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SUMMARY 

Punctuality of railway networks depends on several factors, associated with the 

planning phase or the operation phase. In the planning phase, robust timetables are 

designed to withstand the variability in operation and to contain the generation of primary 

delays. Also, railway planners seek timetable stability to absorb primary delays reducing 

the propagation into secondary delays and return quickly to the unperturbed condition. 

Besides, primary delays that occur in the operations phase can be reduced by improving 

the industrial processes behind the railway services. Understanding how delays generate 

and propagate is central to the efficient design of robust timetables and corrective measures 

of service production processes. 

The purpose of this study is the examination of the phenomena related to delays 

in railways, from both theoretical and empirical perspectives. The theoretical structure of 

delays is examined in analytical models. The effects of selected timetabling decisions are 

investigated in simulation models. Empirical studies on delay records from the realized 

operation are provided to identify recurrent patterns in the delay generation and recovery. 

In the first section, the study evaluates commonly used indicators for timetable 

stability and robustness and compares their sensitivity to changes in traffic volume, 

heterogeneity, and the infrastructure layout. The comparison includes analytical measures 

based on the timetable structure and measures based on simulation of operation under 

known perturbations. On the one hand, ex-ante analytical measures focus typically on 

traffic heterogeneity and line exploitation, often considering individual characteristics of 

the timetable only separately. For instance, delay recovery is usually modeled through 

either running time supplements or headway buffers between trains. On the other hand, 

simulation of operation mimics the behavior of railway systems and provides a more 

detailed insight. Simulation tools allow different types of measurements, such as the 

individual train delays recorded at different timing points, which can be evaluated in 

different methods. The accuracy of simulation comes, though, at the price of higher 

demand for computational time and resources. In this section, aggregate delay as a function 

of primary delays is measured in a microsimulation environment, and it is described as a 

valid indicator of timetable reliability. However, the extensive calculation performed in 

microsimulation makes this method unsuitable for applications where the velocity of 

calculation counts. For instance, online applications for decision support tools need fast 

responses, in a few seconds, and heuristic optimization algorithms often require recursive 

calculations, so the overall response times dilate quickly. In this thesis, methods to reduce 



Analytical, Big Data and Simulation Models of Railway Delays 

VI 

the amount of simulation are also investigated, based on the same robustness measures 

under evaluation. 

The first section of this thesis identifies a valid measure of timetable robustness 

in the aggregate line delay related to known incidents. One of the major obstacles to the 

application of this type of measure in real-time traffic management and optimization is its 

dependence on simulation, which is a time-consuming process. The following section 

presents alternative methods that combine analytical and simulation models to estimate 

the aggregate line delay as a function of primary delays with reduced resources 

requirement, paving the way to applications that require prompt responses. In the second 

section, an analytical model is presented to describe the delay propagation in a closed form 

function, allowing quick calculation of the reliability indicators identified in the previous 

section, including aggregate line delay. Analytical models are typically much faster than 

microsimulation and are therefore more suitable for optimization environments and online 

decision support tools. The mathematical model provides insight into the relationship 

between primary delays and the consequent total disturbance on railway lines. This 

relationship is described by a composite polynomial, which spans from first to third degree, 

depending on the magnitude of primary delay relative to the size of the study domain. 

Timetable design parameters can be adjusted in this model, and different settings can be 

quickly compared. The robustness given by different values of running time supplements, 

headway buffers, and punctuality threshold can be assessed. The model is initially 

formulated for homogeneous traffic on railway lines. It is later integrated with stochastic 

simulation to support heterogeneous traffic and to include the delay generation process. 

This process consists of three parts. The first part, the incident simulation, mimics events 

that block the railway, such a temporary track blockage, or signal failure, described by the 

distributions of initial time and duration. In the second part, the model generates primary 

delays combining the incident with the timetable structure. Lastly, the primary delay is 

propagated to the subsequent trains and the downstream stations. In the stochastic 

simulation model for heterogeneous traffic, the total delay is estimated as a consequence 

of an incident that affects an individual train service, and a weighted average is then used 

to derive the total delay function associated to the whole timetable. In addition to the 

aggregate line delay, the model provides the individual delays of every train recorded at 

each station and can be extended, therefore, to implement several metrics. 

Both the analytical and simulation models presented in the previous sections rely 

on simplifying assumptions. One of the most influential assumptions, yet one of the most 
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frequent, is that trains always use all the slack available in the timetable to recover from 

delays, in the absence of further circulation conflicts. In reality, delay recovery is a 

stochastic process itself, and it is ruled by several factors, driving behavior, rolling stock 

performance, and passenger comfort among others. Furthermore, possible recovery 

depends on the allocation of timetable slack along the path. In the timetabling phase, 

railway planners typically allocate the slack according to general rules from practice. 

Investigation of recurrent patterns in delay development and recovery in railway operation 

can improve this process, giving the opportunity to tailor the slack according to specific 

characteristics of individual train services. The whole railway operation can also be 

improved identifying the factors that cause recurrent delays so that individual critical 

processed can be fixed, and specific delay mitigation measures can be designed. In the 

third section, this study lastly analyses empirical records from railway operation to extract 

information for modeling and to identify systematic delays that require specific 

countermeasures. Distributions of realized running times are studied to understand the real 

maximum performance of trains and the minimum feasible running time on a line section. 

The actual use of running time supplement to recover from delays highlights points of lack 

or excess of timetable slack. In this way, the real potential delay recovery available in the 

timetable can be determined to support robustness analyses of the timetable. Big data 

techniques are successively applied to empirical records to identify recurrent delay 

patterns to be associated with specific service characteristics, such as time factors and 

rolling stock performances. Timestamps from railway operation are arranged in delay 

profiles of individual service runs, which are then classified in clusters of services that 

develop their delay in similar ways. The method identifies locations where the delay 

changes recurrently in the same way, which may suggest changes in the schedules, or in 

the processes linked to the railway operation. The K-means clustering method finds 

application in very different fields, and it is generally appreciated for its simplicity and 

velocity. The resulting classes of delay profiles are eventually linked to the characteristics 

of individual trains, so that specific and focused corrective measures can be designed for 

the railway service production processes. 

In summary, based on the knowledge developed in this study, it is possible to 

design robust timetables and to investigate the influence of selected parameters already in 

the planning phase. The study contributes the literature with an analytical delay 

propagation model, with the application of data analysis of the realized operation, and 

covers, besides, methods for appraisal of service reliability. 
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The total delay generated on a railway line as a function of primary delays is 

identified as the indicator that is most sensitive to variations in traffic volume and 

infrastructure improvements. Methods to estimate this measure without using 

microsimulation are proposed, making analyses quicker, and opening the possibilities to 

include such statistics in online applications and optimization models. Additionally, the 

empirical analyses presented permit the identification of recurrent delay patterns in railway 

operation, supporting the design of dedicated corrective measures of productive processes. 
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RESUMÉ (DANISH) 

Rettidigheden af togtrafik på jernbanenet afhænger af flere faktorer som kan 

relateres til planlægningsfasen eller med driften. I planlægningsfasen bliver robuste 

køreplaner designet med fokus på at begrænse dannelsen af primære togforsinkelser samt 

på at absorbere dem for at hurtigt vende tilbage til normal drift ved at reducere opformering 

af sekundære forsinkelser af andre tog. Primære togforsinkelser i togtrafikken kan også 

reduceres ved at forbedre de bagvedliggende driftsprocesser. At forstå hvordan 

forsinkelser opstår og opformeres er centralt i forhold til at forbedre design af robuste 

køreplaner og korrigerende produktionsprocesser i jernbanetrafikken. 

Dette studie undersøger de fænomener, der er forbundet med forsinkelser i 

jernbanedrift, både fra en teoretisk og empirisk vinkel. Den teoretiske struktur af 

forsinkelser bliver undersøgt grundigt ved hjælp af analytiske modeller. Effekterne af 

valgte beslutninger i køreplanerne vurderes med simuleringsmodeller. Endelig 

gennemføres empiriske studier af forsinkelsesårsager for at identificere tilbagevendende 

forsinkelser i togdriften. 

I den første del af afhandlingen undersøges almindeligt anvendte indikatorer for 

køreplansstabilitet og robusthed for at forstå hvordan de er påvirket af trafikvolumen, 

heterogenitet af køreplaner og forskellige infrastrukturlayout. Den typiske fokus på 

trafikheterogenitet og linjeudnyttelse af ex-ante analytiske målinger sammenlignes med 

målinger baseret på driftssimulering. Driftssimulering efterligner driften af 

jernbanetrafikken og skaffer meget detaljeret indsigt herom, dog på bekostning af højere 

krav til beregningsmæssige ressourcer. Studiet anvender mikrosimulering af 

jernbanedriften og finder ud, at den aggregerede linjeforsinkelse, afviklingstid og 

gennemsnitlige togforsinkelse er egnede indikatorer for driftssikkerhed. Det bliver 

sammenlignet med standard indirekte målinger primært baseret på linjekapacitet og 

udnyttelse eller planlagte buffere mellem vognløb og deres fordeling. Den massive 

beregning, der kræves til mikrosimulering, gør dog metoden uegnet til online anvendelser 

til beslutningsstøtte såvel som til rekursive anvendelser i f.eks. de heuristiske 

optimeringsmodeller, der typisk bruges til køreplanoptimering. Afhandlingen undersøger 

derfor også metoder til at mindske mængden af simulation ved anvendelse af de samme 

målinger af robusthed under evaluering. 

Som konklusion er mikrosimulering en særdeles detaljeret metode til at 

modellere jernbanedrift, men det er også en ressourcekrævende proces. For at mindske 

beregningsbehovet præsenteres derefter i den anden del af afhandlingen en analytisk 
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model til beregning af forsinkelsesopformering med en lukket formel, som tillader hurtig 

beregning af indikatorerne for driftssikkerhed. Analytiske modeller er typisk meget 

hurtigere end mikrosimulering og er derfor mere egnet til at indgå i optimeringsmodeller. 

Det er også tilfældet med den i studiet udviklede model. Den matematiske model skaber 

indsigt i forholdet mellem primære forsinkelser og den totale forsinkelse dannet på 

jernbanelinjer. Modellen beregner de individuelle forsinkelser af hver eneste tog ved hver 

station. Forholdet mellem primære forsinkelser og aggregerede linjeforsinkelser bliver vist 

i en sammensat polynom som spænder fra første til tredje grad ifølge 

forsinkelsesgenopretning. Køreplan parametre kan så justeres med denne model for at 

beregne effekten af forskellige værdier af køretidstilskud og togfølgetids buffere. 

Modellen udvikles først til homogen trafik på enkeltsegmenter af jernbaner og bliver 

derefter integreret med stokastisk simulation og udvidet til heterogen trafik samt til at 

omfatte forsinkelsesgenereringsprocessen. Fordelinger af afgangstid og varighed af 

begivenheder kombineres med køreplansstruktur for at modellere 

forsinkelsesgenereringen forårsaget af begivenheder, som for eksempel en midlertidig 

sporblokering eller en fejl ved signalerne. I den stokastiske model bliver den aggregerede 

forsinkelse beregnet som konsekvens af en begivenhed, der påvirker et specifik tog, og det 

vægtede gennemsnit benyttes derefter til at beregne den totale forsinkelsesfunktion 

forbundet til hele køreplanen. 

Studiet analyserer i den tredje del empiriske data fra jernbanedrift for at uddrage 

oplysninger til parametrisering af modelleringen og for at kunne identificere systematiske 

forsinkelse, der kræver specifikke modforanstaltninger. Fordelinger af realiserede 

køretider studeres for at forstå togenes reelle maximale ydeevne og de korteste mulige 

køretider på en given strækning. På denne måde kan det faktiske slæk i køreplanen 

beregnes som støtte til robusthedsanalyser. Big-data teknikker anvendes til analyser af 

empiriske data for at identificere tilbagevendende forsinkelsesmønstre, som kan forbindes 

med specifikke serviceegenskaber, som f.eks. tidsfaktorer og ydeevne af det rullende 

materiel. Tidsstempler fra banedriften arrangeres i forsinkelsesprofiler af individuelle 

vognløb, hvilke så grupperes ved hjælp af cluster teknikker i grupper af vognløb med 

sammenlignelige forsinkelsesmønstre. K-means clustering anvendes i mange forskellige 

felter og værdsættes for metodens enkelhed og hurtighed. De resulterende klasser af 

forsinkelsesprofiler forbindes til individuelle vognløbs egenskaber, så specifikke og 

fokuserede korrigerende foranstaltninger kan designeres til jernbanedriften og køreplaner. 
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Alt i alt gør den udviklede viden det muligt at planlægge robuste køreplaner og 

at undersøge effekter af valgte parametre allerede i planlægningsfasen. Studiet bidrager til 

litteraturen med en analytisk model for forsinkelse udbredelse med anvendelse af 

dataanalyser for realiseret drift og dækker ydermere metoder for driftsikkerhedsvurdering. 

Den totale forsinkelse genereret på en banelinje i forhold til primære forsinkelser 

vises at være den mest sensitive indikator for robusthed ved ændringer af trafikvolumen 

og infrastrukturforbedring. En analytisk metode udvikles til at beregne dette mål uden 

mikrosimulering. Denne metode gør analyser hurtigere og gør det muligt at inkludere 

sådanne mål i online anvendelser og optimeringsmodeller. Derudover tillader de 

præsenterede empiriske analyser identifikation af tilbagevendende forsinkelsesmønstre i 

jernbanedrift, hvilket støtter designet af specifikke korrigerende foranstaltninger af 

driftsmæssige processer. 

 





Table of contents 

XIII 

TABLE OF CONTENTS 

Preface  .............................................................................................................................I 

Acknowledgments ........................................................................................................... III 

Summary ........................................................................................................................... V 

Resumé (Danish) ............................................................................................................. IX 

Table of contents .......................................................................................................... XIII 

1 Introduction ........................................................................................................ 1 

1.1 Aim and main contribution ............................................................................ 2 

1.1.1 Measures of service reliability .................................................................. 3 

1.1.2 Analytical model of delay propagation in railways .................................. 6 

1.1.3 Data analysis ........................................................................................... 12 

1.2 Conclusions ................................................................................................. 16 

1.2.1 Measures of robustness ........................................................................... 17 

1.2.2 Analytical models of delay propagation in railways ............................... 19 

1.2.3 Analyses of realized operation ................................................................ 21 

1.3 Further research ........................................................................................... 25 

1.4 Outline ......................................................................................................... 26 

References .................................................................................................................. 26 

2 Measures of reliability of railway services ....................................................... 29 

2.1 Paper I: Micro-Simulation Based Analysis of Railway Lines Robustness .. 29 

Abstract  ................................................................................................................ 29 

2.1.1 Introduction ............................................................................................ 31 

2.1.2 Survey on robustness of timetables......................................................... 31 

2.1.3 Methods .................................................................................................. 36 

2.1.4 Application: the Oude Lijn in the Netherlands ....................................... 41 

2.1.5 Conclusions and further studies .............................................................. 48 



Analytical, Big Data and Simulation Models of Railway Delays 

XIV 

2.1.6 References .............................................................................................. 49 

3 An analytical delay propagation model ............................................................ 53 

3.1 Paper II: A Closed Form Railway Line Delay Propagation Model .............. 53 

Abstract  ................................................................................................................ 53 

3.1.1 Introduction ............................................................................................ 54 

3.1.2 Literature Review ................................................................................... 55 

3.1.3 A Model for Cumulative Line Delay in Full Recovery Condition .......... 61 

3.1.4 A Universal Polynomial Form for Primary Delays at Unspecified Stations 

(Any Recovery Condition) ..................................................................... 72 

3.1.5 Case study ............................................................................................... 81 

3.1.6 Model discussion .................................................................................... 84 

3.1.7 Conclusion .............................................................................................. 88 

References ............................................................................................................. 89 

3.2 Paper III: Delay Estimation on a Railway-Line with Smart Use of Micro-

Simulation .................................................................................................... 93 

Abstract  ................................................................................................................ 93 

3.2.1 Introduction ............................................................................................ 94 

3.2.2 Incident, primary delay probability and total delay ................................ 97 

3.2.3 Case study: The Nordbane in Copenhagen ........................................... 103 

3.2.4 Results and discussion .......................................................................... 106 

3.2.5 Conclusions .......................................................................................... 107 

3.2.6 References ............................................................................................ 108 

4 Data analysis of realized operation ................................................................. 111 

4.1 Paper IV: Causal Analysis of Railway Running Delays ............................ 111 

Abstract  .............................................................................................................. 111 

4.1.1 Introduction .......................................................................................... 112 

4.1.2 Case study ............................................................................................. 115 



Table of contents 

XV 

4.1.3 Conclusions .......................................................................................... 118 

References ........................................................................................................... 119 

4.2 Paper V: Application of Data Clustering to Railway Delay Pattern 

Recognition ................................................................................................ 121 

Abstract  .............................................................................................................. 121 

4.2.1 Introduction .......................................................................................... 122 

4.2.2 Literature survey ................................................................................... 123 

4.2.3 Identification of recurrent delay patterns using big data techniques ..... 133 

4.2.4 Case study: The Kystbane, Copenhagen ............................................... 136 

4.2.5 Discussion............................................................................................. 152 

4.2.6 Conclusions .......................................................................................... 154 

References ........................................................................................................... 155 

 





Introduction 

Aim and main contribution 

1 

1 INTRODUCTION 

The reliability of railway services is one of the most relevant factors that 

influence the attractiveness for passengers (Parbo et al., 2016). Beyond the expected 

magnitude of delays, the variability of travel times affects the passengers’ preferences in 

the modal choice (Preston et al., 2009), and it can be measured, for instance, by the 

dispersion of delays. The increasing request for mobility is generating new challenges to 

the operators to keep adequate service quality while satisfying an enlarged demand. The 

relation between traffic volume and delays is, in fact, twofold. On the one side, an 

undersized service is often affected by primary delays at stations, which are generated by 

unplanned extensions of dwell times due to the large crowds (Huisman and Boucherie, 

2001). On the other side, high traffic density entails a high degree of interactions between 

trains, which generates conflicts and secondary delays worsening the service quality 

(Gibson et al., 2002; Haith et al., 2014; Olsson and Haugland, 2004). Railway systems are 

inherently more constrained than other forms of transit, such as bus networks, and the 

infrastructure capacity constraints limit the number of transport services that can operate. 

Efficient use of the infrastructure, and of the transport system in general, is, therefore, 

especially significant in railways. 

The combined theoretical and empirical knowledge about the interactions 

between the components of the railway system supports the development of more efficient 

plans and operations. A detailed comprehension of the generation, propagation, and 

recovery of railway delays facilitates an improved allocation of timetable slack and 

production resources. The safety and operational equipment integrated into the railway 

components collect data systematically and constitute an essential source of information 

for the planning, management, and revision of the processes. Empirical knowledge on 

delays can be deployed to improve the service punctuality, and therefore the attractiveness 

for passengers. The schedules may be designed more robust to the variations of daily 

operation, and corrective strategies may be implemented to improve the whole service 

production process and reduce thus the service time variability. Several research projects 

are focusing on methods to improve the transport service attractiveness, improving the 
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service reliability, increasing the transport supply, and improving the connections between 

different means of transportation (e.g., IPTOP1, FOR20832, ONTIME3, and Shift2Rail4). 

This PhD project is part of the IPTOP research program at the Technical 

University of Denmark, which aims at improving the public transport by integrating the 

optimization processes among different operators, and across different means of transport. 

1.1 Aim and main contribution 

This PhD project focuses on rail operation, through data collection and analysis 

with mathematical and simulation models. The main purpose is to gain a better 

understanding of the formation, propagation, and recovery of delays in railways. Due to 

the research project constraints, the availability of material, and the opportunistic nature 

of data, the case studies of the distinct chapters focus on different Danish railway lines, or 

lines with similar characteristics from other countries, such as the Netherlands. The project 

contributes with insights from different perspectives, with the overall purpose of 

improving the service reliability of railways and their attractiveness for passengers. This 

includes theoretical models to describe how operational incidents develop into delays and 

how these delays propagate across services. Furthermore, empirical models presented in 

this dissertation describe the realized operation and identify systematic delays to be tackled 

with tailored corrective measures. The analyses presented in this manuscript are divided 

into three sections: 

 Identification and comparison of measures of service reliability 

 Analytical models of delay propagation in railways 

 Data analysis of the realized operation 

In the first section, different reliability measures are compared in terms of 

sensitivity to changes in the schedules and the infrastructure layout. Aggregate line delay 

as a function of primary delays results as an accurate estimate of the reliability of the 

timetable. This statistic is usually measured in simulation models, which are highly 

demanding for computational resources and difficult to integrate into optimization models. 

                                                             

 

1 Research project “Integrated Public Transport Optimisation and Planning” funded by the Innovation 

Fund Denmark. http://www.iptop.transport.dtu.dk/ 
2 Research project “Integrated Planning for Public Transportation” funded by the German Research 

Foundation. https://for2083.math.uni-goettingen.de/ 
3 Research project “Optimal Networks for Train Integration Management Across Europe” funded by the 

Seventh Framework Programme of the European Union. http://www.ontime-project.eu/ 
4  Research project “Shift2Rail” funded by Horizon 2020 from the European Commission. 

https://shift2rail.org 

http://www.iptop.transport.dtu.dk/
https://for2083.math.uni-goettingen.de/
http://www.ontime-project.eu/
https://shift2rail.org/


Introduction 

Aim and main contribution 

3 

Therefore, an analytical model is presented in the second section to estimate the aggregate 

line delay in a faster analytical approach. The velocity of the model allows integration in 

environments that require a prompt response, such as recursive optimization models, or 

online decision support tools. Lastly, the simulation and analytical models are compared 

to real operation in the last section. The timetable design parameters for the analytical 

models, such as running time supplement and headway buffers, are, so, derived from the 

realized operation. The recorded timestamps show the share of available timetable slack 

that is deployed in reality to recover from delays. Furthermore, recurrent delay patterns 

are identified from the past operation and linked to the service characteristics so that 

tailored corrective measures can be designed. 

The following paragraphs summarize the main characteristics, findings, and 

contributions of the individual sections. 

1.1.1 Measures of service reliability 

This section compares several measures of service reliability investigating their 

representation of the quality loss under perturbed operations. In particular, the focus of 

this study is on the reliability of the travel times in the daily operations, which are 

challenged by the natural variations of the industrial processes. Cancellations and major 

disruptions due to extreme events, such as snowstorms, are expectedly infrequent and are 

not considered in this survey. In fact, the aspect of the everyday-service reliability is often 

referred to by the terms Stability and Robustness. Stability points at the effectiveness of 

the timetable slack in absorbing the perturbations and taking the operations back to the 

undisturbed conditions. Robustness qualifies the goodness of the founding assumptions of 

a timetable, and their goodness to represent the real process-times distributions. 

The stability and robustness of a timetable depend on its structure and can be 

improved by increasing the amount of slack scheduled or decreasing the degree of 

heterogeneity of the railway services. Indeed, the typical focus of the reliability measures 

available in the literature is on timetable heterogeneity and on the amount of slack 

scheduled. These aspects of the timetable structure can be summarized in descriptive 

analytical indices, which have the advantage of reduced computational cost in comparison 

to other methods. Other measures of reliability are based on the estimation of the cause-

effect relationship and build often on the simulation of railway operations. In fact, the 

simulation of operation mimics the behavior of railway systems and provides a more 

detailed insight than analytical models. The price is, though, a considerably higher demand 

for computation and resources as compared to analytical models. Depending on the level 
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of detail of the simulation, this type of analysis often requires too long computation times 

to be suitable for fast applications. Examples are functions with recursive calculation, such 

as heuristic optimization models often used in timetabling, or the employment in online 

decision support systems that require fast responses. A graphical example of these two 

type of reliability measures is given in Figure 1.1-1. On the left side, the dispersion of 

headways between trains is used to estimate the degree of interaction, while on the right 

side, the individual train delays related to an incident are measured. 

 

Figure 1.1-1: Comparison of descriptive measures of the timetable structure (left side) and 

measures of the cause-effect relationship under perturbed operation (right side). 

Several reliability measures of transport operation are investigated in this section. 

The comparison between the measures focuses on the quality of their representation of the 

timetable’s ability to withstand delays. In particular, the measures are confronted on their 

sensitivity to changes in the traffic volume and in the infrastructure layout. Both analytical 

and simulation-based measures are studied, including Total Amount of Running time 

Margin (TAoRM) (Salido et al., 2008), headway dispersion metrics (Carey, 1999), Sum 

of Shortest Headway Reciprocals (SSHR) and Sum of Arrival Headway Reciprocals 

(SAHR) (Vromans, 2005), Maximum Running time Difference (MRD) (Vromans et al., 

2006), Weighted Average Distance (WAD) of running time supplements (Kroon et al., 

2007), Heterogeneity measures (Haith et al., 2014; Landex and Jensen, 2013), Capacity 

consumption (UIC, 2004), Aggregate line delay (Barron et al., 2013), Settling time and 

average delay per train (Salido et al., 2012). The results of the comparison show that 

simulation-based measures, such as aggregate line delay, settling time and average delay 

per train, describe very well the consequences of disturbances in railway operation. The 

relationship between the magnitude of these initial disturbances, the primary delays, and 

the consequent total effect, assessed by the mentioned simulation-based measures, 

expresses the level of tolerance against perturbations of a timetable. These measures might 

be considered as an explicit enumeration of the effects of the incidents on individual trains. 

In fact, this characteristic makes simulation-based metrics a detailed and flexible tool to 
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describe how the service reliability would be affected by changes in the traffic volume and 

the infrastructure layout. However, the massive calculations required by microsimulation 

make it unsuitable for either online applications for decision support tools, or recursive 

applications like heuristic optimization algorithms. In this paper, methods to reduce the 

amount of simulation are also investigated, by sampling the cases to simulate. In 

heterogeneous timetables, the cause-effect relationship of disturbances depends, among 

others, on the specific train that receives the primary delays, which increases the number 

of cases to simulate proportionally to the number of different train services in the schedule. 

For example, in Figure 1.1-2, the case on the top stringline shows a local train delayed by 

4 minutes, conflicting with an intercity train in the downstream section of the line. The 

case on the bottom stringline shows three different conflicts generated by the same primary 

delay assigned to a different train. 

 

 

Figure 1.1-2: Comparison of the conflicts generated by assigning the same amount of 

primary delay to different trains in the same timetable. 
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The skimming method presented in this section approximates the overall effect 

of delays given to unspecified trains. In a sampled subset of the possible delay cases, the 

compares the cause-effect relationships linked to primary delays to the individual trains 

with the average effect linked to the timetable. The simulation of the entire pool of cases 

is then simulated assigning primary delays to a selection of trains. This method reduces 

the computational requirements to estimate the cause-effect relationship by introducing an 

approximation that should be assessed. The efficiency of the skimming method is directly 

related to the degree of heterogeneity of the timetable and yields the higher savings with 

the more heterogeneous schedules. Alternative methods to estimate the cause-effect 

relationship permit to reduce the computational requirement using mathematical 

approaches. 

Given the suitability of cause-effect measures to describe the service reliability 

and the efficiency of analytical models, the following section introduces a new analytical 

delay propagation model on railway lines. This model mimics the results from 

microsimulation and returns the individual train delays in a railway system as a 

consequence of a primary delay. The aggregate line delay, the settling time, and the 

average train delay can be calculated in a closed form in much shorter time than 

microsimulation. It is, then, possible to integrate these measures in environments that 

require a prompt response. 

1.1.2 An analytical model of delay propagation in railways 

The previous section proposes explicit measures of the magnitude of perturbation 

as an indicator of the timetable reliability, analyzing the cause-effect relationship of 

disturbances on the schedules. Typical methods to measure the effects of disturbances 

include simulation of operation, which, especially at a high level of detail, entails massive 

calculation and long response times, resulting in limited applicability in high-paced 

environments. Alternative methods are presented in this section to estimate the 

consequences of disturbances in a faster way, through the analytical formulation of the 

relationship between individual train delays. 

This section consists of two studies on the propagation of delays in railways in 

homogeneous or heterogeneous timetables. The overall aim is to develop faster methods 

to estimate the measures of reliability identified in the previous section. Analytical models 

are typically remarkably faster than microsimulation and are therefore more suitable to 

optimization environments and other contexts where short response time is relevant. The 

most significant contribution to the saving of time is given by simplifying assumptions on 



Introduction 

Aim and main contribution 

7 

the interactions between trains. In particular, a simplified recovery model is introduced for 

individual trains and across services, assuming pseudo-uniform running time supplements 

and headway buffer. The amount of details included in analytical models is, in fact, often 

reduced, and the faster calculation is also related to more approximated results (Mattsson, 

2007; Meester and Muns, 2007).  

A delay propagation model is presented in the first study to estimate the 

aggregate line delay, the settling time, and the average delay per train without simulation, 

as a result of a given initial delay (A Closed Form Railway Line Delay Propagation Model, 

re-submitted after second review to Transportation Research Part C: Emerging 

Technologies, 2017). The model provides the individual train delays recorded at single 

stations, and it can be extended to implement different types of aggregate metrics. 

The model consists of two sections, which estimate the individual train delays as 

a function of a primary delay, and the aggregate line delay as a function of the individual 

train delays, respectively. The structure is shown in Figure 1.1-3. 

 

Figure 1.1-3: Scheme of the two sections of the delay propagation model. 

 In the delay propagation model, an initial delay is given to a train and propagated 

to the consecutive trains and the downstream stations if it exceeds the headway buffer or 

running time supplement, respectively. The delay of every train is calculated at every 

station as a combination of the disturbance provided by the previous train, or the residual 

delay from the previous station, as represented in Figure 1.1-4. The assumption of 

uniformly distributed slack makes the relationship between the consecutive delays of 

different trains at different location linear, which is practical for implementation in the 

second section of the model. Extending the linear relation between consecutive trains and 

stations, the delay recorded for every train at any station is thus determined directly from 

the primary delay and the scheduled slack. 
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Figure 1.1-4: Scheme of the delay propagation model. The dotted lines are the scheduled 

trajectories, while the solid lines represent the realized operation. The first section of the 

analytical model aims at estimating the individual train delays at every station, which are 

reported in the callouts in the graph. The propagation through consecutive trains and 

stations is represented by the arrows in this figure. The stars represent primary delays. 

The linear relationship between a primary delay and any individual train delay 

resulting from the first section defines a pseudo-triangular shape in the two-dimensional 

space of train services and stations, where the individual train delays are non-negative. 

The summation of the individual delays over this domain, named recovery region, defines 

the aggregate line delay. The recovery region is explored and divided into sub-regions, 

which boundaries define different types of relationship between primary and aggregate 

delay. The study region, represented in Figure 1.1-5, is the set of train services and stations 

included in the analysis. 

The recovery region in the train-station domain is the region where trains run 

behind the schedule and it is defined as the set of services-stations with non-negative 

individual delays. The propagated individual train delays are independent of the study 

region, which makes the model flexible to different uses. In fact, the aggregate line delay 

is described as the summation of individual train delays, and different recovery conditions 

are defined by the boundaries of summation. The intersection between the study region 

and the recovery region results in the summation domain of the individual train delays. 

Such formulation makes the model flexible and applicable to different contexts, inclusive 
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of railway lines and networks, homogeneous and heterogeneous traffic, suburban and 

long-haul railway systems. In these cases, the service-station domain can be divided into 

homogeneous study sub-regions, where the timetable parameters and the traffic volume 

are constant. Multiple primary delays can be propagated recursively through the different 

homogeneous sub-regions of the system. 

 

Figure 1.1-5: Study region and recovery region overlap in the service-station domain. 

The most significant achievement of this study is that the cumulative delay can 

be calculated in a closed polynomial function of a primary delay. Such a differentiable 

formulation provides further information on the contribution of marginal increments of 

timetable slack in the damping of delay propagation. The differential calculus shows that 

the delay-damping effect of the timetable-slack decreases with its magnitude. Too large 

timetable slack does not improve sensibly the stability, while it still inflates the scheduled 

running times and headways between train, resulting in a reduction of the attractiveness 

for passengers. 

In this first study, the analytical model is developed under the assumption of 

homogeneous or nearly homogeneous timetable, meaning constant stopping patterns and 

schedules across the services. Even though this is a common scheme in suburban railway 
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networks, extensive railway systems may result challenging to model when different types 

of service share the tracks. In the second paper of this section, the polynomial functional 

relationship between primary delays and aggregate line delay supports the extension of the 

model to heterogeneous timetables with a limited use of microsimulation. 

In the second paper (Delay Estimation on a Railway-Line with Smart Use of 

Micro-Simulation, published in Transport Infrastructure and Systems, 2017), the 

analytical model is integrated with stochastic simulation to expand its applicability. This 

paper models the whole process of delay generation given by an incident, such as a 

temporary track blockage, or a signal failure. The model combines the distributions of 

initial time and duration of an incident with the timetable structure and returns the primary 

delay following an incident. Furthermore, the integrated stochastic model goes beyond the 

central assumption of homogeneous timetables from the purely analytical model presented 

in the previous paper. In heterogeneous timetables, the slack is not uniformly distributed 

across trains and stations, and the same primary delay given to different train services 

propagates differently and generates different perturbations. After the primary delay 

generation, the aggregate line delay is estimated in relation to the individual train services 

that receive the primary delay. The different functional relationships are then averaged to 

derive the total delay function associated with the whole timetable. In this first instance, 

microsimulation is introduced to measure the aggregate line delay corresponding to 

primary delays on individual train services, and the closed form function presented in the 

previous study is deployed to reduce the number of simulation runs. The two model 

extension of delay generation and weighted average are represented in the process flow in 

Figure 1.1-6. 

 

Figure 1.1-6: Extended aggregate line delay including the delay generation model and the 

overall timetable aggregate estimation. The newly introduced sections of the models are 

highlighted, as compared to Figure 1.1-3. 

In the delay generation section, the primary delay is modeled as the result of the 

intersection of an incident and the timetable. A train receives a primary delay at a station 

if a blocking incident both starts before and ends after the scheduled departure. The delay 

generation model is represented in Figure 1.1-7. 

Delay 
generation 

model
Incident

Delay 
propagation 

model

Primary 
delay

Summation 
domain

Individual 
train 

delays

Weighted 
average

Aggregate 
line delay

Timetable 
delay



Introduction 

Aim and main contribution 

11 

 

Figure 1.1-7: Delay generation model. The primary delay results from the intersection of 

an incident and the timetable, in the time dimension. In red, the incident main 

characteristics. In green, the timetable characteristics. 

This model returns, in addition, the probability of a given incident to generate a 

primary delay on the individual scheduled trains. These probabilities constitute then the 

weights for the different functions of the aggregate line delay, corresponding to primary 

delays on different trains. 

In future extensions of the model, the simulation might be abolished, and the 

parameters of the analytical model might be estimated from the timetable structure. The 

advantage of this approach is the possibility to account for heterogeneous timetables and 

to estimate the service reliability measures from distributions of incident times. Depending 

on the data recorded by railway operators, incident time distributions, may be of easier 

access than primary delay distributions. It is, in fact, somewhat challenging to isolate 

distributions of primary delays from recorded timestamps, while incident reports may 

result in a more straightforward collection of the disturbances durations. 

