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ARTICLE

Active control of anapole states by structuring the
phase-change alloy Ge2Sb2Te5
Jingyi Tian1,2, Hao Luo1, Yuanqing Yang 3, Fei Ding 3, Yurui Qu1,4, Ding Zhao5,

Min Qiu 1,6,7 & Sergey I. Bozhevolnyi 3

High-index dielectric nanoparticles supporting a distinct series of Mie resonances have

enabled a new class of optical antennas with unprecedented functionalities. The great wealth

of multipolar responses has not only brought in new physical insight but also spurred

practical applications. However, how to make such a colorful resonance palette actively

tunable is still elusive. Here, we demonstrate that the structured phase-change alloy

Ge2Sb2Te5 (GST) can support a diverse set of multipolar Mie resonances with active tun-

ability. By harnessing the dramatic optical contrast of GST, we realize broadband (Δλ/λ ~
15%) mode shifting between an electric dipole resonance and an anapole state. Active control

of higher-order anapoles and multimodal tuning are also investigated, which make the

structured GST serve as a multispectral optical switch with high extinction contrasts (>6 dB).

With all these findings, our study provides a new direction for realizing active nanophotonic

devices.
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Ever since the seminal work of Mie1, light scattering by
resonant small particles has attracted a vast amount of
attention in many branches of physics2. The intention to

control and manipulate light by fully exploiting the advantages
from scattering resonances, particularly at the nanometer scale,
has stimulated the emergence of modern nanophotonics3 and
spawned a myriad of applications ranging from biochemistry to
information technology4. In this context, low-loss, high-index
dielectric or semiconductor nanostructures featuring a diverse set
of optical resonances are currently in the spotlight of research as
they can serve as versatile and CMOS-compatible building blocks
for various photonic devices5–9. Besides the practical advances,
studies on dielectric nanoresonators have also brought new
insight into fundamental physics. Recent experimental investi-
gations on the scattering response of Si nanoparticles have not
only shown conventional radiant modes such as magnetic dipole
(MD) or electric dipole (ED) resonances10–12, but also revealed
the underlying physics of an intriguing scattering “dark state”, i.e.,
anapole state, characterized by a pronounced minimum in the
scattering spectra and an associated maximum in the near-field
energy13–15. Such a suppressed scattering state stems from two
antiphased electric and toroidal dipole moments, whose radiation
patterns are identical to each other and thereby interfere
destructively in the far field. This unique behavior of anapole
states shortly unveil its tantalizing potential in many scenarios
such as cloaking16,17, nanoscale lasers18, field enhancements19,20,
energy guiding21, harmonic generations22–24 and metamater-
ials25–27.

However, despite the great wealth of optical resonances and
rendered interesting phenomena, how to actively tune these
responses and further switch among them remains a daunting
challenge. This is because the induced near fields of dielectric
nanoparticles, unlike their plasmonic counterparts, are mainly
inside the structures and thereby only mildly sensitive to the
change of external environments. For the same reason, the
majority of research to date still focuses on passive structures,
whose functionalities are set in during fabrication and cannot be
altered afterward. Whereas there is a growing recognition of the
need to realize active dielectric components, most of the pub-
lished reports so far only display modest resonance shifts28–35.
For instance, a pioneering work using liquid crystals as embed-
ding media29 generates a maximum spectral shift Δλ ≈ 40 nm at
resonance wavelength λ ≈ 1550 nm, corresponding to a relative
resonance tuning Δλ/λ merely 2.6%. A very recent study
utilizing the thermo-optic effect of Si achieves a resonance shift
Δλ ≈ 30 nm at wavelength λ ≈ 1500 nm under an external tem-
perature around 300 °C33. Indeed, given the multitude of reso-
nances and follow-up functionalities offered by high-index
dielectrics, tuning one or a few spectral peaks with limited ranges
does not sufficiently employ all the benefits from such a fruitful
playground. While attempts are also being made to obtain
wideband tunability spanning over one linewidth36–38, active
mode switching between or among different dielectric resonances
is still an unexplored conundrum.

