applications in agriculture as plant 
growth promoting bacterium (PGPB) [8, 9]. Finally, this 
bacterium has the ability to produce a small, resistant and 
metabolically dormant spore, which allows easy storage 
and transportation of B. subtilis strains.

For further improvement of productivity of endog-
enous or exogenous target metabolites in B. subtilis, 
genetic modi�cations to redirect �ux and fermentative 
process optimization are essential. A wide range of stud-
ies have been carried out aimed at optimizing B. subti-
lis as a cell factory for industrially relevant bioproducts 
such as ribo�avin [10, 11], subtilisin [12, 13], synthetic 
xylanases [14], and poly-�-glutamic acid (�-PGA) [15, 
16]. �ese studies have demonstrated industrially rel-
evant improvements in production, but they have also 
shown that the rational identi�cation of target mutations 
to optimize the metabolism of B. subtilis still represents 
a major challenge necessitating the use of trial-and-error 
approaches such as random mutagenesis and screening. 
In order to complement these labor and cost intensive 
approaches with rational design tools, multiple di�erent 
versions of B. subtilis genome-scale metabolic models 
(GEMs) have been reconstructed during the past 10�years 
[17�20]. Some of these GEMs have been successfully 
used to drive metabolic engineering applications, such as 
the production of 3-hydroxypropanoic acid [21], ribo�a-
vin, cellulases (R,R)-2, -3-butanediol and isobutanol [20].

Although the available B. subtilis GEMs have generally 
been validated against experimentally determined growth 
rate data on di�erent carbon substrates as well as by sys-
tematic gene essentiality analyses, all the existing models 
have a relatively low prediction accuracy for central car-
bon metabolic �uxes and key byproduct secretion rates. 
Since those models are already fairly complete in terms 
of representation of the majority of metabolic reactions 
that can take place in B. subtilis, it is likely that prediction 
accuracy could only be improved through the integration 

of additional information on bacterial metabolism that is 
not captured by the current GEMs.

Since the GEMs are generally analyzed through con-
straint-based methods, the predicted growth rate and the 
production of the target metabolite are mainly limited 
by the carbon source uptake rate, constrained based on 
experimental measurements. However, each metabolic 
�ux is highly dependent on the concentration and kinet-
ics of the enzymes catalyzing the reaction. For this rea-
son, the predictions based only on uptake �ux constraints 
may not agree with the experimental behavior. Di�erent 
approaches for the integration of enzyme concentrations 
in GEMs have been developed to constrain the solution 
space and improve phenotypic predictions. FBAwMC 
[22] was one of the �rst approaches, based on the �ux 
balance analysis (FBA) method, imposing concentration 
constraints for enzymes within the crowded cytoplasm to 
improve the prediction of growth rates of Escherichia coli 
under di�erent growth media, without using the meas-
urements of nutrient uptake rates. Other methods were 
proposed as an extension of FBAwMC, such as the meta-
bolic modeling with enzyme kinetics (MOMENT) [23], 
which utilizes the kinetic parameters under the limita-
tions of the total enzyme pool available. Similarly, Nilsson 
et�al. [24] used an extension of FBA to predict the meta-
bolic trade-o�s in yeast, in which the sum of �uxes was 
constrained to the sum of the product of the maximum 
in�vitro activity and the total enzyme mass. An alterna-
tive approach integrates quantitative measurements of 
protein and metabolite levels into GEM, by associating 
them with metabolic �uxes by using Michaelis Menten-
like rate equations [25]. �e most recent and promising 
method, referred to as GECKO (Enzymatic Constraints 
using Kinetic and Omics data), uses enzymatic data, in 
the form of protein abundance and turnover number, as 
a new constraint for each metabolic �ux, ensuring that 
�uxes do not exceed the maximum capacity in a given 
condition [26]. GECKO was applied to Saccharomyces 
cerevisiae GEM and it was shown to allow more accurate 
predictions than the corresponding non-enzyme con-
strained GEM for growth rates under di�erent carbon 
sources, for the simulation of the critical dilution rate 
for Crabtree e�ect, and for the metabolic behavior of a 
single-gene knockout strain. �e GECKO approach is 
also relatively simple to implement computationally com-
pared to methods that use more complex rate equations.

In this work, we integrate a set of available enzyme 
constraints (absolute protein levels and turnover num-
bers) for the reactions of central carbon metabolism into 
the iYO844 GEM of B. subtilis following the principles of 
GECKO. �e aim was to improve the prediction accuracy 
of central carbon �ux distributions and secretion rates 
of the main metabolic byproducts with the idea that the 
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resulting model would also allow improved strain design. 
We use experimental secretion and intracellular �ux data 
of wild-type and mutant strains to evaluate the accuracy 
of the enzyme-constrained model. We �nally demon-
strate the metabolic engineering potential of the model 
by designing knockout strategies for improving the pro-
duction of �-PGA, a biopolymer with promising features 
and applications as food, cosmetics and pharmaceutical 
additive. We show that the GECKO model predicts dif-
ferent optimal knockout strategies than the standard 
GEM, and that in�vivo implementation of the suggested 
single-reaction knockouts results in a twofold improve-
ment in �-PGA production (both rate and titer) from 
glucose.

Methods
Data collection
�e kinetic data, in the form of kcat values (s�1), for the 
enzymes in B. subtilis central carbon metabolism, were 
manually collected from BRENDA [27] and SABIO-RK 
[28] databases, and scienti�c literature, together with the 
respective molecular weights (kDa). We focused further 
curation of the kinetic data on active reactions in glucose 
minimal medium and aerobic conditions, also relevant 
for �-PGA production. When kcat values are not directly 
reported for the characterized enzymes, activity may be 
expressed as speci�c activity (SA). �is value is de�ned 
as the number of micromoles of product formed per mil-
ligram of enzyme per minute, at a given temperature and 
pH. Assuming that the enzyme preparation is 100% pure 
and that the number of subunits is equal to the number 
of active sites [29], SA values were converted into kcat 
values using the molecular weight (MW) of the enzyme 
according to Eq.�1.

For 45 selected enzymes of central carbon metabolism 
and other closely related reactions reported in the iYO844 
model [17], we carried out a manual search for kcat values 
and speci�c activities. We considered only the reactions 
catalyzed by a unique enzyme, except for the citrate syn-
thase (CS) and oxalate decarboxylase (OXADC) reactions, 
for which two enzymes are associated but they are mainly 
catalyzed by CitZ [30] and OxdC [31], respectively, with 
the second enzyme of both reactions (CitA and OxdD) not 
giving a relevant contribution (reaction, metabolite and 
enzyme names are consistent with the ones in the iYO844 
model [17]). After this initial �ltering, the set of enzymes 
was reduced to 29. Among these enzymes, we found B. 
subtilis speci�c kcat values for 10 reactions. When no meas-
urements were available for B. subtilis, kcat values for E. coli 
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were retrieved from the collection reported by Davidi et�al. 
[32], resulting in a data collection for 15 enzymes. How-
ever, since the preliminary simulation of �ux distribution 
in wild-type strain, obtained by the integration of this set 
of 15 reaction data, predicted the activation of two new 
reactions [methylisocitrate lyase�(MICITL), and phospho-
glycerate dehydrogenase (PGCDr)] closely connected to 
central carbon metabolism and known to be inactive, we 
re�ned the model by adding enzyme constraints for these 
two reactions (Table�1).