The analytical model and its expansion in stochastic simulation presented in this 

section rely on the assumption that trains use all the slack available to recover from delays, 

if possible. In real operation, recovery is a stochastic process itself that varies across train 

drivers, rolling stock, and traffic management strategies. Especially under congested 

traffic, the interactions and interferences between trains put a limit on the individual train 

delay recovery. For instance, in the case of route conflicts, trains need to decelerate, stop 

and accelerate again according to the movement authority. These steps add time losses that 

consume part of the running time supplements and headway buffers and reduce therefore 

the possible delay recovery. Other factors that influence the recovery might be the 

promptness of the train drivers to adapt to the movement authority or the mechanical 

performance of the rolling stock, the visibility of signals, the weather conditions, and 

others. Furthermore, the models presented in this section rely on the availability of 
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timetable structural parameters, namely in the forms of running time supplements and 

headway buffers between trains. This type of information may be initially assumed or 

estimated in simulation models. However, the reliability of the plan depends also on the 

quality of the estimation of the slack available in reality. For example, the uncertainty in 

the calculation of the minimum feasible running times, or of the itinerary setup times, may 

lead to an underestimation of the running time supplement, or of the headway buffer, 

respectively. This uncertainty, and possible estimation, errors can be identified by 

analyzing data from the realized operation. 

The next section proposes, therefore, methods to identify the best feasible 

performances in railway operation, so that the timetable slack available in reality can be 

estimated to feed the analytical and simulation models presented above. Furthermore, the 

theoretical insight into the relationship between timetable slack and the reliability of the 

service is confirmed in the analysis of real records from past operation. The historical data 

is also deployed to deepen the actual usage of running time supplements to recover from 

delays. These studies support the finding that too large running time supplement is 

unproductive. Not only too large slack does not contribute to damping the propagation of 

delays, but also it increases the running time variability and reduces, then, the reliability 

and attractiveness of the railway transport. The first study in the section highlights the 

stochastic nature of delay recovery. The second study on delay records finds recurring 

patterns in the variability of delay development and recovery. 

1.1.3 Data analysis 

The models presented in section 3 deal with delay recovery in a deterministic 

approach. Delayed trains are modeled to run at the maximum allowed speed and use all 

the timetable slack to reduce their lateness and stick to the schedule. Even though the 

implications of this assumptions are expectedly marginal at the aggregate level, the delay 

recovery process might differ across train services. Several factors can affect the ability of 

single trains to recovery from delays, such as the driving behavior, the dispatching 

strategies, the rolling stock performance, and other environmental factors. Furthermore, 

the inherent variability of the industrial processes and of the realization times, as opposed 

to deterministic schedules, makes the slack a stochastic variable itself. While the schedules 

are fixed, the minimum feasible process times may change according to several factors, 

taking the possible delay recovery on the stochastic level as well. An accurate estimation 

of the real process times (e.g. running times and itinerary setup times) reduces the 

uncertainty about the available slack and improves thus the robustness of the timetables. 
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Section 4 investigates historical data to extract information about the variability in the 

delay-recovery and seeks for recurrent patterns in the development of delays. The expected 

outcomes include a better representation of the delay propagation in the analytical and 

simulation models presented in section 3 and a better understanding of the delays in 

railways to tailor mitigation measures to improve the service reliability. 

In the first paper (Causal Analysis of Railway Running Delays, published in the 

Proceedings from the World Congress on Railway Research WCRR, 2016), the 

distributions of realized running times on the busiest railway line in Denmark, Copenhagen 

– Roskilde, reveals the minimum feasible running times for different types of service. In 

the timetabling phase, the minimum running times are often estimated through either 

analytical formulation or microsimulation. Such estimation might result more or less 

accurate depending on the underlying assumptions and can be verified through historical 

data. The running time supplement included in the schedule might result under- or 

oversized in comparison to the actual rolling stock performances and the observed 

distributions of process times. The comparison between the revealed minimum running 

times and the scheduled running times returns the running time supplement available in 

reality. This is particularly relevant for the analytical delay propagation model presented 

in section 3, with the running time supplement being an input parameter, together with the 

headway buffer. Furthermore, the delays recorded for individual train journeys at 

sequential stations are compared. This study unveils, as a deduction, the existence of 

systematic delays related to dispatching strategies. For instance, trains traveling before 

schedule arrive at congested stations outside their designated time slot, which triggers 

dispatching decisions that very often lead to delays. The phenomenon is strongly 

correlated to excessive timetable slack, and over-recovery of. Typically, when trains reach 

the congested areas of the network ahead of the schedule, their designated station tracks 

are likely already occupied by other trains. This pattern leads, then, to late arrivals at 

congested stations, especially in case of reversing at terminus stations. This recurrent delay 

pattern is identified through a pairwise comparison of delay records at different stations. 

This type of analysis limits the amount of data that can be investigated and can only be 

applied to a few stations at one time. The development of further techniques opens the way 

to massive analyses to investigate longer train journey and to include several months of 

operation. 

In the second paper (Application of data clustering to railway delay pattern 

recognition, published in the Journal of Advanced Transportation, 2018), big data 
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techniques are used to identify recurrent patterns in delay development and recovery. The 

purpose is to guide the railway planners towards more effective corrective measures to 

improve the service reliability and the attractiveness for passengers. The process is divided 

into the identification of systematic delays and the investigation of the influence of 

selected service characteristics. This operation has been traditionally operated by 

practitioners with consolidated knowledge on the specific lines under examination. The 

graphical representation of the delays was at the basis of the analysis, with the 

disadvantages linked to a laborious discrimination of the signals of systematic delays from 

the noise of random disturbances. A representation of the stacked delay profiles on the 

coastline between Helsingør and Copenhagen is provided, for example, in Figure 1.1-8. 

The main trend of delay increases towards the congested area of Copenhagen dominates 

the chart and hides other recurrent delay patterns. 

 

Figure 1.1-8: Delay recorded for individual train journeys towards Copenhagen. Stacked 

observations. 

In this study, several observations of the same train service across different days 

are compared and partitioned in classes of similar elements using the k-means clustering 

algorithm. This algorithm is well known and has found applications in several fields of 

data analysis, but it is first introduced to delay profile analysis in this study. The algorithm 

performs a systematic classification which resembles the activity performed by expert 

analysts through the visual search for similarities in the observations. The advantage of 

such method is the freedom from biases and subjective interpretation of the observer, 

which makes it possible to examine large amounts of data. Cross data inference in the 

classes of observations reveals the factors that influence individual systematic delays. For 

instance, typical delay patterns are identified in conjunction with large passenger exchange 

at major stations in the peak hours, and other different patterns are only present in 

weekdays. Figure 1.1-9 represents the same dataset as Figure 1.1-8 clustered using the k-

means algorithm. The different delay patterns are visible in the individual charts. In 

particular, the first two charts represent extensive increments of delays towards 
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Figure 1.1-9: Delay recorded between Helsingør and Copenhagen, clustered according 

to recurrent delay patterns. 
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Copenhagen, recurrently taking place at specific stations on the line, which are also linked 

to different delay generating phenomena. The other graphs represent trains that are delayed 

through their entire journey, which slightly tend to either increase or decrease towards the 

destination. The same methodology is applied to the measures of delay change from the 

previous station. The inclusion of other sources of data might reveal other significant 

factors in the development of delays. Internal sources may be deployed, such as the delay 

reporting systems that include the causes of delays recorded by dispatchers. External 

sources such as registered weather conditions, or the passenger counts at the stations might 

be integrated into the factor analysis. The outcome of this research has a direct managerial 

impact on operations analysis, which can now point conditions that need specific 

corrective measure to mitigate delays. 

The outcome of this section relates to the attractiveness of the railway service in 

two ways. The first study can be considered as a support of the analytical delay model 

presented in the previous section, whereas the second study relates directly with tactical 

decisions to correct those processes that cause the most significant extensions of running 

times and the systematic generation of delays. 

1.2 Conclusions 

This PhD study presents new insights into delays in railways, including delay 

generation, propagation, and recovery. The methodological contributions range from 

analytical models of delay propagation to techniques for data analysis of the realized 

operation, and include, moreover, a survey on measures for the assessment of the service 

reliability. The results of the research provide further knowledge on the composite-

polynomial relationship between primary delays and aggregate line delays, on the 

variability of the delay recovery process, and on the relationship between excessive 

timetable slack and the generation of delays due to conflicts in operation. The methods 

cover theoretical approaches, simulation models, and analysis of real operation. Hence, 

this dissertation and the five associated papers contribute to the state-of-art within three 

main research areas of service reliability in railways: i) measures of robustness and their 

sensitivity to modifications in the system, ii) analytical models of delay propagation, and 

iii) analyses of realized operation to identify the actual slack in the schedules and recurrent 

delay patterns affecting the service reliability. The cases presented in the different sections 

of this manuscript range among Danish suburban, regional, and main railway line, and 

Dutch mixed traffic lines. The variety of case studies stems from the availability of data, 
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the opportunistic nature of data, and the relationship with other institutions and other 

research programs. The industrial and academic partners in the IPTOP research project 

made available different pieces of data following the interest of the institutions (e.g. DSB 

and RailNet Denmark are currently investigating methods to improve the unsatisfactory 

traffic reliability on the regional Coast railway line Helsingør-Copenhagen). 

1.2.1 Measures of robustness 

The findings of Paper I (chapter 2) highlight the suitability of simulation-based 

measures of robustness in assessing the possibility to withstand and absorb delays in a 

railway system. The study focuses on the sensitivity of such measures to modifications of 

the railway system, with the purpose of ranking different scenarios according to the 

improvement of service reliability. This is particularly relevant in the evaluation of 

changes in the infrastructure layout. These changes are typically highly onerous and 

require accurate analysis of the effectiveness in the improvement of the service. Among 

the simulation-based measures, the total delay generated on a railway line as a function of 

the primary delays is the most sensitive measure to variations in the traffic volume and the 

infrastructure. This aggregate measure is, therefore, the most suitable, among the 

investigated measures, for understanding the effects of variations in the service plan or in 

the operational settings. The results show a clear polynomial relationship between primary 

delays and aggregate line delay, whereas the settling time and the average delay per train 

follow a linear relationship to primary delays. This functional relationship is at the basis 

of the analytical model presented in the following section. As opposed to the measures of 

the cause-effect relationship, the compact and analytical metrics revealed considerably less 

sensitivity to changes in the service configuration. These statistics are commonly used in 

the industry, thanks to their simplicity and easiness to calculate, despite the approximate 

characteristics. Instances of these measures are the line exploitation and the capacity 

consumption, or the heterogeneity in the headways and running times. Indeed, most of the 

presented analytical measure only consider the average headway buffer, leaving out the 

running time supplement. The case study on a Dutch railway corridor shows that the same 

level of capacity consumption results from different timetables, where higher traffic is 

compensated by the homogenization of scheduled running times, which entails the 

reduction of the running time supplement for slower trains. In this way, the running time 

supplement is reduced, along with the possibility to recover from delays, but the measure 

of capacity consumption hides this weakness. The phenomenon is represented in Figure 
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1.2-1, where the timetable with 16 trains/h consumes less capacity than the timetable with 

14 trains/h because of the shortened scheduled running times. 

 

Figure 1.2-1: Comparison of capacity consumption for different infrastructure scenarios 

in relation to the traffic volume. 

On the contrary, the drop of reliability linked to the decrease of running time 

margin is properly illustrated by the measure of aggregate line delay. Other measures based 

on the heterogeneity of either headways (normalized standard deviation and mean absolute 

deviation) or running times (maximum running time difference) are affected by increases 

of the traffic volume only indirectly, through the schedule modifications necessary to 

increase the capacity. The paradoxical result is that some dense timetables might appear 

more reliable than others that are considerably sparser if the latter are more heterogeneous. 

Measures based on the estimation of the cause-effect relationship result thus 

more appropriate to measure the changes in reliability, and these are often based on the 

simulation of operation. One of the major obstacles to the introduction of simulation-based 

measures in online operations analysis is the long computation time. Micro-simulation 

models provide higher accuracy at the price of higher requirements for resources, both in 

the model design and in the analysis phase. In the paper, preliminary results are presented 

from methods to reduce the need for simulation, based on the selection of a sample of 

trains to receive primary delays. 

Alternative methods to estimate reliability measures with reduced use of 

microsimulation are presented in the following section, based on the polynomial 

relationship primary delay vs. aggregate line delay identified in this section. Thanks to the 
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faster response from analytical models, the integration in optimization algorithms becomes 

possible, and the aspects connected to variations in reliability can be included already in 

the timetabling phase of railway planning. The analytical model for delay propagation 

finds its cornerstone in the functional relationship identified in the microsimulation of 

perturbed operation of this section. 

1.2.2 Analytical models of delay propagation in railways 

The results from microsimulation in the previous section highlight the 

polynomial relationship between primary delays and aggregate line delays, settling time 

and average delay per train. Thanks to the suitability of these measures to express the 

effects of changes in the railway system on the service reliability, and given the high 

resource demand of microsimulation models, this section presents alternative faster 

methods to estimate these measures analytically. 

The purpose of chapter 3 is the introduction of a new analytical delay propagation 

model that allows a fast calculation of the measures identified in the previous chapter. The 

focus of both studies in this section is to remove or reduce the necessity of simulation in 

the calculation of total delay recorded on railway lines. Despite delay propagation models 

are known in the literature (Hasegawa et al., 1981; Landex, 2007; Pyrgiotis, 2012; 

Scheepmaker and Goverde, 2015), the delay recovery is often only partially modeled. In 

facts, the models presented in the literature often consider the timetable slack exclusively 

in the form of either running time supplement or headway buffer. In other cases, indirect 

measures of slack are introduced, such as the difference of speed between unperturbed and 

delayed operation, or the difference between actually scheduled and maximum theoretical 

train flow on the line. The model introduced in this chapter considers delay recovery 

through both scheduled running time supplement and headway buffer, and it provides a 

deeper insight into the functional relationship between primary delays and their effect on 

the overall operation. 

The model is mainly developed in Paper II and offers a fast-analytic alternative 

to simulation, which makes the model suitable for online applications and recursive 

optimization environments. The closed form function provided in the paper is based on 

input design parameters that describe the timetable slack (running time supplement and 

headway buffers) and the aptitude of the operator in accepting small delays (delay 

tolerance threshold). The advantages of such formulation include the possibility to quickly 

evaluate the effects of different values of these control parameters. For example, the 

transport operator may desire to set the delay tolerance threshold to a value that reduces 
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the delays subject to penalties, according to the recorded delay distributions. This is 

particularly relevant in the tactical planning phase, where the infrastructure is defined and 

the possible changes concern mainly the timetable structure and the scheduled slack. 

Indeed, optimal values of timetable slack may be identified using this formulation. 

The polynomial structure is consistent with the result from microsimulation of 

the first section. In fact, in Paper I, the relationship between aggregate line delay and 

primary delays is regressed to a second-degree polynomial, which corresponds to a partial 

recovery in the analytical model presented in this section. The simplicity of the base 

formulation, combined with a recursive application, allows yields the model flexibility and 

applicability to different delay scenarios. For instance, several simultaneous primary 

delays can be modeled on railway networks, including branching lines and sections with 

different traffic volume. Aggregate line delays, as well as settling time and individual 

delays for every train at individual stations, can be estimated quickly with good 

approximation. Moreover, other aggregate measures based on individual train delays may 

be derived from the linear delay propagation model. Theoretical insight on the propagation 

of delays in railways derives from the analytical model as well. In particular, the 

differential calculus highlights the reduction of effectiveness of the timetable slack in 

damping secondary delays. The main effect of too large headway buffers and running time 

supplements is, indeed, the extension of scheduled running times and the reduction of the 

service frequency, rather than the improvement of reliability, which ultimately reduces the 

attractiveness for passengers. Further analyses of the influence of the timetable parameters 

on the reliability strategic relevance of the choice of an appropriate tolerance threshold for 

delays by the operators. Passengers might not perceive, small delays, up to few minutes, 

and the operators can evaluate possible adjustments of the service contracts according to 

their own expectations of delays, and possibly save on the penalties for small perturbations 

to focus on the more sensible delays. 

The analytical model presented in Paper II is demonstrated for homogeneous 

traffic, which is a common operational scheme, especially in suburban railways and metro 

system, or even on specialized high-speed lines. Nevertheless, the substantial 

heterogeneity of services on mainlines results more cumbersome to represent. The 

interactions between trains on the mainlines, in fact, vary along the route due to the relative 

differences in speed and stopping patterns, and the same primary delays given to different 

train services result in perturbations of different magnitude. In paper III, a stochastic 
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simulation model is presented to extend the analytical model, and include heterogeneous 

timetables.  

The delay generation and propagation processes are modeled as an incident that 

generates a primary delay on a specific train, which propagates then to downstream 

stations and consequent trains. This approach extends the analytical model and yields the 

opportunity to estimate the aggregate line delay with heterogeneous timetables. The 

flexibility of the analytical model is maintained, and the applicability is extended to 

multiple real scenarios. Modeling primary delays may be difficult if their distributions are 

not available from historical data. In fact, the granularity of data may be too low to isolate 

primary and secondary delay distributions, and the actual records of specific incidents, 

such as signal failures, can be integrated into this model replacing the distributions of 

primary delays. The most significant advantage of such model is a considerable reduction 

in the simulation necessary to estimate aggregate measures of reliability in heterogeneous 

operation. The mixed simulation-analytical model deploys, in fact, the polynomial 

relationship identified elaborated in paper II to estimate the aggregate line delay as a 

function of primary delays. The stochastic simulation model included in this paper returns 

the weights of individual train services in the general aggregate line delay, which indicates 

the service reliability of the whole heterogeneous timetable. 

At this stage, only a few simulations are required to estimate the polynomial 

relation specific of primary delays given to any individual train. Further development of 

the model may result in the accurate estimation of the delay recovery parameters from the 

timetable structure without the use of microsimulation and improve the applicability of the 

heterogeneous model in recursive algorithms as well as the homogeneous version. 

1.2.3 Analyses of realized operation 

The contribution of chapter 4 consists of new methods to extract information 

from historical data. This information provides insight into both the development of delays 

along the train journey and methods to identify and tackle systematic delays to improve 

the service reliability. The results of this section enforce the analytical model from the 

previous section with the identification of the actual running time supplement, and 

possibly headway buffer, which are the timetable parameters required in the estimation of 

the delay propagation. Furthermore, the findings on the stochasticity of the delay recovery 

support the conclusions from the analytical model. In particular, it is highlighted that too 

large timetable slack may even result as counter-productive due to the increased variability 

of the running times. Excessive timetable slack triggers possible delay development 
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phenomena, for instance when trains travel ahead of their schedule and result in congestion 

just before the major stations. 

The first study in this section focuses on the identification of the minimum 

feasible running times on a railway section and on the actual use of running time margins 

recorded in past operation. The direct implication is the improvement of the timetable 

robustness and, thus, of the service reliability. The robustness, in fact, is defined in the 

literature as the quality the assumptions in a timetable, and the possibility to withstand 

variations in daily operation (Goverde and Hansen, 2013). The minimum running time is 

the basic component of the scheduled running times, which also include some running 

time margin to recover from possible delays. The minimum running times are often 

estimated by analytical models, or simulated through the vehicle dynamics. The estimation 

accuracy is strongly dependent on the quality of the assumptions in the formulation. For 

instance, these models should include the natural variability of the driving behavior or of 

the rolling stock performance linked to the environmental conditions. The analysis of 

historical data from operations provides the actual distributions of running times, which 

supports a more reliable estimation of the minimum feasible running times.  The planners 

have, thus, the possibility to calibrate the analytical and simulation models against the real 

performances, and to schedule more reliable running times, for the timetable robustness 

benefit. Furthermore, the development of delays along the train journey is under focus in 

this paper, highlighting systematic delay patterns related to dispatching strategies. The 

recovery or increase of delays can be correlated to the effectiveness of the running time 

supplement so that the distribution of the slack can be tailored to the specific train runs. In 

fact, the results show when the running time margin is excessive, the variability of the 

running times increases reducing the reliability of the service. When the trains travel 

outside their designated time slot, these often arrive late at congested stations, even if they 

were traveling before schedule. The negative effect of early trains on reliability originates 

in the new route conflicts that these trains generate approaching stations when the previous 

train may still occupy their assigned track. Figure 1.2-2 shows this type of pattern recorded 

on the most congested railway line in Denmark, in the section from Roskilde to 

Copenhagen. The delays recorded at consecutive stations show that the majority of trains 

traveling early at the first station reach the last station behind the schedule. These results 

highlight the importance of well-designed and allocated running time supplements and 

headway buffers. In facts, not only too large supplements are not beneficial in delay 

recovery, as found from Paper II, but the higher probability of traveling before schedule 
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translates directly into higher probabilities of incurring in route conflicts at larger stations 

and generate more delays. 

 

Figure 1.2-2: Recorded delays for long-distance services (Lyntog) towards Copenhagen 

central station. On the x-axes, the recorded delay passing the first station (Roskilde); 

points left to the 0-line describe trains traveling before the schedule at Roskilde. On the y-

axes, the recorded delays at the downstream stations sorted top-down (Høje Tåstrup – 

HTÅ, Valby – VAL, Copenhagen central – KH). Among the trains recorded early at 

Roskilde, a considerable share is recorded late at Copenhagen central station. 
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This last result, in particular, raises the question about the existence of further patterns in 

the delay development and recovery. In real operation, though, several patterns, dependent 

on different factors, have effects on the same location, overlapping on the spatial 

dimension. For example, some patterns may be associated with long passenger exchange 

times at congested stations in the city centers, whereas other sections in the open lines may 

be more susceptible to the weather. This is, for example, the case of slippery rails in the 

rural areas due to the low temperatures and high humidity of the night. The aggregate 

statistical analyses deployed in this paper cannot distinguish between these different delay 

patterns from the recorded delays at the stations. Further methods are, therefore, explained 

and applied in the last paper in this manuscript, to investigate further recurrent delay 

patterns more systematically, and to relate these to specific service characteristics. Instead 

of comparing the delays recorded at pairs of stations, these new methods account for many 

more timing points at the same time and allow a more systematic and unbiased analysis of 

operation. 

A Big-data analysis is applied in the second study of this section to identify 

recurrent patterns in delay development in train paths. This tool aims at supporting 

specifically the follow-up analysis of operation. In facts, the clustering algorithm applied 

seeks for internal structures in the dataset, meaning systematic repetitions of delays, which 

affect the service reliability and require mitigation measures. This operation has been 

traditionally left to the interpretation and experience of practitioners, who plotted the 

recorded delays of the individual train along the route and searched for similarities in the 

delay profiles. In this way, the analysis would easily be biased by artifacts in the plots, 

influencing the accuracy, especially with large samples. The accuracy of data-based 

algorithms is independent of the sample size, with the significant benefit that large datasets 

can be analyzed at once. For instance, data recorded in a whole year of operation might be 

inputted to the algorithm, highlighting systematic seasonal delays, which could not emerge 

by looking at single months. Thanks to the multiple sources of information integrated into 

railway systems, the quantity and quality of data are increasing. In future research, the 

cluster analysis may be combined with further sources of data to pinpoint the causes of the 

systematic delays identified. Data already available about the time of the day and the day 

of the week of individual trains highlighted the existence, in this case study, of systematic 

delays possibly related to the passenger flows. In facts, several train services were found 

systematically delayed at large stations in the pick hours according to the predominant 

passenger flows. Other patterns could potentially relate to systematic conflicts at junctions, 
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meaning that even small delays on trains from merging railway lines may have a 

considerable impact on the mainline punctuality. This classification tool facilitates the 

follow-up analysis and assists the operator in the design of tailored delay mitigation 

measures. The outcome is the expectedly improved effectiveness of the corrective 

measures and the improvement of the service reliability. In fact, an interview with the rail 

operator revealed that the planners implemented small changes in the headways on the line 

under study. The conflicts in the merging section were thus reduced and the punctuality 

improved beyond the operator’s expectations. Further data from external sources, such as 

actual passenger flows, or recorded weather, may support the identification of additional 

causes of systematic delays, making it possible to design specific delay countermeasures. 

Lastly, one of the main advantages of the method proposed is the transferability 

to other means of transportation, such as bus networks, or airlines. It is potentially 

applicable to any industrial process where the execution time can be compared against the 

schedule at given checkpoints. 

1.3 Further research 

While this dissertation contributes the literature with considerable progress 

regarding delays in railways, there is still ample room for improvement of the suggested 

analyses and algorithms and further new research to conduct within the topic. 

The analytical model might be integrated with dispatching criteria to improve the 

accuracy in representing railway networks. The challenge will be keeping the simplicity 

of the model while introducing complex controls to mimic the prioritization strategies. 

Furthermore, in order to facilitate the integration in optimization algorithms, the analytical 

model may be implemented in automatized frameworks capable of converting a railway 

network structure into mathematical programming. This process would facilitate the 

recursive application of the model, making it a valid replacement of microsimulation in 

several contexts. With the same purpose, the mixed analytical and simulation model for 

heterogeneous networks can be further developed as well to eliminate the necessity for 

simulation in the estimation of aggregate line delay. 

The research on the realized running times may be transported to the headways. 

In this way, the actual minimum headways between trains may be identified, together with 

the scheduled headway buffers. Minimum headways are in fact stochastic, similarly to the 

minimum running times. Even though the variability might be lower, there are still sources 

of uncertainty in the process time to guarantee a free path between two conflicting 
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movements. For instance, the variability in the feasible headways may be determined by 

the time to alter the position of the turnouts or the computational time in the interlocking 

to elaborate the signals, or by the length of the internal routes in the stations. However, 

possible changes in the order of trains in real operation require the analysis of the 

distribution of headways for all the possible permutations of train services, increasing the 

difficulty of the study. This condition is not valid in the study of running time supplement, 

as the order of stations is fixed for a train path. 

Lastly, the study on recurrent patterns in railway delays may find application in 

other means of transportation. It is sufficient, in fact, a set of fixed checkpoints with a 

schedule and the related timestamps to generate delay profiles. This possibility applies to 

air traffic as well as bus and metro networks. Potentially, the application might be extended 

to several industrial processes that are not linked to transportation. At the same time, the 

implementation of additional sources of information would improve the understanding of 

the reasons for the systematic delays. Possible sources may include weather records, 

passenger counts, and onboard sensors for equipment monitoring. 

The horizon of the big-data analysis might be expanded, including several train 

services at once. For example, time series of average delays recorded at the timing points 

across the day hours may be treated as individual observations. In this way, the resulting 

multidimensional delay profiles may be classified with the same method proposed in the 

last paper. These multidimensional delay profile would add a time-related dimension to 

the analysis, with the opportunity to investigate patterns in the delay propagation across 

services. The reliability of railway transport would be then improved tackling the factors 

that generate the most delay propagation. 

1.4 Outline 

The remainder of this thesis includes the five papers, divided into three thematic 

chapters. Hence, chapters 2 focuses on measures of robustness in railway transport, chapter 

3 covers the two papers focusing on the analytical models to estimate the aggregate line 

delay, and chapter 4 includes the two papers on data analysis of realized operation. 
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2 MEASURES OF THE RELIABILITY OF RAILWAY 

SERVICES 

2.1 Paper I: Micro-Simulation Based Analysis of 

Railway Lines Robustness 

Cerreto, Fabrizio. “Micro-Simulation Based Analysis of Railway Lines Robustness.” In 

6th International Conference on Railway Operations Modelling and Analysis 

(RailTokyo2015), 164-1-164–13. Tokyo, Japan: International Association of Railway 

Operations Research, 2015. 

The paper presented below is the result of a major revision after publication in the 

conference proceeding from RailTokyo2015.  

Abstract 

Railway Undertakings and Railway Infrastructure Managers have a variety of 

parameters to measure the robustness of timetables: this paper examines empirical data 

collected from Nederlandse Spoorwegen on the heavily occupied railway line between 

The Hague and Rotterdam in The Netherlands. The results show that the robustness 

indicator examined are affected by the traffic volume and other timetable characteristics 

in different ways. 

Analytical and micro-simulation-based measures of timetable robustness are 

applied to different railway infrastructure scenarios and compared to common measures 

such as the capacity consumption, and the share of trains delayed in case of disturbance. 

The relationship between simulation-based measures and the primary delays is estimated 

through regression analysis or differential calculus. The sensitivity of these measures to 

increases of traffic volume is consequently investigated through an amplification factor as 

a function of the train frequency. A skimming method is used for the sampling of 

simulation scenarios to reduce the computational time. The benefits of modifications to 

the track infrastructure, the timetable, and the signaling system, in terms of consecutive 

delays reduction, are estimated by giving a range of primary delays to a selection of trains. 
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The research highlights the need for a step further than currently planned in the 

infrastructure development to improve the line’s robustness.5 

The findings are significant for the relationship between IMs and RUs, as the 

same infrastructure or planning/scheduling improvements could be measured in a different 

way from each other contractor, with an economic impact on the infrastructure use 

agreements. 

KEYWORDS: Stability, Robustness, Microsimulation, Timetable, Railway 

infrastructure, Delays  

                                                             

 

5 On February 8 2018, ProRail, the Dutch railway infrastructure manager, announced plans to 

furtherly upgrade the line to increase the train frequency. The decision is in agreement, in fact, with the 
conclusions of this paper from 2015. See: https://www.globalrailnews.com/2018/02/05/e300m-upgrade-

for-the-hague-rotterdam-rail-route/ and https://www.railwaygazette.com/news/infrastructure/single-

view/view/den-haag-rotterdam-upgrade-to-support-a-train-every-5-min.html 

https://www.globalrailnews.com/2018/02/05/e300m-upgrade-for-the-hague-rotterdam-rail-route/
https://www.globalrailnews.com/2018/02/05/e300m-upgrade-for-the-hague-rotterdam-rail-route/
https://www.railwaygazette.com/news/infrastructure/single-view/view/den-haag-rotterdam-upgrade-to-support-a-train-every-5-min.html
https://www.railwaygazette.com/news/infrastructure/single-view/view/den-haag-rotterdam-upgrade-to-support-a-train-every-5-min.html


Measures of the reliability of railway services 

Paper I: Micro-Simulation Based Analysis of Railway Lines Robustness 

31 

2.1.1 Introduction 

Investments in railways usually require massive resources from both IMs 

(Infrastructure Managers) and RUs (Railway Undertakings): alignment modification and 

signaling system upgrades on one hand, and rolling stock renovation on the other, should 

be carefully designed and examined. Therefore, every modification needs benchmarking 

and measures of the actual results. One of the most relevant aspects of the improvement 

of operation quality is the timetable robustness, especially on densely occupied networks. 

Several measures of robustness exist, with a focus on different aspects of the disturbances 

in the daily operation or of the planning tools adopted to mitigate delay propagation. IMs 

and RUs can choose on a variety of indices to assess robustness, which are influenced by 

increases of traffic volume and consider primary delays in different ways: this paper 

analyses the relation between selected measures of robustness, the traffic volume, and the 

primary delays. The analysis is based on micro-simulation, thus resulting in a resource-

intensive process. A method is thus proposed, in addition, to reduce the computational load 

with a reasonable approximation of the simulated results. 

A survey on the different definitions, measures of robustness and the related 

methods is presented in section 2.1.2. The comparison method is described in section 2.1.3, 

where the microsimulation tool, the procedures to examine the traffic volume influence 

and to reduce the computational load are explained. In section 2.1.4, the method is applied 

to the railway corridor between The Hague and Rotterdam, in The Netherlands. General 

conclusion for the method proposed and the possible further research are given in section 

2.1.5. 

2.1.2 Survey on the robustness of timetables 

2.1.2.1 Robustness definitions 

Regional and suburban railway networks are often characterized by high traffic density 

and heterogeneity of services and are thus sensitive to disturbances. High service 

frequency implies short headways and limited buffer times between scheduled services, 

with considerable influence on delay propagation. Traffic density and occurrence of 

disturbances in railway operation are often in positive correlation (Wiklund, 2002), and 

the extent of disruptions is also strongly affected by the traffic volume (Gibson et al., 2002; 

Haith et al., 2014; Jensen, 2015). 

Several definitions of robustness in railway operations exist, with a focus on different 

aspects of reliability, and all related to the propagation of delays. Some of the literature 

refers to the general ability to absorb delays through the timetable slack (Andersson et al., 



Analytical, Big Data and Simulation Models of Railway Delays 

32 

2011). This feature is also referred to as Internal Robustness (Hofman et al., 2006) or 

stability (Goverde and Hansen, 2013). Andersson et al. (2013b) investigate the robustness 

of timetables analyzing the timetable slack in critical points, paying particular attention to 

the flexibility of operation in terms of feasible dispatching strategies. Peterson (2012) 

compared different strategies for timetable slack allocation in a micro-simulation 

environment and identified the most robust schedule as the one resulting in the highest 

punctuality. 

In other cases, robustness is described as the ability of a timetable to withstand the 

variations in daily operation, which is given by accurate estimation of process times and 

primary delay distributions (Goverde and Hansen, 2013). 

Robustness is directly connected to the interplays between the timetable, the 

infrastructure, and the rolling stock characteristics. Strategies to improve the timetable 

robustness include the increment or the intelligent allocation of timetable slack (Peterson, 

2012; Schittenhelm, 2011; Solinen et al., 2017), the reduction of heterogeneity of services 

in general (Salido et al., 2008), the homogenization of headways (Vromans et al., 2006), 

and the containment of differences in scheduled running times (Huisman and Boucherie, 

2001). 

2.1.2.2 Robustness measures 

The differences of the business targets between Railway Undertakings and 

Infrastructure Managers drive different strategies to improve the service reliability. RUs 

tend to favor the increase of buffer times between trains, as the running time supplements 

increase the scheduled running times and drop the service appeal to the passengers. On the 

other hand, IMs make profits from the sale of train paths, which availability is reduced by 

the extension of buffer times. Many parameters are available to measure robustness, 

according to the purpose of the performance analysis, and, to our knowledge, there is no 

literature on the negotiation on robustness performance: different KPIs better suit the point 

of view of either RUs or IMs. In addition, there is an increasing interest in maximizing the 

use of railway capacity, with benefit to both the RUs, which can operate more trains and 

increase ticket revenue, and the IMs, with a direct increase of income given by additional 

slots available. The effects of additional train paths on service reliability have been studied 

by Haith et al. (2014) in a framework to define a congestion charge for RUs applying for 

additional slots on congested lines. The international development of the railway markets 

is shining a light on the need to integrate the railway systems across different countries, 

legislations and technological infrastructures. Therefore, the need for a shared method to 
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evaluate the performance in robustness is rising: interoperability on one side, and the 

diversity of railway systems on the other side, require an approach adaptable to different 

contexts. 

Different techniques to evaluate railway robustness have been proposed in the 

last years, some of them based on analytical approaches, others based on empirical models 

and what-if analyses. The advantage of analytical measures is their simplicity and their 

quick calculation, with limited need for information, which makes these measures best fit 

for initial evaluations in the planning process where detailed information on the individual 

services is not available (Meester and Muns, 2007). The simplicity comes, though, at the 

cost of accuracy. Indeed, these measures often include considerable approximation and 

may not be suitable for accurate analyses. Microsimulation models, on the contrary, 

provide a high level of detail, but are highly resource-intensive and require much time to 

both build and operate (Carey, 1999; Carey and Kwieciński, 1994; Parbo et al., 2014). 

Analytical measures of robustness 

Analytical estimation of robustness is often based on the evaluation of 

heterogeneity among the scheduled services. Carey (1999) proposed a number of 

reliability metrics at a railway station, divided into metrics that require knowledge of 

primary delay distribution functions, and metrics based only on timetable measures. In 

case these distributions are unknown, Carey used two metrics based on the dispersion of 

headways in the timetable. 

1 −
𝑠. 𝑑.  𝑜𝑓 ℎ𝑒𝑎𝑑𝑤𝑎𝑦𝑠

𝐻𝑇
𝑛

 (1) 

1 −
𝑚. 𝑎. 𝑑.  𝑜𝑓 ℎ𝑒𝑎𝑑𝑤𝑎𝑦𝑠

2
𝐻𝑇
𝑛

 (2) 

with 𝐻𝑇 being the total headway available and 𝑛 the number of headways. 