In this work, we realize broadband and controllable mode
shifting between distinct scattering states by structuring the phase
change alloy Ge2Sb2Te5 (GST-225, simply GST hereafter). Owing
to its striking electrical and optical contrasts between amorphous
and crystalline phases, GST has been widely used in commercial
memory applications and was recently introduced into the
nanophotonics community39. In contrast to the aforementioned
tuning mechanisms such as using liquid crystals or temperature
tuning, GST affords a different, non-volatile approach where the
induced optical change remains stable even after the removal of
external stimuli. So far, most of the research employs GST in the
form of thin films functioning as surrounding media for metallic

structures40–49. For instance, Chen et al. realized stepwise tuning
of the lattice resonance in a hybrid plasmonic system consisting
of a gold disk array and an underneath GST thin film40. The
characteristics of such configuration thus are still dominated by
lossy plasmonic resonances. Although there are also exciting
developments using GST itself as integrated optical con-
stituents50–55, detailed investigations on the fundamental optical
properties of GST nanostructures are surprisingly lacking39,56. In
fact, among all the phase-change chalcogenides, GST features one
of the highest refractive indices in its amorphous states57, which
satisfies the essential prerequisite for constructing dielectric
nanoantennas with strong Mie resonances. Here, we perform a
thorough multipole analysis to examine the optical response of
standalone GST nanostructures both theoretically and experi-
mentally. For the first time, we demonstrate that the high
refractive index and the low loss of GST empower its nanos-
tructures to support MD, ED and anapole states, in a similar
manner as other enticing dielectrics such as Si and Ge. Mean-
while, the distinctive tunability of GST makes all these resonances
actively controllable. By exploiting the intermediate phases of
GST, we show progressive mode shifting between scattering
bright and dark states over an extremely broadband region (Δλ/λ
~ 15%). Multimodal shifting among higher-order ED and anapole
states is also manifested, naturally making the investigated GST
structures function as a multispectral optical switch with high
extinction contrasts (>6 dB) as well as multi-level control abilities.
Hence, by discovering the concealed portfolio of actively con-
trollable resonances in GST nanostructures, our findings establish
a new basis for designing active optical components and pave the
way towards metadevices with tunability on demand58.

Results
Mie resonances in GST nanospheres. To analyze the electro-
magnetic response of GST nanostructures, we start our investi-
gation by considering the most general case for analytical
treatments: a GST sphere situated in the vacuum (see Methods).
Here we focus on the mid-infrared range given the high refractive
index, substantial optical contrast, and relatively low loss of the
GST material57. Fig. 1a conceptually illustrates two representative
scattering states, i.e., ED and anapole states, supported by the
GST sphere. At the ED resonance, the induced ED moment p
generates a considerable dipolar radiation, giving rise to a scat-
tering bright state. By contrast, the anapole mode features an
induced poloidal current of electric fields inside the particle,
associated with a torus of circulating magnetic fields17. Such an
intricate field distribution is characterized by a significant sup-
pression of far-field scattering. Therefore, this phenomenon is
also commonly referred to as a scattering dark state. Based on the
Mie theory, the spectral positions of these two modes are heavily
dependent on the refractive index of the particle. Therefore,
shifting between the modes could be realized by introducing a
delicate amount of index change to the GST sphere. To this end,
thermal, electrical, and optical stimuli could be utilized to induce
controllable phase transformations in the GST material, making it
possible to achieve not only the transition between amorphous
and crystalline states but also among intermediate (semicrystal-
line) levels39. The scattering response of a GST sphere with a fixed
radius R= 450 nm and varying crystallinities C is depicted in
Fig. 1b. With a stepped phase change ΔC= 25%, a progressive
shifting between scattering maxima and minima can be readily
observed. A detailed multipole analysis further shows that the
scattering maxima and minima are ambiguously attributed to
the ED and anapole states, respectively (Fig. 1c). In particular, the
anapole state (denoted as A) corresponds to the minimum partial
scattering contributed by the spherical ED, as unraveled by ref. 13.
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Other multipolar resonances, such as MD and magnetic quad-
rupole (MQ) are also distinctly manifested. The prolific multi-
polar effects of the GST sphere come from its notably high index
(naGST > 4, ncGST > 6, see Supplementary Note 1 and Supple-
mentary Fig. 1), which is of central importance to the field of all-
dielectric nanophotonics. Besides the two representative examples
(C= 0% and C= 25%) shown in Fig. 1c, in Supplementary
Fig. 2a we provide a detailed multipole analysis for other crys-
talline phases of GST, clarifying that the progressive shifts of the
multipolar effects indeed take place in the GST sphere with all
different crystallinities. The effects of the crystallinity and mate-
rial loss on the bandwidth of different Mie states are also dis-
cussed in Supplementary Note 2 and shown in Supplementary
Fig. 3.