As for the absolute protein quanti�cations, the data 
reported by Goelzer et� al. [33] were used. �ese values 
are expressed in number of molecules per cell and are 
obtained from LC/MSE analysis [2]. �is dataset cov-
ers most of the cytosolic proteins in the B. subtilis 168 
strain growing under aerobic batch conditions and in 
minimal media with di�erent carbon sources. In particu-
lar, the measurements in minimal medium with glucose 
were retrieved from this study and converted into units 
of millimoles per gram of dry cell weight (mmol/gDW) 
by assuming 6.3 � 108�cells per ml per optical density at 
600�nm (OD600) [2] and 0.48�gDW/L per OD600 [33]. For 
each enzyme with known kcat, we used the upper limit 
of the 95% con�dence interval of protein abundance 
value in order not to over-constrain the model predic-
tions (Table�1). When the protein level quanti�cation of 
a speci�c enzyme was not available, we assumed that the 
protein is present at levels under the detection limit, and 
the minimum value among all the protein level measure-
ments in the same condition (i.e., 6.8 � 10�8�mmol/gDW) 
was used.

Integration of enzymatic data in the model
�e enzymatic data reported in Table� 1 were integrated 
into the iYO844 model, consisting of 1020 reactions, in 
order to obtain an enzyme-constrained model [26] that can 
be easily used with standard metabolic engineering design 
tools as it retains the linear structure of the original model 
and only adds additional constraints to a subset of model 
reactions. To implement the enzymatic data integration 
following the GECKO approach [26], an additional con-
straint was considered so that the metabolic �ux through 
the j-th reaction (Rj), reported in Table�1, does not exceed 
its maximum capacity (vmax), corresponding to the product 
between the kcat value (converted to h�1) of the enzyme Ej 
(that catalyzes the j-th reaction) and its abundance [Ej], as 
shown in Eq.�2.

Since we considered reactions catalyzed by unique 
enzymes, the number of enzyme-constrained reactions 
(17) is equal to the number of enzymes.

(2)�� � ��
��� �
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In summary, each constrained metabolic reaction 
Rj includes a pseudo-metabolite representing enzyme 
usage, which is limited by protein abundance.

Following the GECKO approach [26] to implement the 
described method, as a �rst step, the iYO844 model was 
converted into an irreversible model and the constraint 
for uptake rate of glucose, the sole carbon source, was 
removed. �en, the stoichiometric matrix and the upper 
bound vector of the model were expanded by adding the 
kcat values and the known protein abundances (Table�1).

Speci�c proteomic data for the mutant strains tested 
in this work were not available. For this reason, the 
approach shown above was applied under the assump-
tion that enzyme concentrations in wild-type and mutant 
strains are the same, except for the enzyme associated 
to the deleted reaction, whose concentration was �xed 
to zero. An alternative approach was tested for mutant 
strain simulations, in which only the total amount of 
enzymes was constrained (Eq.� 3), similar to previously 
proposed approaches [22, 23]:

�e kinetic data, in terms of turnover number, were 
integrated in the stoichiometric matrix (S) as in the 
standard approach. When using this approach, the total 

(3)
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�
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amount of cellular proteins (Ptotal) in the cell was assumed 
to be 0.55� g/gDW, corresponding to the value measured 
for E. coli [34], and the mass fraction of the accounted 
proteins (f) was computed equal to 0.0191, by summing 
the abundance, expressed as parts per million (ppm), of 
the 17 considered proteins, retrieved from PaxDB data-
base [35]. All the computations were implemented via 
MathWorks MATLAB R2012a and run with COBRA 
toolbox [36] using the Gurobi solver [37].

Simulations
For the in silico simulation of each mutant strain, the 
reaction encoded by the knocked-out gene was imposed 
as inactive, namely with a �ux equal to zero. All strains 
were simulated using both the previously published 
iYO844 model and the new enzyme-constrained model 
obtained in this work, hereafter referred to as ec_iYO844. 
�e lower bound of glucose uptake rate was �xed to 
the speci�c experimental value for the iYO844 model 
(� 7.71� mmol/gDW/h for wild-type strain), based only 
on stoichiometric reactions and directionality, whereas 
it was set to an unlimited value (� 100�mmol/gDW/h) for 
ec_iYO844. �e metabolic phenotype of wild-type B. 
subtilis strain was predicted by parsimonious �ux bal-
ance analysis (pFBA) [38]. In addition, mutant strains 
were simulated using the minimization of metabolic 
adjustment (MoMA) method [39], which minimizes the 

Table 1  List of kcat values and protein quantifications integrated in iYO844 model

For each reaction reported in the table, encoding gene, equation, kcat and concentration of catalyzing enzyme ([E]) are reported. Moreover, the organism for which the 
kcat value was measured and the reference for this measurement are specified. The reaction names, with the associated gene names and equations, correspond to the 
annotations used in the iYO844 model

Reaction name Gene name EC Equation kcat [s
�1] [E] [mmol/gDW] Organism 

of kcat data
Refs. 
for kcat 
data

PGI pgi 5.3.1.9 g6p � f6p 126 1.55 � 10�5 E. coli [59]

TPI tpiA 4.1.1.31 dhap � g3p 150 1.28 � 10�5 E. coli [60]

GAPD_NAD gapA 1.2.1.12 g3p � nad �pi � 13dpg � h � nadh 70 5.77 � 10�5 B. subtilis [61]

PGK pgk 2.7.2.3 13dpg � adp � 3pg � atp 329 3.60 � 10�5 E. coli [62]

PGM pgm 5.4.2.12 3pg � 2pg 765.9 8.85 � 10�6 B. subtilis [63]

ENO eno 4.2.1.11 2pg � h2o � pep 130.4 3.17 � 10�5 B. subtilis [64]

G6PDH zwf 1.1.1.49 g6p � nadp � 6pgl � h � nadph 174 8.05 � 10�6 E. coli [65]

CS citZ 2.3.3.16 accoa � h2o � oaa � cit � coa � h 49 2.51 � 10�5 B. subtilis [30]

ICDHy icd 1.1.1.42 icit � nadp � akg � co2 � nadph 82 1.10 � 10�4 B. subtilis [66]

FUM citG 4.2.1.2 fum � h2o � mal-l 283.3 7.29 � 10�6 E. coli [67]

MDH mdh 1.1.1.37 mal-l � nad � h � nadh � oaa 177.1 1.06 � 10�4 B. subtilis [68]

PTAr pta 2.3.1.8 accoa � pi � actp � coa 651.6 8.49 � 10�6 B. subtilis [69]

LDH_L ldh 1.1.1.27 lac-l � nad � h � nadh � pyr 6416.6 3.60 � 10�6 B. subtilis [70]

PGCDr serA 1.1.1.95 3pg � nad � 3php � h � nadh 14.56 1.90 � 10�5 B. subtilis [71]

OXADC oxdC 4.1.1.2 h � oxa � co2 � for 59 6.21 � 10�7 B. subtilis [72]

MICITL yqiQ 4.1.3.30 micit � pyr � succ 19 6.80 � 10�8 E. coli [73]

OXGDC menD 4.1.1.71 akg �h � co2 � sucsal 0.2 6.80 � 10�8 B. subtilis [55]
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distance between the �ux distributions in wild-type and 
mutant strains.