Vromans et al. (2006) proposed further measures of heterogeneity in the 

scheduled headways, which also consider the differences in the scheduled running times 

on line sections. 

𝑆𝑆𝐻𝑅 =∑
1

ℎ𝑖
−

𝑛

𝑖=1

 (3) 
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𝑆𝐴𝐻𝑅 =∑
1

ℎ𝑖
𝐴

𝑛

𝑖=1

 (4) 

where ℎ𝑖
− is the shortest headway between trains 𝑖 and 𝑖 + 1 on a line section, and ℎ𝑖

𝐴 is 

the arrival headway at the end of the section between the same trains. 

Based on the metrics proposed by Vromans et al., Haith et al. (2014) proposed 

further measures to account for the actual headway buffer included in the timetable: 

𝐻𝐸𝑇𝑆 =
𝑆𝑆𝐻𝑅

1
𝐻𝑊

× 𝑔
 × 100 (5) 

𝐻𝐸𝑇𝐴 =
𝑆𝐴𝐻𝑅

1
𝐻𝑊

× 𝑔
 × 100 (6) 

The slack scheduled in the headways is accounted in these formulations by 

means of 𝐻𝑊, which is the minimum feasible headway given by the distancing system, 

while 𝑔 is the number of headways considered. The measure is thus relative and spans in 

the range 0%-100%. 

Landex and Jensen (2013) also proposed a set of metrics inspired by Vromans et 

al., which are normalized and eliminate the dependency on the traffic volume, and focus 

on the departures from, or the arrivals at a single station. 

𝐻𝑒𝑡𝐴 = 1 −

∑min (
ℎ𝑡,𝑖
𝐴

ℎ𝑡,𝑖+1
𝐴 ;

ℎ𝑡,𝑖+1
𝐴

ℎ𝑡,𝑖
𝐴 )

ℎ𝑁−1
 

(7) 

𝐻𝑒𝑡𝐷 = 1 −

∑min (
ℎ𝑡,𝑖
𝐷

ℎ𝑡,𝑖+1
𝐷 ;

ℎ𝑡,𝑖+1
𝐷

ℎ𝑡,𝑖
𝐷 )

ℎ𝑁−1
 

(8) 

Other measures of schedule heterogeneity were presented by Andersson et al. 

(2013a), with focus on the scheduled running time differences, instead. The presented 

measure is named Maximum Runtime Difference and is given by 

𝑀𝑅𝐷 = max(𝑅𝑖) − min(𝑅𝑖) |𝑖 ∈ 𝐼 (9) 

where 𝑖 ∈ 𝐼  are the individual trains in the schedule, and 𝑅𝑖  are the related scheduled 

running times. 
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Andersson et al. (2013a) compared several of the robustness measures listed 

above and proposed a new measure that considered simultaneously two different forms of 

timetable slack, which are the headway buffers and the running time supplements at critical 

points, an. The proposed measure RCP (Robustness at Critical Points) expresses the 

flexibility of operation available to the dispatcher to manage the rail traffic in perturbed 

operation and it is shown to be a valuable measure of reliability. However, this measure 

focuses on specific critical points in the space-time domain, identified on the basis of 

potential conflicts between trains. The identification of the defined critical points follows 

a structured procedure, but it might miss interactions between specific trains that are not 

identified as critical. 

A different stream of research on measures of robustness focused particularly on 

the timetable slack incorporated in the schedules. Salido et al. (2008), for instance, 

computed the total amount of running time supplement available in a schedule. 

Simulation-based measures of robustness 

A number of robustness measures have been proposed based on simulation of 

the timetable. The simulation was used to assess the available slack in the timetable, with 

special regards to the headways, or combined with distributions of primary delays to assess 

the ability of a timetable to recover from the disturbed operation. 

The capacity consumption was promoted by the International Union of Railways (UIC, 

2004). The measure expresses the line exploitation and measures the average headway 

buffer in the timetable and is associated with recommended maximum values to contain 

delay propagation. The line capacity consumed by a timetable is calculated as the ratio of 

the minimum time occupied by a compressed version of the same timetable divided by the 

total scheduled time, 

𝜂 =
𝑡𝑒

𝑡𝑝
, (10) 

where 𝜂 is the capacity consumption, 𝑡𝑒 is the compressed time of line exploitation, and 

𝑡𝑝 is the scheduled period. While the UIC capacity consumption is measured at the level 

of blocking sections, possibly using micro-simulation, the CUI (Capacity Utilization 

Index) is a similar measure, at a macroscopic level (Gibson et al., 2002; Haith et al., 2014; 

Mattsson, 2007). 

The relationship between primary delays and the related overall disturbance 

effect on railway operation was at the base of several measures of robustness with micro-

simulation tools. Salido et al. (2008) simulated incidents on a railway line and assessed 
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robustness in terms of the number of trains delayed, average delay per train, and settling 

time, to evaluate different solutions of their rescheduling model. The settling time was 

defined as the time necessary to absorb a given perturbation so that all trains are recorded 

on time. This measure was also identified by Goverde and Hansen (2013) to assess the 

ability of a timetable to absorb perturbations. 

The total, aggregate, or cumulative line delay recorded as the effect of known 

disturbances is also a common measure of the ability of the railway system to withstand 

delays. This type of measure is also often used as an ex-post performance measure and is 

pointed as one of the most representative of the realized service reliability (Barron et al., 

2013). Harker and Hong (1994) assessed the quality of a dispatching management 

algorithm measuring the total deviation recorded on a line. Ginkel and Schobel (2007) 

evaluated the quality of their bi-criteria delay management algorithm by means of the total 

delay generated by decisions of keeping or ignoring the service connections in case of 

disturbances. Corman et al. (2014) compared the robustness of different simulated 

scenarios in perturbed rail operation measuring, among others, the average total delay 

generated by stochastic primary delays. Solinen et al. (2017) benchmarked a selection of 

robustness measures against different forms of aggregate delays recorded in a micro-

simulation environment. 

The methods listed in this survey measure robustness of singular solutions, but 

their relationship to the train frequency is yet to be understood: in this paper, we propose 

an evaluation of the link between selected robustness indicators and the increment of train 

frequency. The results show that some indicators are more affected by traffic volume 

increases than others: general conclusions about the disruptions propagation and fade are 

shown in the last section. 

2.1.3 Methods 

This study focuses on robustness appraisal in relation to the traffic volume. The 

magnitude of given initial disturbances is put in relation with the overall effect on the 

operation, and the sensitivity of selected measures is analyzed as a function of increased 

traffic volume. A selection of the analytical robustness measures listed in the previous 

section is compared and benchmarked against simulation-based measures through the 

generation of test timetables. The robustness of each individual timetable is described by 

compact indices, corresponding to either the analytical measure or to a descriptive index 

of the effects given by disturbances in a micro-simulated environment. These indices 

describe the increase of disturbance as a function of the primary delays, namely the 
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robustness. The metrics are, then, studied as a function of the number of scheduled trains 

to assess their sensitivity to the traffic volume. The measures identified are based on 

different scales. A share of the methods return a relative value in the range [0, 1] or a 

percentage, while the remainder measures return absolute values that require 

normalization for a comparison between different scenarios. 

Being based on micro-simulation, the method is highly resources consuming, and 

a sampling procedure to reduce the number of iterations needed is proposed. Furthermore, 

the simulation process is simplified by the exclusion of dispatching strategies. This is a 

reasonable assumption on relatively short railway lines, where dispatching is usually 

realized at far ends rather than at intermediate stations. The simplistic First-In-First-Out 

rule at junctions can be considered a good approximation of real operation in these cases. 

2.1.3.1 Robustness measures evaluated 

The following analytical measures of robustness are investigated in this paper: 

 Number of trains in the timetable (Traffic Volume) (Salido et al., 2008) 

 Standard deviation of headways at a station (Carey, 1999) 

 Mean absolute deviation of headways at a station (Carey, 1999) 

 SSHR (Vromans et al., 2006) 

 SAHR (Vromans et al., 2006) 

 HETs (Haith et al., 2014) 

 HETa (Haith et al., 2014) 

 HetA (Landex and Jensen, 2013) 

 Maximum Runtime Difference (Andersson et al., 2013a) 

In addition, the following simulation-based measures are calculated as a benchmark: 

 Capacity consumption (UIC, 2004) 

 Total delay at selected stations (Solinen et al., 2017) 

 Settling time (Salido et al., 2008) 

 Number of delayed trains (Salido et al., 2008) 

 Average delay per train (Salido et al., 2008) 

Sensitivity to traffic volume increases 

The analytical measures listed above provide compact indices that represent the 

reliability of timetables so the sensitivity to increased traffic volumes can be examined by 

normalization of the results. 

Simulation-based measures of robustness, instead, describe the response of the 

railway system to given perturbations. Several simulations are required to describe the 



Analytical, Big Data and Simulation Models of Railway Delays 

38 

change in the response as the effect of variations in the primary delays. Synthetic indices 

are here proposed to compare the results from simulation-based measures. 

The relationship between a value of primary delay and the consequent total delay 

generated on the line was found polynomial of the second degree in analytical models 

(Landex, 2008) so the second derivative of a regressed polynomial from the simulation is 

proposed to address the amplification of the effect of disruptions. The total delay values 

measured for different primary delays can be regressed to a second-degree polynomial 

𝑑(𝑝) = 𝑎 ∙ 𝑝2 + 𝑏 ∙ 𝑝 + 𝑐, (11) 

where 𝑝 is the primary delay assigned to a train, and 𝑑 is the measured total delay. The 

resulting total delay sensitivity index is so determined: 

𝑖𝑑 = 𝑑
′′(𝑝) = 2𝑎. (12) 

Other simulation-based measures listed above have an irregular relationship to 

the primary delays. An analytical closed form the settling time, the number of trains 

delayed and the average delay per train is not available, so the evaluation of the 

amplification given by traffic volume increases can be operated by numerical 

minimization of the square distance between the measures in different timetable scenarios. 

An amplification factor is proposed here to compare irregular measures. 

Define 𝑆𝑡 = {𝑠𝑡1, 𝑠𝑡2, … , 𝑠𝑡𝑛}  the array of settling time values measured on 

timetable t, after the generation of primary delays from 1 to n minutes. The original 

timetable is referred to as “a”, and the measured array is 𝑆𝑎 = {𝑠𝑎1, 𝑠𝑎2, … , 𝑠𝑎𝑛}. Define 

the array 𝑆�̅� = 𝑚𝑡 ∙ 𝑆𝑎 = {𝑚𝑡 ∙ 𝑠𝑎1, 𝑚𝑡 ∙ 𝑠𝑎1, … ,𝑚𝑡 ∙ 𝑠𝑎𝑛} . This is the curve to be 

associated to the timetable t, taking 𝑚𝑡  as its multiplication factor. The amplification 

factor 𝑚𝑡 is calculated minimizing the difference between the real measured curve and the 

multiplied one. This is each timetable’s settling time indicator of sensitivity to primary 

delays. 

𝑚𝑡 ≔ min((𝑚𝑡 ∙ 𝑝𝑎1 − 𝑝𝑡1)
2
+ (𝑚𝑡 ∙ 𝑝𝑎2 − 𝑝𝑡2)

2
+⋯+ (𝑚𝑡 ∙ 𝑝𝑎𝑛 − 𝑝𝑡𝑛)

2
) 

=∑(𝑚𝑡 ∙ 𝑝𝑎𝑗 − 𝑝𝑡𝑗)
2

𝑛

𝑗=1

 
(13) 

This approach is also valid for the number of trains delayed and the average delay 

per train as a function of the primary delay. 
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2.1.3.2 Micro-simulation and reduction of computational load 

Railway microsimulation uses continuous computation of train motion equations 

and simulates the interaction between trains through discrete processing of signal boxes 

state. Given user defined infrastructure, rolling stock, and timetable databases, it is 

possible to calibrate the simulation through a performance parameter individually set for 

every train. This is a crucial parameter that influences the analyses output: it rules the 

percentage of train’s maximum tractive effort used and the percentage of max allowed 

speed that the train will reach either in ordinary or delayed condition. Though it can 

reasonably be assumed that a delayed train driver tries to stick back to the timetable 

running at the maximum performance and speed available, it is hard to model the standard 

behavior. It is clear that higher performance parameter values for the standard operation 

reduce the running time margin, affecting the capability of one train to recover from delays 

along its path, increasing the follow-up delays. 

The massive computation load of microsimulation is well known (Mattsson, 

2007; Meester and Muns, 2007; Parbo et al., 2016). Therefore, a method is proposed here 

to reduce the number of scenarios to simulate and the resources needed, which we called 

the skimming method. The overall disturbance generated by a primary delay depends on 

the specific hindered train: according to its own scheduled running time supplement and 

to the margin time in the following train headway, the same disruption could affect 

different shares of trains and generate different amount of delays. For this reason, the 

disruption should be simulated against every train to measure its effect on the timetable, 

meaning considerable resources employment. 

The skimming method proposed here consists of only applying a very detailed 

analysis of one parameter to the original timetable, measuring the effects of the same 

disruption given individually to each train. The analysis is not extended to all the trains, 

timetables and scenarios under test: it is rather the basis for the sampling in the search of 

the most representative train, with respect to the effect of disruptions. In order to contain 

the loss of information due to the reduction of simulation, an indicator of approximation 

goodness is introduced. The total delay is proposed to compare the impact of disruptions 

affecting different trains, as it synthetically represents the overall hindrance phenomenon 

through its magnitude. 

The total delay on the line is measured as a function of primary delay separately 

for each train. The average total delay is then calculated among all the trains given a 

primary delay and choose the most representative one comparing its behavior with the 
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average. If we define the array of total delay values associated with each train primary 

delay from 1 to n minutes 𝐷𝑐 = {𝑑𝑐1, 𝑑𝑐2, … , 𝑑𝑐𝑛} and the analogous average total delay 

array �̅� = {�̅�1, �̅�2, … , �̅�𝑛} = {
∑ 𝑑𝑐1
𝐶
𝑐=1

𝐶
,
∑ 𝑑𝑐2
𝐶
𝑐=2

𝐶
, … ,

∑ 𝑑𝑐𝑛
𝐶
𝑐=𝑛

𝐶
}, the course c selected to be the 

most representative one is the one which total delay array is the closest to the average total 

delay �̅�: 

𝑐:min ((
∑ 𝑑𝑐1
𝐶
𝑐=1

𝐶
− 𝑑𝑐1)

2

+ (
∑ 𝑑𝑐2
𝐶
𝑐=1

𝐶
− 𝑑𝑐2)

2

+⋯+ (
∑ 𝑑𝑐𝑛
𝐶
𝑐=1

𝐶
− 𝑑𝑐𝑛)

2

) =

min∑ (
∑ 𝑑𝑐𝑗
𝐶
𝑐=1

𝐶
− 𝑑𝑐𝑗)

2
𝑛
𝑗=1 . 

(14) 

The load reduction can be estimated through the ratio between the number of 

simulations needed before and after the skimming method. 

The array of the primary delay values generated is defined as 𝑃𝑑 =

{𝑝𝑑1, 𝑝𝑑2, … , 𝑝𝑑𝑛}, where n is the number of primary delay values generated. In addition, 

the array of the traffic volumes of each test timetable, measured as the number of trains in 

the time period subject of study, is defined 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛𝑡𝑡}, where ntt is the number 

of the test timetables.  

The computational savings given by the skimming method identifies its 

efficiency comparing the numbers of simulation runs necessary with or without the 

sampling. Without the skimming method, a simulation run is theoretically necessary for 

every amount of primary delay, given to every train, on every scenario studied. The 

number of simulations needed is 

𝑛𝑠𝑖 = 𝑛 ∙ ∑ 𝑣𝑗
𝑛𝑡𝑡
𝑗=1 ∙ 𝑛𝑠𝑐, (15) 

with nsc being the numbers of scenarios to be tested. In the skimming method, a detailed 

analysis of the original timetable is necessary on the original scenario, and a shrunk 

analysis of one delayed course for every timetable on each scenario. The number of 

simulations needed with the skimming method is 

𝑛𝑠𝑖
∗ = 𝑛 ∙ 𝑣1 + 𝑛 ∙ 𝑛𝑡𝑡 ∙ 𝑛𝑠𝑐 = 𝑛(𝑣1 + 𝑛𝑡𝑡 ∙ 𝑛𝑠𝑐). (16) 

The first addend refers to the detailed analysis to select the most representative 

train, while the second is the result of the shrunk analyses giving primary delay only to the 

selected train. The relative computation saving η is rated comparing the number of 

simulations needed in the two cases: 

𝜂 =
𝑛𝑠𝑖−𝑛𝑠𝑖

∗

𝑛𝑠𝑖
= 1 −

𝑛𝑠𝑖
∗

𝑛𝑠𝑖
= 1 − (

𝑣1

∑ 𝑣𝑗
𝑚
𝑗=1 ∙𝑛𝑠𝑐

+
𝑛𝑡𝑡

∑ 𝑣𝑗
𝑚
𝑗=1

) = 1 − (
𝑣1

∑ 𝑣𝑗
𝑚
𝑗=1 ∙𝑛𝑠𝑐

+
1

𝑣𝑗̅̅ ̅
), (17) 
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where 𝑣�̅� =
∑ 𝑣𝑗
𝑚
𝑗=1

𝑛𝑡𝑡
 is the average traffic volume per timetable. 

Equation (17) shows an inverted hyperbolical saving as a function of the number 

of scenarios under test, meaning that the more scenarios, the better saving. The same 

relation is valid between the average traffic volume of the timetables and the saving, while 

it as a negative linear trend against the ratio between the original timetable and total traffic 

volume generated in all the timetables. In other words, the first term within the parenthesis 

quantifies the computational load of the first deep analysis to select a representative course 

compared to the total load of a complete analysis applied to every scenario. The second 

term quantifies the saving of the mere reduction in simulations needed. 

2.1.3.3 Applicability 

The method described, compares different scenarios simulating the railway 

system in its entirety. Different models of infrastructure, rolling stock, timetable, operation 

sets of rules, and signaling system can be tested and benchmarked. Furthermore, the effects 

of several modifications can be studied either individually or giving shape to combined 

changes to assess the joint benefits. 

Different railway-like transport systems can be modeled in the micro-simulation 

tool, so the method can be applied, for instance, to metros, people movers, and other guided 

systems, making accuracy and flexibility the strengths of this method. 

2.1.4 Application: the Oude Lijn in the Netherlands 

The proposed method was used to evaluate the benefits of major works that are 

taking place on a Dutch densely occupied railway corridor. The current timetable runs 11 

trains/h between The Hague and Rotterdam. The results are discussed in the following 

sections. 

The railway is undergoing an infrastructure upgrade in Delft: a viaduct in the city 

center will be replaced by a tunnel. It is arranged to host four tracks, though the last two 

will be built in a second phase. The five set up scenarios represent respectively the current 

2-tracked viaduct in Delft, the new railway tunnel in Delft with ceiling speed of through 

running trains increased from 100 km/h to 140 km/h, the planned four-tracked tunnel to 

Delft Zuid and a hypothetical extension of quadruple tracks to Rotterdam; besides, a 

signaling system modification is studied, being applied to the current viaduct infrastructure. 
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Figure 2.1-1: Track layout of each infrastructure scenario on the railway corridor 

Scenario Junction 

stationing 

Tracks in 

Delft 

Speed limit in 

Delft (km/h) 

Status 

Phase 1 North Delft 2 (Viaduct) 100 Current state 

Phase 2 North Delft 2 (Tunnel) 140 
Under construction 

(2015) 

Phase 3 South Delft 4 (Tunnel) 140 Planned 

Phase 4 None 4 (Tunnel) 140 Hypothetical 

Signaling North Delft 2 (Viaduct) 100 Hypothetical 

Table 2.1-1: Infrastructure scenarios under comparison 

The characteristics of the individual infrastructure scenarios are summarized in 

Table 2.1-1 and Figure 2.1-1. In this case study, we only considered the southbound traffic, 

pushing the northbound traffic and the interaction between opposite flows to further 

studies. 

The case study is based on the microsimulation tool OpenTrack (Nash and 

Huerlimann, 2004). 

2.1.4.1 Traffic volume 

The sensitivity of the robustness to increases in traffic volume is under 

examination, so additional timetables were developed starting from the original one, with 
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limited modifications at the train characteristics. Stopping patterns and order of trains are 

maintained for all the trains and new trains scheduled should only be copies of existing 

trains in the timetable.  

Starting from an original timetable, which is the reference in the following steps, 

new timetables were developed increasing the traffic volume. The test-timetables were 

built by stepwise frequency increases scheduling additional services to the reference 

timetable, keeping the existing trains order. 

The original timetable may include different categories of trains. The share of 

train categories within a timetable is one of its peculiar characteristics. For this reason, the 

ratio between the size of the categories should be kept equal, or at least on the same scale, 

in all the timetables. Defined the array containing the number of trains of each category in 

the timetable t, 𝐶𝑡 = {𝑐𝑡1, 𝑐𝑡2, … , 𝑐𝑡𝑧}, and the total traffic volume of each timetable 

𝑣𝑡 = ∑ 𝑐𝑡𝑙
𝑧
𝑙=1 , (18) 

the share 
𝑐𝑡𝑞

∑ 𝑐𝑡𝑙
𝑧
𝑙=1

=
𝑐𝑡𝑞

𝑣𝑡
  is maintained through the timetables t for each category q in the 

total traffic volume. 

The traffic volume can be increased up to consuming the whole capacity, in 

which case the buffer times between services are nulled and the running time supplements 

are reduced to shrink the heterogeneity. In fact, the slower trains are speeded up in the 

schedules, and their running time supplement is reduced to the minimum to reduce the line 

exploitation. According to Huisman and Boucherie (2001), the maximum capacity of a 

railway line corresponds to all equal train paths. 

A total of five timetables were built to test the infrastructures: the current 

timetable with 11 trains/h was called “A” and the traffic volume was increased stepwise 

up to 18 trains/h in timetable “E”. The performance parameter was updated in timetables 

D and E to fit shorter running times for local trains and reach better homogeneity among 

train paths; in every case the minimum time supplement was satisfied. A set of integer 

values of primary delays is selected in the range from 1 to 10 minutes: 𝑃𝑑 =

{1 𝑚𝑖𝑛, 2 𝑚𝑖𝑛, … ,10 𝑚𝑖𝑛}, with 𝑛 = 10: these can be considered typical daily disruptions, 

due to, among others, boarding at stations, minor failures at the rolling stock or at the 

infrastructure. 

The skimming method was applied to reduce the number of simulations needed. 

The original timetable was timetable A, and the reference infrastructure scenario was 

Phase 1, with the following results:  
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𝑛𝑠𝑖 = 3550, 𝑛𝑠𝑖
∗ = 250, 𝜂 = 89,86%. 

The measured total delay resulting from primary delays given to every train is 

shown in the graph below: the average curves and the curve of the most representative 

course are highlighted. 

 

Figure 2.1-2: Total delay resulting from each trains’ primary delay. The average and the 

selected train’s total delay curves are highlighted 

The resulting robustness indices are summarized in the table below for every 

infrastructure scenario. HETs and HETa are calculated with reference to a nominal 

headway of 1 minute. All the measures specific to one station were calculated for arrivals 

at Rotterdam Central station. 

The operation of the 2-tracked tunnel will permit an increase of the train 

frequency from 11 trains/h up to 12 trains/h per direction, while the extension of quadruple 

tracks from Rijswijk through Delft will enable the operation of up to 16 trains/h. 

The maximum UIC 406 leaflet track capacity consumption will be reduced from 

currently 80% to 70% and finally 60% for the different infrastructure and basic timetable 

scenarios. The total delay of southbound trains as a function of the primary delay is well 

described by quadratic parabolic functions. The sensitivity of the infrastructure and 

timetable to knock-on delays does not change significantly after the operation of 12 

trains/h per direction on initially 2 tracks in the new tunnel in Delft. 
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Timetable j A B C D E 

Traffic volume 

vj (trains/h) 
11 12 14 16 18 

A
ll

 

Standard deviation headways 0,49 0,50 0,34 0,40 0,40 

M.a.d. headways 0,78 0,80 0,73 0,75 0,73 

SSHR* 1,00 1,15 1,57 1,77 2,23 

SAHR* 1,00 1,15 2,07 2,16 2,73 

HETs 0,51 0,53 0,62 0,61 0,69 

HETa 0,23 0,24 0,38 0,34 0,39 

HetA 0,49 0,46 0,59 0,67 0,72 

MRD* 1,00 1,00 1,00 0,93 0,87 

P
h

as
e 

1
 

Capacity consumption 80,8% 86,1% 98,9% 98,9% 100,0% 

Average running time margin 21,6% 22,2% 20,4% 19,6% 18,0% 

Total delay* 1,00 1,06 1,70 2,30 3,38 

Settling time* 1,00 0,99 1,16 1,21 1,71 

Number of delayed trains* 1,00 1,00 1,39 1,64 2,54 

Average delay per train* 1,00 0,98 0,87 0,90 0,96 

P
h

as
e 

2
 

Capacity consumption 70,3% 71,9% 89,4% 88,1% 96,7% 

Average running time margin 26,0% 27,0% 25,1% 23,9% 22,1% 

Total delay* 0,95 1,05 1,61 2,27 2,58 

Settling time* 1,00 0,98 1,14 1,19 1,61 

Number of delayed trains* 1,00 1,00 1,35 1,56 2,35 

Average delay per train* 0,84 0,80 0,71 0,72 0,78 

P
h

as
e 

3
 

Capacity consumption 58,6% 60,3% 76,1% 76,1% 86,1% 

Average running time margin 26,8% 27,8% 25,7% 24,6% 22,9% 

Total delay* 0,96 1,05 1,59 1,84 1,88 

Settling time* 1,00 0,98 1,15 1,19 1,33 

Number of delayed trains* 1,00 1,00 1,35 1,52 1,68 

Average delay per train* 0,84 0,81 0,72 0,69 0,89 

P
h

as
e 

4
 

Capacity consumption 60,8% 63,1% 70,6% 73,9% 78,3% 

Average running time margin 27,9% 29,0% 26,8% 25,6% 23,9% 

Total delay* 1,11 1,16 1,52 1,82 2,26 

Settling time* 1,00 0,99 1,12 1,16 1,37 

Number of delayed trains* 1,00 1,00 1,34 1,52 1,41 

Average delay per train* 0,77 0,75 0,68 0,63 0,79 

S
ig

n
al

in
g
 

Capacity consumption 60,3% 65,0% 83,3% 82,5% 88,9% 

Average running time margin 23,6% 24,3% 22,4% 21,5% 19,9% 

Total delay* 1,04 1,07 1,61 1,85 2,20 

Settling time* 1,00 0,99 1,17 1,20 1,32 

Number of delayed trains* 1,00 1,00 1,53 1,74 2,00 

Average delay per train* 1,02 0,98 0,84 0,83 0,76 

Table 2.1-2: Calculation of performance indices for the five infrastructure scenarios. 

Asterisks identify the normalized measures 
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The measures of dispersion of the headways remain approximately unchanged 

across different timetables, despite the increased traffic volume. In particular, the standard 

deviation of headways and the mean absolute deviation are not affected by changes in the 

number of trains. 

In all the scenarios, the total delay results being the most sensible measure to 

increases of traffic volume. 

2.1.4.2 Discussion 

The skimming method allowed a reduction of the workload of almost 90%, 

opening the possibility of a dramatic reduction of computation time and resources needed. 

The assumed absence of dispatching only affected few simulations with order alterations 

in the 2-tracked sections of the line. Considerable impact on the performance came, instead, 

from dispatching at the final station, with particular regard to the Phase 4 scenario. The 

track layout and allocation within the station generated several interdependencies and 

itinerary conflicts between arriving trains, resulting in queuing on the open line and in 

worse overall robustness. The capacity at stations is a known complex problem (Landex 

and Jensen, 2013), and the consequences on lines and on networks should not be 

disregarded. In this particular case, in the Phase 4 scenario, Rotterdam central station 

would be the bottleneck, being a critical robustness sink. 

The results highlight the different sensitivity of the parameters to primary delays 

and to traffic volume. In particular, the measures of headway dispersion are not sensitive 

to increases in traffic volume and only account for heterogeneity of headways. This is 

predictable, as these measures are normalized to the total cycle time. Potentially, this 

means that a timetable with lower capacity consumption but uneven allocation of train 

paths over time might result in worse score than a homogeneous timetable that saturates 

the line. The capacity consumption seems to be quite an incomplete indicator for 

robustness: it is affected by the performance parameter and the running time supplements. 

In all the scenarios the capacity consumption did not increase from a traffic volume of 14 

trains/h to 16 trains/h and in some cases, it decreased; the same happened for the last traffic 

volume boost, showing restricted increases. This is due to the change of the performance 

parameter in the schedule: trains can easily be compressed together with tighter schedules, 

and no evidence in the capacity consumption, as shown by timetables C, D, and E; on the 

other hand, the time supplement availability to recover from delays shrinks to the 

minimum, and disruptions’ effects grow. In the specific case study, the best reduction in 

capacity consumption was observable in Phase 3, which was the only one to tolerate up to 
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16 trains/h keeping safe in 75 % limitation of peak hour capacity utilization (UIC, 2004). 

This phenomenon is much related to the relation between MRD and the traffic volume. In 

fact, MRD does not change until the slower trains are speeded up to homogenize the train 

paths. As a result, MRD cannot represent robustness without the support of other measures, 

as reductions in scheduled running times are often related to higher capacity consumption, 

meaning a higher risk of delay propagation, and effects opposed to the measure direction. 

The total delay was the parameter most impacted by traffic volumes increase: for 

the current infrastructure – Phase 1 – its sensitivity to primary delays more than triplicated 

comparing a timetable witch 18 trains/h with the current 11 trains/h. It is also noticeable 

that sensible differences between the simulated scenarios could only be appreciated with 

16 trains/h or more. 

The settling time showed more stability against the traffic volume increase: its 

sensitivity index kept below 1,25 up to 16 trains/h. In addition, it seemed more independent 

on the upgraded infrastructure, as all the scenario gave very similar sensitivity values up 

to 16 trains/h. 

Surprisingly, the share of trains involved in the disruption appeared remarkably 

stable with small traffic growth. From 14 trains/h, though, the sensibility spread more than 

the other indices, up to rather high values. This could be explained by the nature of the 

case study: the main differences between infrastructure scenarios were after the point of 

disruption, and delays were measured at the end of the line; the timetables A and B were 

almost identical, and it is understandable that infrastructure improvement like the partial 

extension of a 4-tracked stretch would not enhance the ability of single trains to recover 

from their own delay. At the same time, the average delay per train seemed totally blind 

to the traffic volume. Every scenario showed that the grade of the regressed line would 

slightly drop in higher traffic volumes. Moreover, the 0-delay point of the regressed line 

was linked to lower primary delay values when the traffic increased. This can be 

interpreted as a rise of interaction between trains with the traffic increase so that more 

trains are hindered by the previous train but in a smaller amount. 

Moreover, the examination of different infrastructure scenarios highlights that 

simulation-based measures better show the interaction between schedules and the other 

components of a transport system, which are the rolling stock and the infrastructure. 

Indeed, the benefits of upgraded infrastructure are hidden in the synthetic analytical 

measures presented. The measures of heterogeneity in headways proposed by Haith et al. 

(2014) take into account this aspect, although this is only done considering a reference 
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minimum headway between trains, which does not account for possible different 

itineraries on the open line or within the stations.  

According to the results collected, it could be stated that the robustness of 

operation will not be improved by the new tunnel in Delft until it is provided with four 

tracks. Good results were also reached through the bare signaling system upgrade on the 

current infrastructure: sensitivity reduction of parameters against primary delay could be 

obtained through this measure, measurable similar to the advantage given by the 4-tracked 

section extension. Furthermore, comparison of all the indicators’ behavior as functions of 

frequency in all the infrastructures showed that the 4 tracks section extension would reduce 

the Total Delay by reducing the number of trains hindered, while a closer interaction 

between the trains would be gained by the signaling works, hindering more trains by a 

lower amount. By implementing ETCS Level 1 with braking curve supervision instead of 

changing track layout, the robustness indicators would improve as in the scenario with the 

extension of the complete line with 4 tracks to Delft Zuid without ETCS. 

Gathering the information from the indices we could state that rising the traffic 

volume, the settling time seems to be marginally affected, while the total delay raises. It 

means that the disruption should take effect within the same lapse of time. At the same 

time, the average delay per train reveals as independent from the increase of traffic volume, 

which means that disruptions spread among trains in packed timetables, rather than 

increasing the amount individual delay; the two pieces of information match indeed, 

meaning that the total delay increases because more trains are contained in the same 

settling time, each of them is hindered by the same amount. 

2.1.5 Conclusions and further studies 

This paper presented an effective and economical method to benchmark 

infrastructural and operational scenarios. The method proposed highlighted the necessity 

of a further step in new infrastructure building in Delft: real benefits to robustness will be 

achieved only by the extension of the 4-tracked section. Similar results could be obtained 

by new a signaling system implementation, although it would be not feasible for just one 

line on the network. 

The method allowed the comparison of different infrastructure scenarios and 

showed the efficacy of some actions to improve operation stability, rather than others. The 

flexibility given by a micro-simulation based approach suits to benchmark and compare 

different infrastructures, rolling stocks operational rules and railway-like transport system. 

In addition, an effective procedure is proposed to reduce the heavy computational load 
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typical of microsimulation to make the analyses lean; the skimming method could be 

improved and adapted to other contexts to reduce the computing time, which would open 

the gates to the use of micro-simulation in real-time problem solving such us re-scheduling. 

Different robustness measures were compared in this paper, with a particular 

focus on their sensitivity to traffic increases and their ability to represent the loss of 

reliability associated with more intense exploitation of the infrastructure. Measures based 

on simulation, representing the overall disturbance on the operations revealed to be more 

accurate than synthetic measures based mainly on the heterogeneity in the timetable. 

This research’s implications include the availability of new negotiation tools 

between Infrastructure Managers and Railway Undertaking; the benchmarking is needed 

to measure improvements from different solutions. The paper shows the lack of 

information of the capacity consumption indicator about robustness, even though a 

correlation between the line exploitation and timetable’s robustness evidently exist. The 

relation should be examined in depth together with the link between capacity consumption, 

headways between trains, running time supplements and robustness. 
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3 AN ANALYTICAL DELAY PROPAGATION MODEL  

3.1 Paper II: A Closed Form Railway Line Delay 

Propagation Model 

Cerreto, Fabrizio, Steven Harrod, and Otto Anker Nielsen. “A Closed Form Railway Line 

Delay Propagation Model.” Submitted to Transportation Research Part C: Emerging 

Technologies, October 24, 2017. Re-submitted after the second round of review, February 

3, 2018 
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Warsaw, Poland, April 18-21, 2016, at the annual meeting of the Institute for Operations 

Research and the Management Sciences (INFORMS 2016), Nashville, USA, November 

12-16, 2016, and at the Transport Conference (Trafikdage 2017), Aalborg, Denmark, 

August 29-30, 2017. 

Abstract 

Railway service quality can be measured by the aggregate delay over a time 

horizon due to an event that delays a given train. Timetables for railway services may 

dampen delay propagations to subsequent trains by adding either supplement time or 

buffer time to the minimum driving time. The evaluation of these variables is often 

performed by time-consuming analysis with simulation software. This paper proposes 

instead an analytical closed-form formulation of aggregate delay. This can be used to 

obtain theoretical insights into railway delays and as a component of larger railway 

scheduling models, where the iterative use of simulation models would require far too 

much calculation time. Analysis of the function recommends a slack control policy, as the 

delay-damping effect of supplement and buffer decreases with their magnitude. Further, 

the effect of different threshold values in delay measurement is demonstrated, giving 

information valuable to the design of service contracts. Numerical analysis of a railway 

line in Copenhagen shows that the polynomial function provides guidance and insight even 

when theoretical assumptions are violated. 