In Fig. 1d–f we plot the field distributions of three typical
scattering states excited in the GST sphere. The incident
planewave propagates along the x-axis with the electric fields
polarized along the z–direction. At MD resonance (Fig. 1d), the
magnetic fields are concentrated at the center of the sphere with
noticeable scattered fields while the associated electric fields are
circulating around the center (Supplementary Fig. 2b). At ED
resonance (Fig. 1e), the electric fields exhibit a dipolar response
parallel to the incident polarization (z-axis). An appreciable
scattering process also occurs, as shown in Fig. 1e. However, in
contrast to the two bright modes, the GST sphere seems to be
transparent with imperceptible scattering at the anapole state
(Fig. 1f). The displayed field distribution with antiphased Ez
(Fig. 1f) and two field zeros (Supplementary Fig. 2c) along the
x–direction is indeed the signature of an anapole excitation, as
discussed in our previous work19,20. Hence, the rich collection of
active Mie resonances supported by GST spheres is revealed. We
note that, given the plethora of phenomena caused by Mie
resonances and associated multipolar effects5–9, active tunability
can straightforwardly be implemented into many existing

applications by utilizing GST resonators. For instance, in
Supplementary Note 3 and Supplementary Fig. 4, we explore
the possibilities to realize the mode shifting between the MD and
ED resonances. Such a tunability also allows us to actively control
the directionality of corresponding far-field scattering. Among all
the promising opportunities, here we focus our attention on the
mode shifting between ED and anapole states.

Broadband mode shifting between scattering bright and dark
states. Next, we examine the spectral response and the tuning
range of the mode shifting effect. Since the ED resonance and the
anapole state are related to the maximum and the minimum of
the ED contribution, they are only related to the multipole
coefficient a1 which is the function of the radius R, the crystal-
linity C and the incident wavelength λ (see Methods for more
details). Therefore, the spectral positions of the two modes are
determined by both the crystallinity C and the geometric size R.
In this regard, we first consider a GST sphere with an invariant
radius (R= 450 nm) and continuously change its crystallinity C.
The two-dimensional map of its scattering efficiency Qscat is
plotted in Fig. 2a. The pronounced scattering maxima and
minima (marked by the white dashed lines for eye guidance)
undergo continuous redshifts with the increasing crystallinity C.
To precisely identify the position of ED and anapole states, we
further analytically obtain the conditions for the two modes by
solving the following sets of equations and inequalities: (1) |a1(λ,
R, C)|′= 0, |a1(λ, R, C)|′′ < 0 for the ED resonance, and (2) |a1(λ,
R, C)|′= 0, |a1(λ, R, C)|′′ > 0 for the anapole state. With a fixed
R= 450 nm, the solution set (λ, C) is shown in Fig. 2b. The
shaded area between the ED (red) and the anapole (blue) lines
represents the effective region where the GST sphere can support
the mode shifting between a ED and an anapole state. An ultra-
broadband response of the shifting effect can be observed as the
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area spans over Δλ > 700 nm along the x-axis, corresponding to a
fractional bandwidth Δλ/λ > 20%. Similarly, the height of the area
along the y-axis indicates the amount of a phase change needed to
implement the mode shifting. Interestingly, such an amount is
nearly constant over the whole spectral range, meaning that the
presented mode shifting functionality (from the ED to the ana-
pole state) can be attained by simply introducing a fixed phase
change (ΔC ≈ 25%) to the GST nanosphere with an arbitrary
crystallinity C below 75%.

