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Abstract 

The understanding of the mechanisms controlling deformation of ductile iron at the micro-

scale and their coupling to the manufacturing conditions is still far from complete. In this 

respect, recent synchrotron-based studies have demonstrated that the thermal contraction 

mismatch between the graphite particles and the matrix during solid-state cooling leads to a 

complex residual stress state in the microstructure. To investigate its impact on the room-

temperature tensile deformation, a computational-experimental analysis extendable to other 

similar composite materials is presented in this paper. First, a miniaturized specimen is 

loaded and imaged in-situ with X-ray tomography. Then, the microscale displacement is 

reconstructed using digital volume correlation (DVC) and used to prescribe the boundary 

conditions in a finite element model of the full microstructure between two cross-sections. 

The model predictions at both the macroscale – tensile force and lateral contraction – and 

the microscale – strain field – are compared to the corresponding experimental and DVC-

based data for several choices of the initial stress state, particles’ mechanical behavior and 

strength of the particles-matrix interface. It is proved that the micro-scale residual stress 
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and a low interface strength are the key to explain the early stages of the tensile 

deformation of ductile iron. Finally, it is shown that a simple unit cell model of the 

microstructure would lead to significantly different results, thus demonstrating the superior 

accuracy and robustness of the present approach. 

Graphical abstract 
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1 Introduction 

Modern ductile cast iron (DCI) is an advanced structural material heavily used in key 

industrial sectors like automotive and energy production, which, alone, accounts for as 

much as 25% of the castings produced worldwide (“50th Census of World Casting 

Production,” 2016). Due to its high technological importance, a number of studies have 

focused on the mechanisms controlling deformation and fracture at the microscale in the 

past decades. Nevertheless, as emphasized in a recent review paper (Hütter et al., 2015), a 

complete understanding of the behavior of DCI during both monotonic and cyclic loading 

has not been achieved yet. One of the main reasons is the challenge represented by the very 

complex material microstructure, which consists of graphite particles embedded in a steel 

matrix where multiple phases may coexist depending on chemistry and processing 

conditions. In this respect, recent synchrotron-based studies by the present authors have 

revealed, for the first time, that the thermal contraction mismatch between the particles and 

the matrix during solid-state cooling leads to localized residual elastic and plastic 

deformation in the matrix (Zhang et al., 2019, 2016). Remarkably, strong fluctuations of the 

residual elastic strain exist in proximity to the particles, which have been explained in terms 

of their highly inhomogeneous, anisotropic internal structure. Subsequent numerical 

simulations have suggested that the peak stress corresponding to this complex residual 

deformation can be as high as the material macroscopic yield strength (Andriollo et al., 

2018b) and the plastic flow of the matrix around the particles can affect the coefficient of 

thermal expansion at the macro-scale (Rodriguez et al., 2018). In light of these findings, a 

natural question then arises as to how and how much this micro-scale residual stress field 

forming during solid-state cooling can affect the mechanical response of DCI during room 

temperature loading.  

Traditionally, the impact of similar micro-mechanical phenomena in DCI has been studied 

with techniques developed for metal matrix composites (MMCs), due to the strong 

similarities between these two material classes (Grimvall, 1997). Concerning this, early 

attempts to estimate the mechanical properties as a function of the properties and geometry 

of the individual MMCs’ constituents relied on standard analytical methods for mean-field 
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homogenization. Such methods are often based on the well-known Eshelby’s elastic 

solution to the problem of an ellipsoidal inclusion embedded into an infinite medium 

(Eshelby, 1957). A recent account on the application of mean-field approaches to MMCs 

has emphasized that they represent, due to their simplicity, a fast and efficient tool for 

preliminary design of novel MMCs (Kursa et al., 2018). Nevertheless, when a full 

resolution of the local fields is needed to investigate localization, damage and failure 

mechanisms at the microstructural level, analytical mean-field approaches become 

inadequate. Numerical techniques which allow for the latter type of analyses are normally 

based on the concept of representative volume element (RVE), which is intuitively defined 

as a material volume whose effective behavior is representative of that of the material as a 

whole (Aboudi et al., 2012; Hill, 1963). Using the RVE as starting point, several numerical 

homogenization procedures have been proposed to correlate micro- to macro-scale 

properties, e.g. (Feyel and Chaboche, 2000; Kouznetsova et al., 2001; Matouš et al., 2017; 

Toro et al., 2016). The main limitation of methods based on the RVE lies in the definition 

of the appropriate size of the RVE, which has to be sufficiently large to guarantee statistical 

representativeness, yet small compared to the characteristic dimension of the macroscopic 

component. Normally, the size of the RVE is determined via an a posteriori analysis 

referred to as successive sample enlargement (Bargmann et al., 2018). However, this 

process, besides being time consuming, can fail to provide an outcome when the RVE 

concept does not hold, which can be the case if either the condition of separation of scale is 

not fulfilled, or the material microstructure is not statistically homogeneous (Ostoja-

Starzewski, 2006). This last aspect is particularly critical for DCI, as unexpected spatial 

variations in the graphite size, shape and distribution often occur as a result of local 

differences in the solidification conditions, associated with e.g. strong local chemical 

gradients and/or presence of impurities (Azeem et al., 2018; Muhmond and Fredriksson, 

2014). 

The non-trivial definition of a RVE in DCI – and, more in general, in all cast iron types – 

raises the problem of how to study the micro-mechanical behavior in the non-linear loading 

regime, during which local microstructural variations – e.g. defects like graphite particles 

deviating markedly from the expected shape – can play a major role. As a matter of fact, 
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unit cell models which circumvent this issue by considering an idealized representation of 

the microstructure are a common choice (Andriollo et al., 2015; Bonora et al., 2005; Collini 

and Nicoletto, 2005; Iannitti et al., 2017; Pina et al., 2015; Rabold and Kuna, 2005). Apart 

from these, procedures based on statistical approaches that avoid defining a RVE and work 

with smaller volume elements have been proposed (Metzger and Seifert, 2015). Attempts to 

define 2D RVEs have been made also (Fernandino et al., 2017; Pina et al., 2016; Zhang et 

al., 2018), even though the reduced model dimensionality might be limiting for materials 

whose microstructure is inherently three dimensional. A promising approach, initially 

proposed in a context more general than DCI, is to develop combined experimental-

computational procedures taking advantage of the recent progress in X-ray computed 

tomography and digital volume correlation (DVC) (Hild et al., 2016; Mostafavi et al., 

2016). The underlying idea is to perform a series of tomographic reconstructions of a given 

material volume during a mechanical test. By applying DVC algorithms, the mechanical 

displacement field can be reconstructed and used as boundary conditions in a numerical 

model. Furthermore, if the volume under consideration is sufficiently large to include the 

region where the external load is applied, the outcome of the model can be compared to a 

direct force measurement. Recently, (Buljac et al., 2018) applied this innovative approach 

to DCI, even though the authors neglected completely the composite nature of the material 

– together with all the effects associated with the interaction between the microstructural 

constituents, including the formation of residual stresses – by assimilating the graphite 

particles to voids. Still, it is the present authors’ opinion that this type of approach remains 

potentially very valuable, as it bypasses the need of defining a RVE without compromising 

the geometrical representation of the microstructure. 