KEYWORDS: Rail transportation, Train delays, Timetable robustness, 

Timetable design, Delay propagation 
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3.1.1 Introduction 

Operational stability and robustness are important for railway transport. Not only 

are the passengers sensitive to these measures of quality (Parbo et al., 2016), but railways 

are usually integrated networks, where failures at one location often affect other locations 

and services. Railway network planners are thus faced with many decisions about what 

quality of service to provide and what resources to allocate to deliver this service. Much 

of the literature demonstrates that there are often multiple feasible alternatives to allocate 

timetable allowance, and each alternative has a unique performance profile with regard to 

punctuality and robustness (Caimi et al., 2009). The analysis of these alternatives 

frequently requires laborious modeling with simulation software, which is time-

consuming in both model programming and analysis run-time (Carey, 1999; Carey and 

Kwieciński, 1994; Parbo et al., 2014). Faster and simpler methods for performance 

appraisal use stochastic simulation models or analytical approaches, the former being more 

suitable when the timetable is unknown, and the latter being able to include a deeper level 

of detail (Meester and Muns, 2007). Analytic models are known to be much faster than 

simulation models, though the former require simplifying assumptions that might lead to 

inaccurate results (Mattsson, 2007).  

This paper contributes to the literature with an analytic closed form formulation 

of aggregate railway line delay propagation in response to a primary delay. This function 

may supplement or replace the application of simulation models for exploration of 

alternatives when appraising different timetable alternatives. The formulation is closed 

form under a set of timetable-structure assumptions. It is later shown in this paper, using 

microsimulation, that the formulation is robust to deviation from these assumptions. The 

mathematical model facilitates a quick evaluation of the expected cumulative delay and 

makes it possible to evaluate structural design factors, such as running time supplement, 

headway buffers, and to design service contract performance measures. Lastly, cumulative 

delay calculated in a closed form can efficiently be implemented in optimization models 

for timetabling. 

The formulation is derived from a finite series of deviations from the service plan 

(secondary delays) caused by a singular initial disruption (primary delay). The primary 

delay is propagated to following trains and recovered on the individual trains’ downstream 

paths. The scientific novelty of this model is the explicit and simultaneous inclusion of 

headway buffers and running time supplements to reduce the individual train delay in the 

propagation process, whereas previously proposed methods considered only one type of 
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timetable slack at a time, or used queuing theory to evaluate the interferences between 

vehicles (Hasegawa et al., 1981; Huisman, 2002; Landex, 2008; Mattsson, 2007; Pyrgiotis, 

2012; Salido et al., 2012). Furthermore, it is possible to model multiple primary delays and 

to evaluate the response on railway lines and networks, with the possibility to disregard 

small delays under a defined threshold. 

3.1.2 Literature Review 

3.1.2.1 Aggregate delay measures 

Cumulative, aggregate, or total delay, are common performance measures used 

in several fields, from operations monitoring, to timetable planning and optimization. 

Academic research and industrial applications show the relevance of such metrics in 

timetable planning and management. 

 Following a comparison of methods and data used to assess performance quality 

by 22 metro operators worldwide, Barron et al. (2013) describe measures of the total effect 

of disruptions as the best representation of service quality, as they provide a better 

understanding of how incidents affect operation and customers. In particular, total vehicle 

hours of delay reflect the operator’s interest in the vulnerability to network disruptions. 

Different forms of aggregate delay are currently used in operation analysis in the transport 

industry for service quality assessment, and to enforce contracts between railway 

undertakers and infrastructure managers. Transport for London uses Lost Customer Hours 

as a performance measure in metro operation. The measure consists of the total delay given 

to passengers, counted as estimated travel time extension due to incidents (TfL Investment 

Programme Management Office, 2008). In Europe, the Performance Regime produces 

cash flows between railway undertakers and infrastructure managers as an incentive to 

improve service quality. In Italy, every minute of train delay is valued at 2€ (Rete 

Ferroviaria Italiana, 2015), and the aggregate line delay can be correlated to the total cash 

flow generated by an individual primary delay. Diverse ways to extract this performance 

measure from past data, and to identify the main influencing factors have been proposed. 

Using regression analysis on data recorded in the British railway network, Gibson et al. 

(2002) identify an exponential functional relation between the line capacity utilization and 

the expected reactionary delays on a railway line. They furthermore identify several factors 

influencing the expected reactionary delays: geography, time of operation, and speed 

heterogeneity. Goverde and Meng (2011) developed a data analysis tool to build conflict 

trees based historical data on track occupation from the Dutch railways. The conflict trees 

depict the realized delay propagation across consecutive trains on a railway infrastructure, 
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so that it is possible to identify primary delays and the overall disturbance generated in 

form of secondary delays. Goverde and Meng assess the severity of individual 

disturbances by measuring the total delay that they generate. 

The cumulative delay is also used as a metric in the planning phase to evaluate 

timetables before the real operation. It is often compared to given initial delays to evaluate 

how stable the timetable is against disturbances. Landex (2008) uses total delay as a 

measure of timetable reliability in his analytical model, and to define a relation between 

capacity consumption and total delay generated by a given single primary delay. Salido et 

al. (2012) compare timetables using the cumulative delay resulting from simulation and 

define a timetable more robust than another, if, for a given disturbance, the cumulative 

delay generated is smaller. Cerreto (2015) introduces a method to reduce computation time 

in simulation models, shrinking the number of simulation runs required with a heuristic 

process called the skimming method. The method is based on the measure of aggregate line 

delay in perturbed simulation scenarios. A composite profile of aggregate line delay is 

estimated from an initial simulation analysis. 

The cumulative delay is also found strongly correlated with other performance 

measures, which makes cumulative delay a valuable objective candidate for timetabling 

optimization problems (Toletti, 2016; Törnquist, 2007). In delay management problems, 

Ginkel and Schobel (2007) optimize the operational departure time for a connecting 

service at a transfer station, given that the primary service is delayed. The aggregate delay 

is incorporated in the optimization function of a bicriteria model that minimizes the 

number of passenger missed connections and the total delay recorded by vehicles. Harker 

and Hong (1994) use cumulative line delay to evaluate dispatching choices on a railway 

network in a Nash noncooperative game. The model is set up to seek the network optimal 

dispatching strategy, given that the single divisions of the network act to minimize the 

aggregate deviation in their own area of control. The model is eventually used in the 

pricing of train slots, according to the value of time attributed to individual trains. 

3.1.2.2 Delay propagation models 

The interferences between trains under perturbed operation are expressed by 

delay propagation models. These models seek to mimic the development of secondary 

delays when primary delays are known. In this section, a survey of existing delay 

propagation models is provided, divided by models for railway lines and models for 

railway networks. 
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Models for railway lines 

The methods listed in this section model delay propagation on railway lines, 

mainly unidirectional. Although these methods might appear alike, they differ by the input 

and output variables, and by the modeled interaction between trains. 

Hasegawa et al. (1981) borrows concepts from road transport and applies a 

hydrodynamic analogy to model railway traffic. The study models the delay propagation 

on a unidirectional railway line as a shockwave in a compressible fluid. Timetable slack 

is modeled implicitly through speed and flow, where recovery is provided by trains 

running at higher speed and flow than scheduled. Discontinuities of traffic flow and 

density propagate at a speed that is independent of the entity of primary delays. The total 

delay is calculated as the integral of individual train delays in the domain of space and 

time, resulting as a cubic function of the primary delays. The model relies on measures 

hard to calculate in the planning process, such as spatial density, recovery flow and speed, 

and requires simulation for parameter calibration. 

Carey and Kwiecinski (1994) propose a stochastic approximation of the 

secondary delays of trains. Realized trip times on a line segment are derived from 

distributions of primary delays and headway buffers. The study finds that when trains have 

exponential delays between stations, the expected trip time between stations is directly 

dependent on the headway between trains plus a constant. 

Carey (1999) provides a theoretical description of the process delays transfer 

between consecutive trains at one station, and calculates the expected individual train 

delays, given the delay distributions of single trains and the set of headways at the station. 

The gain in reliability given by marginal timetable slack fades out with its magnitude under 

the assumption of downward sloping delay distributions. Carey’s metrics refer to a single 

station, and individual train recovery along the path is not considered. 

Huisman and Boucherie (2001) model the delay propagation in absence of a 

timetable, assuming that all trains run at their maximum possible speed. The first train is 

assumed to run within its minimum running time, whereas the following trains increase 

their running time in terms of the delay of the previous train, reduced by the headway 

buffer. Using queuing theory, expected interference between consecutive trains are 

estimated, but the influence of primary delay is only considered implicitly as the 

distribution of free-flow running times.  

 Mattsson (2007) offers a literature survey on reliability measures of railway 

services and the relationship between capacity consumption and unreliability. Mattsson 
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models the expected transit time over a line section as the summation of a minimum 

running time and a stochastic extension. Delay recovery is modeled through a share of 

expected delay included in the schedule. The objective of railway planners is the minimum 

expected passenger loss, which combines the scheduled running times and the expected 

unscheduled delays. Besides, Mattsson applies again an analogy to standard road traffic-

flow to calculate the capacity utilization of a double-tracked railway line, as the percentage 

of time used by a train sequence. The method is similar to previous approaches (Gibson et 

al., 2002; UIC, 2004), and the capacity used by a timetable has been used later as a measure 

of its reliability (Haith et al., 2014). 

Lastly, and most closely related to this paper, Landex (2008) proposes a delay 

propagation model computing the transfer of delay between trains through the scheduled 

buffer times. This model is used to study the relationship between capacity consumption 

and the development of the disruptions but does not consider the recovery of train delays 

according to the running time supplement. Landex hypothesizes homogeneous traffic on a 

single railway line and proposes timetable slack aggregation to model heterogeneous train 

paths, using average buffer time between pairs of trains. The method is later integrated 

with running time supplement by Jensen et al. (2017), who estimate the capacity 

consumption of a timetable under stochastic sets of primary delays in a mesoscopic 

simulation framework.  

Models for railway networks 

The interaction between trains on the railway network is more complex than 

railway lines. Different lines merge and diverge at stations, service constraints are 

introduced to satisfy the connections between trains and meet and passes are often 

scheduled at stations. Timed graph events are often utilized to represent these complex 

connections. The methods listed below differ mainly in the design of dependencies 

between scheduled events. 

Zhu and Schnieder (2000) propose a model to assess railway timetable 

performance using Colored Petri Nets.  Given primary delay distribution, the authors 

evaluate the timetable performance measuring the Delay Degree, which is the aggregate 

delay recorded at specific stations. Timetable planners can improve the performance 

changing the sequence of headways at individual stations. The complexity of Colored Petri 

Net models increases exponentially with the number of stations, and the authors point out 

the imperative need to reduce the model complexity. 



An analytical delay propagation model 

Paper II: A Closed Form Railway Line Delay Propagation Model 

59 

Meester and Muns (2007) model the realized process times in a stochastic timed 

event graph as a combination of a minimum process time and a random extension. The 

initial delay of a process is recovered by a process time supplement, and the final residual 

delay is transferred to the downstream events. Delays are propagated recursively in a 

continuous Markov chain, given the distribution of process time extension for every 

connection between arrival and departure events. The paper states that a phase-type 

distribution, a distribution of the absorption time of a continuous time Markov chain, can 

be contained in closed form using three operations on individual delays: sum, nonnegative 

excess beyond a bound, and maximum. The method requires knowledge on the distribution 

of primary delays for individual processes and depends on the assertion of independence 

of the primary delays. Resembling simulation models, it is not possible to extract a 

functional relationship between primary and secondary delays. 

Goverde (2010, 2007) presents an efficient delay propagation algorithm where 

timetables are modeled as timed event graphs (using max-plus algebra) and initial delays 

are known. The algorithm is very fast and, in a few seconds, can calculate the delay 

propagation over a large network consisting of many interdependent services, such as the 

Dutch national railway timetable. Goverde uses this method to compute performance 

indicators, including delay propagation statistics such us total secondary delay, and settling 

time. However, the model offers no functional relationship, and results must be calculated 

for each scenario separately.  

Graph methods for delay propagation occur also in other means of transportation. 

Pyrgiotis (2012) describes a mixed algorithmic and analytical model to propagate delays 

in airport networks, following aircraft rosters, based on queuing theory. The analytical 

section of this model uses queueing theory to assign delays to flights due to congestion at 

airports, based on the airport capacity and the time-dependent traffic demand. The delay 

assigned to a flight is then propagated to the downstream airports in the aircraft’s roster. 

The aircraft delay is reduced in every trip segment by means of the scheduled slack, and it 

is increased by congestion, from queuing theory. Table 3.1-1 summarizes the mentioned 

references and offers a comparison of their main features. 

The applications listed in section 3.1.2.1 reveal the significance of aggregate 

delay as a performance measure, both in research and in industry. In the successive 

sections, the literature on delay propagation models and aggregate delay estimation is 

reviewed. 
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Hasegawa, 
1981 

Analytical L U, 
H 

K Design values 
and maximum 

values for 

speed, flow, 
density 

Primary 
delay 

Aggregate 
line delay 

Y 

Carey and 

Kwiecinski, 
1994 

Stochastic L U K Scheduled 

Headways 

Distributions 

of Free and 
Minimum 

running 

times 

Individual 

trip times 

Y 

Carey, 1999 Stochastic S A U Headway 

buffers 

Distributions 

of primary 

delays 

Individual 

expected 

delays 

N 

Huisman 

and 

Boucherie, 
2001 

Stochastic L U U Scheduled 

headways 

Distributions 

od free 

running 
time, 

Distributions 

of actual 
headway 

Distributions 

of actual 

running time 

N 

Mattsson, 

2007 

Analytical L A U Running time 

supplement 

Distribution 

of primary 
delays 

Expected 

running time 

N 

Landex, 

2008 

Analytical L A K Headway 

buffers 

Primary 

delay 

Aggregate 

line delay 

Y 

Zhu and 

Schnieder, 
2000 

Simulation 

- Colored 
Petri net 

N A K Scheduled 

Headways 

Distributions 

of primary 
delays 

Aggregate 

station delay 

N 

Meester and 

Muns, 2007 

Analytical N A K Process time 

supplement 

Distributions 

of process 
times 

Expected 

delays 

N 

Goverde, 

2007,2010 

Analytical N A K Running time 

supplements, 

Headway 

buffers, 

Connection 
buffers 

Primary 

delay, 

Minimum 

headways, 

Minimum 
dwell times, 

Connections 

Total 

secondary 

delay, 

number of 

delayed 
trains, 

average 

secondary 
delay, 

settling time 

N 

Pyrgiotis, 
2012 

Stochastic 
+ 

Analytical 

N A K Running time 
supplement 

Airport 
capacity 

Individual 
delays 

N 

Cerreto et 
al., 2018 

(this paper) 

Analytical L
, 

N

* 

U, 
H 

K Running time 
supplement, 

Headway 

buffer, Delay 
threshold 

Primary 
delay 

Aggregate 
line delay, 

individual 

train delays, 
settling time 

Y 

Table 3.1-1 Literature summary. Infrastructure: N – Network, L – Line, S – single station, 

*With recursive application. Traffic: A – Any direction, U – Unidirectional, H – 

Homogeneous. Timetable: K – known, U – unknown. 
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Most of the delay propagation models for railway lines do not consider the 

recovery through the running time supplements. In a few cases, running time supplements 

are included, but delay recovery through the headway buffer between trains is disregarded. 

Even though many of these models provide insight into the interferences between delayed 

trains, they are very theoretical, and their application appears limited to railway lines and 

to single primary delays. Moreover, the only closed form function that returns the 

cumulative delay generated by a given primary delay, which considers recovery both 

between trains and along the train path is given by Hasegawa (1981), but this model does 

not consider conditions of partial delay recovery or no recovery, and uses control 

parameters that are difficult to measure and calibrate. 

More complex models based on event graphs are able to include both the types 

of recovery at the same time and to represent the multiple dependencies between timed 

events on railway networks.  These models, though, do not provide a functional 

relationship between primary delays and aggregate delay, so the insight on the relation is 

limited to a test-based analysis. 

Furthermore, very seldom in the presented literature, a delay threshold is 

considered to disregard small delays, although it is a common tuning parameter for 

performance assessment (European Performance Regime project, 2013; Hofman et al., 

2006; Jensen, 2015; Landex, 2008; Parbo et al., 2016; Schittenhelm, 2013, 2011; UIC, 

2009; Vromans, 2005). 

For this reason, the model presented in this paper is designed as a closed form 

function of primary delays and aggregate delays, where recovery is possible between both 

trains and stations. The model represents diverse recovery conditions, and supports 

multiple primary delays, fits railway networks, and includes a delay threshold under which 

delays can be disregarded. 

3.1.3 A Model for Cumulative Line Delay in Full Recovery Condition 

Two fundamental measures in schedules are typically used to improve reliability 

reducing the risk of primary delays, and damping the propagation into secondary delays; 

supplements and buffers (Goverde and Hansen, 2013). A supplement is an additional time 

beyond the minimum operating time between timing points that allows a train to 

experience disruptions and yet still attain scheduled arrivals (Figure 3.1-1). This measure 

is specific (and potentially unique) to each train between a given pair of timing points and 

directly supports timetable robustness. 
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Figure 3.1-1: Definition of timetable supplement and headway buffer in train paths. 

A buffer is an additional time between trains so that disruptions and delays of the 

leading train are less likely to cause interference with the following train (Figure 3.1-1). 

The buffer is a component of the headway (the total time between passing trains), but not 

the same as the headway. The headway equals the minimum safe separation time between 

trains plus the buffer. The capacity or number of trains on the railway line is strictly 

determined by the headway, but clearly, the buffer is a decision variable, that, other things 

being equal, determines the tradeoff between capacity and stability.  

Delays to trains are classified as primary or secondary. Primary delays are events 

happening to or “owned” by a specific train, such as a driver mistake, a passenger incident, 

unusual crowds, etc. Secondary delays are delays experienced as the result of conflict or 

interference with another train that has deviated from its plan (Figure 3.1-2). 

 

Figure 3.1-2: Calculation of secondary delay as a function of primary delay. 
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In the analysis that follows, the total cumulative delay of the timetable system is 

calculated. That is the total deviation from the timetable of every train at every station 

(measuring point) over the time horizon of the analysis period. Thus, a train that is five 

minutes late at three sequential stops would register fifteen minutes of system delay. 

Additionally, the formulation provided returns the settling time from a primary 

delay. The settling time is the time it takes from a primary delay until the trains have 

returned to their planned schedules. The measure is used in timetable robustness 

assessment. For example, Salido et al. (2008) define a settling time performance measure 

called (t,k) robust. The measure states that if a timetable suffers a disruption of t time units 

and returns to stability or the original plan in k time units, then it is (t,k) robust.  

3.1.3.1 A Finite Series Model of Delay in Two Dimensions 

This section proposes a model that is a closed form function that calculates the 

total delay as a function of a single initial delay to one train. The model is, then, extended 

in section 3.1.4 to include multiple primary delays at any location on the line. 

Many of the prior cited papers define the analysis horizon in terms of the length 

of line or the number of train path segments. The following model specifically includes 

the secondary delays to individual trains, and thus the second dimension of the analysis 

horizon is the train number in a sequence. This model consider trains on a single line with 

a single direction of movement (e.g. on a double-track railway), which is a conventional 

operating plan in Europe and urban North America, and is likewise matter of study of 

mentioned literature (Carey, 1999; Cerreto, 2015; Hasegawa et al., 1981; Huisman and 

Boucherie, 2001; Landex, 2008; Mattsson, 2007). The time horizon of the model then 

begins with the train and location of the primary delay and ends with the return of the last 

train to schedule within the allowed delay threshold. 

Table 3.1-2 presents the terms and labels for sets and parameters in the model. 

Without loss of generality, the timetable measurement points are called “stations”, even 

though they can just as well be any geographic location where the train must adhere to the 

timetable. Subscripts i and s specify the train and station that the parameters refer to, 

respectively. When parameters are later used without a subscript, they are constant and 

identical for all trains in the formulation, so that a, for example, refers to a value of running 

time supplement constant and identical for every train between any pair of consecutive 

stations. s*i refers to the last station after a disruption at which train i deviates from its 

planned timetable, namely its last delayed station. i*s is a companion component of the 

last delayed station and refers to the last train at a given station after a disruption which 
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deviates from its planned timetable. δ is the delay threshold, which means that delays 

below a specified magnitude will be ignored in the calculation of utility loss.  

s Station index 

i Train index 

𝐒 
The ordered set of stations of the analysis, {1,2,…,S}. s=1 is the station where 

the primary delay is generated. 

𝑰 
The ordered set of trains in the analysis, {1,2,…,I}. Lower numbered trains 

precede higher numbered trains. i=1 is the train the receives primary delay. 

𝑝 Primary delay 

𝑑𝑖,𝑠 Individual delay of train i at station s 

𝑡𝑖,𝑠 Minimum running time of train i between stations s-1 and s 

ℎ𝑖,𝑠 Minimum time separation (headway) between trains i-1 and i at station s 

δ Delay threshold 

𝑎𝑖,𝑠 Running time supplement of train i between stations s-1 and s 

𝑏𝑖,𝑠 Headway buffer time at station s between trains i-1 and i 

𝑠∗𝑖 Last delayed station for train i 

𝑖∗𝑠 Last delayed train at station s 

ω Timetable slack ratio 

𝜑𝑝 Timetable settling time for delay p  

Γ Cumulative line delay 

Table 3.1-2: Table of sets and parameters 

3.1.3.2 Primary Delays and Derivation of Cumulative Delay 

Primary delays can occur at any station of the line and affect any train in the 

schedule. A residual amount of delay that exceeds the possible recovery by running time 

supplement and headway buffer propagates to succeeding trains and downstream stations. 

This section models the relation between individual train delays to calculate the cumulative 

line delay. Train and station indices i and s start at 1 at the location of the primary delay. 

The cumulative delay, Γ, represents the unweighted utility loss experienced by 

the railway service due to a disruption. It is the sum of all individual delays as measurement 

points in the timetable over the analysis horizon and is presented in Equation (1). 
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Γ = ∑ 𝑑𝑖,𝑠
𝑖∈𝑰 | 𝑑𝑖,𝑠≥𝛿

𝑠∈𝑺

 
(1) 

p defines the primary delay, corresponding to the delay of the first train at the 

first station in the analysis horizon, thus d1,1=p. This delay will propagate to the following 

trains through the expression of individual delay given in (2) 

𝑑𝑖,𝑠 = 𝑚𝑎𝑥{(𝑑𝑖,𝑠−1 − 𝑎𝑖,𝑠), (𝑑𝑖−1,𝑠 − 𝑏𝑖,𝑠), 0} ∀ 𝑖 > 1, 𝑠 > 1 

𝑑1,𝑠 = 𝑚𝑎𝑥{(𝑑𝑖,𝑠−1 − 𝑎𝑖,𝑠), 0} ∀  𝑠 > 1 

𝑑𝑖,1 = 𝑚𝑎𝑥{(𝑑𝑖−1,𝑠 − 𝑏𝑖,𝑠), 0} ∀ 𝑖 > 1 

𝑑1,1 = 𝑝 

(2) 

Equation (2) represents that every train delay incidence is caused either by delay 

originating with the train or by secondary delay imposed by another train. A train may 

recover from its own delay by the timetable supplement ai,s. A train is likewise shielded 

from the obstruction of a preceding train by the buffer bi,s. A train then experiences a delay 

if either or both of these limits are exceeded, and the larger of the two values determines 

the functional train delay. Similarly to previous research (Goverde, 2010, 2007; Hasegawa 

et al., 1981; Huisman and Boucherie, 2001; Landex, 2008; Mattsson, 2007), delay 

recovery is modeled here as a deterministic process. Nevertheless, the stochasticity of 

delay recovery can be included in the model using expected values of delay recovery in 

place of scheduled running time supplement and headway buffer. The values of expected 

delay recovery might be extracted from historical data. 

3.1.3.3 Relaxed Formulation for Homogeneous Train Schedules and Line Segments 

Homogeneous timetables are characterized by a repetition of identical train 

trajectories equally distributed over time. This type of schedule is very frequent in 

specialized railway lines, where the service pattern is constant, such as regional and 

suburban railway lines, metro services, or even dedicated high-speed railway lines. In 

these cases, the running and supplement and headway buffer are equal for all the trains 

and can be generalized in 𝑎𝑖,𝑠 = 𝑎𝑠 and 𝑏𝑖,𝑠 = 𝑏𝑠. 

Consider now a theoretical railway line where running time supplements and 

headway buffers are identical throughout all the line segments and stations, such that a 

and b are constant values throughout the formulation. The assumption does not have an 

effect on minimum and scheduled running times, nor does it affect minimum and 

scheduled headway, which can vary freely if the timetable slack is kept constant 

throughout the line. Heterogeneous timetables, where running time supplements and 
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headway buffers vary across pairs of trains and stations can be reduced to pseudo-

homogeneous using aggregate measures of the two types of slack. Landex (2008) uses the 

arithmetic mean of the buffer time as an aggregate measure of timetable slack in his delay 

propagation model. In this paper, the weighted averages of running time supplements and 

headway buffers are proposed instead, with weights inversely proportional to the distance 

from the primary delay location. The case study in section 3.1.5 shows that such 

aggregation is more accurate than the arithmetic mean proposed by Landex. The system-

wide parameters a and b could also derive from statistical analysis of historical data from 

the real operation. Delay recovery would be thus accounted for as influenced by stochastic 

input, and the net parameters would be the expected valued of delay recovery. Equation 

(2) becomes Equation (3) 

𝑑𝑖,𝑠 = 𝑝 − (𝑠 − 1)𝑎 − (𝑖 − 1)𝑏 ∀ 𝑖 ≥ 1, 𝑠 ≥ 1 | 𝑝 ≥ (𝑠 − 1)𝑎 + (𝑖 − 1)𝑏 

𝑑𝑖,𝑠 = 0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 
(3) 

The conditions linking p, i, s, b, and a define a two-dimensional region where 

individual train delay, di,s, is positive. Outside this region, trains have returned to their 

original planned timetable, or recovered. This region, where trains are recovering or 

settling back into their planned timetable, is defined as the recovery region.  

Consider that a positive value of δ further defines a recovery region only where 

di,s≥δ, and Equations (4) and (5) yield solutions of Equation (3) for the boundary values of 

the recovery region in dimensions of the number of stations and the number of trains. The 

extreme points of the recovery region are defined at 𝑠∗1 and 𝑖∗1. Since both i and s must 

be integers, these solutions are returned as floor functions.  

𝑠𝑖
∗ = ⌊

𝑝 + 𝑏 − 𝛿

𝑎
− 𝑖

𝑏

𝑎
⌋ + 1 | 𝑝 ≥ 𝑎 + 𝛿 (4) 

𝑖𝑠
∗ = ⌊

𝑝 + 𝑎 − 𝛿

𝑏
− 𝑠

𝑎

𝑏
⌋ + 1 | 𝑝 ≥ 𝑏 + 𝛿 (5) 

Figure 3.1-3 depicts the approximate boundaries of the recovery region. The 

diagonal boundary has an approximate slope of a/b. 

One additional simplifying hypothesis is necessary to calculate the settling time. 

The line consists of equitemporal (not necessarily equidistant) line segments and identical 

train dynamic performance, such that h and t are also constant values throughout the 

formulation. Such an assumption is rather akin to previous hydrodynamic models applied 

to high-speed networks with homogeneous traffic (Hasegawa et al., 1981). The 
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approximate settling time will be the greater of the times necessary to traverse and exit the 

recovery region, either along the station axis (s) or the train axis (i), equation (6).  

𝜑𝑝 = max{(𝑡 + 𝑎)(𝑠1
∗ + 1), (ℎ + 𝑏)(𝑖1

∗ + 1)}

=  max[(𝑎 + 𝑡)(2 +
𝑝 − 𝛿

𝑎
), (𝑏 + ℎ)(2 +

𝑝 − 𝛿

𝑏
)] 

(6) 

 

Figure 3.1-3: Recovery region bounds for a given primary delay p. 

3.1.3.4 Fixed ratio b/a and Symmetric Systems 

For illustrative purpose, hypothetical systems are here introduced with a fixed 

ratio 𝜔 =
𝑏

𝑎
. In such systems, delay propagation equations are simplified, and 

dimensionality is reduced, so inference on the polynomial model be shown on a bi-

dimensional graph [𝑝, Γ(𝑝)].  

Consider the system where 𝜔 = 1, so a=b, which will be called “symmetric”, 

because not only are the control values of timetable supplement and buffer equal, but the 

ratio b/a implies the region is symmetric with respect to the number of trains and stations. 

Then the recovery region is defined only by the primary delay and the single parameter a, 

as shown in Equations (7) and (8). Checking the values of 𝑠∗1 and 𝑖∗1, it can be seen that 

indeed, for 𝜔 = 1, the region is symmetric with an equal number of trains and stations. 

𝑠𝑖
∗
𝜔
= ⌊

𝑝 − 𝛿

𝑎
+ (1 − 𝑖)𝜔⌋ + 1 | 𝑝 ≥ 𝑎 + 𝛿 (7) 

𝑖𝑠
∗
𝜔
= ⌊

𝑝 − 𝛿

𝜔𝑎
+ (1 − 𝑠)

𝑖

𝜔
⌋ + 1| 𝑝 ≥ 𝜔𝑎 + 𝛿 (8) 

s*
1

i*
1

1,1

a/b

S
ta

ti
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n
s

Trains

Point of primary delay
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3.1.3.5 Calculation of Cumulative Delay 

The resulting summations for the cumulative delay, Γ, are shown for the general 

case in Equation (9), and for the case of fixed ratio b/a in Equation (10). The summation 

operates first in the dimension of the stations for individual trains, returning the cumulative 

delay recorded on one train’s whole itinerary, and then it sums the cumulative delay across 

the individual train itineraries. 

Γ = ∑ 𝑝 + 𝑎 + 𝑏 − 𝑠𝑎 − 𝑖𝑏

𝑖∈{1,2,…,⌊
𝑝+𝑎−𝛿

𝑏
−𝑠
𝑎
𝑏
⌋+1}

𝑠∈{1,2,…⌊
𝑝−𝛿
𝑎 ⌋+1}

 

(9) 

Γω = ∑ 𝑝 − 𝑎(𝜔(𝑖 − 1) + 𝑠 − 1)

𝑖∈{1,2,…,⌊
𝑝−𝛿
𝜔𝑎

+
(1−𝑠)
𝜔

⌋+1}

𝑠∈{1,2,…⌊
𝑝−𝛿
𝑎
⌋+1}

 

(10) 

The floor functions in these summations prevent them from resolving into 

manageable functions. If the floor functions are relaxed, the summations resolve into the 

following polynomials: the general case in Equation (11), and the case of fixed ratio b/a 

in Equation (12). 

 

Figure 3.1-4: Plot of cumulative delay for δ=3 and fixed ratio b/a = ω =1. The fixed ratio 

model is used for readability. Comparison between the polynomial model and the 

numerical summation, with a=1 (top curve) and a=2 (bottom curve). 
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Γ =
𝑝3

6𝑎𝑏
+
3(𝑎 + 𝑏)𝑝2

12𝑎𝑏
+
(𝑎2 + 3𝑎𝑏 + 6𝑏𝛿 − 6𝛿2)𝑝

12𝑎𝑏

+
−𝑎2𝛿 + 9𝑎𝑏𝛿 − 3𝑎𝛿2 − 9𝑏𝛿2 + 4𝛿3

12𝑎𝑏
 

(11) 

Γ𝜔 =
𝑝3

6𝑎2𝜔
+
3𝑎(1 + 𝜔)𝑝2

12𝑎2𝜔
+
(𝑎2 + 3𝑎2𝜔 + 6𝑎𝜔𝛿 − 6𝛿2)𝑝

12𝑎2𝜔

+
−𝑎2𝛿 + 9𝑎2𝜔𝛿 − 3𝑎𝛿2 − 9𝑎𝜔𝛿2 + 4𝛿3

12𝑎2𝜔
 

(12) 

Naturally, there is a question of how much error is introduced by relaxing the 

floor functions. Figure 3.1-4 shows that the difference, with and without the floor function, 

is very small for a delay threshold of 3 (minutes) and supplements and buffers of one or 

two (minutes). 

3.1.3.6 Inferences from the Polynomial Function 

Figure 3.1-5 presents the contour of a system with fixed ratio ω=1 and shows 

that while timetable slack certainly is valuable in damping the damage of primary delays, 

its incremental value quickly declines. The figure suggests that supplements and buffers 

can be applied excessively, wasting resources without accomplishing proportional 

reductions in system delay. 

 

Figure 3.1-5: Aggregate delay contour of the case for ω=1 and δ=3, as a function of 

primary delay, p, and slack parameter, a=b/ω. 



Analytical, Big Data and Simulation Models of Railway Delays 

70 

Differential calculus of aggregate delay against timetable slack expresses the 

marginal reduction of aggregate delay given by increments of timetable slack. Equations 

(13) and (14) show the partial derivatives of cumulative against a and b, respectively. The 

case with fixed slack ratio α is represented by equation (15) and depicted in Figure 3.1-6. 

∂Γ

∂a
=
−
𝑝3

6𝑏
−
𝑝2

4
−
𝑝𝛿
2
+
3𝛿2

4
+
𝑝𝛿2

2𝑏
−
𝛿3

3𝑏
𝑎2

+
𝑝

12𝑏
−

𝛿

12𝑏
 

(13) 

∂Γ

∂b
=
−
𝑝3

6𝑎
−
𝑝2

4
−
𝑎𝑝
12
+
𝑎𝛿
12
+
𝛿2

4
+
𝑝𝛿2

2𝑎
−
𝛿3

3𝑎
𝑏2

+
−
𝑝2

4𝑎
−
𝑝
4
−
𝑝𝛿
2𝑎
−
3𝛿
4
+
3𝛿2

4𝑎
+
3𝑎𝑝 + 3𝑝2 + 9𝑎𝛿 + 6𝑝𝛿 − 9𝛿2

12𝑎
𝑏

 

(14) 

∂Γ𝜔

∂a
=
−
𝑝2

4
−
𝑝2

4𝜔
−
𝑝𝛿
2
+
3𝛿2

4
+
𝛿2

4𝜔
𝑎2

+
−
𝑝3

3𝜔
+
𝑝𝛿2

𝜔
−
2𝛿3

3𝜔
𝑎3

 
(15) 

Equations (13) and (14) show that the partial derivatives of aggregate line delay 

tend asymptotically to infinite for a=0 or b=0, respectively. The relation is inverse of the 

second degree, and the hyperbolic relation suggests that the damping effect of delay 

propagation decreases quickly in the low range of timetable slack. The theoretical global 

minimum reduction of aggregate delay corresponds at infinite values of a and b, although 

a near-zero plateau is typically reached after the initial drop. In the model, the asymptote 

at null slack is due to infinite delay propagation given by either null running time 

supplement or headway buffer. In the first case, trains cannot recover from delays along 

their journey. In the second case, the delay would transfer to an infinite number of 

following trains. Figure 3.1-6 shows that excessive timetable slack does not contribute to 

reducing the aggregate line delay, reaching a plateau of near-zero marginal decrement. The 

plateau corresponds to timetable slack large enough to prevent any delay propagation to 

following trains or downstream stations. In such a system, the only delay registered is the 

primary delay assigned to the first train at the first station, which is unavoidable by means 

of timetable slack. 
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Figure 3.1-6: Contour of marginal reduction of aggregate delay against timetable slack 

and primary delay, with δ=3. 