�e range of each �ux value supporting 90% of maxi-
mum growth rate was evaluated by �ux variability analysis 
(FVA) as previously described [40] for both models, using 
an unlimited glucose uptake rate value (constrained to 
� 100�mmol/gDW/h). �e variability range of each �ux (FV) 
was computed as in Eq.�4.

�e pFBA, MoMA and FVA methods were run in Matlab 
using the available functions in the COBRA Toolbox [36].

Identification of deletion targets
�e gene deletions that are required to optimize the pro-
duction of �-PGA were identi�ed by using the iYO844 
model and ec_iYO844. �e MoMA method was used to 
�nd single or multiple gene deletions corresponding to the 
best trade-o� between growth rate and secretion rate of the 
target metabolite as previously described [41].

Since the pgs operon, including the enzyme-encoding 
genes responsible for �-PGA production, is not expressed 
in the laboratory strain modeled in iYO844, we added 
the production reaction reported in the GEM of Bacillus 
licheniformis [42] (0.77 glu-D � 0.23 glu-L  � � �-pga). As 
an alternative approach to optimize �-PGA production, 
we considered the �ux maximization of three of its known 
precursors: 2-oxoglutarate (akg), �-glutamate (glu-�) and 
�-glutamate (glu-�). In this case, the secretion reactions of 
these precursors were added to the model.

Evaluation of prediction accuracy
Flux distribution and growth rate data of B. subtilis wild-
type and single-gene/operon deletion strains, grown under 
M9 minimal medium with glucose, were retrieved from 
literature [43, 44]. In these datasets, internal �uxes, meas-
ured by 13C-labeling experiments, are reported for the 
main reactions of the central carbon pathway, together 
with growth, glucose uptake and acetate production rates. 
For each measured �ux the coe�cient of variation among 
the replicates, when available in literature, is typically lower 
than 10%, with only the reactions of pentose phosphate 
pathway and malate dehydrogenase (MDH) of the tricar-
boxcylic acid (TCA) cycle having slightly higher variability 
(< 38%).

�e prediction error was computed for each simulation 
of a strain grown under a speci�c condition by the normal-
ized Euclidean distance between the experimental and the 
respective predicted �uxes [45] (see Eq.�5).

(4)�� � ������ � ������
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Furthermore, 95 single-gene deletions, corresponding 
to genes included in the GEM and experimentally found 
to be lethal in genome-wide studies [44, 46], were simu-
lated via MoMA with the iYO844 and ec_iYO844 models, 
and the percentage of correctly predicted essential genes 
(i.e., yielding a predicted growth rate lower than 0.05�h�1) 
was calculated and compared to experimental data.

Additional model analyses
In order to evaluate the impact of kcat variation on predic-
tion accuracy of the enzyme-constrained model, a distri-
bution of prediction errors was computed by simulating 
ec_iYO844 using 10,000 kcat sets, randomly extracted 
without replacement from the list reported in Table�1.

In addition, to investigate the minimum set of reac-
tions, among the ones reported in Table� 1, that must 
be enzyme-constrained to achieve the �nal accuracy of 
ec_iYO844, the model was studied by following a step-
wise inclusion procedure for the constrained reactions. 
In particular, unless di�erently indicated, the prediction 
errors for wild-type and mutant strains, together with the 
accuracy of essential genes, were all taken into account as 
indices to evaluate the accuracy.

Strain construction
�e strains used in this study are listed in Table� 2 with 
their relevant genotype. Brie�y, PB5249 is a spontane-
ous swrA� derivative of the laboratory strain JH642 
[47]. PB5383 is a �-PGA producer thanks to the dou-
ble mutation swrA� degU32(Hy). PB5642 and PB5643 
were obtained by transforming the genomic DNA of 
strains GP791 (�sucC-sucD::Tet) and GP1276 (�odhA-
odhB::Cat) (Jörg Stülke Lab, Gottingen, Germany), into 
PB5249 and selecting deletion strains with tetracycline 
(20�µg/mL) and chloramphenicol (5�µg/mL), respectively. 
�e �nal �-PGA producer knockout strains PB5691 and 
PB5716 were obtained by transferring the degU32(Hy) 
mutation into PB5643 and PB5642, respectively, via 
transformation of PB5383 genomic DNA and selection 
with spectinomycin (60� µg/mL). Deletions were con-
�rmed via colony PCR with the primer pairs SucCD-
ForCheck (5�-gattttgcatcgaactgtagac-3�)�TetRRevCheck 

Table 2  B. subtilis strains used in this study

Strain Genotype Refs.

PB5249 trpC2 pheA1 swrA� [74]

PB5383 trpC2 pheA1 swrA� degU32(Hy) (Smr) [15]

PB5643 trpC2 pheA1 swrA+ ∆odhAB (Catr) This study

PB5642 trpC2 pheA1 swrA� ∆sucCD (Tetr) This study

PB5691 trpC2 pheA1 swrA+ degU32(Hy) (Smr) ∆odhAB (Catr) This study

PB5716 trpC2 pheA1 swrA+ degU32(Hy) (Smr) ∆sucCD (Tetr) This study
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(5�-gtcgtaaattcgattgtgaa-3�) for �sucCD and OdhAB-
ForCheck (5�-gtagaatcaaattgcaaacagtgg-3�)�CAT-R-50 
(5�-gtctgctttcttcattagaatcaatcc-3�) for �odhAB. �e pres-
ence of swrA� degU32(Hy) mutations could be easily ver-
i�ed via the mucoid phenotype on agar plates and clear 
zone on skim milk plate assay.

Growth conditions and fermentation
�e PB5383, PB5691 and PB5716 strains from a 
streaked LB agar plate (tryptone, 10� g/L; yeast extract, 
5�g/L; NaCl, 10�g/L; agar, 15�g/L) were grown for 7�h in 
2.5� mL of Penassay broth (Difco Antibiotic Medium 
3) with 5� g/L glucose in an orbital shaking incubator 
at 37� °C, 250�rpm; cultures were diluted to an OD600 of 
0.1 in 20� mL of E medium adapted from Leonard et� al. 
[48] (citric acid, 12� g/L; glucose, 80� g/L; NH4Cl, 7� g/L; 
K2HPO4, 0.5� g/L; MgSO4�7H2O, 0.5� g/L, FeCl3�6H2O, 
0.04�g/L; CaCl2�2H2O, 0.15�g/L; MnSO4�H2O, 0.104�g/L; 
tryptophan, 50� µg/mL; phenylalanine, 50� µg/mL) with 
40�g/L of �-glutamic acid (EM�) or without �-glutamic 
acid (EM�) and incubated under the same conditions as 
above. In fermentation experiments, aliquots (500� µL) 
were collected for OD600 readings and �-PGA extraction 
at the following time points: 0, 18, 25, 43, 49, 66 and 74�h. 
In growth experiments, pre-cultures in EM� were grown 
for 16�h and then diluted to OD600 0.1; �nally, OD600 was 
monitored for 9�h during the exponential growth phase, 
thereby enabling the calculation of growth rate as previ-
ously described [49].