Then we study the impacts of the geometric size on the mode
shifting effect. To this end, we consider the spheres with different
radii R and investigate the scattering contrast of these spheres at
two distinct crystalline phases: amorphous (C= 0%) and an
intermediate phase (C= 25%). The scattering contrast Qconstrast is
defined as the ratio between the scattering efficiencies of the
spheres at the two phases. The 2D scattering maps of each phase
are provided in Supplementary Note 4 and Supplementary Fig. 5.
Noticeable spectral shifts of all the multipolar responses can be
clearly seen when the GST spheres experience a phase
transformation from the amorphous (Supplementary Fig. 5a) to
the semi-crystalline phase (Supplementary Fig. 5b), or vice versa.
Consequently, three substantial scattering contrasts over 10 dB
can be found on the map of Qconstrast (marked by the white
dashed lines in Fig. 2c). A multipole analysis (Fig. 2d) further
explicitly shows that these dramatic scattering contrasts are
mainly attributed to two mechanisms: (1) the spectral shifts of the
MD resonances, giving rise to transitions between resonant and
non-resonant states; (2) the mode “switching” between the ED
and the anapole states, giving rise to the transition from scattering
maxima to minima. In particular, we find that the spectral
positions of the ED and the anapole states are almost perfectly
overlapped with each other in the entire wavelength range of

interest (Δλ ≈ 1500 nm). Therefore, given a cluster of GST spheres
with various radii, by introducing a fixed amount of phase change
(here ΔC= 25%), all the structures possessing different ED
resonance wavelengths would exhibit the same functionality
shifting from the ED to the corresponding anapole state. Thus,
the mode shifting effects in GST nanostructures can be
maintained in a broadband range regardless of the original
resonance wavelengths. Such a nearly “non-dispersive” behavior
may find its applications in many interesting aspects. For
instance, a major challenge nowadays to realizing actively tunable
metasurfaces lies in the fact that metasurfaces are usually
composed of plasmonic or dispersive meta-atoms with different
sizes and different resonant wavelengths. Therefore, a uniform
optical change across the interface does not guarantee that the
metasurface can sustain its important functions (e.g., focusing,
invisibility, polarization conversion, etc) after active tuning. By
contrast, GST resonators with nearly non-dispersive behaviors
may provide a promising solution to overcome this issue.

Experimental realization of actively tunable scattering states.
To verify the proposed concepts, we then perform experiments
with GST nanostructures. Given the ease of fabrication and
convenience for observing anapole states, truncated GST disks
were fabricated by using E-beam lithography, magnet sputtering
deposition, and standard lift-off process (see Methods). The
geometric profile of the fabricated sample was measured by
atomic force microscopy (see Supplementary Note 5, Supple-
mentary Figs. 6 and 7). The height of the disks is 220 nm and the
ratio between the bottom and top radii of the GST disks is set to
2 μm for all the samples based on preliminary numerical designs.
Thus, in the following, we can simply use the bottom radius R to
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describe the geometric feature of the disks. An SEM image of
fabricated GST nanodisk array with R= 1 μm is shown in Fig. 3a.
A pitch g of 3 μm was chosen to avoid coupling between adjacent
nanostructures. The influences of the pitch size, the absorption
loss of the GST material, and the substrate CaF2 are thoroughly
examined and can be referred to Supplementary Note 6 and
Supplementary Figs 8 and 9.