Further evidence that too large timetable slack is not advisable is given by the 

settling time formulation in equation (6). The settling time results from the maximum 

between two terms, which exclusively depend on the running time supplement a, and the 

headway buffer b, in turn. In both the terms, the relationship with the respective form of 

slack results from the sum of a linear term and a hyperbolic function. This suggests that, 

after an initial quick drop of the settling time, increases of timetable slack imply an 

increase in the settling time as well. An example is offered in Figure 3.1-7. 

 

Figure 3.1-7: Contour of settling time with t=5, h=3, δ=3, and p=5. 

This contour plots Equation (6) with a minimum running time between stations 

of t=5, a minimum headway of h=3, and a delay threshold of δ=3, for a given primary 
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delay of p=5. Note that both timetable supplement (a) and buffer (b) must be present to 

control the settling time and that excessive values of either actually worsen the settling 

time. 

3.1.4 A Universal Polynomial Form for Primary Delays at Unspecified Stations 

(Any Recovery Condition) 

The polynomial model presented in section 3.1.3.1 applies to full recovery 

conditions, i.e. all the train recover completely from delay within the study region. In real 

operation, incidents occur at different locations on a railway line, and trains can experience 

primary delays at any station. In specific cases, the delay cannot be recovered within the 

study region, which will be referred to as “partial recovery” condition. In this section, a 

universal equation is derived as an expansion of the previous case, to reduce the 

summation domain to a restricted study region. The equation is valid in any recovery 

condition and can be used to analyze the effects of primary delays at different locations on 

a railway line or selecting specific areas of interest. The delay recovery region is split into 

sub-regions, and the polynomial form is integrated with logical functions to include or 

exclude specific sections from the delay summation domain. 

The fundamental formulation of aggregate delay keeps the same form as equation 

(9), which is applied to different summation domains. In the following sections, the study 

region and recovery regions are described, and the cumulative delay is calculated over 

selected portions of the domain of trains and stations modifying the summation limits. 

Moreover, the model parameters can be modified to consider different recovery regions 

originated by multiple primary delays. 

3.1.4.1  Study region and Delay recovery region 

Delay propagation studies can be limited to defined sections of the railway lines. 

For example, the most congested section of railway lines within a node could result in 

greater interest than marginal lines. In other cases, the lines can be divided into different 

homogeneous study regions, suburban railway networks can be split into sections 

according to the scheduled traffic volume and average headway between trains. The study 

region is the domain of interest in the two dimensions of the model, stations and trains, 

and is defined by the number of stations S and the number of trains R considered. The 

recovery region, defined in section 3.1.3.3, is the set of trains i and stations s where the 

individual delay exceeds a given threshold δ. The recovery region shapes as a pseudo-

triangle in the (i,s) domain, which vertices are the first train at the first station, where the 

primary delay is generated (1,1), the last delayed train at first station (𝑖1
∗, 1), and the last 
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delayed station for the first train (𝑠1
∗, 1). The cumulative delay is the summation of the 

individual delays of trains at stations within the study region, so the summation domain 

extends to the area resulting from the overlap of the study region and the recovery region. 

The overlap of study region and the recovery region depends on the values of primary 

delay p, running time supplement a, headway buffer b, delay threshold δ, number of 

stations S and number of trains I in the study region. Keeping the definition of cumulative 

delay as the overall effect of a primary delay over the study region, the equations proposed 

in section 3.1.3.1 are modified to include an unbounded study region where full recovery 

is always possible. The result is defined unbounded cumulative delay as the recovery 

region can extend limitless. To reduce the cumulative delay and only include the study 

region, individual sub-recovery areas are identified, and removed from the unbounded 

cumulative delay. The individual sub-recovery regions are removed when the system of 

equations meats specific requirements, described in section 3.1.4.3. 

 

Figure 3.1-8: Study region and recovery region overlap 

Figure 3.1-8 depicts a study region entirely included in the recovery region. This 

case shows all the possible delay sub-recovery areas to include in the general formulation 

for the cumulative delay. The individual areas and the specific equations are explained in 
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the following sections. The general formulation of the cumulative delay over individual 

areas keeps the same form of (9), as a summation of individual delays, whereas the 

summation domains differ across sub-regions. 

A parametric notation is introduced here to calculate the cumulative delay over 

the different selections of the (i,s) domain. In the following sections, the expression 

Γ(𝑝,[𝑖′,𝑖′′],[𝑠′,𝑠′′]) indicates the cumulative delay Γ given by primary delay p at location (i',s'), 

with summation domains 𝑖 ∈ {𝑖′, … , 𝑖′′} and 𝑠 ∈ {𝑠′, … , 𝑠′′}. 

3.1.4.2 Unbounded cumulative delay and sub-recovery regions 

If no restriction is imposed on the number of trains and stations, the delay will 

always be completely recovered. The formulation of unbounded cumulative delay 

corresponds to equation (9), where the summation domain extends from the point of 

primary delay to the last delayed train and station. The relation between primary delay and 

cumulative delay is, so, third degree. The unbounded cumulative delay is defined in 

parametric notation as Γ(𝑝,[1,𝑖𝑠∗],[1,𝑆]). 

When the study region terminates before the last delayed station, namely 𝑠1
∗ > 𝑆, 

the unbounded cumulative delay must be reduced by an amount corresponding to the 

cumulative delay in the exceeding area, called here Line progress sub-recovery. The 

summation domain extends in this case from the first station outside the study region 𝑆 +

1 to the last delayed station for the first train 𝑠1
∗ . Equation (16) shows the parametric 

notation for the Line progress sub-recovery region and the resulting polynomial. 

Γ(𝑝,[1,𝑖𝑠∗],[𝑆+1,𝑠1∗]) = ∑ 𝑝 + 𝑎 + 𝑏 − 𝑠𝑎 − 𝑖𝑏

𝑖∈{1,…,𝑖𝑠
∗}

𝑠∈{𝑆+1,…,𝑠1
∗}

 

=
𝑝3

6𝑎𝑏
+
𝑝2(3𝑎 + 3𝑏 − 6𝑎𝑆)

12𝑎𝑏

+
𝑝(𝑎2 + 3𝑎𝑏 − 6𝑎2𝑆 − 6𝑎𝑏𝑆 + 6𝑎2𝑆2 + 6𝑏𝛿 − 6𝛿2)

12𝑎𝑏

+ (
−𝑎3𝑆 − 3𝑎2𝑏𝑆 + 3𝑎3𝑆2 + 3𝑎2𝑏𝑆2 − 2𝑎3𝑆3 − 𝑎2𝛿

12𝑎𝑏

+
9𝑎𝑏𝛿 − 6𝑎𝑏𝑆𝛿 − 3𝑎𝛿2 − 9𝑏𝛿2 + 6𝑎𝑆𝛿2 + 4𝛿3

12𝑎𝑏
) 

(16) 

Similarly to the line progress sub-recovery, when the study region terminates 

before the Last Delayed Train, namely 𝑖1
∗ > 𝑅, the unbounded cumulative delay must be 

reduced by an amount corresponding to the cumulative delay in the exceeding area, called 
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here Train fleet sub-recovery. The cumulative delay in the Train fleet sub-recovery region 

is denoted as Γ(𝑝,[𝑅+1,𝑖𝑠∗],[1,𝑠1∗]). 

In the general case, the mentioned exceeding areas can overlap. This happens 

when the delay cannot be recovered by any of the trains in the study region, before the last 

station. In these cases, the overlapping excess should be reintroduced to avoid double 

subtraction. The last delayed station for the first train outside the study region is a new 

type of boundary for the summation domain. The formulation is derived from (4) and it is 

defined as 𝑠𝑜
∗ in equation (17). 

𝑠𝑜
∗ = 𝑠𝐼+1

∗ = ⌊
𝑝 + 𝑏 − 𝛿

𝑎
− (𝐼 + 1)

𝑏

𝑎
⌋ + 1 | 𝑝 ≥ 𝑎 + 𝛿 (17) 

The summation domain extends from the first station outside the study region to 

𝑠𝑜
∗, and the parametric notation of the related cumulative delay is Γ(𝑝,[𝐼+1,𝑖𝑠∗],[𝑆+1,𝑠𝑜∗ ]). 

3.1.4.3 Universal formulation 

The existence of the individual sub-recovery areas mentioned in this section 

depends on the relation between system parameters, I, S, a, b, δ, and the primary delay p. 

The universal formulation proposed in this section includes logical controls on the specific 

delay sub-recovery to select only the regions that are active. The logical controls include 

the formulation from individual areas only if their specific dimension is positive. The sub-

recovery regions respective control lengths are defined hereunder. 

The line progress sub-recovery region is controlled by 𝑙𝑒, the number of excluded 

stations, defined in (18) as the difference between the last station in the study region and 

the last delayed station for the first train. Similarly, the line progress sub-recovery region 

is controlled by 𝑙ℎ, the number of excluded train paths, defined in (19) as the difference 

between the last train in the study region and the last delayed train at the first station. The 

sub-recovery overlap is controlled by 𝑙𝑜 , the overlap length between the last delayed 

station for the first train outside the study region and the last station in the study region. 

The overlap length is calculated by equation (20). 

𝑙𝑒 = 𝑠1
∗ − 𝑆 = 1 − 𝑆 +

𝑝 − 𝛿

𝑎
 (18) 

𝑙ℎ = 𝑖1
∗ − 𝐼 = 1 − 𝐼 +

𝑝 − 𝛿

𝑎𝑏
 (19) 

𝑙𝑜 = 𝑠𝑜
∗ − 𝑆 = 1 − 𝑆 +

𝑏 + 𝑝 − 𝑏(1 + 𝑅) − 𝛿

𝑎
 (20) 
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Equation (21) is a closed form function that returns the cumulative delay on a 

railway line as a function of the primary delay d(p), in any condition of recovery, given 

the system variables a, b, δ, R, S. 

Γ(𝑝,[1,𝑅],[1,𝑆]) = Γ(𝑝,[1,𝑖𝑠∗],[1,𝑆]) ∗
max(𝑠1

∗, 0)

𝑠1
∗ − Γ(𝑝,[1,𝑖𝑠∗],[𝑆+1,𝑠1∗]) ∗

max(𝑙𝑒, 0)

𝑙𝑒

− Γ(𝑝,[ 𝑅+1,𝑖𝑠∗],[1,𝑠1∗]) ∗
max(𝑙ℎ , 0)

𝑙ℎ
+ Γ(𝑝,[ 𝑅+1,𝑖𝑠∗],[𝑆+1,𝑠𝑜∗]) ∗

max(𝑙𝑜, 0)

𝑙𝑜
 

(21) 

The logical control of the unbounded cumulative delay is introduced in this 

formulation as a replacement of the constraint 𝑝 ≥ (𝑠 − 1)𝑎 + (𝑖 − 1)𝑏 in (3), to simplify 

the formulation. 

3.1.4.4 Model application on heterogeneous lines and networks 

The analytical model presented in this paper is formulated for homogeneous 

railway lines, where timetable parameters a and b have similar values across trains and 

line sections and can be summarized in unique input values for equation (21). However, 

the model applicability is not limited to the mentioned case and can be extended to other 

types of railway networks, after partitioning the networks into homogeneous sections to 

be modeled recursively. 

In this section, the conditions that rule the model application on heterogeneous 

lines are analyzed. A hypothetical railway line is divided into two homogeneous sections, 

with specific traffic volume, number of stations, and timetable parameters a and b. The 

sections are named A and B, and the set of stations S is divided consequently in 𝑺𝑨 =

{1,2,… , 𝑆𝐴} and 𝑺𝑩 = {𝑆𝐴 + 1,… , 𝑆}. The traffic volume, running time supplement and 

headway buffer are defined independently for the two sections by IA, IB, aA, aB, bA, and bB, 

respectively. A new timetable parameter is introduced, defining the traffic volume ratio 

between the two line-sections, 𝜌 =
𝐼𝐵

𝐼𝐴
. Note that when ρ<1 the traffic volume is smaller in 

the second section, meaning that all the services run in the first section with every (1/ρ)-th 

train continuing in the second section. When ρ>1 all the trains end at the same destination, 

IA of which originate from the first station, and (ρ-1)* IA originate at the second section, 

equally distributed in the timetable. Timetable discontinuities can also manifest when the 

traffic volume does not change, so ρ=1, if, for example, either or both a and b are 

remarkably different across to line-sections. 

Figure 3.1-9 illustrates the two traffic conditions with ρ>1 and ρ<1. 
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Figure 3.1-9: Model application on lines with heterogeneous traffic. Upper row represents 

diverging lines with lower traffic in section B. Lower row represents converging lines with 

greater traffic volume in section B. Left side: unperturbed traffic; Right side: primary 

delay in red, delayed trains bold. Time-space diagram on dashed branches omitted for 

readability. 

Individual train delays and cumulative line delay in section A are determined by 

equations (3) and (21) replacing S with SA. Delay propagation across sections A and B 

depends on the relations between traffic volumes and headway buffers between the two 

sections. The hypothesis of equal headway buffer is not valid in the discontinuity between 

stations SA and s(A+1) so the individual delay propagation is ruled by equation (2). At the 

first station in section B, the residual delay of trains from originated in section A is 

exceeded by the knock-on delay from previous trains under specific conditions: 

 When bA>ρ*bB, the knock-on delay from previous trains is greater than 

residual delay from section A, and the delay propagation in section B is only 

ruled by the residual delay of the first train. A single application of equations 

(3) and (21) describes the entire traffic in section B. 

 When bA<ρ*bB, the residual delay from section A is greater than the knock-

on delay from previous trains, and the delay propagation in section B is 

overrun by the residual delay of every train originated in section A. A 
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separate delay propagation model is necessary for section B starting at every 

train originated in section A. 

Note that for ρ>1 the assumption of unmodified train order is necessary in case 

of delays. In real operation, the assumption is reasonable with small delays, where 

alterations of the train sequences would cause larger disruption than the delay itself. Larger 

primary delays might be modeled with the support of queuing theory from other models 

and introducing dispatching criteria to select the train that passes first in case of conflicts 

of convergent itineraries. 

The process described in this section extends the model applicability. Diverging 

lines can be considered as sets of homogeneous subsections, where the traffic volume is 

larger in the first section, and the model can be applied separately in the diverging section. 

Converging lines can be modeled as cases where ρ>1 and require the same assumption of 

unchanged train sequence. 

Similarly, discontinuities in the timetable structure may be addressed considering 

a separation of the study region into homogeneous sub-regions in the dimension of trains 

𝑰 → 𝑰𝑨, 𝑰𝑩. 

3.1.4.5 Multiple primary delays 

The universal formulation of cumulative line delay in equation (21) provides the 

model the flexibility to consider study regions of unspecified dimensions in the domain of 

trains and stations. One of the advantages is the adaptability of the model to different 

recovery conditions, and the possibility to investigate the effects of individual primary 

delays on selected portions of the study regions. This section presents methods to consider 

multiple simultaneous delays, based on individual calculations of cumulative line delay on 

portions of the study region. Two different cases are identified, according to the relative 

position of primary delays in the domain of trains and stations. 

Consider two primary delays, p1 and p2, generated by independent events taking 

place at stations sp1 and sp2, on trains ip1 and ip2, respectively. Defined the distances between 

the primary delay events in the dimension of stations and trains, respectively ∆𝑠 = 𝑠𝑝2 −

𝑠𝑝1  and ∆𝑖 = 𝑖𝑝2 − 𝑖𝑝1 , the ratio 
∆𝑠

∆𝑖
  determines the simultaneity case, considering that 

perturbations only propagate to downstream stations and to successive trains. Figure 

3.1-10 depicts the two cases and the related metrics. 

For 
∆𝑠

∆𝑖
> 0, the effect of p2 falls entirely in the propagation area of p1 and will be 

named therefore nested simultaneous primary delay. p2 is considered as a further delay 
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over existing residual delays from previous perturbations. The effects of the two primary 

delays cannot be summed, due to 

 

Figure 3.1-10: Relative position of simultaneous primary delays and study region portions. 

the model non-linearity. The cumulative line delay in case of nested simultaneous primary 

delays is given by equation (22) 

Γ𝑛𝑒𝑠𝑡𝑒𝑑 = Γ(𝑝1[,𝑖𝑝1 ,𝐼],[𝑠𝑝1 ,𝑆])
− Γ(𝑑(𝑝1)𝑖𝑝2,𝑠𝑝2 ,[𝑖𝑝2 ,𝐼],[𝑠𝑝2 ,𝑆])

+ Γ(𝑝2′ ,[𝑖𝑝2 ,𝐼],[𝑠𝑝2 ,𝑆])
 (22) 

where Γ(𝑝1,[𝑖𝑝1 ,𝐼],[𝑠𝑝1 ,𝑆])
 is the unconditioned cumulative line delay generated by primary 

delay p1, 𝑑(𝑝1)𝑖𝑝2 ,𝑠𝑝2  is the individual train delay generated by p1 on the train affected also 

by p2, Γ(𝑑(𝑝1)𝑖𝑝2,𝑠𝑝2 ,[𝑖𝑝2 ,𝐼],[𝑠𝑝2 ,𝑆])
 is the effect of p1 that must be removed and replaced by the 

effect of p2. Γ(𝑑(𝑝1)𝑖𝑝2,𝑠𝑝2 ,[𝑖𝑝2 ,𝐼],[𝑠𝑝2 ,𝑆])
 is calculated through equation (21), with coordinates 

of primary delay ip2 and sp2, and amount of primary delay equal to 

𝑑(𝑝1)𝑖𝑝2,𝑠𝑝2. Γ(𝑝2′ ,[𝑖𝑝2 ,𝐼],[𝑠𝑝2 ,𝑆])
 is the effect of the nested primary delay p2, cumulated with a 

previous residual delay from p1. Γ(𝑝2′ ,[𝑖𝑝2 ,𝐼],[𝑠𝑝2 ,𝑆])
 is calculated through equation (21), with 

coordinates of primary delay sp2 and ip2, and amount of primary delay equal to 𝑝2
′ =

𝑑(𝑝1)𝑖𝑝2,𝑠𝑝2 + 𝑝2 . Alternative approaches are possible, in the case recorded delays are 

available in place of incremental primary delays. In these cases, 𝑝2
′  is set equal to the 

highest between recorded deviation from schedule and residual delay from previous 

primary delay. 

For 
∆𝑠

∆𝑖
< 0, both primary delay events propagate to a portion of the study region 

as unique primary events. In the propagation overlap region, the highest residual delay is 

counted in the cumulative line delay, considering smaller delays surpassed by larger delays 

after equation (2). This case will be named disjointed simultaneous primary delay, and the 



Analytical, Big Data and Simulation Models of Railway Delays 

80 

study region is divided into two sub-regions. The study-area partitioning is defined by the 

comparison of residual delay at the intersection point in the trains-stations domain from 

the individual primary delays considered. 

Without loss of generality, the case of greatest residual delay from p1, is here 

described, assuming that ip2 > ip1 and sp2 < sp1. In this case, the aggregate line delay is 

expressed by equation (23) 

Γ𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝑒𝑑 = Γ(𝑝1,[𝑖𝑝1 ,𝐼],[𝑠𝑝1 ,𝑆])
+ Γ(𝑝2,[𝑖𝑝2 ,𝑖𝑝1−1],[𝑠𝑝2 ,𝑆])

 (23) 

where Γ(𝑝1,[𝑖𝑝1 ,𝐼],[𝑠𝑝1 ,𝑆])
 is the cumulative delay generated by primary delay p1, calculated 

from delay location and train through the rest of the study region, and Γ(𝑝2,[𝑖𝑝2 ,𝑖𝑝1−1],[𝑠𝑝2 ,𝑆])
 

is the cumulative delay generated by primary delay p2, calculated from the location of 

delay and to the location of intersection with the residual delay from p1, intersection 

excluded. 

3.1.4.6 Inference on the delay threshold from the universal polynomial form 

The closed form introduced in section 3.1.4 provides the model flexibility to 

represent delays at any location of the study region and allows to infer the effect of 

different values of the delay threshold in a given timetable, to evaluate the most 

appropriate value of delay threshold δ. 

Figure 3.1-11 presents the cumulative delay function and shows the effect of 

different delay threshold strategies. Intuitively, no cumulative delay is recorded for 

primary delays smaller than the delay threshold. The figure shows also the range of 

effectiveness of the delay threshold. The cumulative delay measure is dampened in 

situations of full or partial recovery. 

 

Figure 3.1-11: Cumulative delay as a function of primary delay on a railway line with 

different values of delay threshold. S = 11 stations, R = 5 trains, a = 1 min, b = 1 min 

0 min

5 min

10 min

15 min
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The delay threshold becomes ineffective as soon as all the trains are delayed 

enough to be included in the summation, which corresponds to meeting condition (24) 

𝑑𝐼,𝑆(𝑝) < 𝛿 

𝑝 < 𝛿 + 𝑎(𝑆 − 1) + 𝑏(𝐼 − 1) 
(24) 

The developed closed form railway line propagation model makes it possible for 

service contractors and transport authorities to conveniently evaluate delay thresholds that 

meats the measured delay distributions and reduces operational costs improving the 

measured punctuality. 

The delay threshold allows for some flexibility in the planning phase, under the 

assumption that small delays are not perceived by the passengers. The calibration of the 

delay threshold in service contracts between service providers and transport authorities has 

an influence on daily operation, and different strategies in the delay threshold 

dimensioning lead to different dispatching strategies to pursue the measured punctuality. 

Punctuality penalties are a relevant share of operations budget of transportation companies, 

especially in cases where a performance regime is applied. For example, the European 

Performance Regime (2013) draws the guidelines for performance management in the 

European countries, and every single minute of delay of a train can cost to the service 

contractor up to 2€ (Rete Ferroviaria Italiana, 2015). The relation between punctuality 

measurement methods, delay thresholds, and distribution of running time supplement in 

train paths across several countries in Europe is described by Schittenhelm (2011). 

Suburban and regional railway services in Europe admit thresholds between 3 and 5 

minutes, whereas long distance services are allowed to reach from 5 to 15 minutes of delay 

before penalties are applied. 

3.1.5 Case study 

In this section, a contemporary suburban railway in Denmark is simulated and 

comparisons are made between the measured and theoretical system delay. The simulation 

is performed in OpenTrack (Nash and Huerlimann, 2004). The subject line is the Hillerød 

suburban railway on its northern segment from Hellerup to Hillerød (29 km). On this 

segment, there are eleven stations inclusive of the terminal, Hillerød, and the junction 

Hellerup. Hellerup is not the end of the line. All trains continue through Hellerup, through 

Copenhagen, and on to destinations much further south of Copenhagen. 

In this case study, a cyclic timetable is simulated with homogeneous train traffic of all-

stops services from Hellerup to Hillerød and scheduled headway of 5 minutes. Running 

time supplements and headway buffers are identical for every train path allocated but differ 
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across stations, and this is where the case study deviates significantly from the theoretical 

model.  

 

Figure 3.1-12: Simulation model of Hillerød Suburban railway in OpenTrack showing 

track blocks and speed profile. 

 

Figure 3.1-13: Graphical timetable (stringline) for Hillerød Suburban railway. Schedule 

in black, simulated operation colored. 
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Figure 3.1-12 shows the simulation model track block structure and the train performance 

speed profile. Figure 3.1-13 shows the graphical timetable or stringline diagram for the 

service between Hellerup and Hillerød. 

3.1.5.1 Experimental Design of Simulation 

In the simulation analysis presented, primary delays are experienced by the first 

scheduled service at the Hellerup station from a uniform distribution of [0,900] seconds, 

and 200 replications are sampled. Only northbound traffic to Hillerød is studied. The 

cumulative delay is measured across all the services simulated on the line. Two hours of 

operation are simulated, from 7:00 to 9:00, including thus 24 identical train paths. 

Unlike the theoretical model of Section 3.1.3.1, the stations in this sample are 

not uniformly distributed. Further, the supplement and buffer times are not uniformly 

distributed along train trajectories, but trajectories repeat equally through time. Recalling 

section 3.1.3.3, homogeneous timetables are timetable where ai,s = as and bi,s = bs for any 

value of i. Table 3.1-3 presents the actual timetable supplements and headway buffers 

scheduled in the simulated Hillerød Suburban railway. 
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Station number 1 2 3 4 5 6 7 8 9 10 11 

Distance from origin 

[km] 
0,0 1,3 2,9 4,6 5,9 7,9 9,7 11,0 15,8 21,3 28,5 

Running time 

supplement from 

previous station as [s] 

0 21 20 83 10 64 9 9 67 45 62 

Headway buffer 

between trains bs [s] 
261 202 181 204 176 194 214 159 160 57 187 

Table 3.1-3: Timetable supplements and headway buffers on Hillerød Suburban railway 

as simulated, seconds. 

The closed-form model requires unique values of headway buffer and running time 

supplement that represent the slack structure of the timetable. The weighted averages of 

the buffer and supplement for all measuring point of the services is here used to aggregate 

ai,s and bi,s in single values as and bs. Weights are assigned in inverse proportion to the 

distance from the location of primary delay so that the entity of slack in sections close to 
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the primary delay have more influence in the recovery than the further ones. In particular, 

weights 𝑤𝑠 are assigned by 𝑤𝑠 =
𝑙𝑆−𝑙𝑠

𝑙𝑆
, where 𝑙𝑠 is the physical distance between primary 

delay and station s, and S is the last station on the line. Resulting timetable parameters are: 

𝑎 = 34,7 𝑠  and 𝑏 =  159,1 𝑠 . The delay threshold, δ, is zero, and all delays of any 

magnitude are included in the cumulative delay. 

3.1.5.2 Results of the Simulation 

The simulation results from OpenTrack are summarized in Figure 3.1-14. 

Primary delays smaller than 368 s are fully recovered within the study region. Model 

inversion of equation (4) returns a maximum theoretical primary delay of 347 s. Larger 

delays cannot be recovered before the end of the line for the first train, so a line progress 

sub-recovery region is generated. No train fleet sub-recovery region is generated, as 

primary delays in the simulated range are always recovered before the last train path. Note 

that the model approximation is very close to the simulated result. 

 

Figure 3.1-14: Comparison of the results from the simulation of delays against the 

estimated delay from the polynomial function. 

3.1.6 Model discussion 

The polynomial form proposed in section 3.1.3.1 for unbounded delay recovery 

is third degree. It is a cubic function of the primary delay if the measurement horizon 

extends fully over the recovery region. This agrees with the earlier findings of Hasegawa 

et al. (1981). Our paper differs from Hasegawa in that it explicitly models the discrete 
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summation of delays, considering three parameters: supplement, buffer, and threshold for 

measurable delay. Hasegawa’s theoretical model relies on the input of spatial density, 

recovery flow and speed, represent timetable slack only implicitly and require simulation-

based calibration of parameters. The universal model presented in section 3.1.4 results in 

a composite polynomial function of primary delay instead of the purely cubic function of 

delay in Hasegawa, only valid in case of full recovery within the study region. If the 

measurement horizon is restricted to less than the full recovery region, the delay excess 

must be removed from the recovery region, and the polynomial reduces to second degree 

and over very short horizons it is linear. The possibility to calculate cumulative delay over 

line subsections of unconstrained size lends the model the flexibility to represent traffic 

discontinuities on the line, simple networks, and multiple primary delays, which is not 

possible in Hasegawa’s unbounded model.  

The extended polynomial form finds a functional shape in agreement with 

findings from Salido et al. (2012). Salido et al. observed a linear relationship between 

primary delays and aggregate delays, under light utilization, which corresponds to the 

model presented in this paper, with study area restricted to one or a few trains. As opposed, 

a nonlinear relationship is found in heavily utilized lines, which corresponds to the third-

degree polynomial resulting from a large number of trains involved. 

The polynomial approximates the discrete summation and is robust over a wide 

range of parameters. Investigation of the derivatives of the polynomial finds that excessive 

values of running time supplement and headway buffer are ineffective in damping delay 

propagation and may result in poor timetable stability. This is in agreement with Carey’s 

stochastic station delay model (1999), according to which the effectiveness of timetable 

slack fades out when the slack is too large, based on typical down-sloping delay 

distributions. A simplified formulation of the cumulative delay function is provided for 

fixed ratio a/b, where the only parameter is the general timetable slack. The simplified 

formulation is particularly valuable for illustrative purposes. 

The newly introduced timetable parameters, the aggregated running time 

supplement a and headway buffer b can be interpreted as different measures of timetable 

slack or tuning parameters in the timetable to rule how the delay is recovered in the 

dimensions of station and trains. The model proposed in this paper supports the 

investigation of the effects of schedule adjustments, and the related structural changes in 

the delay recovery. In the case study, a weighted average of individual slack elements is 

proposed, based on the relative distance from the primary delay. The recovery elements 
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closest to the primary delay location were successfully assumed more relevant than the 

furthest ones, but more sophisticated methods to aggregate these parameters might be 

investigated in further research. 

The universal form presented in section 3.1.4.4 describes the more general case 

where primary delays occur on unspecified trains at generic stations and allows a more 

extended analysis of line delays, and of the influence of system parameters such as the 

delay threshold. It is possible, in this way, to infer the effect of strategic decisions for 

performance assessment in transportation contracts. Such a parameter is also included in 

Carey’s stochastic model (1999), but its evaluation is only possible under known 

distributions of primary delays. The delay threshold is also considered by Landex (2008), 

but this model does not allow detailed analysis of such parameter, as it ignores recovery 

from running time supplements and, so, the recovery region cannot be defined on the 

dimension of stations. 

The novelty of this analytical approach is the ability to account explicitly for the 

running time supplement and the headway buffers at the same time, and the inclusion of 

further timetable parameters, the delay threshold under which delays are ignored. Previous 

approaches only considered delay propagation to the following trains, leaving out the 

spatial dimension (Carey, 1999; Carey and Kwieciński, 1994; Huisman and Boucherie, 

2001; Landex, 2008; Zhu and Schnieder, 2000). The functional relation found in Landex’s 

unbounded recovery model is, therefore, quadratic because delay propagation is only 

considered on the dimension of trains. Similar to this paper, Landex (2008) aggregates 

timetable slack to connect heterogeneous traffic to an ideal representative homogeneous 

condition. The weighted average proposed in this paper reveals more accurate than 

Landex’s arithmetic mean of the headway buffers because the influence of timetable slack 

to recovery is now related to the distance from the primary delay location. Other 

approaches (Mattsson, 2007) incorporated only the recovery of individual trains along 

their trajectory and did not propagate delays to following trains.  

Timetable slack has been integrated into models by indirect timetable metrics 

related to the ability to recover, such as density, flow, design speed (Hasegawa et al., 

1981), and capacity consumption (Gibson et al., 2002). These metrics are often difficult to 

obtain in the planning phase and do not provide a clear picture of the possible individual 

train recovery.  

Similarly to the model presented in our paper, Pyrgiotis (2012) proposed an 

airport network model to propagate delays over the air traffic. Railway traffic is, though, 
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much more constrained than air traffic, and in most railway lines the train sequences do 

not change between stations. This type of constraints cannot be implemented in Pyrgiotis’s 

model, where arrivals and departures are assumed independent, and approaching queue 

capacity is assumed infinite. Timing points on railway lines often lay at simple halts with 

only one track per direction, where the train sequence remains strictly the same between 

arrivals and departures. Pyrgiotis applied the queuing theory to model the interferences 

between aircraft, whereas the model proposed here considers explicitly the headway buffer 

between trains. The two models are alike in the explicit formulation of the delay reduction 

given by the running time supplement along the train path or aircraft roster. However, the 

model presented in this paper provides also individual train delays as a linear function of 

primary delays, which allows to include infrastructure constraints, discontinuities in traffic 

volume or timetable parameters that cannot be described by a transposition of Pyrgiotis’ 

model to railway networks. The availability of individual train delays opens further 

possibilities for new performance measures, based on this delay propagation model. 

Similarly to other stochastic models, Pyrgiotis’ does not provide a functional relation 

between primary and cumulative delays and does not include the timetable parameter of 

delay threshold δ. Queuing theory models might still find application in the study of larger 

primary delays in converging networks, where the train sequence is not necessarily kept 

at the junctions, and dispatching criteria are required. 

Furthermore, the polynomial formulation proposed in this paper provides insight 

into the relationship between primary and secondary delays. This is not possible using 

other delay models proposed in the past because the primary delays are accounted for 

implicitly in the variability of process times in real operation (Huisman and Boucherie, 

2001; Pyrgiotis, 2012). Huisman and Boucherie focus on the secondary delays induced by 

the speed differences in the timetable, more than the relationship between primary and 

secondary delays. Huisman and Boucherie model railway operation in absence of a 

timetable, deriving the distributions of actual running times from the distributions of free 

running times and the actual buffers. The choice of queuing models is convenient in stages 

of planning when the timetable is not available, as also supported by Meester and Muns 

(2007). Other past models for delay propagation do not provide a functional relationship 

between primary and secondary delays (Gibson et al., 2002; Goverde, 2010, 2007; Meester 

and Muns, 2007). In particular, Meester and Muns use a recursive model of delay 

propagation, where every iteration depends directly and only on the previous iteration, so 

a functional relationship between primary delays and aggregate delay cannot be derived. 
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In the model presented in this paper, every individual train delay is expressed as a function 

of the primary delay, and relative location from primary delay, so perturbed conditions are 

always fully determined. The use of more complex methods, such as Colored Petri Net, 

has been also explored, but the same complexity represents the main downside of the 

model, which can represent effectively only a few stations (Zhu and Schnieder, 2000). 

3.1.7 Conclusion 

This paper contributes to the literature an analytic closed form function that 

returns individual secondary delays and cumulative railway line delay as a function of 

single or multiple initial primary delays. The function can predict the delays with high 

confidence, thus offering a fast analytic alternative to resource-consuming simulation 

models as demonstrated in the empirical analyses in section 5. The polynomial function 

may thus be used for an initial screening of possible timetables, leaving simulation to later 

parameter fine-tuning of timetable slack and delay threshold. Timetable optimization 

models might also benefit from this formulation integrating it in the objective function. 

Most of the previous approaches for railway line delay propagation only 

considered alternatively running time supplements or headway buffers, resulting in lower 

degree functional relations. Others considered timetable slack in implicit form, as the 

difference between scheduled and maximum speed and traffic flow and did not support 

multiple primary delays and railway networks. Available Event Graph-based approaches 

do return the total delay in response of a set of primary delays, but the typical recursive 

approach makes it impossible to establish a functional relationship, which is available in 

the model presented in this paper. 

Operation design tools such as the delay threshold, running time supplement, and 

headway buffer, can thus be designed accurately investigating the expected cumulative 

delay with an analytical approach. Differential calculus of the polynomial form shows that 

a limited amount of timetable slack is effective, whereas larger slack does not contribute 

to performance improvement and results in extending scheduled running times and delay 

recovery times. 

The empirical tests in section 3.1.5 showed that the polynomial function model 

is robust to violations of the basic assumptions, and the form holds valid with 

heterogeneous running time supplements and headway buffers, provided that traffic is 

homogeneous. 

The model returns also individual train delays as a linear function of a primary 

delay, which accommodates further measures of railway performance that might be 
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introduced in future research. Further development of the model should deepen the 

application to heterogeneous timetables and investigate the effect of the assumption of 

unvaried train sequences in merging networks. The closed-form model could be inverted 

to calculate average timetable supplement and buffer time from simulation results. This 

means that given a desired punctuality and stability of service, the necessary timetable 

supplement may be estimated from this function. 