γ‑PGA recovery and quantification
Each culture sample was centrifuged (16,000� rpm, 
20� min, 4� °C) and the cell pellet was discarded. �e 
supernatant was precipitated with three volumes of cold 
methanol and kept at � 20�°C for at least 12�h. For �-PGA 
quanti�cation, each sample was centrifuged (14,000�rpm, 
15�min, 4�°C) and methanol was discarded; �-PGA pellets 
were dried in a vacuum concentrator and then dissolved 
in deionized water. �e concentration of �-PGA was 
measured by spectrophotometer at 216� nm in a quartz 
cuvette, as previously reported [50]. Absorbance meas-
urements were carried out via the NanoPhotometer UV/
Vis spectrophotometer (Implen, Schatzbogen, München, 
Germany), using deionized water as blank, and a stand-
ard calibration curve with puri�ed �-PGA (#G1049, 
Sigma Aldrich, dissolved in deionized water) to compute 
its concentration in g/L from absorbance values. Meas-
urements were carried out for at least three independent 
fermentation experiments.

�e same aliquots of �-PGA produced by wild-type and 
mutant strains were also visually compared by agarose 

gel electrophoresis followed by methylene blue staining, 
as previously described [51].

Statistical tests
Microsoft Excel and Matlab functions were used to carry 
out statistical tests. Analysis of variance (ANOVA) was 
used to compare �-PGA concentration or production rate 
among the three producer strains (PB5383, PB5691 and 
PB5716). A priori pairwise orthogonal comparisons were 
carried out via individual T-tests between PB5383 vs 
knockout strains and between the two knockout strains.

Wilcoxon signed rank test was used to compare �ux 
variability values for all the model reactions with non-
zero FV values. �e metabolic subsystems (retrieved 
from the iYO844 original model) over-represented in the 
list of reactions with relevant �ux variability reduction 
were found by Fisher�s exact test.

Results
A new enzyme-constrained GECKO model of B. subti-
lis (ec_iYO844) was constructed by integrating publicly 
available enzyme kinetic and proteomic data for a set of 
central carbon and related pathway reactions (Table� 1). 
�e prediction performance of ec_iYO844 was compared 
to that of the original model (iYO844), in terms of abil-
ity to capture �ux distributions in wild-type and single-
gene/operon deletion mutants, and essential genes. �e 
two models were also compared in terms of �ux vari-
ability analysis, to evaluate if enzyme constraints were 
able to decrease the variability of �uxes in one or more 
pathways. Finally, the predicted knockout strategies to 
improve �-PGA production were compared between the 
models and the suggested single-reaction deletions were 
evaluated in�vivo.

Evaluation of model prediction performance on wild‑type 
strain
�e comparison between the predicted wild-type �ux 
values and the corresponding experimental �uxes avail-
able in the literature [43] (Fig.� 1) showed that iYO844 
model was able to accurately predict growth rate and 
�uxes through the glycolytic pathway. However, the pen-
tose phosphate pathway (PPP), TCA cycle and acetate 
secretion �uxes were not consistent with experimental 
values. In particular, the �ux through the PPP and acetate 
production were signi�cantly underestimated, while the 
�ux through TCA cycle was overestimated about twofold.  
A signi�cant improvement was achieved with the inte-
gration of enzymatic data (ec_iYO844), including the 
ability to predict the glucose uptake rate (predicted to 
be 8.62� mmol/gDW/h, consistent with the experimental 
value of 7.71� mmol/gDW/h), and the correction of the 
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inaccurate �ux predictions by iYO844 in the three path-
ways described above, without reducing accuracy of 
glycolytic �ux and growth rate predictions. �e overall 
increase in prediction accuracy using the enzyme-con-
strained model is con�rmed by the 43% decrease of the 
prediction error, from 0.47 to 0.27.

Evaluation of model prediction performance on mutant 
strains
We also tested the prediction performance of the ec_
iYO844 model under perturbed genetic conditions. We 
simulated the metabolic behaviors of �ve single-gene/
operon deletion strains: �pgi, �mdh, �zwf, �sdhABC 
and �serA, for which the glucose-6-phosphate isomer-
ase (PGI), MDH, glucose 6-phosphate dehydroge-
nase (G6PDH), succinate dehydrogenase (SUCD1) and 
PGCDr reactions are blocked, respectively. �e experi-
mental �uxes of four central carbon reactions [PGI, 

G6PDH, pyruvate kinase (PYK), and CS], growth rate and 
acetate production rate [44] were compared with the cor-
responding predicted values, obtained by the two mod-
els. Similar to the observations for the wild-type strain, 
for the mutant strains results show an overall improve-
ment of prediction accuracy when enzymatic data are 
integrated. Considering the distribution of prediction 
errors of all mutants, the median value decreases by 36%, 
from 0.67, using the initial model, to 0.43 (Fig.�2).

While the mutant strains prediction error showed a 
considerable decrease using ec_iYO844 compared with 
iYO844, not all the individual �ux predictions were 
similarly improved (Fig.� 3). �is was in contrast with 
the predictions obtained for wild-type strain for which 
we observed a clear improvement for all the individual 
reactions (Fig.� 1). As it was also observed in wild-type 
�ux prediction, ec_iYO844 showed a relevant improve-
ment of accuracy for acetate secretion rate: iYO844 

Fig. 1  Experimental and predicted fluxes of central carbon reactions for wild-type B. subtilis. The predictions of growth rate, acetate secretion rate, 
fluxes through the reactions of glycolysis, TCA cycle and pentose phosphate pathway for wild-type strain, using iYO844 and ec_iYO844 (red and 
green bars, respectively), are compared to the experimental measurements (blue bars). Reaction names are reported according to the annotation 
used in the original model
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systematically predicted values lower than those meas-
ured for each strain, especially for �mdh and �sdhABC 
strains, in which the MDH and SUCD1 reaction is 
blocked, respectively, with predicted acetate �ux value 
close to zero. However, upon integration of enzymatic 
data in the model, the predicted acetate secretion rates 
became more consistent with the experimental values, 
although the model was still unable to predict the highest 
rates measured (�zwf and �sdhABC strains). An overall 
improvement was also observed in the �ux value predic-
tion of the G6PDH reaction (the �rst one of PPP, encoded 
by zwf), in three cases (�pgi, �mdh and �serA), with 
experimental �ux ranging from 0.6 to 6.5�mmol/gDW/h), 
two of which corresponding to a �ux value wrongly pre-
dicted as zero by iYO844. Conversely, in the �sdhABC 
strain, ec_iYO844 captured the G6PDH �ux value less 
accurately than iYO844 indicating that the absolute pro-
tein levels in this strain may di�er from those in the wild-
type strain, which were used in the simulation.