Taking the approach just mentioned as source of inspiration, the present paper presents an 

experimental-computational analysis whose aim is threefold. First, to understand the impact 

of the manufacturing-induced micro-scale residual stress revealed in (Zhang et al., 2019, 

2016) on the tensile deformation of DCI. Second, to assess the sensitivity of the results to 

apparently critical but scarcely investigated factors like the mechanical behavior of the 

graphite particles and the strength of the particle-matrix interface. Third, to check whether 
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this approach allows a gain in accuracy compared to a much simpler periodic unit cell 

model that justifies the greater effort in terms of time and resources. 

The paper is organized as follows. In section 2, an overview of all the steps involved in the 

analysis is given. Section 3 describes the in-situ tensile test performed on a miniaturized 

DCI specimen and the DVC procedure employed to reconstruct the displacement field. 

Section 4 contains the detail of the finite element model used to simulate manufacturing 

and tensile loading of the specimen. Finally, section 5 presents the comparison between 

model predictions and experimental data at both the macro and micro-scale, as well as the 

comparison with the results obtained from a simple unit cell model. 

2 Analysis overview 

An overview of all the steps involved in the present experimental-computational analysis is 

given in figure 1. As the figure shows, the analysis starts with the extraction of a 

miniaturized tensile specimen from a large DCI component used in a wind turbine. The 

specimen is placed on a tensile stage and strained incrementally. At each increment, the 

specimen is imaged in-situ via X-ray computed tomography (CT), in order to monitor the 

evolution of its microstructure, and DVC is employed to reconstruct the microscopic 

displacement field associated with the mechanical deformation. Subsequently, a 3D finite 

element model of the volume of the specimen between two cross-sections is created based 

on the real microstructure. In a first step, the model is used to simulate the formation of 

residual stresses during the manufacturing process. After that, the straining history the 

specimen was subjected to is simulated by applying the microscopic displacement field 

determined via DVC as boundary conditions. The model predictions at both the macroscale 

– tensile force and lateral contraction – and the microscale – strain field – are then 

compared to the corresponding experimental and DVC-based data for several choices of the 

initial stress state, particles’ mechanical behavior and strength of the particles-matrix 

interface. Finally, a comparison is also made with the predictions of a simplified periodic 

unit cell model. 

In this context, the so-called preparatory steps enclosed by a box in figure 1 aim at 

providing the models – both the one with the fully resolved microstructure, henceforth 
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denoted as the “full” model, as well as the one based on the periodic unit cell – with 

information concerning the properties of the DCI constituents and the cooling rate 

experienced by the specimen during manufacturing. Due to the complexity of the 

procedures employed, the details of the preparatory steps are reported in separate 

publications and are not repeated here. In particular, the mechanical behavior of the 

graphite particles was investigated via nano-indentation in (Andriollo et al., 2018a) and the 

constitutive response of the matrix at various temperatures was determined by 

manufacturing and testing an alloy possessing equivalent metallurgical features in 

(Andriollo et al., 2018b). Simulation of the manufacturing process of the full-size DCI 

component, considering DCI as a homogeneous material, was addressed in (Sonne et al., 

2017). 

 

Figure 1 – Overview of the steps involved in the present experimental-computational analysis. 

3 Experimental 

3.1 In-situ tensile testing with X-ray tomography 

A dog bone shaped specimen with gauge length 10 mm and 1x2 mm rectangular cross-

section was extracted from a large wind turbine component made of DCI, see figure 2 (a). 
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Characterization of a small piece of material taken from the same location revealed near 

spherical graphite particles with mean size 30 μm and volume fraction ≈ 11.5 % embedded 

in a relatively homogeneous matrix of ferrite – mean grain size 30 μm – with ≈ 5 % pearlite 

(Zhang et al., 2016). The specimen was mounted on a displacement-controlled tensile stage 

equipped with a load cell inside a Zeiss Xradia 520 Versa CT system. Two separate CT 

scans of the specimen in the unloaded configuration were initially acquired, in order to 

evaluate the resolution of the DVC procedure – see section 3.2. To this end, polychromatic 

and conical X-ray beams with energies up to 150 keV were used, resulting in reconstructed 

density maps with voxel size of 1.359 μm. Subsequently, three displacement increments 

were applied in sequence and CT scans were acquired in between, in order to reconstruct 

the progressive deformation of the specimen microstructure. The displacement magnitude 

was chosen to produce a stress – defined as the ratio between tensile force and initial area 

of the cross-section – of about ½ of the macroscopic yield stress 𝜎𝜎𝑦𝑦 (0.2 % proof stress) 

during increment 1, of about 𝜎𝜎𝑦𝑦 during increment 2 and of about 1.5𝜎𝜎𝑦𝑦 during increment 3. 

The stress vs. strain response generated in this way is reported in figure 2 (b). 

  
(a) (b) 

Figure 2 – In-situ tensile testing of DCI. (a) Geometry of the tensile specimen and example of gray-level 
density map obtained via CT. The region delimited by the two cross-sections marked as “face 𝑧𝑧+” and “face 
𝑧𝑧−”, which is highlighted in green, corresponds to the volume V considered in the finite element model. (b) 
Macroscopic uniaxial stress and strain in the specimen at each increment.  
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3.2 Digital volume correlation 

The subset-based DVC algorithm available in the XVolumeCorrelation extension of the 

software Avizo® was employed to determine the microscopic displacement field over the 

volume of the specimen between the two cross-sections 250 µm apart marked as face 𝑧𝑧+ 

and face 𝑧𝑧− in figure 2 (a). This volume – denoted as volume V – is the region considered 

in the full finite element model described in section 4.1. As extensively discussed 

elsewhere, e.g. (Lava et al., 2009), in a subset-based method a matching between two 

speckle patterns is accomplished by considering a voxel and its neighborhood (usually 

called subset, or subvolume) in the undeformed image and searching the same subvolume 

in the deformed image. Accordingly, the region of the reconstructed CT density map 

corresponding to volume V was divided into a grid of cubic subvolumes. As the 

displacement vector is defined only at the center of each subvolume, an additional layer of 

subvolumes was added along the specimen straining direction – the z-axis in figure 2 (a) – 

and the entire grid was shifted by half the subvolume size to ensure that the centers of the 

subvolumes forming the first and last layer were lying precisely on the 𝑧𝑧+ and 𝑧𝑧− faces. 