The universal formulation introduced here is non-specific to stations and trains, 

which allows analyzing the effects of primary delays occurring at any location on the 

railway line, and at any time of operation. The model is flexible and the aggregate delay 

resulting from different perturbations can be calculated efficiently with simple changes in 

the summation limits, keeping the same summation term. The recursive application of this 

model on homogeneous subsections of the railway line is suitable to estimate delay 

propagation on railway networks or on heterogeneous lines. Further, the model supports 

multiple primary delays at different trains and locations of the line. Thanks to the closed 

formulation, it is possible to quickly evaluate the effect of different strategic choices on 

contract performances between operators and transport authorities. 
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3.2 Paper III: Delay Estimation on a Railway-Line with 

Smart Use of Micro-Simulation 

Cerreto, Fabrizio, Steven Harrod, and Otto Anker Nielsen. “Delay Estimation on a 

Railway-Line with Smart Use of Micro-Simulation.” Edited by Gianluca Dell’Acqua and 

Fred Wegman. Transport Infrastructure and Systems, 2017, 867–74. 

https://doi.org/10.1201/9781315281896-112. 

Abstract 

This paper formulates a delay propagation model that estimates total railway line delay as 

a polynomial function of a single primary delay. The estimate is derived from a finite series 

of delays over a horizon that spans two dimensions: the length of the railway line and the 

number of trains in the service plan. The paper shows that the total delay estimate is a 

cubic relation for small primary delays. A probabilistic approach is presented to combine 

the total delay functions of primary delays given to different trains. The final estimate is 

the total delay on railway lines after a random incident has occurred. The model can be 

integrated into railway timetable analysis to reduce the number of necessary simulations 

and can be used when the computation speed is an issue, such as on-line rescheduling 

algorithms. The model is demonstrated with an analysis of a Danish suburban railway. 

KEYWORDS: Railway delay; Timetable quality; simulation 
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3.2.1 Introduction 

Operational stability and robustness are crucial for railway transport. Not only 

are the passengers or users of the service sensitive to these measures of quality, but 

railways are usually integrated systems or networks, and failures at one location of the 

system affect other locations and services, sometimes quite catastrophically. Railway 

network planners are faced with many decisions about what quality of service to provide 

and what resources to allocate to deliver this service. Much of the literature demonstrates 

that there are frequently multiple feasible alternatives to allocate resources, and each 

alternative has a unique performance profile with characteristic statistics, especially with 

regards to punctuality and robustness. The analysis of these alternatives frequently requires 

laborious and inconclusive modeling with simulation software. 

This paper contributes to the literature with a closed form function estimate of 

the aggregate railway line delay propagation in response to a primary delay. Many railway 

and transit services are of the form of a single terminating railway line, and this function 

may supplement or replace the application of simulation for the exploration of alternatives. 

On many railway lines, passenger traffic is distributed over the line destinations, and 

aggregate delay is an appropriate measure of system performance and customer service. 

This formulation is closed form under a set of assumptions and is later shown to 

be robust to variance. The formulation is derived from a finite series of deviations from 

the service plan (secondary delays) caused by a singular initial disruption (primary delay). 

The total delay generated by disruptions on a railway line depends on the interactions 

between the trains, and a different total delay function is derived for each scheduled train. 

The probabilistic approach presented in this paper allows estimating the contribution of 

the individual trains to the general function of the total delay on a selected railway line. 

 Using microsimulation, the model can be shown to be robust to deviations in 

assumptions, and the results may be used to establish bounds of the expected performance 

of simulation models, and thus reduce the use of simulation models in preliminary, 

exploratory studies. Railway microsimulation is known for its heavy computational 

requirement, and the models proposed in this paper introduce new estimation of the total 

delay on railway lines with a very limited used of microsimulation, restricted to the initial 

calibration phase. 
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3.2.1.1 Literature survey 

Prior literature on operational stability and delay propagation may be classified 

as proposing parametric methods, providing analytical methods, or demonstrating 

applications of simulation.  

Parametric measures are functional relations fitted to empirical or experimental 

data. In these measures, the cause and effect relationships may not be clearly understood, 

or it may be strongly limited to selected environments. Krueger (1999) presents many 

capacity estimation functions proposed for and validated on North American long distance 

railways. International Union of Railways (2004) defines procedures using timetable 

compression to estimate the capacity of European high-density railway lines. Gorman 

(2009) fits linear multiple regression functions to large data sets of train operations on a 

North American railway to estimate delay as a function of train planning decisions. 

Analytical methods derive system performance measures from known or 

presumed cause and effect relations in the railway service plan. Among these, Hasegawa 

et al. (1981) applies a hydrodynamic analogy to model railway traffic. The study models 

the delay propagation as a shock wave in a compressible fluid and finds the total delay as 

a cubic function of the primary delays by means of propagative velocity. Harker and Hong 

(1990) estimate the delay on a mixed single and double track railway where the train path 

is not defined in advance and is subject to a stochastic dispatching decision en route. 

Higgins et al. (1995) formulate decision rules for operation on a single track railway and 

then calculate in closed form the expectation of system delay given a traffic pattern and 

defined probabilities of delay for trains, track segments, and terminals.  

Railway delay models often lead to innovations in mathematics, such as Meester 

and Muns (2007) application of phase-type distributions. Meester and Muns derive the net 

delay distribution on connected railway network segments given the distribution of 

primary delays on each segment. The derivation asserts that recursive calculation of the 

solution may be attained with just three operations: sum, nonnegative excess beyond a 

bound, and maximum. The paper states that a phase-type distribution, a distribution of the 

absorption time of a continuous time Markov chain, can be contained in the three 

operations in closed form. However, the method depends on the assertion of independence 

of the primary delays. The method is demonstrated for a sample network of 24 directional 

line segments with seven transfer points. 

Goverde (2010) presents an efficient delay propagation algorithm where 

timetables are modeled as timed event graphs (using max-plus algebra) and initial delays 
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are known. The algorithm is very fast and in a few seconds can calculate the delay 

propagation over a large network consisting of many interdependent services, such as the 

Dutch national railway timetable. However, the model offers no functional relationship, 

and results must be calculated for each scenario separately. Kroon et al. (2007) proposes a 

stochastic linear program for the optimal allocation of supplement time along the route of 

a train path and finds that in a variety of realistic scenarios the supplement time should not 

be allocated uniformly along the train path. Finally, and most closely related to this paper, 

Landex (2008) proposes a delay propagation model computing the transfer of delay 

between trains through the scheduled buffer times. This model is used to study the 

relationship between capacity consumption and the development of the disruptions but 

does not take into account the recovery of train delays according to the timetable allowance. 

Cerreto (2016) extends Landex’s delay propagation model to include the timetable 

allowance. The total delay on a railway line is described as a composite polynomial 

function of the primary delay generated at a station, which is cubic for small primary 

delays. The model allows to calculate the total delay with a limited use of micro-simulation 

but returns a different total delay function depending on the first train delayed. 

Simulation is widely used, experimentally and in practice. Relevant publications 

include Lindfeldt (2015), which extensively applies RailSys commercial railway 

simulation software to a variety of capacity and delay propagation topics. In particular, 

Lindfeldt simulates 336 timetable scenarios and then applies linear regression to determine 

the significance of many common heterogeneity measures in predicting aggregate 

secondary delay. Lindfeldt finds that the mean pass coefficient, a measure of the frequency 

of meets and overtakes, is the most significant indicator. Mattson (2007) uses 

microsimulation to study the interferences between trains under different capacity 

utilization values: Mattson finds this to be the most precise way to analyze secondary 

delays, but it is also demanding for very detailed input and the process is very time-

consuming. Lastly, Cerreto (2015) applies OpenTrack commercial railway simulation 

software to the analysis of a 21 km. line (nine stations) in the Netherlands with four 

configurations ranging from double track to quadruple track. Cerreto investigates methods 

to reduce the computation necessary for simulation-based analyses and limits the number 

of simulation runs required with a heuristic process called the skimming method. Instead 

of simulating all combinations of trains and delays, a composite profile of train delay is 

estimated from an initial simulation analysis, and this composite delay function is used to 

calculate the aggregate system delay. The results demonstrate that capacity utilization is 
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not strongly correlated with aggregate secondary delay, which contradicts the findings of 

some other literature. 

3.2.2 Incident, primary delay probability, and total delay 

Delays are positive deviations between the realized times and scheduled times of 

activities. In the literature, different classifications of delays are available. Most of the 

classifications distinguish between delays that are due directly to the variability of process 

times and delays that are originated by the subsequent conflicts in the actual operation 

(Goverde and Hansen, 2013). The primary delays are unexpected extensions of the 

planned times of the individual processes scheduled. For instance, equipment failures and 

large passenger flows generate primary delays. The secondary delays, on the other hand, 

are delays generated by operation conflicts, which are due to primary delays themselves. 

When a train is delayed, it needs to use infrastructure elements at different times than 

planned. A conflict arises when two or more trains request to use the same element at the 

same time: they will be queued by dispatching decisions since only one train at a time can 

use one element or track section. The delay that generates from the queuing is called 

secondary delay. 

The cumulative delay, or total delay, on a railway line is the sum of all the total 

positive deviations registered for all the trains at all the time measurement points. 

The delay generation process begins with a disruption or incident. A primary 

delay generates when the failure intersects a scheduled event in the timetable, and 

secondary delays evolve from the interaction between different scheduled events in the 

timetable. 

 

Figure 3.2-1 - Delay generation process: Primary delays happen when incidents cross 

scheduled events. Secondary delays generate from delayed scheduled event crossing other 

events in the timetable. 

The model presented in this paper translates the probability density distributions 

of incidents on a railway line into the probability densities of primary delays and of 

secondary and cumulative delays. 

The section below describes the probability of generation of primary delays to a 

selected train, given the characteristics of the incident and the timetable. 
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3.2.2.1 Probability of primary delay to one train 

We consider those incidents that prevent trains from moving. Such events can be, 

e.g. failures at signal boxes, extended boarding times at stations, failures at other ground 

or onboard systems. 

t'min t'max

τmax

f(t')

f(t'')

f(τ) t'

τ 

t''t'min t'max + τmaxmin(t'max , t'min+τmax)

max(t'max , t'min+τmax)

q

t''

t't'min t'max

τ m
ax

 
Figure 3.2-2 – Probability density functions of the starting time, the duration, and the 

ending time of an incident. The last graph shows the joint probability density domain of t' 

and t''. 

In several cases, it is possible to describe an incident by the distributions of its 

starting time and duration. In the first instance, we adopt the relaxed assumption of uniform 

distributions in a given range. The formulation is, thus, simplified, but could be integrated 

with specific distributions fitted to the given incidents. The distribution of the starting time 



An analytical delay propagation model 

Paper III: Delay Estimation on a Railway-Line with Smart Use of Micro-Simulation 

99 

could be assumed uniform in preliminary studies when detail information is not available. 

The distribution of the incident duration is still subject of studies in the railway field. Meng 

and Zhou ( 2011) propose the Normal distribution to model the disruption duration on 

single track lines, while the Exponential distribution is used by Schranil & Weidmann 

(2013) in Switzerland; finally Zilko et al (2016) propose an online model to predict the 

duration of a failure, based on the available knowledge at the beginning of the failure. The 

model uses the Copula Bayesian Networks to estimate the contribution of given 

influencing factors, based on historical data. In early studies the information available on 

the incidents may be insufficient to estimate these distributions, so we take the relaxed 

assumption of uniform distribution also for the incident duration for a simpler formulation. 

Our model translates the probability of incidents into the probability of primary delays by 

integration of the probability densities. The structure of the model would not be affected 

by choosing different distributions of the incident durations. 

We define t' the starting time of an incident, t'' its ending time, and τ its duration, 

so that 𝑡′′ = 𝑡′ + 𝜏 . Both t' and τ are assumed uniformly distributed, on independent 

ranges: 

𝑡′𝜖 𝒰(𝑡′𝑚𝑖𝑛 , 𝑡
′
𝑚𝑎𝑥) 

𝜏 𝜖 𝒰(0, 𝜏𝑚𝑎𝑥) 

Consequently, t'' follows a trapezoidal distribution in [t'min , t'max + τmax] (Figure 

3.2-2). The central segment of the distribution spans from min{𝑡′𝑚𝑎𝑥 , 𝜏𝑚𝑎𝑥}  to 

max{𝑡′𝑚𝑎𝑥, 𝜏𝑚𝑎𝑥}, and its constant value is 𝑞 =
2

𝑡′𝑚𝑎𝑥− 𝑡
′
𝑚𝑖𝑛  + 𝜏𝑚𝑎𝑥  + |𝜏𝑚𝑎𝑥− 𝑡

′
𝑚𝑎𝑥|

. 

We define Li the event “Train i experiences a primary delay”. The departure time 

of train i from the considered station is named θi, and the time separation between the train 

i-1 and the train i is the headway ℎ𝑖 = 𝜃𝑖 − 𝜃𝑖−1. The incident generates a primary delay 

to the train i if it starts between the departures of trains i-1 and i, and it ends after the 

scheduled departure of the latter, θi. 

𝐿𝑖 = (𝑡′ ∈ (𝜃𝑖−1, 𝜃𝑖)) ⋂ (𝑡
′′ > 𝜃𝑖) 

θi-1 θi tt' t''

τ 

hi
 

Figure 3.2-3 - A train receives a primary delay if the incident begins (t') in the previous 

headway (hi) and it ends (t'') after the scheduled departure time (θi). 
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The intersection probability is expressed by means of the conditional probability: 

𝑃(𝐿𝑖) = 𝑃(𝑡
′′ > 𝜃𝑖  | 𝑡

′ ∈ (𝜃𝑖−1, 𝜃𝑖]) ⋅ 𝑃(𝑡
′ ∈ (𝜃𝑖−1, 𝜃𝑖]) (1) 

t'' depends on t' through τ, and the conditional probability is derived hereunder. 

 

t''

t't'min t'max

τ m
ax

θi-1 θi

hi

θi

 
Figure 3.2-4 - Joint conditional probability 𝑃(𝑡′′ > 𝜃𝑖  | 𝑡

′ ∈ (𝜃𝑖−1, 𝜃𝑖]). 

The conditional probability density of (𝑡′′ | 𝑡′ ∈ (𝜃𝑖−1, 𝜃𝑖])  has a trapezoidal 

shape in the range [θi-1 , θi + τmax], with a central constant segment in the range 

[min{𝜃𝑖 , 𝜏𝑚𝑎𝑥 + 𝜃𝑖−1} ,max{𝜃𝑖 , 𝜏𝑚𝑎𝑥 + 𝜃𝑖−1}] , and height 𝑞 =
2

ℎ𝑖 + 𝜏𝑚𝑎𝑥  + |𝜏𝑚𝑎𝑥− ℎ𝑖|
. The 

joint conditional probability corresponds to the striped area in Figure 3.2-4. 

In the following formulation, equation (1) is split into two factors for a simpler 

explanation. We name the conditional delay probability 𝑃(𝐸1𝑖) = 𝑃(𝑡
′′ > 𝜃𝑖  | 𝑡

′ ∈

(𝜃𝑖−1, 𝜃𝑖]) and the event probability 𝑃(𝐸2𝑖) = 𝑃(𝑡
′ ∈ (𝜃𝑖−1, 𝜃𝑖]) that corresponds to the 

start of the incident between trains i-1 and i. The probability of E1i depends on the relation 

between τmax and hi and is described by the following: 
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𝑃(𝐸1𝑖) =

{
 
 

 
 1 −

ℎ𝑖

2 ∙ 𝜏𝑚𝑎𝑥
 𝑓𝑜𝑟 ℎ𝑖 < 𝜏𝑚𝑎𝑥

𝜏𝑚𝑎𝑥
2 ∙ ℎ𝑖

 𝑓𝑜𝑟 ℎ𝑖 > 𝜏𝑚𝑎𝑥

1

2
𝑓𝑜𝑟 ℎ𝑖 = 𝜏𝑚𝑎𝑥

 

 

P(E2i) is proportional to the headway of the train in the timetable cycle: 

 

𝑃(𝐸2𝑖) =
ℎ𝑖
∑ ℎ𝑖𝑖

=
ℎ𝑖

𝑐
 

 

where c is the timetable cycle and is given by the sum of all the headways. The probability 

of every train in the cyclic timetable to experience a primary delay is given by the 

following: 

 

𝑃(𝐿𝑖) =

{
 
 

 
 
ℎ𝑖 ∙ (2𝜏𝑚𝑎𝑥 − ℎ𝑖)

2 ∙ 𝑐 ∙ 𝜏𝑚𝑎𝑥
 𝑓𝑜𝑟 ℎ𝑖 < 𝜏𝑚𝑎𝑥

𝜏𝑚𝑎𝑥

2 ∙ 𝑐
 𝑓𝑜𝑟 ℎ𝑖 > 𝜏𝑚𝑎𝑥

ℎ𝑖

2 ∙ 𝑐
𝑓𝑜𝑟 ℎ𝑖 = 𝜏𝑚𝑎𝑥

 (2) 

 

Note that the probabilities of the individual trains to receive primary delays do not sum up 

to 1. We denote P(0) the probability that no train is delayed, that is 

 

𝑃(0) = 1 −∑𝑃(𝐿𝑖)

𝑖

 (3) 

3.2.2.2 Combined total delay functions 

A total delay function describes the relation between primary delays given to a 

train and their cumulative effect on the railway line. Different train paths in a timetable are 

characterized by different stopping patterns, running time supplements and headway 

buffer times towards the following trains. Therefore, at every train path scheduled 

corresponds a characteristic total delay function of the primary delay. 

We combine the characteristic total delay functions of different trains in a general 

total delay function that represents the effect of a primary delay to any of the trains in the 

timetable. The general function is a weighted average of the individual curves, where the 

weights are proportional to the individual probabilities of the trains to receive a primary 

delay. 

The general total delay function is expressed by  
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𝑑 =∑𝑤𝑖 ∙ 𝑑(𝑖)

𝑖

 (4) 

with weights 

𝑤𝑖 =
𝑃(𝐿𝑖)

∑ 𝑃(𝐿𝑗)𝑗

 (5) 

Equation (4) allows the estimation of the general total delay given by an aleatory 

incident through the combination of total delay functions generated by selected trains. The 

estimation of individual total delay functions is relatively simple. In the following section, 

we describe a delay propagation model to calculate the total delay d(i) as a cubic function 

of the primary delay given to train i. 

We reduce considerably the simulations necessary to estimate the general total 

delay combining the model described below and the probabilistic approach. 

3.2.2.3 A finite series model of the total delay as a function of the primary delay 

Previous literature demonstrates that the total delay on a railway line can be 

described as a cubic function of the primary delays given to a train. Cerreto (2016) models 

the total delay from the service timetable at all measurement points, as a function of 

timetable supplement, timetable buffer, and a single initial delay to one train. The model 

is summarized in this section. 

The total delay model has a two-dimensional analysis domain, namely the length 

of the line and the number of trains included in the cumulative delay statistic. Trains on a 

single line with a single direction of movement are considered, which is a common 

operating plan in Europe and urban North America. The time horizon of the model then 

begins with the departure of the first train at the beginning of the line and ends with the 

arrival of the last train at the end of the line.  

The total delay d represents the unweighted utility loss experienced by the 

railway service due to a disruption. It is the sum of all individual delays at measurement 

points in the timetable over the analysis horizon and is presented in (6). 

𝑑 =∑ (𝑑𝑗,𝑠 | 𝑑𝑗,𝑠 ≥ 0)
𝑗,𝑠

 (6) 

with dj,s being the delay of train j registered at station or timing point s (the 

difference between real and scheduled time). 

The individual train delay dj,s is a combination of the hindrance from previous 

trains and the residual delay from the previous station. The delay is transferred to following 
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trains due to a lack of buffer time, while a train keeps a residual delay from the previous 

station due to a lack of running time supplement. Equation (7) expresses the delay 

propagation on the two dimensions of the model, under the relaxed assumption of equal 

running time supplement a for all the trains between any pair of stations and equal buffer 

time b between any pair of trains. 

𝑑𝑗,𝑠 = 𝑝 − (𝑠 − 1)𝑎 − (𝑗 − 1)𝑏 (7) 

Subject to the non-negativity constraint: 𝑑𝑗,𝑠 ≥ 0 ∀ 𝑗, 𝑠. 

p is the primary delay, which corresponds to the first train’s delay at the first station d1,1=p. 

The total delay is derived summing up the individual train delays at all the stations. It 

results in (8). 

𝑑 = ∑ 𝑑𝑗,𝑠
𝑗,𝑠|𝑑𝑗,𝑠>0

=∑ ∑ 𝑝− (𝑠 − 1)𝑎 − (𝑗 − 1)𝑏

𝑝−(𝑠−1)𝑎
𝑏

𝑗=1

 

𝑝
𝑎

𝑠=1

 

=
(𝑎2 + 3𝑎𝑏)

12𝑎𝑏
𝑝 +

𝑎 + 𝑏

𝑎𝑏
𝑝2 +

1

6𝑎𝑏
𝑝3 

(8) 

The equation is valid for small values of primary delay that expire before the last 

train and before the last station. 

Cerreto validates the model using microsimulation on a Danish suburban railway 

line with a heterogeneous timetable. The model is robust and holds valid when the 

assumptions of equal running time supplement and buffer times are removed. The total 

delay on the line can be regressed to a cubic polynomial function. The application to a 

heterogeneous timetable, though, returns a different cumulative delay function for each 

train that receives a primary delay. 

We introduce the index i to identify the total delay function d(i) resulting from a 

primary delay given to train i. 

The general total delay function is derived in section 3.2.2.2 combining the 

individual functions through the probability of each train to receive a primary delay. 

3.2.3 Case study: The Nordbane in Copenhagen 

We simulated the operation of a suburban railway line in Denmark to validate 

the combination of different polynomial functions to describe the total delay against the 

primary delay. The suburban railway network in Copenhagen is a very densely occupied 

network with 2 minutes headway in the busiest section. Six different lines operate on the 



Analytical, Big Data and Simulation Models of Railway Delays 

104 

network, five running on the same central section. The suburban line is operated by 

uniform rolling stock in a cyclic timetable. The selected section of the suburban network 

is the line from Hellerup to Hillerød. Overtakes in this section are prevented. Though it is 

theoretically possible at selected stations, it hardly occurs in real operation, due to the very 

high frequency of the train service.  

The micro-simulation software OpenTrack by OpenTrack Railway Technology 

Ltd. and the Swiss Federal Institute of Technology (ETH Zurich) was used for the 

simulation. This micro-simulation uses continuous computation of train motion equations 

and simulates the interaction between trains through discrete processing of signal box 

states (Nash and Huerlimann, 2004). Given user defined infrastructure, rolling stock, and 

timetable databases, it is possible to calibrate the train paths defining the running time 

supplements; moreover, different driving behaviors can be modeled for on-time trains and 

delayed ones. The strength of the micro-simulation models is the higher accuracy than the 

analytical models, and their flexibility to represent different contexts. Changes in the 

infrastructures and operating rules can easily be implemented and tested. The accuracy 

comes, though, at the cost of much longer computation time, as well as set-up time. Other 

micro-simulation software is available on the market, like RailSys by Rail Management 

Consultants GmbH (RMCon). Despite some differences in the approach, both the 

mentioned software suffer from long time needed to compute such detailed models 

(Landex, 2008). 

Two different train paths run every ten minutes on the line between Hellerup and 

Hillerød with two different stopping patterns: 

 Line A: runs throughout the entire line, skipping 5 stops in the first stretch 

 Line E: only runs the first stretch, stopping at all the stations. 

The line stationing and the schedules are summarized in Table 3.2-1. 

The defined set of {1,…,10} minutes of primary delay was assigned separately 

to each train departing from Hellerup. The individual total delay functions were regressed 

from the corresponding total delay measured in the simulation, independently for line A 

and line E. The general total delay function of the line is calculated by the weighted 

average of the individual total delay functions of the trains. 
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Station  Stationing  Schedule* 

Name Code  km  A E 

Hellerup Hl  7,8  05 07 

Bernstorffsvej Btf  9,3  | 09 

Gentofte Gj  10,9  | 11 

Jægersborg Jæt  12,6  | 14 

Lyngby Ly  13,9  11 16 

Sorgenfri Stf  15,9  | 19 

Virum VG  17,7  | 21 

Holte Hot  19,0  16 23 

Birkerød BG  23,8  21 
 

Allerød LG  29,3  26 
 

Hillerød HG  36,5  32 
 

Table 3.2-1 – Line stationing and scheduled. *Departure minutes of the hour reported. 

Each train path repeats every 10 minutes. | = pass-through. 

For the model validation, we Monte Carlo sampled n=200 failures at the 

departure signal from Hellerup, starting at a random time independent of the timetable. 

We regressed the measured the related total delay developed on the line to individual 

functions for every delayed line. The starting time of the disruption was extracted from a 

uniform distribution between 0 and 80 minutes, spanning over 8 consecutive timetable 

cycles. The duration of the failure was extracted from a uniform distribution between 0 

and 10 minutes. 

Table 3.2-2 compares the cases of primary delay experienced by each train line 

and the calculated probability. The weights for the general total delay function are 

calculated from the modeled probabilities. 

Course  

Cases of 

Recorded 

primary delay 

 

Model 

probability of 

primary delay 

 Weight 

(i)  # %  P(Li)  wi 

0  76 38.0 %  34.0 %   

A  91 45.5 %  48.0 %  0.73 

E  33 16.5 %  18.0 %  0.27 

Table 3.2-2 – Cases of primary delay registered in the simulation and probabilities 

modeled. 
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The total delay general function of the railway line was regressed from the whole 

set of simulations and compared to the combination of the individual delay functions.  

Figure 3.2-5 compares the modeled general total delay on the line and the 

measured general total delay from the simulation. 

 

Figure 3.2-5 - Total delay on the line as a function of the primary delay given to Line A 

(dotted dark gray line). and Line E (dotted light grey line). Modeled (dashed black line) 

and measured (dot-dashed line) general total delay. 

3.2.4 Results and discussion 

The total delay on a railway line can be regressed to a cubic function of the 

primary delay. Every train that receives the primary delay returns a different function, due 

to a different interaction with the following trains, i.e. different buffer time. 

The weighted average total delay function reflects the total delay function given 

by the joint simulation of failures independent of the timetable. In this case study, a series 

of 200 microsimulation of a random failure at a signal box was well approximated by a 

reduced series of 20 microsimulations of primary delays to individual trains. 

The modeled total delay function and the measured total delay hold tight up to 

500 s of primary delay. This is due to a higher number of trains from line E that received 
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smaller primary delay. As opposed, trains from line A tended to be the first delayed trains 

with higher values of primary delay. For this reason, the joint regressed total delay function 

is closer to line E for small primary delays and closer to line A at higher values of primary 

delay. The modeled general total delay function, instead, keeps the distance ratio between 

the two individual total delay functions throughout the entire primary delay range. A 

solution to this issue could be to cluster the distribution of the failure duration. In this way, 

different probabilities to be delayed can be calculated for different ranges of primary 

delays. The averaging weights would be calculated for individual clusters and the general 

total delay function would adapt to the probability to be delayed of individual trains. 

3.2.5 Conclusions 

This paper derives the total delay on a railway line as a closed function of the 

primary delay, under the assumption of equal buffer time between trains and equal running 

time supplement over the line. 

We turn the estimation of the total delay given by an aleatory incident into the 

combination of the total delay functions of different trains. We determine each function’s 

contribution to the general total delay with a probabilistic approach. The individual total 

delay function of each train is regressed from microsimulation. The result is a combined 

total delay function that does not depend on what train receives the primary delay. It is 

now possible to estimate the consequences of a given incident, simulating independent 

primary delays on the individual trains instead. This allows broader timetable analyses 

without increasing the number of simulations needed. 

The model allows to calculate the total delay on a railway line with high accuracy 

from the microsimulation, reducing the amount of simulation runs needed. Using this 

model, we only needed one-tenth of the microsimulations used to estimate the total delay 

from the incident distributions. The number of microsimulations needed for the analysis 

may be further reduced, taking advantage of the good regressions of the individual total 

delay functions. 

This is relevant for railway planners because it allows timetable accurate 

analyses with a limited computational power or on extended railway networks. At the same 

time, the accuracy of the model, together with the reduced computation needs, allows new 

applications in real-time rescheduling models, based on the total delay estimation. 

The model accuracy could be further improved in the future clustering the 

distribution of the incident duration and introducing more complex distributions of the 

incident duration and starting time. 
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4 DATA ANALYSIS OF THE REALIZED OPERATION 

4.1 Paper IV: Causal Analysis of Railway Running 

Delays 

Cerreto, Fabrizio, Otto Anker Nielsen, Steven Harrod, and Bo Friis Nielsen. “Causal 

Analysis of Railway Running Delays.” In World Congress on Railway Research (WCRR), 

1–7. Milan, Italy: World Congress on Railway Research, 2016. 

Abstract 

Operating delays and network propagation are inherent characteristics of railway 

operations. These are traditionally reduced by provision of time supplements or “slack” in 

railway timetables and operating plans. Supplement allocation policies must trade off 

reliability in the service commitments against service transit times and railway asset 

productivity. Methods to investigate the quality of supplement time allocation are 

necessary to reduce the behavioral response and the waste of resources. 

This is a preliminary study that investigates train delay data from the year 2014 

supplied by Rail Net Denmark (the Danish infrastructure manager). The statistical analysis 

of the data identifies the minimum running times and the scheduled running time 

supplements and investigates the evolution of train delays along given train paths. 

An improved allocation of time supplements would result in smaller overall 

aggregate timetable supplement, reduced transport travel times, and higher productive 

utilization of train rolling stock. The study results will lead eventually to both better 

allocation of time supplements in timetable structures, and identification of areas that 

should be a high priority for correction. 

KEYWORDS; Express trains; Punctuality; Railway; Statistics; Timetable 

Supplement 
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4.1.1 Introduction 

The railway industry commonly benchmarks itself through key performance 

indicators such as punctuality and reliability. These compact measurements express the 

quality of the service, meant as the ability to respect the schedule promised to the 

passengers. The running time supplement is one of the timetabling tools used to improve 

punctuality. This paper gives an overview of the running time supplement design and use 

in operation. It also presents a statistical approach to analyze historical data of train 

timekeeping in Denmark, in order to investigate the quality of the timetable supplement 

allocation. The purpose is to present different strategies for the design of timetable 

supplements and to assess their impact on punctuality. 

With the objective of evaluating the effectiveness of the slack currently 

scheduled in train paths, this paper proposes statistical methods to quantify the running 

time supplement and compare it with the delay evolution through the paths. It is possible 

to identify areas where the running time supplement is not used and therefore wasted, and 

sections of the train paths where delays are not recovered, suggesting a lack of running 

time supplement. 

4.1.1.1 Punctuality, primary delays, and secondary delays 

Punctuality and delays are well known general concepts, but their definition and 

computation method vary among countries and railway companies. Punctuality refers to 

the number of trains that are not delayed, compared to the total number of trains operated 

(Olsson and Haugland, 2004). It can be attributed to individual stations or trains over a 

period of time, or it can measure railway networks entirely or partly. Differences are found 

in the selection of the punctuality measurement points and of the trains to be included in 

the measure. Accordingly, also the punctuality targets are different in every country and 

can be train category-specific (Schittenhelm, 2011). For example, punctuality is measured 

along the entire train path in Denmark, while only selected stations are counted in the 

Netherlands, Switzerland, and Germany. Other countries measure punctuality only at the 

final destinations, like Italy and Norway. It is common to differentiate the punctuality 

target between passenger and freight trains. In several countries, passenger trains are 

further divided into long distance and regional/suburban trains. 

Delays are positive deviations between the realized times and scheduled times of 

activities. In the literature, different classifications of delays are available. Most of the 

classifications distinguish between delays that are due directly to the variability of process 

times and delays that are originated by the subsequent conflicts in the actual operation 
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(Goverde and Hansen, 2013). The primary delays are unexpected extensions of the 

planned times of the individual processes scheduled. For instance, equipment failures and 

large passenger flows generate primary delays. The secondary delays, on the other hand, 

are delays generated by operation conflicts, which are due to primary delays themselves. 

When a train is delayed, it needs to use infrastructure elements at different times than 

planned. A conflict arises when two or more trains request to use the same element at the 

same time: they will be queued by dispatching decisions since only one train at a time can 

use one element. The delay that generates from the queuing is called secondary delay 

(Cerreto, 2016). Dispatching decisions are crucial for the management of the delay 

propagation: Olsson and Haugland (2004) found that the dispatchers tend to use defined 

priority rules on single tracked lines or in cases of large delays. Personal judgment prevails, 

on the other hand, on double-tracked lines or with small delays. 

4.1.1.2 Timetable supplement 

Scheduled times are usually longer than the minimum time required by processes. 

The difference between the scheduled times and the expected minimum realization times 

is referred to with different names by authors: slack time, timetable allowance, or time 

supplement. The timetable supplement is a tool that planners include in the timetables to 

compensate for natural variations of process times. It reduces the probability of generating 

primary delays, and it is expected to increase punctuality. On the other side, the 

supplement increases the traveling time and operating costs, resulting in a reduction of 

attractiveness and efficiency. To be effective and efficient, the timetable supplement 

should be properly dimensioned and distributed. Some strategies to allocate the 

supplement times are described below. 

4.1.1.3 Allocation strategies for the timetable supplement 

The allocation of the time supplement is a tradeoff between attractive travel times 

and timekeeping. General guidelines, built on empirical studies, are provided by the 

International Union of the Railways (UIC, 2000). The guidelines provide a fixed 

supplement to include in the train paths, proportional to the path length and increasing 

with the maximum speed, but they give no indication about the optimal distribution of the 

supplement along the paths. In addition, the recommendations are not mandatory and only 

suggest a minimum amount of supplement. Every railway planner has its own strategy to 

allocate the slack in the timetable and most western European countries use larger values 

then recommended. For example, the Danish railway Infrastructure Manager, RailNet 

Denmark, uses a flat distribution of the supplement on the regional and long-distance trains, 
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which, in some cases, doubles the UIC-recommended values. Condensation and 

compensation, instead, is the Swiss strategy for timetable supplement allocation. The 

network is divided into zones according to the capacity utilization. The capacity 

bottlenecks areas are named condensation zones, where the supplement time is minimized 

to reduce the capacity utilization. In contrast, large supplement times are scheduled in the 

areas that are not capacity bottlenecks, called compensation zones, to recover possible 

delays accumulated in the previous condensation zones (Schittenhelm, 2011). 

The national strategies for the supplement time allocation typically reflect the 

way the punctuality is measured: for instance, Denmark measures punctuality at all the 

stations and spreads the supplement along the train paths, except in the Copenhagen 

suburban railway network. Switzerland measures punctuality at larger stations and 

concentrates the supplement before those stations. Norway measures punctuality at the 

final destination and schedules large amounts of supplements in the last segments of the 

paths. 

4.1.1.4 Effects of the time supplement 

A properly designed time supplement should lead to a better regularity of the 

scheduled process, improving the railway punctuality. The relation between supplement 

time increase and punctuality improvement, though, is not straightforward. Carey (1998) 

formulated a behavioral response model to describe an observed phenomenon that reduced 

the benefit of supplement times. The main finding was that if more time is allowed to a 

process, the process self-adapts to the new schedule and takes a longer time on average. 