As expected, with the model developed in this work, 
the �uxes through the CS reaction in the TCA cycle 
decreased in every mutant strain, resulting into higher 
consistency with experimental values, due to the �ux 
constraint of 4.4� mmol/gDW/h imposed by enzymatic 
information (derived from Table�1).

Taken together, the results showed that new model is 
also superior in terms of mutant strain �ux predictions, 
although with a percent improvement in prediction accu-
racy lower than what was observed for the wild-type 
strain. �e strong assumption that proteomic pro�le 
is the same in wild-type (for which proteomic data was 

available) and single-gene/operon mutants may be partly 
responsible of the less accurate predictions obtained 
for mutant strains. For the enzyme-constrained model, 
we also used an alternative approach, similar to the 
MOMENT method [23], in which the kcat values for the 
17 reactions were integrated and only the total amount 
of enzymes (g/gDW) was constrained (kc_iYO844 model). 
�e results showed that this method has lower predic-
tion error (0.55 median value) than iYO844 (0.67 median 
value), but, also in this context, the predictions obtained 
by ec_iYO844 are the most accurate (0.43 median value). 
�e three models (iYO844, ec_iYO844 and kc_iYO844) 
were also solved via pFBA instead of MoMA, but conclu-
sions do not change and the resulting prediction errors 
with pFBA are always higher than the respective ones 
with MoMA (data not shown).

�e new model was also evaluated by gene essentiality 
analysis (Table�3), a step commonly performed for valida-
tion of new GEMs. Considering 11 single-gene knockout 
strains in central carbon metabolism genes from a list of 
95 experimentally-tested essential genes,� the no-growth 
phenotype was correctly predicted by iYO844 only for 
two strains (�pgk and �tkt). On the other hand, the 
model developed was able to predict the essentiality of 
three additional central carbon metabolism genes (pfkA, 
eno and pgm), for a total of 5 out of 11 correctly predicted 
knockout phenotypes. No di�erence was observed in the 
accuracy of the prediction for the remaining essential 
genes belonging to other pathways: 67 of them were cor-
rectly predicted as essential by both models.

Impact of the knowledge of enzymatic data
�e impact of the speci�c types of enzymatic data used 
to develop the enzyme-constrained model on model per-
formance was analyzed in two tests.

First, among the 17 enzyme-constrained reactions, 
we identified triose-phosphate isomerase (TPI), glyc-
eraldehyde-3-phosphate dehydrogenase (GAPD_
NAD), CS and PGCDr as the minimum set required to 
achieve the final prediction performance of the model 
developed, namely a prediction error equal to 0.27 for 
the wild-type strain and to 0.43 for the mutants, and 
76% of accuracy for central carbon gene essential-
ity. This result, however, is expected to depend on the 
study on which the model is applied, with prediction 
accuracy increasing with the number of enzyme-con-
strained reactions. This outcome is also suggested by 
our gene essentiality analysis, in which a significant 
improvement was observed for central carbon pathway 
but not in other pathways that were not subjected to 
enzymatic constraints.

By considering the prediction error for wild-type and 
mutant strains as the only performance measure, the 

iYO844 ec_iYO844
0

0.2

0.4

0.6

0.8

1

P
re

di
ct

io
n 

er
ro

rs

Fig. 2  Distribution of prediction errors for B. subtilis mutant strains. 
Circles represent the prediction error distribution, computed with 
iYO844 and ec_iYO844, for each mutant strain considered in this work 
and the red lines indicate the median values
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GAPD_NAD and CS constraints were su�cient to reach 
the maximum predictive power. �e importance of these 
constraints could be due to the key role of glyceraldehyde 
3-phosphate (converted into 3-phospho-�-glyceroyl-
phosphate via the GAPD_NAD reaction) as a central 
node between glycolysis and pentose phosphate path-
way, and the key role of citrate synthesis (from oxaloac-
etate and acetyl-CoA via the CS reaction) as central 
node between glycolysis and the entering of TCA cycle. 
To better elucidate the role of these two reactions, we 

Fig. 3  Experimental and predicted fluxes for B. subtilis mutant strains. Five different mutants strains (∆pgi, ∆mdh, ∆zwf, ∆sdhABC and ∆serA, for which 
the PGI, MDH, G6PDH, SUCD1 and PGCDr reactions are blocked, respectively) were simulated using iYO844 and ec_iYO844 model (red and green 
bars, respectively). The predictions of growth rate, acetate secretion rate and fluxes through PGI, G6PDH, PYK, CS reactions are compared with the 
experimental measures (blue bars). Reaction names are reported according to the annotation used in the original model

Table 3  Gene essentiality analysis

Total number of essential genes reported in literature [44, 46], and those 
predicted using iYO844 and ec_iYO844. The number of genes coding for 
enzymes of the central carbon (CC) pathway are specified in the first column

Essential genes

CC Others Total

Experimental data 11 84 95

Predicted with iYO844 2 67 69

Predicted with ec_iYO844 5 67 72
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performed three simulations in which the GAPD_NAD 
and CS reactions were individually or jointly constrained 
as the sole constraint(s) of the ec_iYO844 model. �e 
model reached its lowest error only by constraining both 
reactions. �e individual constraint of GAPD_NAD or 
CS was not able to �x the PPP �ux distribution, while the 
improvement in the TCA cycle �uxes was observed by 
individually including the CS constraint.

Conversely, considering the accuracy of gene essential-
ity analysis, the TPI and PGCDr constraints were needed 
to correctly predict pfkA, eno and pgm as essential genes, 
which catalyze the PFK, ENO and PGM reactions, respec-
tively (Fig.�6). To better investigate the role of these two con-
straints, we performed simulations in which TPI or PGCDr 
were constrained. Results showed that the two constraints 
individually contributed to the correct prediction of pfkA 
(TPI constraint), and of pgm and eno (PGCDr constraint).

Second, to further evaluate the impact of enzymatic 
constraints, we tested how much model performance 
depended on speci�c kcat values by using randomized kcat 
for all the 17 reaction constraints. �e results (Fig.� 4a) 
showed that the median value of prediction errors using 
random kcat (0.80) is signi�cantly higher than the value 
obtained by the enzyme-constrained model (0.27, lower 
than the �rst percentile of the obtained distribution), 
and even higher than the one of the model without con-
straints (0.47). �e knowledge of speci�c kcat values is 
therefore essential to obtain accurate predictions. We 
also tested the e�ect of kcat randomization for 15 of the 
17 reactions, leaving the GAPD_NAD and CS constraints 
(found to be essential to reach the �nal accuracy) to their 
correct values. �e results (Fig.�4b) showed that the distri-
bution of prediction errors is similar to the one obtained 
above (median � 0.69 and the �nal prediction error value 
represented the �rst percentile). �is demonstrates that 
the randomization of kcat values has a detrimental e�ect, 
even when random constraints are imposed for the reac-
tions not contributing to minimize the prediction error. 
Finally, we tested the e�ect of kcat values randomization 
only on the GAPD_NAD and CS reactions. �e obtained 
distribution of prediction errors (Fig.�4c) has much lower 
median (0.31) than the distributions obtained above, and 
this median is also lower than the error of the model with-
out constraints (0.47). However, the prediction error of 
ec_iYO844 with all the 17 constraints (0.27) is in the sec-
ond percentile of this distribution, thereby con�rming the 

importance of setting correct values for the GAPD_NAD 
and CS constraints, and also that correct values of the 
constraints for the other reactions contribute to the sig-
ni�cant decrease in prediction error.