3.2.1 Choice of the subvolume size 

At first, an analysis of the influence of the subvolume size was carried out, as it is well-

known that smaller subvolumes provide better spatial resolution, but at the price of a higher 

uncertainty on the calculated displacement. Accordingly, the DVC algorithm was run 

considering the two CT maps of the specimen in the unloaded configuration and four 

different subvolume sizes: 250 μm/2=125 μm, 250 μm/3=83.3 μm, 250 μm/4=62.5 μm and 

250 μm/5=50 μm. As no physical deformation is involved in this case, the standard 

deviation of the displacement field provides an estimate of the uncertainty associated with 

the DVC procedure (Morgeneyer et al., 2013). From figure 3, which reports the standard 

deviation of the displacement norm as a function of the subvolume size, it can be concluded 

that when the latter is increased from 50 to 125 μm the uncertainty decreases by as much as 

a factor of 7. On the other hand, it should be borne in mind that the characteristic size of the 

DCI microstructure is approximately 30 μm, i.e. the mean size of the graphite particles, 
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meaning that local fluctuations of the displacement field due to microstructural features can 

hardly be captured with subvolumes much larger than this value. 

To select the subvolume size that offers the best compromise, the impact of the 

displacement uncertainty on the DVC-based estimate of the macroscopic deformation of 

the volume V was analyzed. In this respect, it is noted that the macroscopic strain 

increment ∆�̅�𝜀𝑧𝑧𝑧𝑧 experienced by the volume V can be associated with the volumetric average 

of the corresponding microscopic quantity ∆𝜀𝜀𝑧𝑧𝑧𝑧: 

 ∆�̅�𝜀𝑧𝑧𝑧𝑧 ≈
1
V
�∆𝜀𝜀𝑧𝑧𝑧𝑧
𝑉𝑉

𝑑𝑑𝑑𝑑 (1) 

Due to the small entity of the deformation, the infinitesimal definition of strain can be 

employed. Furthermore, it can be assumed that the lateral surfaces of V, which are part of 

the free surface of the specimen, are normal to the z-axis pointwise. Then, it is easily shown 

that 

 ∆�̅�𝜀𝑧𝑧𝑧𝑧 ≈
1
𝐿𝐿𝑧𝑧
�𝑢𝑢𝑧𝑧

𝑎𝑎𝑎𝑎𝑎𝑎,𝑧𝑧+ − 𝑢𝑢𝑧𝑧
𝑎𝑎𝑎𝑎𝑎𝑎,𝑧𝑧−� (2) 

where 𝐿𝐿𝑧𝑧 is the length of V along the z-axis and 𝑢𝑢𝑧𝑧
𝑎𝑎𝑎𝑎𝑎𝑎,𝑧𝑧+ – resp. 𝑢𝑢𝑧𝑧

𝑎𝑎𝑎𝑎𝑎𝑎,𝑧𝑧− – is the average z-

displacement over the 𝑧𝑧+  face – resp. over the 𝑧𝑧−  face – during the strain increment 

considered. As the DVC displacement is known at the center of the subvolumes, it follows 

that 

 ∆�̅�𝜀𝑧𝑧𝑧𝑧 ≈
1
𝐿𝐿𝑧𝑧
�

1
𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦

 � �𝑢𝑢𝑧𝑧,𝑛𝑛
𝑧𝑧+ − 𝑢𝑢𝑧𝑧,𝑛𝑛

𝑧𝑧−�

𝑛𝑛𝑥𝑥×𝑛𝑛𝑦𝑦

𝑛𝑛=1

� (3) 

where 𝑛𝑛𝑥𝑥 and 𝑛𝑛𝑦𝑦 denote the number of subvolumes along the x- and y-axis. Equation (3) 

suggests that when DVC is applied to the two CT maps of the specimen in the unloaded 

configuration, the uncertainty 𝛿𝛿�̅�𝜀𝑧𝑧𝑧𝑧 on the estimate of the macroscopic deformation of V can 

be assessed as 

 𝛿𝛿�̅�𝜀𝑧𝑧𝑧𝑧 ≈
1
𝐿𝐿𝑧𝑧

StDev�𝑢𝑢𝑧𝑧,𝑛𝑛
𝑧𝑧+ − 𝑢𝑢𝑧𝑧,𝑛𝑛

𝑧𝑧−� (4) 

The dependence on the subvolume size of the term multiplying 𝐿𝐿𝑧𝑧 on the right-hand-side of 

the last equation is plotted in figure 3, where a trend similar to that of the standard deviation 

of the displacement norm is observed. Table 1 reports the ratio between the magnitude ∆𝜀𝜀 
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of the uniaxial strain increments applied during the tensile test and 𝛿𝛿�̅�𝜀𝑧𝑧𝑧𝑧 , for different 

choices of the subvolume size. It can be observed that while this quantity is always much 

greater than 1 for the third strain increment, due to the significant deformation undergone 

by the specimen, values close to unity are obtained for the other two increments. In 

particular, values below one are seen for the first increment relative to all subvolume sizes 

except 125 μm, which, on the other hand, is approx. 4 times larger than the characteristic 

size of the microstructure. According to equation (4), the situation could be improved by 

increasing 𝐿𝐿𝑧𝑧, in order to reduce 𝛿𝛿�̅�𝜀𝑧𝑧𝑧𝑧. However, the selected value of 250 μm represents 

the limit beyond which the finite element model of the volume V – see section 4 – would 

become computationally intractable with the available hardware. Therefore, it was decided 

to merge the first and second increment, in order to increase ∆𝜀𝜀 and, consequently, the ratio 

∆𝜀𝜀/𝛿𝛿𝜀𝜀�𝑧𝑧𝑧𝑧. The last row of table 1 shows that, with this operation, the values of ∆𝜀𝜀/𝛿𝛿𝜀𝜀�𝑧𝑧𝑧𝑧 for the 

two smallest subvolumes remain close to unity, but a more reassuring value of 2.64 is 

obtained for the subvolume with size 83.3 μm. This means that, if the increments 1 and 2 

are combined, this subvolume size can be considered a compromise: it delivers sufficient 

accuracy, at the same time allowing a gain of 33 % in spatial resolution compared to the 

125 μm option. For this reason, it was eventually selected for the present investigation. 