Train drivers tend to act slower in the departure procedures and to drive slower, passengers 

tend to take longer to board and alight, dispatchers tend to use the extra elasticity given by 

supplement times for train prioritization and delay management. In this sense, the 

supplement time could be thought as the capacity buffer between consecutive productive 

processes, which absorbs the inherent variabilities in the production. The risk is to hide 

systematic failures in the process, which should be tackled individually to increase the 

reliability. The famous case of the Sunset Limited train in the USA is reported by Larson 

(1998): the train schedule included such a large slack time that it had been hiding wrong 

dispatching strategies for years, and was consistently attaining poor punctuality. Adding 

even larger supplement times did not improve the train punctuality, while the increased 

travel time reduced the attractiveness for passengers. 

Carey’s theoretical formulation (1998) finds a balanced supplement time 

allocation optimizing the total cost, which consists of the cost of the scheduled trips and 



Data analysis of the realized operation 

Paper IV: Causal Analysis of Railway Running Delays 

115 

the cost of the expected delays. The cost of the scheduled trips is proportional to the trip 

length, so it is minimized with short running times and, therefore, minimum running time 

supplements. The cost of the expected delays decreases non-linearly enlarging the 

supplement times. A reduction in the expected delay is mirrored by a relevant reduction in 

costs for fuel, equipment utilization, and overtime wages, as also mentioned by Johnston 

(2008). 

4.1.2 Case study 

New methods to design and allocate the running time supplements are subject of 

several studies with different methodologies. Our current research focuses on the statistical 

study of historical data to assess whether the timetable supplement in existing timetables 

fits the actual need and if it is properly used.  

In the following subsection, we present methods to investigate the actual use of 

the time supplement in train paths and compare it to the scheduled timetables through the 

statistical analysis of historical data from the daily operation. 

4.1.2.1 Minimum running times 

As described in the previous sections, the scheduled process times consist of the 

minimum process time and a slack time, or time supplement, to absorb inherent variations 

of the process time. Therefore, the planners need to compute the minimum running time 

between two stations. Different tools support this operation, each of them with a different 

approximation. Acceleration and deceleration models can provide approximated running 

time estimation, especially on simple plain lines. Micro-simulation of train motion allows 

a more accurate computation. It and can easily be combined with detailed infrastructure 

models to take into account slopes and the train’s tractive effort and braking power 

(Cerreto, 2015). Real tests on the lines can be performed running trains on free tracks, but 

this type of tests is expensive and hard to realize. Each estimation method has its own 

uncertainties that should be evaluated. 

We used historical data from RailNet Denmark from 2014, third quarter, to 

investigate the realized running times in the past. The actual minimum running times were 

identified on the railway line Copenhagen – Roskilde, the most congested line in Denmark. 

The investigation covers only the express trains (“Lyntog”) that stopped at the bigger 

stations. The scheme below outlines the 30 km long line and the stopping locations. 
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11,8 km 15,6 km 3,9 km

 

 Figure 4.1-1 - Railway line Copenhagen - Roskilde. Express trains only stop at the major 

stations. 

 

Figure 4.1-2 – Actual running time percentiles of the express trains on the railway line 

Copenhagen – Roskilde, divided by segment and direction. 

The charts above represent percentiles of the actual running time distributions, 

divided by segments between stops, and by direction. The scheduled supplement time was 

filtered by referencing the minimum running time at the second percentile of the 

distributions. The second percentiles filtered well also running times that were too short, 

possibly due to the accuracy of the recordings or to random errors. 

Differences in the distributions of the two directions are worth further 

investigation. The spread of running times by segment is considerably wider for trains 

from Copenhagen. The segment closest to Copenhagen changes significantly in stability 

between the two directions, being almost constant for trains from Copenhagen. The future 

investigation could highlight the existence of a behavioral response to supplement time 

allocated at the departure, as Copenhagen is often the origin of long-distance trains.  
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The 2014 schedule varied considerably over the day, even for trains from the 

same category and scheduled with the same stopping patterns and rolling stock. The 

changes made it not possible to identify a unique running time supplement for each leg. 

Further research will investigate the variability of allocated supplement over the day. The 

supplement time will be estimated for individual trains through longitudinal statistics over 

the whole year. 

4.1.2.2 Delay, delay variation and supplement times 

Alongside the minimum running times, we compared the train delays at different 

stations to evaluate the delay development. 

 

Figure 4.1-3 – Departure delays at the beginning of the line compared to arrival delays at 

the following stations. Reference lines drawn at equal delays. 

For both the directions, the delay departing from the first station was compared 

to the arrival delay at the last three stations. A reference line is set to x=y in the plots, 

where x is the departure delay at the first station and y is the arrival delay at the following 

stations. Points below this line represent trains catching up their delay, while points above 

the reference line mean that the trains increase their delay along the way. For both the 

directions, the charts follow the train path top-down. The majority of the points lay near 

the reference line, indicating natural variations in the delays that normally occur over 30 

km of line.  
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Differences in the cloud density are visible between the two directions: while 

trains from Copenhagen are tight, trains bound for Copenhagen spread wider over the 

charts. The same phenomenon is visible in the comparison of delays from trains traveling 

in the same direction. The vertical distance between the individual points and the reference 

line represents the train’s recovery or loss. The trains leaving Copenhagen show a clear 

recovery pattern at Valby, shaping a straight line parallel to the reference line. This shape 

fades out at Høje Tåstrup and Roskilde, with more dispersed points showing more 

variability. An explanation is found in the distance covered by trains, as mentioned by 

Olsson & Haugland (2004): the section of the line that we considered is the final segment 

of many long distance trains bound for Copenhagen and the initial one for trains from 

Copenhagen. For this reason, trains to Copenhagen are subject to higher variability in 

delays. The realized recovery on one section could be modeled, thus, as an aleatory 

variable. The charts show that the realized recovery on consecutive line sections does not 

sum up linearly, but as aleatory distributions. A model is worth deeper investigation and 

theoretical formulation. 

Early departures from Copenhagen are forbidden, as visible in the scatter plot. 

On the other side, some express trains that do not stop at Roskilde are allowed to travel 

early at this station. The right-hand scatter plot shows that the earliness of several trains at 

Roskilde translates into late arrivals in Copenhagen. An extension of Olsson and Haugland 

findings on dispatching decision (2004) could suggest the prevalence of dispatchers’ 

personal judgment also for early trains and should be further investigated. 

The association of the higher running times registered for trains from 

Copenhagen, and the variation in delay recovery between Høje Tåstrup and Roskilde, 

suggests the existence of scheduled supplement times that are not used to recover delays. 

This excess should be quantified to optimize the resources utilization in future timetables. 

On the other hand, early trains to Copenhagen, traveling out of their designated slot, could 

relate to an excess of supplement time in the section before Roskilde. An optimal 

distribution of the supplement time should prevent excessive earliness, reducing 

dispatching issues at the bigger nodes, and resulting in better punctuality. 

4.1.3 Conclusions 

This paper reports the preliminary results of a research on train delays under 

development at the Technical University of Denmark, within the research project IPTOP 

(Integrated Public Transport Optimization and Planning). 
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Today’s access to large-scale data makes it possible today to apply multivariate 

statistics to the recordings of railway operation, based on automated train detection 

systems. 

Previous studies identified several influencing factors in punctuality. 

Nevertheless, new methods to identify excessive and insufficient timetable supplements 

are necessary. This paper shows that the actual supplement time can be detected in a train 

path by means of historical data. Further, the possibility to spot delay and recovery patterns 

is presented, and the impact of dispatching strategies will be developed in future research. 

Recurring delay patterns may be found dependent on the infrastructure layout, 

the rolling stock performance and reliability, the time of the day and of the year, and the 

stationing on lines and at stations. Delay causes tracking is regulated under the UIC leaflet 

450-2 (2009), which sets a standard codification, thus the structure of this analysis is 

applicable in many nations. The availability of detailed information on delay causes will 

also offer the possibility to deepen the previous studies on punctuality influencing factors. 

Delay causes recording is now required for international trains by the International Union 

of Railways and it is also being adopted for national trains among the railway infrastructure 

managers, giving access to data unavailable before. Primary and secondary delays should 

be explicitly recorded, in this way, making it possible to develop algorithms to link primary 

and secondary delays, and to further clarify how trains may auto-correlate their delays. 
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4.2 Paper V: Application of Data Clustering to Railway 

Delay Pattern Recognition 

Cerreto, Fabrizio, Bo Friis Nielsen, Otto Anker Nielsen, and Steven S. Harrod. 

“Application of Data Clustering to Railway Delay Pattern Recognition.” Published in the 

Journal of Advanced Transportation, 2018, 1–18. https://doi.org/10.1155/2018/6164534. 

Presented at RailCPH 2017 (Banekonferencen), Copenhagen, Denmark, May 15, 2017. 

Abstract 

K-means clustering is employed to identify recurrent delay patterns on a high 

traffic railway line north of Copenhagen, Denmark. The clusters identify behavioral 

patterns in the very large (“big data”) data sets generated automatically and continuously 

by the railway signal system. The results reveal where corrective actions are necessary, 

showing where recurrent delay patterns take place. Delay profiles and delay-change 

profiles are generated from timestamps to compare different train runs and to partition the 

set of observations into groups of similar elements. K-means clustering can identify and 

discriminate different patterns affecting the same stations, which is otherwise difficult in 

previous approaches based on visual inspection. Classical methods of univariate analysis 

do not reveal these patterns. The demonstrated methodology is scalable and can be applied 

to any system of transport. 

KEYWORDS: Railway Delay; Big Data; K-means clustering; Historical data 

mining 
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4.2.1 Introduction 

Operations analysis is the collection and review of performance data, such as 

punctuality and process cycle time. It is a key step in the continuous improvement of 

transport services, and several methods exist to collect and analyze data from operations. 

The increasing availability of automated data sources is offering new ways to analyze 

operations, providing deeper insight and more reliable information. Railway management 

is very accepting of these new possibilities, and considerable effort is made by operators 

and institutions to use operations analysis in feedback loops for improving the timetabling 

process (D’agostino, 2016; Peterson, 2012; Richter, 2008; Schittenhelm and Richter, 

2009). A better understanding of the development of delays in railways, and in 

transportation in general, provides the opportunity to improve the processes and identify 

the factors affecting reliability. For example, causes of delays might be identified in 

misallocation of supplements and buffers in timetables, structural conflicts that require 

mitigation actions, suboptimal design of station processes, and inefficient procedures for 

preparing a train for departure. This paper demonstrates a data-mining technique based on 

k-means clustering to identify recurrent delay patterns in transportation, identify the main 

reason for cluster membership, and provide managerial insight to improve timetables and 

processes. 

Prior studies propose several methods that are currently in use for operation 

analysis, deploying sources of automatic data collection. These approaches can be divided 

into traditional statistical methods and big data techniques, which differ in both the use of 

data and in the output provided. Traditional methods tend to aggregate and summarize 

information, so these can provide a general picture or detailed information on specific 

stations or trains. These are typically proposed in the form of multiple univariate 

distribution analysis, where the occurrence of different delay patterns at the same station 

is not visible. Big data techniques can be used to investigate recurring patterns or internal 

structures in operations. These approaches are expanding, thanks to the growing 

availability of large amounts of data, and several techniques have been deployed to identify 

recurrences of delays and describe or predict delays. Advanced techniques such as neural 

networks, succession rules, Bayesian networks, and various methods of regression, have 

been developed mainly to predict delays real-time in railways, as described in §4.2.2. 

However, train delays are necessarily correlated over the progression of a complete 

journey, and these data relations both along the journey of a train and among adjacent train 

paths have not received as much attention in the literature. 
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This paper presents a big-data technique to identify recurring delay patterns in 

railway operations. Big data refer to information assets characterized by high volume, 

velocity, and variety, which value is extrapolated by analytical methods (De Mauro et al., 

2016). In this application, the absolute delay and delay change are tracked for individual 

train paths along a railway line, resulting in absolute delay and delay change profiles. In 

the papers based on univariate statistics, systematic delays in these profiles are identified 

through visual inspection. The manual search for similarities suffers from subjective 

interpretation from the operator and is easily biased by common artifacts of the 

representation. The technique presented in this paper applies k-means clustering to find 

recurrent patterns in train delay progression, so that management may identify processes 

for improvement or correction. In this way, it is possible to support continuous quality 

improvement. 

In the next section, §4.2.2, a literature survey of contemporary data analysis 

methods is offered. §4.2.3 presents the k-means cluster method and the structure of the 

data to be studied. §4.2.4 presents results from the study of a high-density Danish railway 

line. The effectiveness of k-means clustering for this application is discussed in §4.2.5, 

with particular regards of its novelty compared to existing literature, while the conclusions 

of this paper are presented in §4.2.6. 

4.2.2 Literature survey 

Operations analysis is fundamental in the continuous improvement process to 

manage and modify railway operations. Data collected from real operations, or from 

simulation models, has been used in the feedback loop to design and improve railway 

timetables for decades. Typically, even if timetables may change over time, some of the 

fundamental infrastructure and service behaviors will not be modified. Timetables are 

often the result of only minor modifications to the previous editions and need to consider 

problems discovered in earlier timetables. For example, after a structural change in the 

Danish railway timetable in 1998, after the opening of the Great Belt fixed link, the service 

structure remained largely unchanged until 2016 (Hansen, 2015). 

Data collection systems have proliferated in railway networks since 2000, and 

very large amounts of data are available today. Widespread systems to collect data 

increased both the volume and the variety of data, which are often collected by different 

systems at the same time. The methods to elaborate and interpret information from past 

operations evolved together with the amount and quality of data, starting from descriptive 

and inferential statistic and moving towards big-data techniques. For example, delay 
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probability density functions can be extrapolated from historical data and integrated into 

analytical models to estimate service reliability before operation (Carey, 1999). Goverde 

et al. (2001) performs extensive statistical analysis and distribution fitting of data from the 

Dutch railway network. Goverde et al. fits different distributions for arrival and departure 

delays and finds that no general distribution fits all groups of recorded arrival delays.  

Primary delay distributions derived from operational data are also often 

employed as input in simulation models to evaluate the propagation of delays. Sipilä 

(2010) explores the effect of modified running time supplements in railway schedules 

through microsimulation of a Swedish railway line. The author identifies different 

strategies for running time supplement allocation by verifying the significance of the 

change in punctuality recorded in 1600 simulations of selected scenarios. Olov Lindfeldt 

(2010) describes a method to aggregate delay data from real records and isolate 

distributions of primary delays. These distributions are then used to formulate 

microsimulation models. The data consists of manual records from dispatchers, who assign 

a delay cause code to every record greater than 4 minutes of delay on the Swedish railways. 

In absence of other sources of data, the reliability of manual record cannot be validated, 

although the whole simulation model and its results rely on the derived distributions. 

Studies from other countries show that manual input can be indeed unreliable (Goverde 

and Meng, 2011; Sørensen et al., 2017). The same method to extract primary delay 

distributions is later used by Anders Lindfeldt and Sipilä (2014) in a simulation model to 

assess the effect of allowing freight trains to travel outside of their assigned path. The 

authors demonstrate that the realized travel times of freight trains could be shortened 

considerably without affecting the performance of other trains. The reduction of 

unnecessary waits for traffic management, and the permission to depart before schedule 

reduces the average travel time on one side but increases its variability on the other. 

Historical data also provides insight into the factors that influence service 

reliability. Olsson and Haugland (2004) apply regression analysis on the Norwegian 

railway network and identify the most relevant factors for punctuality, such as absolute 

passenger flow and passenger occupation ratio. Gorman (2009) uses regression analysis 

on data from American single-tracked freight railways to identify the factors that 

contribute the most in prolongation of railway running times. Gorman predicts congestion 

delay based on meets and passes scheduled as a consequence of speed heterogeneity. 

Again in simulation, Shih et al. (2014) applies an approach similar to Gorman’s to 

determine the best capacity expansion strategy in terms of reduction of average 
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prolongation of running time for freight trains. Shih et al. identifies functional relationships, 

through regression of simulation results, between average delay per train-mile and several 

factors, such as the relative length of the double-tracked section of a railway line. Anders 

Lindfeldt (2010) applies multilinear regression with a special focus on F-statistics to 

investigate factors generating delays on the Swedish railway network. Lindfeldt measures 

delay changes over selected routes and analyzes their distributions. In particular, the 

response variables are the share of trains with a delay increase, the median change in delay, 

and its standard deviation on the route. Statistically significant explanatory variables are 

found in the traffic volume for both passenger and freight trains. Among passenger trains, 

the most significant variables are average speed and traffic heterogeneity, and for freight 

trains, it is the number of stations on the route with at least three tracks. 

Time stamps and recorded deviations from schedule can be integrated with 

information from other sources. For example, incident reports may be compiled in case of 

larger disruptions. Such reports include information about the typology of the incident, the 

train affected by the primary delay, other trains involved, the secondary delays generated, 

and the recovery plans taken by the dispatchers. Schittenhelm and Richter (2009) describes 

the reporting system in the Danish railways (the same system in service at the time of this 

study) and introduces a quantile-based approach to depict the development of train delays 

en-route. The plots confirm the general understanding of delays from experienced 

operators and can be used to quantify the magnitude of expected disruption. The quantile-

based approach, though, describes operations as a whole, and it is not able to distinguish 

systematic delays occurring at individual stations, but with different origins, so analysis of 

individual train services is necessary to identify peculiar delay patterns. Richter (2010) 

introduces new metrics to identify improvement actions, based on data from automatic 

detection systems. Richter sorts the trains according to recorded delay and identifies the 

worst in a percentile approach, associated with recorded delay causes. A similar approach 

is adopted with regards to change in deviation, or delay jump, recorded on line sections so 

that most critical geographical areas are identified. Lastly, Richter proposes a tabular 

representation of the median delay of individual trains recorded at the station, sorted by 

scheduled time and geographical location. In this way, the analyst can identify which 

specific trains typically suffer from primary delays, also characterized by geographical 

location, and which are the trains typically affected.  

Similarly, Peterson (2012) studies the on-time performance along the path of 

specific train services, using the rolling average delay of the last three timing points. Such 
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on-time performance is plotted for all the repetitions of a specific train service over a time 

period, and compared to the average, standard deviation, and 75th percentile. Peterson 

identifies empty areas in the pool of plotted delay profiles and interprets these as recurrent 

delay patterns given by discrete dispatching choices along the train path. Peterson also 

interprets recurrent increases or decreases of vehicle delay as segments of insufficient or 

excess running time supplement, respectively. Reliability of service is described by the 

standard deviation of recorded delays. Peterson used the mentioned measures in a feedback 

loop to redistribute the running time supplement in train paths according to the recorded 

performance.  

Andersson et al. (2011) assesses the effectiveness of running time supplement in 

railway schedules from empirical data collected on a Swedish railway line. The study plots 

the recorded delays over the train itinerary overlapped with the scheduled running time 

supplement and compares pairwise the stacked plots from different railway services, 

stopping patterns or directions. The identification of misallocation of running time 

supplement is based on a visual search for recurrent delay patterns, and a few different 

dispatching tactics are identified in clusters of similar delay profiles. Andersson et al. 

highlights the existence of a threshold value of delay that triggers prioritization of other 

trains that are traveling on schedule. The observations are clustered in groups and show 

recurrent delay patterns, and the analysis is supported by a detailed analysis of possible 

conflicts among individual train itineraries. Noticeably, the authors demonstrate that the 

measures of punctuality currently in use on the Swedish network hide the effects of 

running time supplement misallocation and delays developed en-route. Even though the 

punctuality at the final destination is a measure of railway performance very common 

among railway operators, it does not express how trains increase or recover from delays 

along their journey. Schittenhelm (2011) provides a sample of similar measuring 

approaches in the European railway industry. In a later study, Andersson et al. (2013b) 

underlines the relevance of critical points for network robustness by plotting delay profiles 

and showing that the profiles cluster around critical points according to different 

dispatching strategies. Advanced clustering techniques may support the identification of 

different strategies to compute the effects on robustness.  

Lastly, van Oort et al. (2015) evaluates data collected automatically on public 

transport services with a combination of statistical methods and visual representation. The 

study represents delay data similarly to Peterson (2012), Andersson (2013b, 2011), and 

Schittenhelm (2009), plotting the recorded delay over individual repetitions of the same 
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service path, and adds the plot of relevant delay percentiles over the stations. The shape of 

the percentile-based delay profiles highlights recurrent patterns in the deviation from 

schedule. The representative delay profiles appear different depending on the percentile 

they represent. Patterns found included the presence of typical early arrival at stations in 

bus services, followed by waiting time until the scheduled departure time, or recurrent 

delay drops or increases at specific stations. The delay plots are combined with the 

measured headway from the previous vehicle. While the delay plots would suggest 

allocating more running time supplements at systematic increases of delay, structural 

delays that cannot be compensated by timetable slack are highlighted in the plots of 

headways, were service unreliability corresponds to scattered recorded headways. A 

percentile approach was also presented by van Oort et al. to characterize and sort the 

stations according to performance, similarly to previous literature. 

The statistical analyses presented above are suitable for the general description 

of the system performance but lack specific insight on recurrent delay patterns that occur 

in operation, and on the relationships between delays at different locations. The literature 

presented in this survey focuses on the univariate analysis of selected measures, such as 

delays at single stations. Traditional metrics common in the railway industry, such as 

punctuality, have also been found unrepresentative of the actual service reliability. The 

methods that include the multidimensional aspect of the problem mostly deal with delay 

profiles, the sequences of delays recorded on individual train itineraries. The quality of 

these analyses often relies on visual inspection of plotted data, and the observer-operated 

search for matching delay profiles. This search lacks a standardized methodology and is 

influenced by the plotting layout and the subjective interpretation, which is based on 

personal experience.  

Big data techniques have arisen recently and seek to make use of the very large 

amount of information that is provided by automatic data collection systems, overcoming 

the mentioned issues of traditional methods. The term big data is rather broad and includes 

different techniques that serve a specific purpose. The common characteristics of these 

techniques are Volume, Velocity, and Variety, meaning large amounts of data, generated 

at high speed, possibly by different sources with different or no structure (De Mauro et al., 

2016). As opposed to standard statistical analyses, where hypotheses are formulated and 

tested, big data techniques search for internal structures directly in the data. Data generated 

by automatic sources typically fit into the big-data criteria. In railways, several data mining 

techniques were developed in the last years, following different approaches and searching 
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for different types of information. The interest in these techniques is rising, together with 

the increasing availability of structured data. Industrial applications of these techniques 

are spreading, and new approaches are being studied also among public institutions 

(D’agostino, 2016). 

Event mining is a technique based on time sorted logs, where relations between 

different events are found based on their coincidences. Hansen et al. (2010) combines an 

event mining tool and standard statistics to predict the actual running times of trains to the 

next station, given all the recorded current delays. Dependencies between pairs of events 

are found or “mined” in timed event graphs created from the time stamps of individual 

trains, which correspond to events of occupation and release of blocking sections. The 

process times between events are inspected by standard statistics, resulting in conditional 

probabilities of process times, given the recorded delays of all relevant trains in the system. 

Such a model, though, relies considerably on very detailed knowledge about the 

infrastructure and requires data which is not commonly available from railway 

infrastructure managers.  

Goverde and Meng (2011) uses the same information source and similar 

technique to identify and analyze route conflicts and identify delay chains. Infrastructure 

data and operation data are integrated so that it is possible to identify a train that is 

occupying a blocking section linked to a signal at danger for another train. Delay trees are 

built and traced backwards to identify the primary causes, so individual delays can be 

classified automatically into primary and secondary, and the correct attribution of delay 

causes can be verified. Interestingly, the authors verify that more than half of the delay-

cause records were assigned wrongly by the dispatchers, stating that, in the Netherlands, 

this type of manual input is not reliable and objective enough to be deployed in data 

analysis.  

Kecman and Goverde (2012) extends the model to include non-logged line 

sections, where it is not possible to distinguish delays due to signaling impositions and 

delays due to primary causes. Delay chains are also traced in less detailed data by Sørensen 

et al. (2017). Based on the time sequences at stations experiencing disturbed operations, 

the authors identify the trains generating the conflicts and the trains suffering from the 

conflicts. The analysis is used to identify primary delays, describe single days of operation, 

identify frequent trains originating, or subject to, delay chains, and identify point stations 

where most of the primary or secondary delays are generated. In a comparison with 

manually recorded delay causes, the study finds relevant inconsistencies with the primary 
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delays traced in the delay chains, in accordance with Goverde and Meng (2011). The 

method described, though, is only valid for single track lines and does not identify multiple 

primary delays. 

Cule et al. (2011) introduces association rules to identify delays recurring often 

together and sets up an episode mining framework to highlight frequent delay patterns 

from train timestamps at stations. However, association rules can highlight common 

recurrences, but cannot explain relations of causality between two events, so primary and 

secondary delays cannot be distinguished. Similarly, Wallander and Mäkitalo (2012) 

identifies delay chains according to the manual delay cause records from the dispatchers 

and based on timestamps at stations with a granularity of 1 minute. The succession rules 

used are very similar to association rules, but consider the time dependencies, so that 

events taking place earlier can be assumed to be the cause of events happening later under 

the same circumstances. Trains are characterized by the number and magnitude of conflicts 

they generate so that improvement actions can be concentrated. Association rules have 

also been adopted to evaluate the effectiveness of delay prevention actions on Japanese 

suburban networks by Yabuki et al. (2015). Yabuki et al. compares the association among 

occurrence of delays of different trains, change in delays, extension of running and 

dwelling times and realized headway in before/after scenario comparison. The downside 

of such models is that association rules can be set between binary variables, so the 

development of delays depicted does not include its magnitude. Further, the number of 

associations to be analyzed grows exponentially with the number of potential pairs of 

events, so the analyses must be limited to short time frames of operation. 

Neural networks are a big-data method that learns from historical records and 

uses the relations identified among variables to predict an output, given unseen values of 

the input variables. This technique is particularly suited to delay prediction and has been 

deployed in multiple studies. Neural networks look for dependencies in the data, as 

opposed to simulation models, which are based on interaction rules between objects 

defined initially. Malavasi and Ricci (2001) uses neural networks to predict the total 

experienced delay on a railway line, given its geometrical and technological characteristics, 

and its scheduled utilization over time. In comparison to simulation, Malavasi and Ricci 

find neural networks more robust against extreme-valued input, which implicates more 

likely case-overfitting with simulation. Kecman et al. (2015) proposes a Bayesian network 

delay prediction model. In this case, the input includes the timetable and recorded delays 

at all stations. Each delay is assumed to depend only on direct connections in a timed event 
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graph, meaning the recorded delay for the same train at a previous station, and for the 

previous train at the same station. Conditional delay distributions are assumed Gaussian, 

and the parameters are derived through recursive Generalized Linear Models. Chapuis 

(2017) deploys the same assumed delay dependency in a neural network model, where 

input includes the delay of the previous train and at the previous station, and distance to 

the next station. Such a model can predict the delay of a train at the next station. 

Independent of the actual infrastructure, this model is generic and can be applied at any 

station of the railway network. The downside of neural networks, though, is the risk of 

data overfitting, reducing the prediction capability, although this risk is lower in neural 

networks than in simulation models.  

In response, Marković et al. (2015) introduces Support Vector Regression (SVR) 

to establish a functional relationship between the characteristics of the railway system and 

train delays. Train category, scheduled time, infrastructure, and share of the journey 

completed are identified as most influencing factors to predict the train delay at one station. 

The authors show that SVR generalizes better than an artificial neural network, which 

seeks to minimize the error of prediction in the historical dataset. Interestingly, the authors 

assume that the performance of delay prediction can be improved by grouping delays by 

magnitude, as factors generating smaller delays differ from factors that generate larger 

disturbances.  

Kecman and Goverde (2015) applies big data techniques to predict running and 

dwelling times from actual operation data, based on records from block sections 

occupations. The study uses random forests of tree-based models, to predict non-linear 

relations between input variables and process times, with sufficient robustness to outliers 

in the data, lowered risk of overfitting, and with focus on real-time application. Running 

time predictors are calculated for every block section, and dwelling time predictors are 

calculated for every station platform. Among the interesting findings, the running times 

are longer if the headway to the preceding train is short, meaning that the succeeding trains 

tend to slow down to smoothen the trip and reduce the risk of encountering a yellow signal. 

Moreover, the authors find no evidence to support the hypothesis that trains run faster 

when delayed. All the trains were found to run at approximately the maximum 

performance in any condition. The authors suggest that, in case of insufficient prediction 

accuracy, new variables might be included in the model, such as the platform shape for 

dwelling times. 
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Big data techniques focus mainly on the prediction of delays and running times, 

or in the identification of delay chains and realized delay propagation among trains. New 

applications of these techniques would support the analysis of the realized development of 

delays along the path of individual train delays. As shown by statistical analysis and visual 

search for patterns presented by Schittenhelm and Richter (2010; 2009), Peterson (2012), 

Andersson et al. (2013b, 2011) and van Oort et al. (2015), this type of data contains a great 

deal of information yet to be explored, which would provide insight on the effectiveness 

of running time supplements, and on the presence of structural issues that generate delay 

in transport operation. In this paper we present a clustering technique to identify recurrent 

delay patterns among train services, based on readily available data, and which leaves 

room for inference on the factors that generate specific delay patterns. The result shows 

that, within comparable train trajectories and stopping patterns, different train services 

accumulate delay at different stations, and that recovery shapes differently according to 

the route direction. Inferences on the cluster composition show the most frequent service 

characteristics in each cluster. Such information could guide the allocation of corrective 

measures to improve timetables. Table 4.2-1 and Table 4.2-2 summarize the literature just 

reviewed.  
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Goverde et 

al. (2001) 
X   X         

Distributions of Primary and 

Secondary delays 

Sipilä 

(2010) 
  X   X       

Comparison running time 

supplement strategies 

O. Lindfeldt 

(2010) 
X X X         

Distributions of Primary delays 

from real operation for 
simulation 

Olsson and 
Haugland 

(2004) 

X       X     Factors affecting punctuality 

Gorman 

(2009) 
X       X     

Factors that generate delays on 

single track lines 

A. Lindfeldt 

(2010) 
X       X     

Factors that increase delays in 

line segments 

A. Lindfeldt 
and Sipilä 

(2014) 

  X   X       
Travel times with different 
operation models, with/without 

free freight operation 

Shih et al. 

(2014) 
  X     X     

Factors affecting average delay 

per train-mile 

Schittenhel

m and 
Richter 

(2009) 

X         X X 

Visual inspection of quantile-

based representation of 
deviations and change in 

deviation 

Richter 

(2010) 
X         X   

Delay tabular representation 

and sorting train service 
performance 

Peterson 
(2012) 

X         X   
Rolling average delay for 
specific train services 

Andresson 

et al. (2011) 
X           X 

Assessment of effectiveness of 

running time supplements 

Andresson 

et al. (2013) 
X           X 

Identification of critical points 

for robustness 

van Oort et 

al. (2015) 
X           X 

Delay profiles, headway 

profiles 

Table 4.2-1: Review of previous uses of univariate statistics in railway operation analysis 
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Hansen et al. 

(2010) 
X        X  Current delays of all 

trains 

Prediction of running 

time to next station 

Goverde and 

Meng (2011) 

Kecman and 

Goverde 

(2012) 

X        X  Timestamps 
Delay chains, Actual 

primary delay causes 

Sørensen et 

al. (2017) 
X         X Timestamps 

Delay chains on single 
track lines, actual 

primary delay causes 

Cule et al. 

(2011) 
 X        X Timestamps Delay patterns 

Wallander 

and 
Mäkitalo 

(2012) 

  X       X 
Timestamps, delay 
causes from dispatchers 

Delay chains 

Yabuki et al. 

(2015) 
 X        X Timestamps 

Comparison of real 

scenarios 

Malavasi 

and Ricci 
(2001) 

   X     X  Physical infrastructure 

and utilization ratio 

Prediction of total 

realized delay on a 
network 

Kecman et 

al. (2015)a 
    X     X 

Current train delay, last 

delay at station 

Delay prediction at next 

stations 

Chapuis 
(2017) 

   X      X 

Current train delay, last 

delay at station, 

distance 

Delay prediction at next 
stations 

Marković et 
al. (2015) 

      X   X 
Infrastructure and train 
journey characteristics 

Delay prediction at next 
stations 

Kecman et 

al. (2015)b 
     X   X  

Current traffic 
condition, actual train 

position, delays of the 
day 

Running time and 

dwelling time 
prediction 

Cerreto et 
al. (2018) 

(This paper) 

       X  X Timestamps 
Recurrent delay 

patterns across stations 

Table 4.2-2: Review of previous uses of big data techniques in railway operation analysis 

4.2.3 Identification of recurrent delay patterns using big data techniques 

In this paper, a delay profile of a train run is defined as the set of recorded 

deviations throughout its path or a part of it, on a specific date. Note that deviation is 

reported as the time difference between a scheduled and a realized event, such as arrival, 

departure, or a nonstop timing point. Even though the delay is often used to refer to positive 

deviations, a delay profile can include null and negative values. A delay profile is a 
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powerful representation of operation and the comparison of several delay profiles along 

the same service path allows the identification of recurrent delay patterns and such a 

representation method has already been presented in the literature (Andersson et al., 

2013b, 2011; Peterson, 2012; Richter, 2010; Schittenhelm and Richter, 2009; van Oort et 

al., 2015). Delay change, also called delay jump, is the difference in deviation between 

two consecutive stations, and represents the delay recovery or increase. Schittenhelm and 

Richter (2009) use this measure to assess delay increases or time gains between stations, 

and Goverde and Meng (2011) use it to identify delay chains in railway operation. We 

define a delay change profile of a train as the set of recorded delay changes along its path 

or a part of it. 

A dataset of delay profiles consists of all the delay profiles recorded in a defined 

period, stacked together. Fields, or variables, of the dataset are the events at every station, 

whereas observations are individual train runs from a selected service. Such a dataset can 

refer to a specific train service or to several services following the same stopping pattern 

so that the fields can be aggregated. The first case is intended for infrequent services, 

typically long-distance trains, where every single service may have its own characteristics 

in terms of planned demand, scheduled rolling stock, or the time of crossing congested 

nodes. Suburban and regional railway services are often scheduled in constant stopping 

patterns at high frequency, and could, thus, be analyzed together, expecting characteristics 

of operation to be more homogenous across services. A dataset of delay change profiles is 

defined analogously to delay profile datasets, where the fields contain the change in 

deviation in place of the absolute deviation. 

Previous research presented on delay and delay-change profiles interpret 

recurrent patterns by the visual search for similarities (Andersson et al., 2013b, 2011; 

Peterson, 2012; Schittenhelm and Richter, 2009). The systematic analysis of these two 

types of datasets through clustering algorithms allows the identification of patterns that are 

not necessarily visible, or that could be wrongly associated by subjective interpretation. 

Clustering techniques partition a dataset into a collection of groups of similar 

observations. In this study, clustering is used to partition the datasets of delay profiles and 

identify train services that are candidates for identification of common causality. Inference 

on common factors appearing in observations clustered together facilitates the assessment 

of delay patterns in association to specific characteristics of a transport service, such as 

time of the day (peak/off-peak), day of the week, or equipment used. The clustering 

process is realized through measures of similarity between elements in the same cluster 
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and dissimilarity between elements from different clusters. Several methods and metrics 

are available to accomplish the task, suitable for different uses. Hierarchical algorithms 

proceed by splitting or merging observations recursively and are preferred when a nested 

structure is assumed in the clusters. In contrast, partitional algorithms do not impose a 

hierarchical structure and find all the clusters at the same time. K-means clustering is a 

partitional algorithm and was chosen due to its simplicity and frequent appearance in the 

literature (Jain, 2010). 

K-means clustering is an iterative clustering process based on the identification 

of the mean element in each cluster. Every cluster is represented by its centroid, calculated 

as the average of the elements of the cluster, and every observation is assigned to the 

cluster corresponding to the closest centroid. Given a number k of initial centroids, the 

algorithm executes the following steps: 

1. assign every element to the cluster with the closest centroid; 

2. calculate the new centroids of all the clusters as the mean of the elements; 

3. repeat until convergence, which is met when no element changes cluster 

between consecutive iterations. 