To introduce different amounts of phase change and realize
intermediate phases of GST, here we applied thermal stimuli by
heating the sample on a hotplate at a fixed temperature 145 °C
but with different amounts of time. The extinction spectra of the
GST disks after different annealing time are presented in Fig. 3b.
We can clearly see that the GST disks indeed support notable
extinction maxima and minima with evident shifting between
these peaks and valleys, in a similar manner to the GST spheres.
Corresponding numerical results are provided in Fig. 3c and a
good agreement between the experimental and simulation results
can be observed. Here we estimate the crystallinity C by matching
the spectral position of the anapole states in the experimental,
similar to ref. 40. Slight deviations in relative resonance strengths
and linewidths might be attributed to the non-zero (although
small) oblique incident angle provided by the applied objective,
lattice effect, or a slight overestimation of the material loss used in
the simulation. Multipole decomposition of the spectral response
(see Methods) further clearly points out that the extinction
maxima and minima are exactly correlated with the ED and
anapole states, respectively. In particular, we find that, once a
phase change of ΔC= 50% is introduced (e.g., from C= 0% to
C= 50%, C= 25% to C= 75%, or C= 50% to C= 100%), the
GST disks would always undergo a shift between the ED and the
first-order anapole state (A1). Such a mode shifting effect thus
can be achieved in a broadband region over 600 nm (from 3.9 μm
to 4.6 μm, corresponding to Δλ/λ ~ 15%), which is remarkably
consistent with our previous theoretical investigations on the GST
spheres.

Besides the existence of the ED and A1 states, the large
diameter-to-height ratio of the disks also enables the emergence
of higher-order ED and anapole states, such as the second-order
anapole state (A2) supported by the 100%–cGST disk. The near-
field distributions of the ED, A1, and A2 states are depicted in
Fig. 3d–f. One can observe that the A2 state supports two pairs of
poloidal currents which result in four field zeros along the x-axis,
indicating a clear combination of the A1 state and an
accompanied standing wave character. This phenomenon can
be explained by the generation of hybrid Mie–Fabry–Perot
modes26 or the superposition of several internal modes59. Hence,
the A2 state possesses a stronger field confinement within the disk
volume compared to the A1 state, which leads to a higher
concentration of internal energy19. Therefore, such higher-order
anapoles could exhibit their unique advantages over their
fundamental counterparts, particularly in scenarios such as
harmonic generation23 and field enhancement20. Interestingly,
we find that the shifting between the A1 and the A2 states can be
also realized by changing a GST disk from its amorphous phase to
its crystalline phase (Fig. 3b, c).

Multimodal and broadband tuning behavior. After revealing
the higher-order anapole states, we then thoroughly examine the
multimodal response and associated tunable behavior of the GST
disk. In Fig. 4a we plot the simulated 2D scattering map of the
GST disk with different crystallinities C varying from 0% to 100%.
Scattering bright and dark states appear alternately across the
spectra, indicating the existence of higher-order ED (denoted as
ED2, ED3) and anapole states (see Supplementary Fig. 9 for
detailed multipole decomposition). The experimentally measured
spectral positions of these states coincide well with the simulation
results, as shown in Fig. 4b. One can clearly find that, besides the
demonstrated mode shifting response, various multimodal tuning
and shifting can be realized among the presented scattering states,
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e.g., the possible mode shifting from A1 to ED2, from ED2 to A2,
or from A2 to ED3 modes, etc. It is also worth mentioning that,
mode shifting can not only occur between a bright and a dark
state but also take place within two bright (e.g., ED2 and ED3) or
two dark (e.g., A1 to A2) states. Compared to the GST sphere, the
fabricated GST disk possesses much more fruitful tuning and
mode shifting phenomena due to its additional broken symmetry.
Therefore one may naturally expect to unlock numerous new
possibilities by structuring GST into different resonant shapes.

Next, we investigate GST disks with different radii R.
Experimental and simulation extinction spectra of the disks at
three representative crystalline phases (C= 0%, C= 50%, and
C= 100%) are plotted in Fig. 4c. A good accordance between the
experimental and simulation results can be seen for all the disks.
In particular, when a phase change ΔC= 50% is introduced, all
the disks exhibit the same mode shifting response from the ED1
to the A1 states, despite their different ED1 resonance
wavelengths λED1 ranging from 3.2 μm to 4.6 μm. Similarly,
when a phase change ΔC= 100% is introduced (from the
amorphous phase to the crystalline phase), all the disks with
different radii shift their A1 states to corresponding A2 states at
different wavelengths λA1 spanning from 2.7 μm to 3.7 μm.
Hence, for both aforementioned mode shifting effects (ED1 to A1
and A1 to A2), nearly non-dispersive responses over 1 μm are
demonstrated. Once again, these results substantiate our previous
theoretical investigations on GST spheres. It is also worth noting
that other multimodal responses such as the shifting from A1 to
ED2 and from ED2 to A2 are also sustained for all the disk sizes
in a broadband region.