 

 
Figure 3 – Effect of the subvolume size on the uncertainty of the DVC procedure, expressed as the standard 
deviation of the norm of the displacement |𝒖𝒖| and of the difference 𝑢𝑢𝑧𝑧𝑧𝑧+ − 𝑢𝑢𝑧𝑧𝑧𝑧− between the z-component of 
the displacement on the 𝑧𝑧+ and 𝑧𝑧− faces.  
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Table 1: Ratio between the magnitude ∆𝜀𝜀 of the uniaxial strain increments imposed to the specimen and the 
uncertainty 𝛿𝛿𝜀𝜀�𝑧𝑧𝑧𝑧 on the DVC-based macroscopic strain of volume V estimated via equation (4). 

 DVC subvolume 
size 125.0 μm 

DVC subvolume 
size 83.3 μm 

DVC subvolume 
size 62.5 μm 

DVC subvolume 
size 50.0 μm 

Increment 1 2.26 0.67 0.30 0.21 
Increment 2 6.67 1.97 0.89 0.63 
Increment 3 98.77 29.21 13.25 9.37 

Combined 1&2 8.93 2.64 1.20 0.85 
 

3.2.2 Analysis of the microscopic displacement field 

The displacement field 𝒖𝒖 over the entire volume V was fitted with a linear function 𝒖𝒖𝑳𝑳 of 

the type 

 𝒖𝒖𝑳𝑳 = 𝒖𝒖𝑪𝑪 + 𝐀𝐀 ⋅ 𝒙𝒙 (5) 

where 𝒖𝒖𝑪𝑪 and 𝒙𝒙 are the displacement of and the distance from the center of V, respectively, 

and 𝐀𝐀 is a 3x3 matrix. The part of the displacement responsible for inducing strain in the 

material 𝒖𝒖𝑺𝑺 was estimated as 

 𝒖𝒖𝑺𝑺 = 𝒖𝒖 − 𝒖𝒖𝑪𝑪 −
1
2

(𝐀𝐀 − 𝐀𝐀𝐓𝐓) ⋅ 𝒙𝒙 (6) 

with (⋅)𝐓𝐓 denoting the transposition operator. Figure 4 (a) and (b) show the z-component of 

𝒖𝒖𝑺𝑺 over both the 𝑧𝑧− and the 𝑧𝑧+ face for the combined increment 1&2. Some odd values can 

be noted close to the free surface, which could be either a consequence of localized surface-

related phenomena occurring upon load application or artifacts due to poor correlation. 

Remarkably, the difference between the average value of the z-component of 𝒖𝒖𝑺𝑺 in figure 4 

(a) and that in figure 4 (b) is 0.79 μm, which, when divided by thickness of volume V, 

provides a strain estimate of 3.16x10-3. This value differs from the macroscopic strain 

applied to the specimen by only 1.3 %, see figure 2 (b), thus supporting the conclusion of 

the previous section that subvolumes with size 83.3 μm provide a sufficient level of 

accuracy.  

For the increment 3, the patterns of the z-component of 𝒖𝒖𝑺𝑺 over the 𝑧𝑧− and the 𝑧𝑧+ face (see 

figure 4 (c) and (d)) suggest that a certain amount of spurious bending about the x-axis took 

place. In order to check the extent of this phenomenon, both patterns were fitted with a 
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plane and the inclination of the latter with respect to the x-y plane was calculated. 

Multiplication of the difference in the planes’ inclination by half the size of the specimen 

cross-section along the y-axis yielded a value of 0.88 μm. This is one order of magnitude 

smaller than the difference between the average z-displacement of the 𝑧𝑧− face and that of 

the 𝑧𝑧+ face, meaning that the contribution of bending to the deformation of volume V is 

quite small, even though not negligible. Concerning this, it is worth emphasizing that the 

presence of bending it not expected to affect the outcome of the present study. Indeed, one 

of the major advantages of the present approach is that it is insensitive to spurious 

deformation modes, as DVC allows using the real microscopic displacement experienced 

by the volume V as boundary conditions in the full model. 
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(a) (b) 

  
(c) (d) 

Figure 4 – Contours of the z-component of the displacement reconstructed via DVC using a subvolume size 
of 83.3 μm, superimposed to the real microstructure. (a-b) Combined increment 1&2. (c-d) Increment 3. Units 
are μm. The rigid part of the displacement has been removed from all the contours, see eq. (6). 
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4 Numerical modelling 

This section presents the details of the full model, with special focus on the techniques used 

to account for variable strength of the particles-matrix interface and different types of 

mechanical behavior of the particles. The details of the periodic unit cell model based on a 

simple cubic cell can be found in (Andriollo et al., 2018c). It is worth remarking that these 

two models differ in terms of the geometry and the way the boundary conditions are 

applied, but all the other features like e.g. constitutive material behaviors, particles-matrix 

interface type, etc. are the same. 

4.1 Geometry: Mesh generation 

The region of the CT density map corresponding to the volume V of the specimen in the 

unloaded configuration was used as starting point. In order to generate a mesh conforming 

to the DCI microstructure, the meshing toolbox of the software Avizo® was employed. To 

begin with, a median filter was applied to remove the noise, followed by segmentation 

based on thresholding to identify the DCI matrix. Subsequently, the graphite was separated 

from the air surrounding the specimen via a closing operation, as other segmentation 

techniques proved ineffective due to the poor contrast between these two phases. During 

this step, graphite particles with equivalent diameter less than 10 μm were discarded and 

considered as part of the matrix, as these are likely either inclusions or porosities (Lacaze et 

al., 1998; Mukherjee et al., 2017; Pedersen and Tiedje, 2008). It is worth remarking that 

this choice is not expected to affect the behavior of the material significantly, at least within 

the small deformation range investigated here, as the volume fraction of the former 

particles is very low. Finally, on the basis of the segmented data, which is visualized in 

figure 5, two 3D conforming meshes with ≈ 2x106 and ≈ 5x106 tetrahedrons were created. 

A visual comparison between the two different mesh densities is provided in the close-ups 

of figure 5.  

Numerical simulations based on the two meshes provided results in terms of macroscopic 

force and deformation differing by less than 1%, indicating a sufficient level of mesh 

independence for the present purposes. Nevertheless, in a few cases convergence issues 



17 

 

arose with the coarser mesh in presence of cohesive interface behavior – see section 4.2 –, 

likely due to an insufficiently smooth representation of the particles-matrix interfaces. For 

this reason, it was eventually decided to work with the finer mesh only, which was used to 

generate all the results presented in the remainder of this paper. 