Flux variability analysis
To compare the �ux solution spaces of the enzyme 
constrained and non-constrained models, �ux vari-
ability analysis was carried out, using an unlimited glu-
cose uptake rate value. �e cumulative distribution of 
�ux variability (FV) values demonstrated a relevant FV 
reduction for ec_iYO844 compared to iYO844, with a 
120-fold decrease of median FV (Fig.�5a) (p-value < 0.05; 
Wilcoxon signed rank test). Considering all the non-zero 
FV values (653 reactions), 81% of all the �uxes showed 
variability reduction using ec_iYO844, whereas only 
11% showed an increase and 8% showed an unchanged 
variability. �e distribution of FV values suggests that 
the main improvements in variability reduction are in 
the iYO844 reactions with high FV values. A cluster of 
357 reactions showing major variability reduction was 
considered (Fig.�5b), in order to analyze which pathways 
were enriched in that set. �e 17 enzyme-constrained 
reactions in ec_iYO844 (Table� 1) mainly belong to the 
"Carbohydrates and related molecules" group, with a 
minor amount belonging to the "Amino acids and related 
molecules", "Membrane bioenergetics" and "Coenzymes 
and prosthetic group" subsystems. As expected, the over-
represented metabolic subsystems in the low-FV reaction 
cluster included the "Carbohydrates and related mole-
cules" group, but also the "Nucleotides and nucleic acids" 
one (p-value < 0.05; Fisher�s exact test), thereby demon-
strating that enzyme constraints in central carbon meta-
bolic pathways were also able to signi�cantly reduce the 
�ux variability in other metabolic subsystems.

In silico metabolic engineering to increase γ‑PGA flux
Poly-�-glutamic acid is a biodegradable, water-soluble, 
non-toxic, and edible biopolymer that has a large num-
ber of biotechnological applications, ranging from bio-
medicine to bioremediation. For its unique proprieties, 
di�erent studies for improving the microbial produc-
tion of �-PGA were carried out [52, 53]. �e pgs operon, 
which includes the enzyme-coding genes responsible for 
the biosynthesis of this polymer, is not expressed in B. 
subtilis 168 laboratory strains. However, we previously 

(See figure on next page.)
Fig. 4  Distribution of predicted errors obtained from enzyme-constrained model with randomized kcat values on wild-type strain. Bars represent 
the histograms obtained on 10,000 simulations, dashed line indicates the median value of the prediction errors obtained using randomized kcat 
values and solid line represents the prediction error of the ec_iYO844 model. Panels show the results for the kcat values randomization of all the 17 
reactions (a), all the reactions except GAPD_NAD and CS (b) and only GAPD_NAD and CS (c)
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Fig. 5  Flux variability analysis on the two models. a Cumulative distribution of all the non-zero FV values. b Identification of reactions and their 
respective metabolic subsystem with major variability reduction after the enzymatic data integration (red circle)
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demonstrated that pgs operon transcription could be 
activated in a B. subtilis 168 derivative by two mutations: 
swrA� and degU32(Hy), thereby engineering �-PGA pro-
duction [15]. In this work, our goal was to use genome-
scale models to identify the genetic perturbations (gene 
deletions) that could increase the production of �-PGA.

We modi�ed the iYO844 and ec_iYO844 models to 
include the �-PGA biosynthesis reaction, and we used 
them to predict gene deletion targets for increasing �ux 
through this reaction using the MoMA method (see 
�Methods�). �ree �-PGA precursors (akg, glu-L, glu-D) 
were also considered as target metabolites (see Fig.� 6), 
but the deletion targets identi�ed for these were the same 
as the ones identi�ed for �-PGA (data not shown). Both 
models predicted the 2-oxoglutarate dehydrogenase 
(AKGD) reaction (akg � coa � nad � CO2 � nadh � suc-
coa) and the succinyl-CoA synthetase (SUCOAS) 
reaction (atp � coa � succ � adp � pi � succoa) as the sin-
gle-reaction deletion targets yielding the highest �-PGA 
�ux (see Fig.�7). Accordingly, a decrease of the proteins 
involved in the two target reactions was previously sug-
gested to be bene�cial to �-PGA production [54], but no 
forward engineering evaluation of this strategy had pre-
viously been done.

Even if the same single-reaction deletion targets were 
identi�ed by both models, and similar in silico �-PGA 
�ux and growth rate upon SUCOAS deletion were pre-
dicted by both models, the e�ects of AKGD deletion 
had a signi�cant di�erence between the two models (see 
Fig.�7). ec_iYO844 predicted a �vefold higher �-PGA �ux 
than iYO844, along with a signi�cant growth rate reduc-
tion. Using iYO844, the �-PGA �ux upon AKGD deletion 
was even lower than the one predicted with SUCOAS 
deletion.

Regarding the predicted �ux distribution of the AKGD 
deletion mutant, a major di�erence between iYO844 
and ec_iYO844 was that the former predicted the acti-
vation of the 2-oxoglutarate decarboxylase (OXGDC) 
and the succinate-semialdehyde dehydrogenase (SSALy) 
bypass reactions. While the SUCOAS and AKGD reac-
tions are downstream of the akg production in the TCA 
cycle, OXGDC and SSALy (akg � h � co2 � sucsal, and 
h2o � nadp � sucsal � (2) h � nadph � succ, respec-
tively) are consecutive reactions forming a bypass for 
the production of succinate (succ) from akg (see Fig.�6). 
Conversely, the ec_iYO844 model predicted this bypass 

reactions as inactive due to an enzymatic constraint on 
OXGDC (see Table� 1), for which the associated protein 
(MenD) was not experimentally detected in these con-
ditions [33, 55]. For this reason, when AKGD is deleted, 
ec_iYO844 predicted a higher �ux from akg towards glu-
tamate (and subsequently �-PGA) than iYO844, in which 
akg was predicted to be mainly converted into succ and 
to continue the TCA cycle, with a lower �ux towards glu-
tamate. We con�rmed that the bypass from akg to succ 
was the source of this key diversity between the models 
by simply imposing a null value of OXGDC in iYO844, as 
it was essentially done in ec_iYO844 by constraining the 
�ux to very low levels. As expected, results predicted an 
increase of �-PGA �ux in the AKGD deletion strain (see 
Fig.�7).