Finally, it is interesting to point out that the presented tunable
scattering bright and dark states of the GST structures naturally
lend themselves as an optical switch. In contrast to conventional

optical switches which usually work at single wavelengths41, here
the multimodal tuning and shifting behavior of the GST disks
endow themselves with a multispectral capability. As we can see
from Fig. 5, once a 50% phase change is introduced (e.g., from
C= 0% to C= 50%, the blue curve), the GST disks will undergo
three disparate switching at three different wavelengths simulta-
neously. Both “on” and “off” states of the optical switch thus
could be achieved at the same time in different spectral regions. A
high contrast ratio of 6 dB is obtained without any further
geometry optimization. Moreover, due to the broadband response
of the switching functionalities, such a multispectral characteristic
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is sustained for different crystalline phases of the GST material
(e.g., the red and the yellow lines in Fig. 5), which offers the
possibilities for the optical switch to monitor or be controlled by
multi-level external stimuli. Besides, similar to the case of GST
spheres, other mode shifting effects could also be realized by
exploiting intermediate phases in the GST disk arrays with
properly designed geometry, a new fascinating direction that
promises many future developments. In Supplementary Note 7
(and Supplementary Figs. 10 and 11), we exemplify these
possibilities by providing a numerical demonstration of a GST
metasurface for tunable beam steering.

Discussion
In summary, we investigated the fundamental optical response of
individual GST nanostructures by virtue of a rigorous multipole
analysis. We revealed that the high index and the dramatic optical
contrast of the GST material empower its nanostructures to
support a distinct series of Mie resonances with active tunability.
Since the entire field of all-dielectric meta-optics rests on multi-
polar Mie resonances and their interference, by offering such a
dynamic resonance palette, GST nanostructures thus can serve as
a powerful platform for tunable nanodevices towards various
applications including metasurfaces, biosensing, and nonlinear
optics. In particular, we then demonstrated the spectral shifting
between ED and anapole modes, corresponding to scattering
bright and dark states, respectively. A broadband response of the
mode shifting effect was examined and we showed that the ED-
to-anapole shifting can be achieved in a GST nanodisk by simply
introducing a phase change ΔC= 50% at any given wavelengths
between 3.9 μm to 4.6 μm and with an arbitrary crystallinity of
the GST disk. Furthermore, we demonstrated the nearly non-
dispersive behavior of the modes shifting response over 1 μm,
indicating that a uniform phase change can enable structures with
different sizes to exhibit the same tuning functionality, regardless
of their distinct resonance wavelengths. In addition, the existence
of higher-order ED and anapole states was presented with a
thorough study on the multimodal shifting among all these states.
As a proof-of-principle application, we demonstrated a multi-
spectral optical switch with multi-level control capabilities. We
note that our present work provides a systematic yet prototypical
demonstration of the active multipolar effects in GST nanos-
tructures via thermal annealing. To realize reversible tuning with
electric or optical stimuli, further considerations and adaptions of
the layout need to be taken into account, for example, the
inclusion of electrodes and protective layers39. Nevertheless, given
the plethora of unexplored possibilities hindered in the structured
GST material, we envision that our results open an entirely new
direction in active meta-optics. As a final remark, we mention
that there is a wide selection of phase-change chalcogenides
featuring extraordinary optical contrasts and low loss57, holding
the promise for further developments and other opportunities.