 

Figure 5 – Geometry of the full model representing the region highlighted in green between face 𝑧𝑧+ and 𝑧𝑧− in 
figure 2 (a). The close-ups show the mesh densities correspoding to either ≈2x106 or ≈5x106 tetrahedrons. 

 

4.2 Mechanical behavior of the matrix-particles interface 

Direct measurements of the strength of the interface between the graphite particles and the 

matrix of DCI are not available in the literature. In general, there seems to be consensus 

among most of the models developed in the past on assuming the interface strength to be 

negligible (Andriollo et al., 2016a). This assumption is usually justified on the basis of 

microscopy observations of early debonding of particles sitting on the surface of tensile test 

specimens (Dong et al., 1997). On the other hand, as correctly pointed out by (Liu et al., 

2002), the stress state around particles located in the bulk is likely different from that 

around particles sitting on the surface, therefore concluding that debonding occurs very 

early for all particles during tensile testing might be erroneous. 

≈ 2x106 tetrahedrons

≈ 5x106 tetrahedrons
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In the present investigation, in order to avoid assuming arbitrary values of the interface 

strength, two extreme cases were considered: an interface with infinitely high strength and 

an interface with zero strength. For simplicity, these two will be referred to as “strong” and 

“weak” interfaces in the remainder of this work. Modelling the strong interface type in a 

finite element context is straightforward, as it is sufficient to make sure that the matrix and 

the particles share the same nodes at the boundary. Conversely, several possibilities exist 

for handling the weak interface. Here, the choice was the surface-based cohesive 

formulation available in ABAQUS (Dassault Systèmes Simulia Corp., 2017), which was 

the finite element software used in the present analyses. This formulation, which allows the 

specification of generalized traction-separation behavior between pairs of surfaces, was 

preferred over a standard contact formulation, as the latter would lead to an indetermination 

in the motion of the particles once they detach completely from the matrix. As only a 

continuously connected mesh could be generated in Avizo, a Matlab code was used to 

duplicate the nodes along the matrix-particle interfaces. While performing this operation, it 

was decided to leave particles formed by less than 50 elements – whose equivalent 

diameters lay in the range 10 to 20 μm – connected to the matrix. Indeed, it was realized 

that the discretization of the interface of these particles was not smooth enough to guarantee 

convergence. Consequently, all weak interface simulations presented in this work were run 

considering – in practice – a strong interface between the matrix and those particles 

consisting of less than 50 elements. As figure 6 (a) shows, these represent 28 % of the total 

1544 particles discretized in the model, but account for only 1.7 % of the total graphite 

volume. Therefore, this choice is not expected to affect the results significantly within the 

small range of deformation investigated. Concerning the type of traction-separation 

behavior, a linear elastic law with normal stiffness 𝑘𝑘𝑛𝑛𝑛𝑛 and tangential stiffness 𝑘𝑘𝑛𝑛𝑛𝑛/2 was 

chosen. To ensure a practical fulfillment of the zero-strength interface condition, 𝑘𝑘𝑛𝑛𝑛𝑛 was 

set to 10 MPa/µm, which is a value sufficiently small to produce negligible effects on the 

macroscopic material response, see figure 6 (b). It is remarked that the normal stiffness 

quantified by 𝑘𝑘𝑛𝑛𝑛𝑛  was set to apply only in presence of tension normal to the interface, 

whereas in presence of compression a hard contact behavior was enforced. 
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(a) (b) 

Figure 6 – Modeling the weak interface between the particles and the matrix. (a) Cumulative sum of the 
number and volume of the particles as a function of the number of elements 𝑛𝑛𝑒𝑒

𝑝𝑝 inside a particle. The vertical 
dashed line indicate the threshold below which the cohesive formulation was not applied. (b) Tensile stress 
predicted by the finite element model at 3.87 % uniaxial strain for different values of the cohesive elastic 
stiffness 𝑘𝑘𝑛𝑛𝑛𝑛, normalized by the value corresponding to a strong interface. 

4.3 Mechanical behavior of the matrix 

To the authors’ best knowledge, there is unanimous consensus in the DCI literature that the 

overall behavior of the matrix between the graphite particles can be described by standard 

isotropic constitutive theories, at least in those cases where the matrix is ferritic. Given the 

very low amount of pearlite and the random texture of the grains in the present DCI (Zhang 

et al., 2016), this was also the assumption made in the present work. More specifically, 

following (Andriollo et al., 2018b), it was assumed that the constitutive behavior of the 

matrix can be described by the elastic-visco-plastic model proposed by (Peric, 1993). The 

basic equations of the model are: 

- Additive strain decomposition 
 𝛆𝛆𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛆𝛆𝑒𝑒𝑒𝑒 + 𝛆𝛆𝑎𝑎𝑝𝑝 + 𝛆𝛆𝑡𝑡ℎ (7) 

where 𝛆𝛆𝑡𝑡𝑡𝑡𝑡𝑡, 𝛆𝛆𝑒𝑒𝑒𝑒, 𝛆𝛆𝑎𝑎𝑝𝑝, 𝛆𝛆𝑡𝑡ℎ denote the infinitesimal total, elastic, visco-plastic and thermal 

strain, respectively. 

- Linear elastic law 
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 𝛔𝛔 = ℂ𝑒𝑒𝑒𝑒 ∶ 𝛆𝛆𝑒𝑒𝑒𝑒 (8) 

where 𝛔𝛔 is the Cauchy stress and ℂ𝑒𝑒𝑒𝑒 is the 4th order isotropic elastic stiffness tensor. 

- Von Mises-type yield function 

 Φ = 𝜎𝜎𝑒𝑒(𝛔𝛔)− 𝜎𝜎𝑡𝑡ℎ�𝜀𝜀𝑒𝑒𝑒𝑒
𝑎𝑎𝑝𝑝� (9) 

where 𝜎𝜎𝑒𝑒  is the von Mises stress, 𝜎𝜎𝑡𝑡ℎ  is the so-called stress threshold and 𝜀𝜀𝑒𝑒𝑒𝑒
𝑎𝑎𝑝𝑝  is the 

equivalent visco-plastic strain, which, for this particular model, can be defined via the 

evolution law 𝜀𝜀�̇�𝑒𝑒𝑒
𝑎𝑎𝑝𝑝 = �̇�𝜆. 