This simple method requires three user-specified parameters, which might be 

hard to determine beforehand. The distance metric, the number of clusters k, and the cluster 

initialization. Euclidean distance is often used to determine the difference between 

observations, but other metrics are available, such as the L1 distance (Kashima et al., 2008). 

The number of clusters k is the most difficult parameter to estimate, as there is no perfect 

mathematical criterion. The parameter k is typically determined according to available 

knowledge about the data or interpreting and evaluating the meaning of several 

independent partitions realized for different values of k. The initial centroids might 

influence the resulting clusters, so the initialization is often chosen among several 

independent partitions that result from sampling k initial centroids among the observations. 

The influence of initialization, however, generally diminishes with the dimensionality of 

the dataset (Jain, 2010). 

A substantial contribution to the simplicity of the method is given by the required 

structure of the data. Contrary to observer-operated search, clustering methods rely on the 

numerical relations between variable values recorded across single observations. It is, thus, 

unnecessary for the clustering algorithm to preprocess the data and sort the recorded delays 

for every train/observation. In the method proposed in this paper, k-means clustering is 

applied to observations of a multidimensional variable, whose size corresponds to the 
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number of timing points of a fixed stopping pattern, where the fields contain the delays, 

or delay changes, respectively, recorded at the individual timing points. Every observation 

of this multidimensional variable is a vector and represents a single train run. 

4.2.4 Case study: The Kystbane, Copenhagen 

The Kystbane (Coastline) is a double-tracked railway in the Copenhagen region. 

It is one of the busiest railway lines in the network of Banedanmark, the Danish 

infrastructure manager, and it is operated to regional standards, with some international 

services. It is operated nearly entirely by DSB, the largest Danish railway undertaking, 

which runs three different service types. The timetable is cyclic, and the services operate 

different stopping patterns during the day, as illustrated in Figure 4.2-1. 

 The Øresund trains (“ØK”) run all day every 20 minutes on a limited section 

of the coastline, between Copenhagen and Nivå. These trains operate 

between Denmark and Sweden across the Øresund bridge, and stop at every 

station in Danish territory; 

 The Regional trains (“ØP”) run all day every 20 minutes as well, but they 

only operate in Denmark and run the whole coastline. These trains skip 

selected stops between Copenhagen and Nivå; 

 Additional trains are operated in the morning and afternoon peak hours. The 

Rush hour trains (“ØD”) operate every 20 minutes between Copenhagen and 

Helsingør, skipping other selected stops. 
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Figure 4.2-1: DSB services and stopping patterns on the Kystbane. 

Fewer trains with modified stopping patterns run at night, so only weekday 

operation between 4:30 and 20:00 is considered in this study. The sections between 

Copenhagen and Østerport, and between Snekkersten and Helsingør are shared with other 

services and operators.  

In the resulting charts, stations are identified by a code specified by the 

infrastructure manager. Station codes and names are reported in Table 4.2-3. 
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Station 

code 
Station name 

Distance from 

KH [km] 

KH 
København H 

(Copenhagen Central Station) 
0,0 

KN Nørreport 1,5 

KK Østerport 3,1 

HL Hellerup 7,8 

KL Klampenborg 13,3 

SÅ Skodsborg 18,8 

VB Vedbæk 22,1 

RU Rungsted Kyst 26,1 

OK Kokkedal 29,1 

NI Nivå 32,5 

HUM Humlebæk 36,3 

GÆ Espergærde 40,0 

SQ Snekkersten 42,7 

HG Helsingør 46,2 

Table 4.2-3: Station codes and names on the Kystbane 

Banedanmark provided a set of timestamps that state the scheduled and realized 

times of the trains at every timing point from April to December 2014. The records include 

information about the operation and about the timing points, such as station name, train 

ID, train category, scheduled time and recorded deviation. Banedanmark relies on 

automatic train detection systems, based on the signaling system components. Typically, 

the track circuit boundaries do not correspond exactly to the platforms, and an offset is 

generated between the time recorded by the automatic system and the actual time a train 

arrives at the platform or departs. This is a rather common problem, and it is also reported 

in the Netherlands (Kecman and Goverde, 2015) and Norway (Sørensen et al., 2017). For 

the Danish network, a correction factor was calculated by Banedanmark using statistical 

analyses of GPS positions of train trajectories in collaboration with the main rail operator, 

DSB. The method and results are described by Richter et al. (2012; 2013). Nørreport 

station is the only station underground on the line, so GPS correction is not available, 

which is visible as a saw-tooth pattern common to all train services in the delay profiles 

presented below, with a slightly underestimated delay for arrival records at Nørreport and 

overestimated for departure records from the same station. Similarly, delay change records 

are shifted to negative values for arrivals at Nørreport, and at Østerport, whereas higher 

positive values are recorded for delay changes at departures from Nørreport. The bias is 
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systematic and has the same exact effect on all the trains, therefore its influence on 

clustering can be neglected. 

The train time stamps were rearranged by an automatic algorithm to create 

datasets as described in §4.2.3, by means of the commercial software SAS 9.4 TS Level 

1M4, by SAS Institute Inc., Cary, NC, USA. Observations corresponded to a realized train 

on a given date, and the fields contained the recorded delay at every station. Data from 

every station was divided in arrival, departure, and pass-through times, where trains did 

not stop. Each record is the delay profile or the delay-change of a train on a date and 

represents one observation of the given train. Every variable identifies the station code and 

the type of timestamp, which can be entrance to the station, I (“Indkørsel”), exit from the 

station, U (“Udkørsel”), or pass through station, G (“Gennemkørsel), which is used where 

trains do not stop. 

The analysis is intended to report delay patterns. Consequently, punctual trains 

are discarded from the dataset. In Denmark, punctuality measurements are based on a 

delay threshold of 5 minutes for regional and long-distance trains, such as the Kystbane. 

However, for internal management purposes, the infrastructure manager Banedanmark 

creates a delay report every time a train reaches at least 3 minutes of delay, containing 

information on the delay cause and on possible other trains hindered. Consequently, only 

trains with at least one recorded delay greater than or equal to 3 minutes are considered 

relevant in the present case study. Delay distributions are known to include large shares of 

trains with short delays, with decreasing frequency for larger delays (Carey, 1999; 

Goverde et al., 2001). Largely unbalanced clusters are a known issue in clustering 

algorithms and are an object of study to reduce the interference of large clusters (Wu, 

2012). In this case, punctual trains can, therefore, be considered as a compact cluster 

derived by prior knowledge, and they can be filtered out from the cluster analysis. The 

operation of filtering can be considered noise reduction and improves the quality of 

clustering, as the k-means procedure tends to generate spherical clusters of the same radius 

(Hastie et al., 2009). According to Marković et al. (2015), large delays are influenced by 

different factors other than smaller delays, which further supports the filtering choice. 

However, in different contexts, the filtering threshold might be set equal to a different 

value, or not be applied at all. 

Given the characteristic high frequency of train services on this line, clustering 

was operated by stopping patterns rather than by train numbers, so trains were grouped 

together by direction and service category. Grouping trains with similar characteristics and 
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same stopping patterns increases data availability in the comparison and does not 

disqualify the result. In fact, such grouping was already proposed by Schittenhelm and 

Richter (2009). 

As explained in §4.2.3, k-means clustering requires choosing the number of 

clusters k in advance. To set the number of clusters, the k-means algorithm was repeated 

with different values of k, and the best result was selected using criteria from Jain (2010). 

The number of clusters k should be large enough to represent different patterns. At the 

same time, as k increases, the same delay patterns tend to split into more clusters, and k 

should remain small enough to prevent the generation of duplicate clusters. In detail, for 

every combination of train category, direction, and clustering variable (delay or delay 

change), k was set as the highest integer that did not generate duplicate clusters. That is, 

the univariate distributions of delays, or delay changes, in every cluster should be different 

from all the other clusters for at least one station. Since k is selected independently for all 

the mentioned cases, the same set of trains might best be represented by a different number 

of clusters when the algorithm operates on the delay variables or on the delay change 

variables. The L1 distance was used as a clustering metric between observations, as 

suggested by Kashima et al. (2008). 

K-means clustering was performed on the described dataset by the commercial 

software MATLAB R2017a, by The MathWorks, Inc.. In the following figures, selected 

results of the application of the method are reported, clustering on either delay profiles, or 

on the delay change profiles. 

4.2.4.1 Clustering results 

Figure 4.2-2 illustrates the effectiveness of delay profiles clustering on ØK 

southbound trains, on the delay variables. Note, after a stop at Copenhagen central station, 

these trains proceed to Sweden. The charts show that similar delay profiles are grouped 

together with low variance around the average centroid of each cluster, highlighting 

recurrent patterns. The resulting clusters can be interpreted as follows: 

1. Cluster 1: Trains that are punctual on the first section of the line, but suffer 

delays approaching the most congested area of Copenhagen, mainly from 

Klampenborg and from Østerport; 

2. Cluster 2: Trains that are punctual throughout the complete journey, which 

receive delays leaving from Copenhagen; 
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Figure 4.2-2: Resulting clusters in southbound ØK trains, Nivå – Copenhagen. 
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3. Cluster 3: Trains that are nearly punctual, or anyway within 5 minutes of 

delay through the complete journey, and across Copenhagen central station; 

from Hellerup, a marginal delay recovery is visible for these trains; 

4. Cluster 4: The most delayed trains, being delayed throughout the whole 

itinerary, or it largest part; 

5. Cluster 5: Punctual trains with slightly, but steadily, increasing delay across 

stations. 

Some clusters present outliers, such as clusters 2 and 3. Even though some delay 

profiles may appear considerably different from other profiles in the same clusters, these 

observations were assigned to the cluster with the closest centroid. This means that, in 

selected cases, the delay profiles are the representation of rather unique events, which may 

be neglected after more detailed analysis in the composition of the individual clusters. 

Individual clusters are characterized through the mean values of the 

aforementioned measures. The following measures were computed for each train run to 

characterize the individual clusters: 

 Average, minimum, and maximum delay across stations; 

 Range of delays across stations; 

 Standard deviation of delays recorded across stations; 

 Initial delay, the delay at first station; 

 Final delay, the delay at the last station; 

 Overall delay change, difference between final and initial delay. Positive 

values mean the delay has increased from first to last station; 

 Maximum delay change across stations. 

Cluster characteristics are summarized in Table 4.2-4: 

C
lu

st
e
r 

N. 

obs. 

Mean 

average 

delay 

[min] 

Mean 

STD 

of 

delays 

[min] 

Mean 

initial 

delay 

[min] 

Mean 

final 

delay 

[min] 

Mean 

min 

delay 

[min] 

Mean 

max 

delay 

[min] 

Mean 

delay 

range 

[min] 

Mean 

max 

delay 

change 

[min] 

Mean 

overall 

delay 

change 

[min] 

1 270 2,26 2,78 -0,95 6,14 -1,06 7,72 8,78 4,88 7,09 

2 418 0,55 1,47 -1,05 4,71 -1,24 5,27 6,52 4,69 5,76 

3 381 3,09 1,12 1,70 1,80 0,53 4,64 4,11 2,69 0,11 

4 159 7,65 1,92 4,59 8,03 3,73 10,21 6,47 6,79 3,44 

5 395 1,92 1,14 -0,28 2,23 -0,47 4,10 4,57 2,25 2,51 

Total 1623 2,46 1,57 0,35 3,99 -0,12 5,73 5,85 3,87 3,64 

Table 4.2-4: Characterization of delay profile clusters, southbound ØK trains Nivå – 

Copenhagen 
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4.2.4.2 Comparison with percentile-based approaches on delay profiles 

In this section, a comparison is provided between the pooled data and the clusters 

on the dataset of delay profiles. The same percentile representation of delay profiles is 

shown, as proposed by Schittenhelm and Richter (2009), Peterson (2012), and van Oort et 

al. (2015). These authors represented different percentiles. For the sake of clarity, only the 

15th, 50th and 85th percentiles and the average are displayed in the following diagrams. 

Figure 4.2-3 shows the distribution of delays of the entire dataset of ØK 

southbound trains. The only pattern visible is a slight increase in delay toward 

Copenhagen, more evident for the more delayed trains, represented by the 85th percentile. 

Even though a large portion of punctual trains was discarded from the dataset, the residual 

distribution of delays remains positively skewed, as shown by the average constantly 

higher than the median value. 

 

Figure 4.2-3: Delays recorded for ØK southbound trains.15th percentile dotted, median 

solid black, and 85th percentile dashed. Average solid gray. 

The new information revealed by the clustering algorithm is provided in Figure 

4.2-4. In this figure, the individual internal distributions of delays are compared to the 

pooled delay distribution from Figure 4.2-3. Figure 4.2-4 shows, for each cluster, the 

difference between the cluster statistic at each station and the equivalent pooled statistic 

from Figure 4.2-3. 

In Figure 4.2-4, the 15th and 85th percentiles and the median line of the internal 

cluster delay profiles distributions, are compared to the distribution of pooled delay 

profiles. The clusters where the difference of 85th percentile from the pooled dataset is 

lower than the difference of the 15th percentile have tighter distributions of delay profiles 

compared to the pooled dataset, increasing the significance of the identified pattern. The 

local deviation present in the clusters represents the information hidden in the pooled 

dataset, which is instead brought to light by the clustering. 

-2

0

2

4

6

8

N
I 

 U

O
K

  
I

O
K

  
U

R
U

  
I

R
U

  
U

V
B

  
I

V
B

  
U

S
Å

  
I

S
Å

  
U

K
L

  
I

K
L

  
U

H
L

  
I

H
L

  
U

K
K

  
I

K
K

  
U

K
N

  
I

K
N

  
U

K
H

  
I

K
H

  
U

D
el

ay
 [

m
in

]

ØK Southbound, Delay. Pooled data



Data analysis of the realized operation 

Paper V: Application of Data Clustering to Railway Delay Pattern Recognition 

143 

 
Figure 4.2-4: Differences in the distributions of delays recorded for ØK southbound trains. 

Each cluster’s internal distribution is compared to the pooled distribution. 15th percentile 

dotted, median solid, and 85th percentile dashed. 
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4.2.4.3 Comparison with percentile-based approaches on delay change profiles 

In this section, a comparison is provided between the pooled data and the clusters 

on the dataset of delay change profiles. The same representation of delay change profiles 

based on the median is shown, as proposed by Schittenhelm and Richter (2010; 2009), 

supplemented with the average, i.e. the cluster centroid.  

Figure 4.2-5 shows the delay change profiles of the entire dataset of ØD 

northbound trains. A generalized positive delay change is visible at the last station. The 

large changes in delay from location KN I to KK I are linked to the known deviation in 

the timestamps at Nørreport.  

 

Figure 4.2-5: Delay changes recorded for ØD northbound trains. Median in bright shade, 

average in dark. 

The differences between the pooled median and average delay change profile 

and the same profiles from individual clusters are represented in Figure 4.2-6. In this case, 

the information gained by clustering is more evident. All the clusters remain similar to the 

pooled data at most stations, except few stations, where a large difference is recorded in 

the delay change. 

Every cluster is characterized by at least one larger delay change at one station, 

which would be hidden in the pooled distribution of delay change profiles. Noticeably, the 

negative effect of different delay patterns overlapping is evident for KN I records. All the 

clusters deviate negatively from the pooled data by around 0,5 minutes, except for cluster 

2, which deviates positively by around 1,5 minutes from the pooled profile. This means 

that the pooled profile was shifted by one single cluster to a central value, hiding both the 

frequent delay recovery, and the delay increase specific from cluster 2. 
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Figure 4.2-6: Delay changes recorded for ØD northbound train, by clusters. Median in 

bright shade, average in dark. 
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4.2.4.4 Inference on the clusters 

In this section, results from clustering of delay profiles and delay change profiles 

are investigated to identify relations with cluster characteristics, using heuristic 

classification. For the sake of conciseness, only cluster centroids are reported in the 

following figures, and only a sample of the results is reported, which is ØD northbound 

trains and ØK southbound trains. Figure 4.2-7 shows results from clustering delay change 

profiles for ØD trains to Helsingør. 

 

Figure 4.2-7: Cluster centroids for northbound ØD trains, delay change. 

Clusters can be interpreted as follow: 

1. Cluster 1: regular delay increases at the last three stations, where trains 

become unpunctual; 

2. Cluster 2: delay increase arriving at the first stop, Nørreport; 

3. Cluster 3: trains that are considerably delayed arriving at the final 

destination, Helsingør; 

4. Cluster 4: trains without remarkable delay changes: these train tend to keep 

the same delay throughout the whole journey; 

5. Cluster 5: specific delay increases at Humlebæk arrival; trains in this cluster 

show also smaller recovery at Skodsborg arrival, compared to other clusters; 
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6. Cluster 6: these trains accumulate delays passing the stations of Hellerup 

and Klampenborg; on the other side, compared to other clusters, the average 

delay increase at final destination Helsingør is smaller. 

Inference on the cluster population shows that some patterns are specific of 

selected train services, identified by their train number. Table 4.2-5 shows how every train 

service ID is spread across clusters. In each column, the shade represents the difference 

between individual percentages and the cluster share, where the brightest colors are 

associated with the values furthest from the cluster share. Green is a positive difference, 

i.e. larger percentages than the cluster share, red is a negative difference, i.e. smaller 

percentages than the cluster share. 

Time 

band 

Departure 

time from 

KH 

Train 

number 

Cluster 

2 6 4 1 3 5 

2
 –

 A
M

 P
ea

k
 

06:18 4413 18% 25% 14% 14% 18% 11% 

06:38 4415 4% 36% 4% 16% 32% 8% 

06:58 4417 26% 33% 7% 19% 4% 11% 

07:18 4419 6% 22% 8% 31% 8% 25% 

4
 –

 P
M

 P
ea

k
 

15:18 4467 21% 25% 17% 4% 21% 13% 

15:38 4469 19% 30% 7% 12% 23% 9% 

15:58 4471 44% 16% 16% 4% 8% 12% 

16:18 4473 5% 15% 28% 18% 20% 15% 

16:38 4475 43% 13% 21% 13% 10% 2% 

16:58 4477 20% 15% 39% 9% 2% 15% 

17:18 4479 16% 32% 15% 12% 9% 16% 

17:38 4481 31% 14% 19% 19% 5% 12% 

17:58 4483 46% 14% 14% 6% 10% 10% 

    

Cluster 

share 
24% 22% 17% 14% 12% 12% 

Table 4.2-5: Northbound ØD trains. Cluster share by train service ID. The color code 

compares the individual row’s distributions among clusters to the overall distribution 

among clusters reported in the last row. Clusters sorted by size. 

Delay change profiles in cluster 1 and 5 represent typical behavior of service 

4419, whereas cluster 2 shows considerably more frequent in services 4471, 4473, and 

4483. Cluster 3 is more common among services 4415, three times more frequent than the 

whole population distribution across clusters, and, 4467, 4469, 4473, which double the 

average frequencies. Cluster 4 is typical for services 4477, and, lastly, Cluster 6 represents 
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a large share of services 4417 and, again, 4415. Further investigation of other factors may 

reveal the causes that rule the train services’ cluster membership. 

The analysis of Table 4.2-5 shows the existence of a relation between train IDs 

in a specific time band and cluster membership. This is shown in detail in Table 4.2-6, 

where cluster membership is aggregated in time bands. The same color coding as Table 

4.2-5 is applied. 

The timetable is divided in time bands according to the overall service frequency 

on the line, so that time bands 2 and 4 are the AM and PM peak periods, respectively, 

when 9 trains/h per direction are operated. Time band 1, 3, and 5 are the remaining off-

peak periods, when ØD trains are not operated, so only 6 trains/h occupy the line in each 

direction, allowing for larger headway buffers between trains. At the same time, smaller 

congestion is expected, in off-peak periods, both on the train traffic and on the number of 

passengers to board or alight at the stations. 

Time Type 
Time 

band 

Cluster 

2 6 4 1 3 5 

6:20 - 8:20 Peak AM 2 13% 28% 9% 21% 15% 15% 

15:20 - 18:00 Peak PM 4 27% 20% 19% 12% 11% 11% 

    

Cluster 

share 
24% 22% 17% 14% 12% 12% 

Table 4.2-6: Northbound ØD trains. Cluster share by time band. The color code compares 

the individual row’s distributions among clusters to the overall distribution among 

clusters reported in the last row. Clusters sorted by size. 

In this case, morning peak shows recurrent delay patterns presented by clusters 

1 and 6, whereas patterns represented by clusters 2 and 4 are rare in this time band. As 

opposed, the distribution of trains in the PM peak hour is similar to the overall distribution. 

Further inference on the clusters of ØD northbound trains might highlight 

interferences from other trains. Lokaltog trains run mostly on a network independent from 

Banedanmark's, and share with ØD and ØP trains the line section between Snekkersten 

and Helsingør. ØD northbound trains are scheduled at a short headway after Lokaltog 

trains from Snekkersten to Helsingør. The analysis of timestamps from Lokaltog trains on 

this section and of the realized headways between Lokaltog and ØD northbound trains 

might suggest that clusters 1 and 3, which increase the delay near Helsingør, are actually 

the result of delay propagation from Lokaltog trains to ØD trains. 

The clustering results from other service categories, with different stopping 

patterns, can be related to the time periods of the day. For example, ØK southbound trains 

are reported in Figure 4.2-8 and Table 4.2-7. 
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Figure 4.2-8: Cluster centroids for southbound ØK trains, delay change. 

Start 

time 
Type Time band 

Cluster 

2 4 1 5 3 6 

04:30 Off peak 1 35% 30% 15% 12% 3% 5% 

06:20 
Peak 

AM 
2 49% 26% 10% 11% 1% 3% 

08:20 Off peak 3 39% 29% 13% 13% 3% 3% 

15:20 Peak PM 4 30% 26% 24% 9% 9% 2% 

18:00 Off peak 5 40% 29% 18% 9% 3% 1% 

    

Cluster 

share 
40% 28% 15% 12% 3% 2% 

Table 4.2-7: Southbound ØK trains. Cluster share by time band. The color code compares 

the individual row’s distributions among clusters to the overall distribution among 

clusters reported in the last row. Clusters sorted by size. 

Figure 4.2-8 represents the centroids of resulting clusters in train category ØK 

Southbound, according to delay change. Besides, the distribution of trains across clusters 

is summarized in Table 4.2-7, disaggregated by time bands, highlighted in the same color 

code as Table 4.2-5 and Table 4.2-6. Note that the number of clusters in the delay change 

profiles of ØK southbound trains is different from the number of clusters in delay profiles. 

This is not necessarily inconsistent, as the two variables express different aspects of the 

development of delays. In this case, the cluster share by time band explains the nature of 

two clusters. In particular, cluster 1 is considerably more frequent in the PM peak hour, 
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whereas cluster 2 is more typical of trains in the AM peak hour. This result can be 

reasonably interpreted as delays generated by passenger congestion. In fact, delay 

increases in the PM peak hour appear at departures from Copenhagen, where a large 

number of passengers leave towards Sweden. On the contrary, cluster 2 represents delays 

increases collected across stations towards Copenhagen, and a delay recovery departing 

from Copenhagen, where fewer passengers are expected to board. The cluster share for 

clusters 3 to 6 is comparable with the overall distribution across different time bands, so 

these delay patterns cannot directly be associated with the time of the day. Further research 

may reveal factors that rule the cluster membership for these clusters. 

More disaggregated analysis of cluster composition according to train number, 

or service ID, is in accordance with aggregated time bands. This is valuable especially for 

time band 3, which is the most populated time band according to the timetable. Table 4.2-8 

shows that, even if the overall distribution of trains in time band 3 across clusters is very 

similar to the overall distribution, specific train services present different typical delay 

patterns. In this case, further analysis of train service characteristics should indicate a 

better disaggregation of train services in a specific time band. The same color code as 

tables Table 4.2-5, Table 4.2-6 and Table 4.2-7 is applied in Table 4.2-8. 

Even though recurrent patterns are also clear in the delay profiles dataset, the 

results could not be explained by the available variables. Further research might identify 

relations that guide the clustering of delay profiles on this line, such as realized headways, 

weather conditions, passenger counts, and recorded delay causes. 
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Time 

band 

Departure 

time from NI 

Train 

number 

Cluster 

2 4 1 5 3 6 

1 

06:01 1314 38% 20% 23% 13% 3% 5% 

06:21 1316 32% 44% 8% 8% 4% 4% 

06:41 1318 33% 33% 10% 14% 5% 5% 

2 

07:01 1320 59% 12% 12% 15% 0% 2% 

07:21 1322 50% 29% 13% 4% 0% 4% 

07:41 1324 51% 31% 10% 5% 0% 3% 

08:01 1326 41% 32% 14% 11% 2% 2% 

08:21 1328 53% 18% 0% 22% 2% 5% 

08:41 1330 42% 33% 14% 3% 3% 6% 

3 

09:01 1332 43% 30% 4% 20% 0% 4% 

09:21 1334 39% 32% 16% 13% 0% 0% 

09:41 1336 41% 24% 15% 17% 0% 2% 

10:01 1338 24% 24% 27% 16% 5% 3% 

10:21 1340 31% 39% 19% 3% 0% 8% 

10:41 1342 57% 14% 11% 14% 0% 5% 

11:01 1344 45% 24% 12% 15% 0% 3% 

11:21 1346 40% 47% 10% 3% 0% 0% 

11:41 1348 53% 35% 7% 5% 0% 0% 

12:01 1350 26% 29% 21% 15% 3% 6% 

12:21 1352 47% 32% 8% 8% 0% 5% 

12:41 1354 38% 16% 28% 16% 0% 3% 

13:01 1356 46% 19% 15% 8% 8% 4% 

13:21 1358 50% 31% 15% 0% 4% 0% 

13:41 1360 59% 24% 7% 3% 7% 0% 

14:01 1362 29% 34% 17% 17% 3% 0% 

14:21 1364 44% 32% 12% 4% 8% 0% 

14:41 1366 37% 37% 10% 15% 2% 0% 

15:01 1368 24% 24% 16% 30% 4% 1% 

15:21 1370 43% 25% 6% 14% 10% 2% 

15:41 1372 35% 41% 5% 11% 5% 3% 

16:01 1374 36% 21% 17% 17% 8% 2% 

16:21 1376 36% 33% 14% 6% 6% 6% 

4 

16:41 1378 37% 27% 22% 7% 5% 2% 

17:01 1380 19% 29% 29% 13% 6% 3% 

17:21 1382 39% 18% 18% 5% 18% 0% 

5 

17:41 1384 45% 29% 23% 3% 0% 0% 

18:01 1386 18% 43% 30% 8% 3% 0% 

18:21 1388 47% 28% 16% 9% 0% 0% 

18:41 1390 40% 24% 16% 12% 4% 4% 

19:01 1392 58% 15% 13% 15% 0% 0% 

19:21 1394 34% 31% 17% 10% 7% 0% 

19:41 1396 48% 26% 7% 7% 11% 0% 

20:01 1398 31% 38% 22% 6% 0% 3% 

    
Cluster 

share 
40% 28% 15% 12% 3% 2% 

Table 4.2-8: Southbound ØK trains. Cluster share by service ID. The color code compares 

the individual row’s distributions among clusters to the overall distribution among 

clusters reported in the last row. Clusters sorted by size. 
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4.2.5 Discussion 

The clustering method proposed in this paper finds its strengths in being 

automatic, unbiased, flexible, and simple. A comparison to methods presented in the 

literature is provided in this section. Previous approaches (Andersson et al., 2013b, 2011; 

Peterson, 2012; Richter, 2010; Schittenhelm and Richter, 2009; van Oort et al., 2015) 

extracted information from delay profiles mainly through observation, occasionally 

combined with multiple univariate statistical analyses and observation ranking. In most 

studies, the complete dataset was plotted in the form of delay profiles, and the 

identification of frequent patterns among the observations relied on the observer’s ability. 

Visual inspection is typically affected by subjective interpretation, which can differ across 

analysts, and suffers from the low effectiveness of naked eye to average data represented 

graphically. In some studies, supporting measures were plotted with the full dataset, such 

as average profile, median, and selected percentiles to represent the distributions.  

The application of these measures as multiple univariate distributions, though, 

does not catch the interdependencies of delays at different stations and does not provide 

information about the development of delays along the train journey. The method proposed 

in this paper allows automatic identification of delay patterns, removing, thus, the 

influence of subjective interpretation of delay profiles. Furthermore, profile clustering 

allows the identification of similar delay profiles in the entire pool of records. Note that, 

even though the clustered delay profiles were plotted in this paper, the observation of the 

profiles did not play a role in the identification of similarities. This exact process is indeed 

performed by the clustering algorithm, and the results are then plotted for an easier 

comprehension of the development of delays in the individual clusters. The metrics 

provided as 15th, 50th, and 85th percentile would be sufficient to describe the distributions 

within individual clusters and might be used in replacement of the cluster plots. 

Compared to big-data techniques proposed in the literature for other purposes in 

analysis of transport operation (Goverde and Meng, 2011; Hansen et al., 2010; Kecman 

and Goverde, 2015, 2012), this method relies on readily available data, and does not need 

detailed knowledge on the infrastructure and occupation of individual blocking sections. 

It can, therefore, be scaled to different levels of detail or transferred to other modes of 

transportation where delay can be measured at fixed points on a given path, such as bus 

networks or air traffic. It is a very common practice of transport operators to provide live 

data on delays recorded on their own network, which can be recorded accessing public 

websites. Furthermore, the partition of operation into recurrent delay patterns allows 
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inference on individual clusters, which is not possible with association or succession rules 

(Cule et al., 2011; Wallander and Mäkitalo, 2012; Yabuki et al., 2015). These methods do 

not provide causality connection, and can only be used to compare scenarios, e.g. before 

and after delay mitigation countermeasures have been implemented. Results from 

clustering can be inferred with other mining techniques to identify further connections 

between specific system factors and delay membership so that the causes of specific delays 

can be identified, and the effects of corrective actions can be estimated beforehand. 

Alongside flexibility, the strength of this method resides in its simplicity. 

Unsupervised learning methods, such as clustering, aim at the identification of internal 

structures of the system. Supervised learning methods, in contrast, attempt to predict 

results, based on assumed connections in the input. For these reasons, neural networks 

(Chapuis, 2017; Malavasi and Ricci, 2001), Bayesian networks (Kecman et al., 2015), and 

supporting vector regression methods (Marković et al., 2015) require initial assumptions 

on the factors that have direct effect on the desired output, which can be cumbersome to 

identify, and could be hidden. The clustering method proposed here does not require initial 

assumptions, so any recurrent delay pattern can be identified. In particular, the k-means 

algorithm was selected, being the most common algorithm for partitional clustering. Even 

though several clustering methods and algorithms exist in the literature, none of them is 

clearly preferred from the others (Jain, 2010). It is important to stress the fact that the 

output of clustering algorithms only suggests hypotheses, and that the interpretation of 

results plays a more relevant role than seeking the best clustering principle. However, 

further research might improve the method. For example, a different choice of the 

clustering statistic between observations might be explored. In addition, the choice of the 

parameter k might be supported by advanced techniques and metrics. In this paper, k was 

set through statistical analysis of the associated clusters, but further studies might reveal 

more efficient methods integrated into the clustering algorithm itself. Lastly, the clustering 

results might depend on the punctuality threshold selected to filter out punctual trains, if 

applied. 

The relations found in inference from resulting clusters can, eventually, be 

considered and implemented in the mentioned supervised data mining methods. The use 

of other sources of information can be further investigated, e.g. the rolling stock equipment 

deployed, or information on delay causes collected by train dispatchers. The clustering 

algorithm itself cannot provide information on the causes of delays, but relevant 

relationships with external variables might be found through the inference on the clusters. 
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The implementation of information recorded by the dispatchers on primary and secondary 

delays could support the identification of delay propagation. However, previous studies in 

Europe highlighted the unreliability of such manually recorded data (Goverde and Meng, 

2011; Sørensen et al., 2017). These procedures are different for each infrastructure 

manager and should comply with different national regulations. This input should be 

analyzed in detail before being implemented in the inference on clusters. The timestamps 

might be integrated with data from other railway undertakings so that the realized 

headways could be investigated and included in the cluster inferences. The effects of delay 

propagation might be thus investigated, and the dispatching strategies possibly improved. 

Passenger counts or boarding/alighting timings could also reveal that specific localized 

delay increases are linked to passenger exchange and might suggest modifications in the 

scheduled dwelling times. Useful information from the railway undertakings might include 

differences between planned and realized train compositions or the use of energy saving 

strategies. Driving support systems are spreading among train operators to reduce energy 

consumption and thus the operating cost, especially for diesel-powered railways. The 

effects of such systematic patterns in the driving style are, in any event, expected to emerge 

in the clustering algorithm, especially with more detailed data in the positioning. Further 

development of this method might expand its application to other industrial processes or 

other transportation modes. The service timekeeping could be measured at designated 

check-points, to build standard delay profiles and delay change profiles. 

4.2.6 Conclusions 

In this paper, a new method is presented to analyze railway operations, based on 

big-data techniques. Previous studies highlighted the need for tools to analyze railway 

operation based on data from automatic data collection sources, and to automatically detect 

delay patterns (Schittenhelm and Richter, 2009). K-means clustering is here applied to 

train delay records from automatic train detection systems to identify systematic delays, 

rearranged in delay profiles and delay-change profiles. This method is automatic, 

unbiased, flexible, and simple. 

Both institutions and industry are showing great interest in big-data applications 

(D’agostino, 2016). The method described in this paper provides a managerial tool to 

identify recurrent delay patterns that affect the service reliability. A localized analysis with 

additional information supports the identification of the causes of individual patterns, so 

that specific countermeasures can be designed. For example, dispatching strategies might 

be modified when a structural conflict is detected, the boarding and alighting process might 
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be improved at stations were delay increases recurrently. If the causes of recurrent delays 

are identified in frequent conflicts, small modifications to the timetable slack might be a 

solution to reduce delay propagation. 

The effectiveness of this approach is demonstrated in an application on a Danish 

regional railway line. The application shows that it is possible to identify systematic delays 

at specific stations in a congested area and to identify different delay patterns. 

Furthermore, delay patterns can be conveniently associated with specific time periods of 

the day, showing time dependency, reasonably explained by the prevailing passenger flow 

direction. Specific delay patterns are demonstrated to be characteristic of individual train 

service IDs, which could depend on other service characteristics, such as structural 

conflicts with other trains in specific sections of the line, use of specific rolling stock 

equipment, or connections to other transport services. The implementation of other sources 

of information might improve the inference on the clusters, such as weather conditions, 

passenger counts, information from the dispatchers, or rolling stock characteristics. 

Further development of this method might improve the selection of the number 

of clusters, identify new clustering metrics between observations, or integrate additional 

sources of information to improve the inference on clusters. 
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The reliability of railway transport is one of the key factors to ensure its attractiveness.

This thesis investigates the phenomena related to delays in railways, from both theoretical 
and empirical perspectives. Firstly, the study evaluates a set of ex-ante measures to estimate 
the reliability of a timetable, divided into analytical and simulation-based measures. Secondly, 
an analytical delay propagation model is developed to assess the service reliability, combining 
the velocity of analytical methods and the accuracy of simulation-based methods. Finally, 
empirical studies of the realized operation on the Danish railway network are introduced to 
estimate the input parameters for the analytical delay propagation model. In addition, the 
analysis of historical data reveals recurrent delay patterns to focus the mitigation actions for 
improving the service reliability.
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