Using the same procedure, we searched for double-
reaction deletions to further compare the two models. 
As expected from the analysis above, for iYO844 the best 
double deletion found was the AKGD and OXGDC (or 
SSALy) combination (see Fig.� 7). Using ec_iYO844, the 
three best deletions were the AKGD combination with 
the phosphotransacetylase (PTAr), acetate kinase (ACKr) 
or pyruvate dehydrogenase (PDH) reactions (see Fig.�7). 
�e additional deletion of PTAr, ACKr or PDH predicted 
an increase of �-PGA �ux by decreasing the �ux towards 
acetate (see Fig.�6), also consistent with a previous meta-
bolic engineering work [56]. A similar conclusion could 
be drawn by considering the best double-reaction dele-
tion target (AKGD � PDH) found using iYO844 with a 
null value for the OXGDC �ux as additional constraint 
(data not shown). �is target combination was imme-
diately followed by combinations of AKGD with a set of 
PPP reactions, with lower �-PGA �ux (data not shown), 
not found using ec_iYO844, probably due to the major 
di�erences in the �ux distribution of this pathway (as 
illustrated in Fig.� 1). �e results obtained by double-
deletion analysis further con�rmed that the �ux through 
the OXGDC/SSALy bypass is a key di�erence between 
iYO844 and ec_iYO844, a�ecting the predicted deletion 
targets, but other enzymatic constraints can also play a 
role for speci�c strain design predictions.

In summary, the two models showed the same results 
in terms of recommended single-reaction deletion list 
(AKGD or SUCOAS), but the predicted �uxes showed 
quantitatively di�erent values due to the constraints of 
the GECKO model. Such constraints also determine the 

(See figure on next page.)
Fig. 6  Central carbon and γ-PGA production pathways of B. subtilis. The central carbon pathway that includes the pathway of glycolysis (blue), the 
pentose phosphate pathway (yellow) and the TCA cycle (red) is represented. The pathway of acetate (dark gray) and γ-PGA (green) biosynthesis are 
also represented. Dashed thin arrows indicate the bypass pathway from akg to succ, with sucsal as intermediate metabolite. The green arrow with 
dashed edge indicates a set of reactions (not shown) converting akg into glu-L. Metabolite and reaction names are reported in lower and upper 
case, respectively, according to the annotation used in the original model



Page 14 of 20Massaiu et al. Microb Cell Fact            (2019) 18:3 

glu
pep

13dpg

GLCpts

PGI

TPI

GAPD_NAD

PGK

PGM

g6p
pyr

�p

dhap

g3p

3pg

2pg

6pgl
G6PDH PGL

6pgc

ru5p

r5p

s7p
PGDHr

TKT1

RPI

e7p

f6p

PFK
TAL

TKT2

ENO

pep

pyr

PYK

fum succ

mal
sucCoA

cit icit

akg
oxa

PDH

accoa

xu5p

RPE

P
P

C

P
C

CS

ACONT

ICDHy

AKGD

SUCOAS

SUCD1

FUM

MDH

glu-L

glu-D

GLUR �-pga
sucsal

SSALy

OXGDC

FBA

PTAr

actp

ac

ACKr



Page 15 of 20Massaiu et al. Microb Cell Fact            (2019) 18:3 

di�erence between the two models in the suggested dou-
ble-reaction deletion list, with iYO844 recommending 
the deletion of a reaction (OXGDC or SSALy) for which 
ec_iYO844 predicted a negligible �ux.

In vivo metabolic engineering to improve γ‑PGA 
production
�e optimal single-reaction genetic con�gurations 
identi�ed by in silico design were experimentally 
tested, comparing the �-PGA biosynthesis perfor-
mance of the PB5383 producer strain [15], used as 
reference, with two new isogenic strains in which the 
AKGD and SUCOAS reactions were disrupted. We 
limited our study to the single-reaction deletion list 
since it included targets that have never been tested in 
metabolic engineering studies. In B. subtilis the odhA�
odhB�pdhD and sucC�sucD genes encode the two tar-
get reactions, respectively. Since the entire 2-oxoacid 
dehydrogenase multienzyme complex, encoded by 
odhA, odhB and pdhD genes, is necessary for the 

AKGD catalysis and the pdhD gene is also responsible 
for the pyruvate dehydrogenase (PDH) reaction, only 
odhAB and sucCD, both in operon architecture, were 
�nally selected for in�vivo deletion, giving rise to strains 
PB5691 and PB5716, respectively (see Table� 2). We 
compared �-PGA production between the three strains 
(PB5383, PB5691 and PB5716) in batch fermentation 
experiments in EM� medium. Results showed that the 
growth rate of the two knockout strains (0.47�h�1 and 
0.33�h�1 for PB5691 and PB5716, respectively) was only 
slightly lower than PB5383 (0.54� h�1) and the growth 
pro�les during fermentation were very similar among 
the three strains (solid lines Fig.� 8a). In this condi-
tion, the reference strain was able to reach a maximum 
�-PGA concentration of 3.1�g/L, at t � 24�h, with a sub-
sequent decrease in polymer concentration (Fig.� 8b), 
consistent with a previously reported pro�le obtained 
for B. licheniformis in a similar growth medium [57]. 
On the other hand, the two new knockout strains 
showed a very di�erent �-PGA concentration pro�le, 

Fig. 7  Reaction deletions predicted by MoMA to optimize the production of γ-PGA. Predicted γ-PGA flux and growth rate by iYO844 or ec_iYO844 
for the single-reaction deletions and the best double-reaction deletions are reported. The slash indicates alternative double deletion solutions with 
the same predicted γ-PGA flux and growth rate. See text and Fig. 6 for a description of the reactions reported
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with a signi�cantly higher maximum concentration 
(p-value < 0.05; T-test), reached at t � 49� h (Fig.� 8b), 
while the maximum concentrations reached by the 
two mutants (6.5 and 7.2� g/L for PB5691 and PB5716, 
respectively) were not signi�cantly di�erent from each 
other. �e results were qualitatively con�rmed by poly-
mer separation on agarose gel electrophoresis (Fig.�8c): 
a higher concentration of �-PGA was observed in 
PB5716 and PB5691 at di�erent time points. As Fig.�8b 
suggests, biopolymer production rate also showed dif-
ferences among the tested strains. In particular, the 
reference strain was characterized by a production rate 
per biomass unit (0.087� g/gDW/h) signi�cantly lower 
than the knockout strains (p-value < 0.05; T-test). �e 
production rate per biomass unit of PB5691 (0.18� g/
gDW/h) was also signi�cantly higher than the one of 
PB5716 (0.11�g/gDW/h) even if the two mutants reached 
a comparable maximum concentration of �-PGA. 
In summary, the implementation of the identi�ed 

knockouts yielded a twofold higher maximum concen-
tration and per-cell production rate of �-PGA, with the 
deletion of odhAB being the most promising one in 
terms of production rate per biomass unit, as predicted 
by the enzyme-constrained model.