- Associative flow rule: 

 �̇�𝛆𝑎𝑎𝑝𝑝 = 𝜕𝜕Φ
𝜕𝜕𝛔𝛔
�̇�𝜆,       �̇�𝜆 = �

1
𝜉𝜉
�� 𝜎𝜎𝑒𝑒
𝜎𝜎𝑡𝑡ℎ
�
1/𝑚𝑚

− 1�            if  Φ(𝛔𝛔,𝜎𝜎𝑡𝑡ℎ) > 0

0                                        if  Φ(𝛔𝛔,𝜎𝜎𝑡𝑡ℎ) ≤ 0
 (10) 

where 𝑚𝑚  and 𝜉𝜉  are the strain-rate sensitivity and the viscosity-related parameter, 

respectively. 

To complete the model, the Voce-type strain hardening law 

 𝜎𝜎𝑡𝑡ℎ�𝜀𝜀𝑒𝑒𝑒𝑒
𝑎𝑎𝑝𝑝� = 𝑅𝑅0 + (𝑅𝑅∞ − 𝑅𝑅0) × (1 − exp(−𝜀𝜀𝑒𝑒𝑒𝑒

𝑎𝑎𝑝𝑝/𝜀𝜀∗  )) (11) 

was selected, where 𝑅𝑅0, 𝑅𝑅∞ and 𝜀𝜀∗ are material parameters.  

The main reason for choosing Peric’s model is its behavior in the limit 𝜎𝜎𝑡𝑡ℎ → 0 and 𝜉𝜉 → 0. 

Indeed, in the first case the model reduces to the well-known Norton-Hoff model, which is 

used to describe power-law creep at high temperature. In the second case, the model instead 

reduces to the standard rate-independent J2-flow theory of plasticity, which is normally 

adopted to describe the behavior of metals at room temperature. In such a condition, 𝜎𝜎𝑡𝑡ℎ 

defines the yield stress evolution, with 𝑅𝑅0 and 𝑅𝑅∞ representing the initial yield stress and 

the ultimate tensile strength respectively. As a consequence, Peric’s model is well suited for 

the present investigation, where applicability during both the cooling stage of the 

manufacturing process and the room temperature tensile loading is required. 

Peric’s model was implemented as a UMAT subroutine in ABAQUS, following the 

implicit discretization scheme and integration algorithm proposed in (de Souza Neto et al., 

2008). Values of the model parameters were taken from (Andriollo et al., 2018c), where, as 

already mentioned in section 2, a material equivalent to the DCI matrix was manufactured 
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and tested at various temperatures. Concerning this, an indication of the reliability of the 

experimental data of (Andriollo et al., 2018b) can be obtained by comparing it to the 

findings of (Kuna and Sun, 1996). Indeed, the latter authors followed an almost analogous 

strategy to obtain a room temperature tensile curve for the matrix of the same grade of DCI 

used in the present investigation. The only difference is that a rolling operation was 

additionally performed to adjust the grain size of the equivalent material to that of the DCI 

matrix, while in (Andriollo et al., 2018c) expressions available in the literature were used to 

compensate for the effect of this parameter. Remarkably, figure 7 indicates that the two sets 

of tensile data agree fairly well. It is worth pointing out that a tensile curve for the matrix of 

this grade of DCI was also provided by (Zhang et al., 1999). Nevertheless, as figure 7 

shows, the corresponding stress lies constantly 50-80 MPa below that reported by the two 

previous groups of researchers. As no information is given in (Zhang et al., 1999) 

concerning how the tensile data was obtained, it is not possible to analyze the reasons for 

this deviation. 

 

Figure 7 – Room-temperature tensile data available in the literature for the matrix of the DCI grade 
considered in the present investigation. 

4.4 Mechanical behavior of the particles 

Four different possibilities to model the graphite particles were investigated in the present 

work. In a first step, the particles were assimilated to voids. From a practical point of view, 

this was achieved by modelling them as elastic bodies with Young’s modulus equal to 1 
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MPa. In a second step, similarly to what done in most of the previous studies of DCI, the 

particles were assumed to deform according to an isotropic, linear thermo-elastic law. 

Young's modulus and Poisson's ratio were set to 15 GPa and 0.3, respectively, as these 

values are consistent with the macroscopic elastic behavior of DCI – according to unit cell 

models, see the discussion in (Andriollo and Hattel, 2016) – and are also in agreement with 

the average elastic response of the particles measured via nano-indentation (Andriollo et al., 

2018a). The thermal expansion coefficient of isotropic fine-grain graphite IGI-110 was 

assumed to apply (Tsang et al., 2005). In a third step, the particles were still modelled as 

homogeneous and isotropic, but yielding was allowed according to the standard J2-flow 

theory of plasticity. A constant yield stress of 25 MPa was chosen, which is typical of bulk 

isotropic graphite (Bonora and Ruggiero, 2005). Finally, in a fourth step the particles were 

assumed to deform elastically, but their highly anisotropic, inhomogeneous internal 

structure was modelled in an explicit way. The reasons for considering this option in spite 

of its high computational cost and the details of the implementation are given in the two 

following sub-sections. 

4.4.1 Link between structure and properties 

Thorough electron microscopy investigations (Ghassemali et al., 2019; Miao et al., 1994, 

1990; Monchoux et al., 2001; Theuwissen et al., 2016, 2014, 2012) have clarified that each 

graphite particle consists of conical sectors radiating from the particle’s center to the outer 

periphery. The sectors are in turn composed of graphite platelets oriented perpendicularly 

to the radial direction, with each platelet consisting of a stack of graphene layers. Some 

studies have indicated that the conical sectors do not reach the particle’s surface: indeed, a 

thin superficial layer formed by smaller and highly misoriented graphite crystals exists 

(Monchoux et al., 2001). A qualitative visual confirmation of the subdivision into conical 

sectors and superficial layer of one particle belonging to the present DCI is provided in 

figure 8 (a). On the same figure, the expected further subdivision of one sector into graphite 

platelets is indicated. 

The anisotropic nature of the platelets – which stems from the anisotropy of the graphene 

layers – combined with their non-uniform arrangement, implies that the properties of each 
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particle are both spatial and orientation dependent. A clear indication of this has recently 

been obtained via nano-indentation by showing that the resistance against penetration 

correlates well with the expected variation of the platelets’ orientation within the particle 

(Andriollo et al., 2018a). Furthermore, as mentioned in the introduction, the abrupt change 

in the platelets’ orientation at the boundaries of the conical sectors is believed to be the 

cause of the large perturbations of the residual elastic field detected in proximity to the 

particles (Andriollo et al., 2018b; Zhang et al., 2019). These findings suggest that the 

internal structure of the particles might have an influence on the DCI behavior during 

loading, either directly – by exhibiting different stiffness and strength according to the load 

type and direction – or indirectly – by generating residual stress concentrations in the 

matrix leading to e.g. its premature yielding.  