Methods
Analytical calculations for GST spheres. To obtain the electromagnetic response
of the GST spheres, we applied Mie theory2 which offers the exact solution to the
scattering problem and allows writing the scattering efficiency Qscat in the following
simple form:

Qscat ¼
2

k2R2

X1

‘¼1

ð2‘þ 1Þ a‘j j2þ b‘j j2� �
; ð1Þ

where Qscat is defined as the ratio between the scattering cross section and the
geometrical cross-section of a sphere, namely πR2. k= 2π/λ is the wave number
related to the incident wavelength λ. The contributed multipole coefficients a‘

(electric) and b‘ (magnetic) can be read as:

a‘ ¼
½D‘ðnKRÞ=nþ ‘=kR�ψ‘ðkRÞ � ψ‘�1ðkRÞ
½D‘ðnKRÞ=nþ ‘=kR�ξ‘ðkRÞ � ξ‘�1ðkRÞ

; ð2Þ

b‘ ¼
½nD‘ðnKRÞ þ ‘=kR�ψ‘ðkRÞ � ψ‘�1ðkRÞ
½nD‘ðnKRÞ þ ‘=kR�ξ‘ðkRÞ � ξ‘�1ðkRÞ

; ð3Þ

where n is the refractive index of GST. D‘ðnKRÞ is defined as
D‘ðnKRÞ ¼ ψ′

‘ðnkRÞ=ψ‘ðnkRÞ, with ψ‘ðkRÞ and ξ‘ðkRÞ the Riccati-Bessel functions
of the first and second kind. The total scattering of the GST spheres was calculated
by considering the multipole contributions up to the quardupole order.

In all calculations, we adopted experimentally measured optical constants of
GST (Supplementary Fig. 1). For any intermediate phases with a crystallinity C
(0 ≤ C ≤ 1), the dielectric constant εGST(λ, C) of GST can be estimated by using the
effective medium theories (EMTs). Out of various EMTs, here we choose to use the
Lorentz-Lorenz relation as it is so far one of the most widely used approaches in the
simulation of hybrid and isolated GST nanostructures40,56. Comparing to other
EMTs such as the Maxwell-Garnett approximation60, the maximum difference in
the real part of the refractive index Δn0 between different EMTs was found to be
smaller than 5%. Therefore, our estimation is well within the acceptance of EMT
approximation. The Lorentz-Lorenz relation can be expressed as follows61:

εGSTðλ;CÞ � 1
εGSTðλ;CÞ þ 2

¼ C ´
εcGSTðλÞ � 1
εcGSTðλÞ þ 2

þ ð1� CÞ ´ εaGSTðλÞ � 1
εaGSTðλÞ þ 2

; ð4Þ

where εaGST and εcGST are the permittivities of amorphous and crystalline GST,
respectively. Therefore, by applying Eq. (1–4), we can clearly identify ED and
anapole states by treating the partial scattering of the electric dipole:
Qscatja1 ðλ;R;CÞ.

Numerical simulations and multipole decomposition. We performed three-
dimensional FDTD simulations with a commercial software package (Lumerical).
The optical constants of the GST disks with different crystallinities was determined
by the experimental ellipsometric data (Supplementary Fig. 1) and the Eq. (4). The
refractive index of the substrate CaF2 was set to 1.462. A normal-incident total-
field/scattered-field planewave source was utilized to calculate the extinction,
scattering, and absorption cross-section of the GST disks. A mesh size of 10 nm
was set over the whole volume of the GST disks. Perfectly matched layers were set
as the boundaries to enclose the simulation area. To carry out multipole decom-
position of the simulated spectra, a three-dimensional frequency-domain field
monitor was used to record the electric fields E(r) at every discretized points r
(coordinate respective to the disk’s center) inside the disks. By defining the
polarization current J(r)=−iωε0[εr(r)− 1]E(r), the electric að‘;mÞ and magnetic
bð‘;mÞ spherical multipole coefficients can be calculated via the following for-
mulae63:

að‘;mÞ ¼ ð�iÞ‘�1kη
2πE0

ffiffiffiffiffiffiffiffiffiffiffi
ð‘�mÞ!