�e addition of 40�g/L of �-glutamate (EM� medium), 
a direct precursor of �-PGA, as in the original E medium 
composition, signi�cantly improved biopolymer pro-
duction compared to the EM� medium for all strains 
(Fig.�8d), while the growth pro�les remained very similar 
both in presence and in the absence of glutamate (dashed 
lines Fig.�8a). �e reference strain produced up to 32�g/L, 
while odhAB and sucCD mutants reached up to 43 and 
38�g/L, respectively (not statistically signi�cant di�erence 
compared to the reference strain; T-test). �e per-cell 
production rate showed a signi�cant di�erence between 
the reference strain (0.4�g/gDW/h) and the mutants, and 
between the two mutants (p-value < 0.05; T-test), with the 
odhAB deletion strain showing again higher production 
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(0.7� g/gDW/h) than the sucCD mutant (0.43� g/gDW/h). 
�e di�erences observed between fermentations in EM� 
and EM� were expected, since �-glutamate is a direct 
precursor of �-PGA; its presence results in increased 
�-PGA �ux, as previously measured [57]. For this reason, 
a smaller percent di�erence between the knockout and 
parent strains was also expected in EM� than in EM�.

Discussion
Following the principles of the recently proposed 
GECKO method, we integrated enzymatic and proteomic 
data for 17 central carbon-related pathways in an existing 
genome-scale metabolic model of B. subtilis. We showed 
that the resulting model, ec_iYO844, provides more accu-
rate prediction of metabolic phenotypes compared to the 
original non-enzyme constrained model. Both secretion 
and intracellular �ux predictions are considerably bet-
ter with ec_iYO844 than iYO844 for wild-type and, to 
a lesser extent, mutant strains. Notably, the large errors 
in wild-type �ux predictions observed in the original 
model, i.e. for the pentose phosphate pathway (in which 
no �ux was predicted), acetate secretion and TCA cycle 
(which were under- and over-estimated, respectively), are 
all �xed in ec_iYO844. Moreover, the new model does 
not require to �x glucose uptake rate to an experimen-
tally determined value, as was the case with the original 
model, since the glucose uptake �ux is determined by 
enzyme capacity constraints. �is advantage has been 
previously highlighted for other models adding con-
straints to existing genome-scale model [23]. A dataset of 
essential genes was also used to compare the accuracy of 
the initial and new model: the enzyme-constrained one 
provided a correct prediction (i.e., no growth) for more 
strains than the non-enzyme constrained model. �e 
speci�c values retrieved for kcat of enzymes are essential 
to achieve the improved prediction performance, since 
a randomized set of kcat values could not provide a simi-
lar accuracy. However, not all the enzyme constraints for 
reactions were essential to reach the predictive accuracy 
of the ec_iYO844 model: constraints for only four (TPI, 
GAPD_NAD, CS and PGCDr) of the 17 reactions were 
su�cient under the conditions that we used in this study. 
It is important to highlight that this result is expected to 
be speci�c for the data used to evaluate predictions.

While the originally proposed GECKO method 
adopted a genome-scale constraining of reactions in 
yeast, in this study only 17 reactions involved in central 
carbon metabolism were enzyme-constrained based on 
manually curated enzyme kinetic and proteomic data. 
�is small-scale constraining was su�cient to demon-
strate the potential of this approach with the experi-
mental data used, but larger-scale constraining would 
be expected to provide bene�ts for the prediction of 

reactions and metabolic engineering targets outside of 
central carbon metabolism. �e limitations of small-
scale constraining were apparent in the gene essenti-
ality predictions for genes outside of central carbon 
metabolism, which were not a�ected by enzyme con-
straints for central carbon metabolic reactions. �e pri-
mary challenge for developing constraints for reactions 
outside of central carbon metabolism is the limited 
availability of enzyme kinetic data for even relatively 
well-characterized organisms like B. subtilis. �e poor 
availability of high quality enzyme kinetic data has 
been identi�ed as a major impediment for developing 
improved computational models of cellular metabolism 
in general [58].

In contrast to essentiality predictions, enzyme con-
straints showed signi�cant e�ect in reducing �ux varia-
bility in reactions outside of central carbon metabolism. 
Out of the reactions with non-zero variability in the 
original iYO844 model, 81% of the reactions showed 
reduced �ux variability. �is demonstrates that enzy-
matic constraints can have an impact on di�erent 
pathways apart from the one in which constrained are 
added. �e result obtained for ec_iYO844 is consistent 
with the improvements observed in yeast with genome-
scale enzyme constraining. �e reduction in �ux vari-
ability suggests that the ec_iYO844 model could be 
better for strain design than the original iYO844 model 
even for products that do not directly come from cen-
tral carbon metabolism.

�e evaluation of the models in a metabolic engi-
neering study enabled the identi�cation of two prom-
ising gene deletion targets in TCA cycle that led to the 
improvement in the production of �-PGA, a biopolymer 
with a large number of applications. �e model without 
and with the integration of enzymatic data predicted 
the same single-reaction deletion targets (AKGD and 
SUCOAS). However, di�erences were observed in the 
quantitative prediction of �-PGA �ux of mutant strains 
and in the list of recommended double-reaction targets. 
Among these, a remarkable di�erence was that the origi-
nal model led to the selection of AKGD with OXGDC/
SSALy as best deletion combination, while the enzyme-
constrained model predicted that OXGDC/SSALy do 
not carry signi�cant �ux due to an undetectable protein 
level for one of the corresponding enzymes. �erefore, 
the strain design based on the original model was unnec-
essarily complex since the same result could be reached 
with a single-reaction knockout (AKGD).

Considering the single-reaction deletion targets, the 
inverse correlation of �-PGA production with the level of 
the enzymes catalyzing SUCOAS and AKGD was previ-
ously observed by Yu et� al. [54] in B. licheniformis, but, 
to our knowledge, no forward engineering studies have 
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been done to con�rm the e�ect of these knockouts. For 
this reason, the AKGD and SUCOAS reactions (encoded 
by odhAB and sucCD operons, respectively) were selected 
as deletion candidates in this study to test their e�ect on 
�-PGA biosynthesis.

�e two knockout strains (�odhAB and �sucCD) were 
constructed in�vivo by implementing gene deletions in a 
previously engineered strain (PB5383), capable of �-PGA 
production. Fermentation experiments showed that both 
mutants could reach a signi�cantly higher (twofold)  
maximum �-PGA concentration than PB5383 over a 
three-day growth in E medium without glutamate. �e 
�odhAB strain also signi�cantly outperforms the oth-
ers in terms of per-cell �-PGA production rate, with a 
two-fold improvement over PB5383. �ese results dem-
onstrated that TCA cycle �ux was successfully diverted 
towards glutamate, and subsequently toward �-PGA pro-
duction, by implementing the knockouts recommended 
by the model. As expected, the addition of �-glutamate 
in the medium increased �-PGA production in all strains, 
since �- and �-glutamate are precursors of �-PGA, but 
the �odhAB strain still showed improved production 
compared with the other strains.

Conclusions
In summary, we have developed a B. subtilis genome-
scale metabolic model with signi�cantly improved 
ability to predict metabolic �ux distributions and phe-
notypes. �e improved model relies only on a limited 
set of enzymatic constraints derived from measured 
protein expression pro�les and kinetic parameters 
reported in the scienti�c literature. �e application of 
this model to predicting metabolic phenotypes and met-
abolic engineering designs demonstrated the utility of 
the model and the value of relatively limited enzymatic 
constraints. �is work paves the way for improving 
genome-scale metabolic models of other industrially 
attractive organisms by incorporating enzyme kinetic 
and proteomic data available in databases and the scien-
ti�c literature.
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