4.4.2 Implementation of an anisotropic thermo-elastic model  

In this work the particles’ internal structure was taken into account following the approach 

introduced in (Andriollo et al., 2016a, 2016b), which allowed reproducing the complex 

local residual stress field existing around the single particle considered in (Andriollo et al., 

2018b). As the real structure is not accessible with non-destructive methods, the basic idea 

is to subdivide the volume of a particle into a realistic number of conical sectors according 

to the idealized geometry of figure 8 (b). Subsequently, the particle is meshed and 

anisotropic properties are assigned to each element depending on the orientation of the 

sector it belongs to. This procedure, however, had to be slightly modified in the present 

case as a sector-conforming mesh could not be created for each of the 1544 particles 

contained in the model. Therefore, the original mesh generated by Avizo without 

considering any internal subdivisions of the particles was retained. Subsequently, the 

idealized geometry of figure 8 (b) was superimposed to each particle, with the centroid of 

the former coinciding with the center of mass of the latter. Finally, each particle element 

was assigned to one of the 80 sectors of the idealized geometry on the basis of its position. 

As an example, figure 8 (c) shows in different colors the elements assigned to the 10 

sectors associated with positive values of the local coordinates [r, s, t] of figure 8 (b). 
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A similar strategy was also used to identify the elements forming the superficial layer. In 

this case, an element was classified as belonging to the former if its centroid was located at 

a distance from the matrix less than 5% of the equivalent particle radius. Moreover, all 

elements having one or more faces on the particle boundary were also assigned to the 

surface layer, in order to avoid particles made of a few elements only to remain without 

surface layer. The ratio between the volume occupied by all the elements assigned to the 

surface layer and the total volume of the particles turned out to be equivalent to that of a 

single spherical particle having a surface layer with thickness 10.1 % of its radius, which is 

a value very close to those reported in the literature for real particles (Monchoux et al., 

2001).  

Following (Andriollo et al., 2016b), the mechanical behavior of both conical sectors and 

superficial layer was assumed to be linear thermo-elastic. More specifically, each conical 

sector was assumed to have the elastic symmetry characteristic of rhombohedral graphite, 

with the plane of isotropy oriented perpendicularly to the radial axis passing through the 

sector centroid. To account for the decrease in stiffness due to the presence of defects such 

as twins and bending planes within the platelets, the elastic moduli were assumed to be 

those valid for a perfect stack of graphene layers, but multiplied by a factor 0.15. As 

demonstrated in (Andriollo et al., 2018b) and supported by the findings of (Qin et al., 

2016), this choice allows for a precise prediction of the local residual stresses in the 

neighboring matrix. The superficial layer of the particles was assumed to be isotropic 

instead, with Young’s modulus and Poisson’s ratio equal to 10 GPa and 0.2 respectively, 

for the reasons discussed in (Andriollo et al., 2016b). No temperature dependence was 

taken into account, as this quantity seems to affect the elastic properties of graphite only to 

a limited extent within the temperature range considered (Faris et al., 1952). Concerning the 

thermal contraction, the values of graphene were employed for the conical sectors, whereas 

the values of the isotropic fine-grain graphite IGI-110 were used for the superficial layer. 

Both sets of data were taken from (Tsang et al., 2005). 
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Figure 8 – Modeling the anisotropic internal structure of the particles. (a) Scanning electron microscopy 
image of a particle extracted from the DCI used in this study, showing the division into conical sectors and 
the presence of the surface layer. The expected orientation of the graphite platelets is also indicated. (b) 
Idealized 3D geometrical model of the division of a particle into sectors. (c) Elements forming a particle 
colored according to the different sectors of the geometrical model in (b) they belong to. 

4.5 Boundary conditions 

4.5.1 Formation of micro-scale residual stresses 

The formation of micro-scale residual stresses during manufacturing was simulated by 

prescribing a uniform temperature variation to the model according to the cooling curve 

reported in (Andriollo et al., 2018b), which relates to the precise location in the large DCI 

component from which the tensile specimen used in the present investigation was extracted. 

In contrast to what was done in (Andriollo et al., 2018c), cooling was started from a 
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temperature just below the end of the eutectoid reaction, corresponding to 792 °C. Indeed, 

phenomena occurring above this point have a minor impact on the final residual stress state 

(Andriollo et al., 2018b) and, in addition, the increase in dislocation density produced 

during the eutectoid reaction does not affect the matrix yield stress at room temperature 

significantly (Zhang et al., 2019). During cooling, as no information is available for the 

displacement of the microstructure, a zero surface traction condition was applied to all 

model boundaries, i.e. the  𝑧𝑧+, 𝑧𝑧− and lateral faces. Admittedly, this might be a source of 

error, even though it is consistent with the fact that once the specimen is extracted from the 

DCI component any force acting on its lateral faces is released. 

4.5.2 Tensile testing 

To simulate the tensile test, the microscopic displacement calculated via DVC was 

prescribed on the 𝑧𝑧+ and 𝑧𝑧− faces of the full model. By contrast, the zero surface traction 

condition was maintained on the lateral faces, as they are part of the free surface of the 

specimen. The displacement associated with the combined increment 1&2 was prescribed 

first, followed by that associated with increment 3. In this respect, it is noted that the nodal 

density over the 𝑧𝑧+ and 𝑧𝑧− faces is much larger than the density of points at which the 

displacement is known, which correspond to the centers of the DVC subvolumes. 

Consequently, the displacement of each finite element node was interpolated on the basis of 

that of the four closest subvolumes by means of the standard shape functions of 2D 

quadrilateral elements. 

A special comment has to be made concerning which displacement components (DCs) were 

prescribed. Indeed, as all the DCs are known from DVC, the displacement could be 

enforced along all directions. On the other hand, as the DCs are available only after 

relatively large increments, during which the material behavior can change substantially, 

the question of how the DCs are to be set to vary within each increment arises. If a linear 

variation of each DC is assumed, meaning that the DCs are related to each other by linear 

functions, spurious stresses may arise which alter significantly the shape of the uniaxial 

stress vs. strain curve. This effect is demonstrated in figure 9 (a), where the stress vs. strain 

response recorded during straining of an infinitesimal matrix element is shown assuming 
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that either 1) the element can contract freely in the lateral direction, or that 2) the lateral 

contraction is set to vary linearly between the initial and final values recorded in case 1). It 

can be observed that, despite the final stress values coincide, the apparent stiffness and 

yield stress in case 2) are ≈ 9 % and 20 % lower than in case 1). This indicates that if all 

DCs were prescribed in the present model, the predicted tensile stress during the elasto-

plastic transition would probably be biased by the spurious stresses arising from the fact 

that, in the real tensile test, the lateral contraction of the volume V does not vary linearly 

with its extension along the z-axis. This speculation is supported by the close similarities 

between the curves of figure 9 (a) and those of figure 9 (b), which represent the 

macroscopic response of volume V predicted when either all or only the z-component of 

the displacement is prescribed. As a prediction of the tensile stress as accurate as possible 

over the entire elastic-plastic transition is sought in this work, the choice was then to 

prescribe only the z-component of the displacement, leaving the material free to contract 

laterally according to the constitutive model.  