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ1Þð‘þmÞ!

p R
expð�imϕÞ ½ψ‘ðkrÞ þ ψ′′

‘ ðkrÞ�Pm
l ðcosθÞbr � JðrÞ

n

þ ψ′
l ðkrÞ
kr

d
dθ P

m
l ðcosθÞθ̂ � JðrÞ � im

sinθ P
m
l ðcosθÞϕ̂ � JðrÞ

h io
d3r;

ð5Þ

bð‘;mÞ ¼ ð�iÞ‘þ1k2η
2πE0

ffiffiffiffiffiffiffiffiffiffiffi
ð‘�mÞ!

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ1Þð‘þmÞ!

p R
expð�imϕÞj‘ðkrÞ im

sinθ P
m
l ðcosθÞθ̂ � JðrÞ

h

þ d
dθ P

m
l ðcosθÞϕ̂ � JðrÞ

i
;

ð6Þ

where E0 is the electric field amplitude of the incident plane wave; η is the
impedance of free space; jl(kr) is the spherical Bessel function of the first kind and
Pm
l ðcosθÞ is the associated Legendre polynomials. Thus the total scattering cross

section Cscat of the GST disks can be written as the sum of partial contributions
from these derived multipoles:

Cscat ¼
π

k2
X1

‘¼1

Xl

m¼�‘

ð2‘þ 1Þðjað‘;mÞj2 þ jbð‘;mÞj2Þ: ð7Þ

We note that the above equations allow for calculating spherical multipoles of
arbitrarily high order. As such, we can unambiguously identify not only
fundamental but also higher-order multipoles of GST disks.

Sample preparation. A 280-nm-thick PMMA (950K AR-P 672.11) was spun onto
CaF2 substrate as an electron beam resist and baked on a hotplate for 3 min at 150 °
C. Then a 50-nm-thick conductive protective coating (AR-PC 5090.02) was spun
onto the PMMA film and baked for 2 min at 90 °C. This coating is used for the
dissipation of e-beam charges on insulating substrates. The PMMA was exposed to
define a nanohole array by E-beam lithography. All e-beam patterning was per-
formed by SEM, which is equipped with a Raith Elphy Quantum lithography
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system. The conductive layer was dissolved in DI water for 1 min and then the
PMMA was developed in the developer (AR 600-56) for 3 min followed by rinsing
in IPA. After the development, a 220-nm-thick GST film was then deposited onto
the sample by magnetic sputtering with 50W DC sputtering power while the
substrate temperature was kept at room temperature. The deposited GST thin film
was in its amorphous phase. The GST nanodisk array was realized after lift-off by
ultra-sonic processing in acetone for 1 min.

Sample characterization. Transmission spectra were measured by using an
infrared microscope (Hyperion1000) coupled to a Fourier transform infrared
spectrometer (FTIR, Vertex 70). The detector used in the measurement is an MCT
detector integrated into the microscope. The size of the probed area is 40 × 40 μm2,
corresponding to ~64 disks in the array with a 3 μm gap distance. All the mea-
surements represent an average of 16 scans taken at a resolution of 4 cm−1. To
determine the transmittance (T) of the GST arrays, air was used as the reference.
Experimental extinction spectra were then derived as 1− T. A 15× Schwarzschild
objective is applied, which operates at ~16.7° off-normal to the surface of the
sample and has a collection cone apex angle of ±7°. Given the small incident angle
of the objective and the large diameter-to-thickness ratio of the GST disks, the
fabricated structures in our study do not exhibit strong angular dispersion. Phase
transformation of the GST material was induced by baking the samples on a hot
plate which maintained a temperature of 145 °C. To ensure a systematic optical
characterization of each sample, the phase-changing process and transmission
measurement were implemented progressively. After being heated for 1 min, the
sample was cooled down naturally and then transmission spectra were measured.
Another cycle of the annealing process and the extinction measurement would be
carried out thereafter until the GST disks were fully crystallized. The scanning
electron microscope images were taken by Zeiss Ultra55 and the atomic force
microscope (AFM) images were taken by VEECO Multimode.

Data availability
The authors declare that all data supporting the findings of this study are available
within this article and its supplementary information files or from the corre-
sponding author upon reasonable request.
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