  
(a) (b) 

Figure 9 – Bias in the prediction of the apparent elastic stiffness and yield stress due to the linear 
approximation used to prescribe the lateral contraction. (a) Stress vs. strain response recorded during straining 
of an infinitesimal matrix element assuming that either 1) the element can contract freely in the lateral 
direction, or that 2) the lateral contraction is prescribed to vary linearly between the initial and final values 
recorded in case 1). (b) Stress vs. strain response predicted by the full model during increment 1&2 when 
either all or only the z-component of the displacement is prescribed. The data refers to a simulation run 
considering a weak interface, isotropic elastic behavior of the particles and neglecting the residual stresses. 
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5 Results and discussion 

In this section, the outcome of the full model is compared first to the macro-scale data 

recorded during the tensile test, then to the micro-scale strain reconstructed with DVC and 

finally to the macro-scale predictions of the cubic unit cell model. For each type of 

comparison, eleven numerical simulations are considered. Eight correspond to selecting 

different options for the initial stress state (with / without micro-scale residual stresses 

(RS)), the interface strength (strong / weak) and the elastic behavior of the particles 

(isotropic, if the internal structure is neglected / anisotropic, if it is accounted for). Two are 

meant to show the effect of isotropic plasticity in the graphite particles, assuming a weak 

interface. Finally, one relates to the special case in which the particles are considered as 

voids, for which the concepts of interface strength and micro-scale residual stress become 

inapplicable. Each simulation was run in parallel on 20 cores of a Linux 6.4 cluster based 

on Intel Xeon Processor X5550, and took between 10 and 20 hours depending on whether 

the manufacturing process was simulated or not. 

 

5.1 Full model vs. experiments: Macroscale comparison 

5.1.1 Yielding behavior 

As already mentioned in section 3.1, the end of the second strain increment applied during 

the in-situ test corresponds, approximately, to the macroscopic yield point of the material. 

The evolution of the macroscopic tensile stress as predicted by the model up to this level of 

deformation is depicted in figure 10. Values for 5 out of 11 simulations are considered, 

corresponding to increasing levels of complexity of the model. It can be seen that the 

spread in the model predictions, associated with different choices of the simulation 

parameters, tend to widen as the deformation progresses. In this respect, some of the 

simulations capture quite well the stress measured at the end of the increment, while others 

overestimate this quantity significantly. To provide additional insight into this aspect, the 

relative error is reported in figure 11 for all the 11 simulations. The error on the average 

lateral contraction of volume V along the y-axis – see figure 5 – is shown as well, as 
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significant deviations from the experimental value of 0.094 % – determined via DVC – 

might exist due to the fact that only the z-component of the displacement was prescribed 

over the 𝑧𝑧+ and 𝑧𝑧− faces of the model. The figure shows that both types of error are always 

below 25 % and, in particular, are as low as 5 % when the particles are modelled as elastic 

anisotropic bodies, a weak interface is assumed to exist and the residual stresses are 

accounted for. It is worth emphasizing that errors of a few percent can be justified based on 

the uncertainty affecting the DVC procedure as well as the constitutive behavior of the 

matrix and the graphite particles – see the discussion in sections 3.2, 4.3 and 4.4. 

At this point, two observations can be made. First, from a more general perspective, the 

very good agreement between model predictions and measurements constitutes the proof 

that the present experimental-computational approach is viable. Second, the simulation that 

provides the smallest errors assumes that rupture of the interface takes place before 

macroscopic yielding, as suggested in the studies discussed in section 4.2. Hence, the 

present results support this hypothesis, even though they rule out the possibility that the 

particles can, as a consequence, be approximated to voids. Indeed, significantly larger 

errors of 10 % and 17 % are recorded for the corresponding simulation, likely due to the 

fact that the particles, despite weakly bonded to the matrix, can still carry compressive 

forces that 1) enable the formation of residual stresses and 2) oppose the lateral contraction 

of the matrix during tensile loading, as pointed out by (Bonora and Ruggiero, 2005).  

The results of figure 10 can also be used to attempt an analysis of the mechanisms 

controlling the plastic deformation of the material at very small strains. Indeed, it is a well-

documented fact that no cast iron grade exhibits perfect linear elasticity. Normally, this is 

justified on the basis of the stress concentration induced in the matrix by empty cavities 

having the shape of the graphitic phase. With respect to DCI, deviations from linear stress–

strain dependence were observed at stresses of only a fraction of the yield stress by means 

of highly-accurate electric resistance strain gauges (Kohout, 2001). Furthermore, inelastic 

deformation occurring in the seemingly elastic deformation range was also detected via 

acoustic emission (Sjögren and Svensson, 2005). In contrast to other grades of cast iron, 

though, the hypothetic stress concentration in DCI is much lower, due to the near spherical 

shape of the graphite particles, and it does not seem sufficient to explain the very early 
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onset of the inelastic deformation (Kohout, 2001). To shed light on this topic, the derivative 

of the macroscopic tensile curves of figure 10 is plotted in figure 12. On the same figure, 

the data of (Kohout, 2001), which is up to 0.1 % strain and refers to a DCI with almost the 

same chemical composition, is reported as well. From the experimental data, it is seen that 

the material instantaneous stiffness reduces by as much as 20 MPa within the first 0.05 % 

straining. According to the model, this effect is not justifiable by assuming that the particles 

correspond to voids, hence corroborating the conclusion of (Kohout, 2001). On the other 

hand, when the weak interface and the residual stresses are taken into account, the relative 

reduction in stiffness becomes very close to the measured one, even though the absolute 

values are overestimated by ≈ 10 MPa. Remarkably, this overestimation disappears if the 

anisotropic internal structure of the particles is also included in the simulation. Moreover, if 

the experimental stress and strain values are normalized according to the ratio between the 

yield stress of the material used in (Kohout, 2001) – 270 MPa – and the one of the present 

DCI – 235 MPa –, an almost perfect overlapping of the two curves is obtained over the 

entire strain range. These findings indicate that, as partially hypothesized in section 4.4.1, 

the complex residual stress field generated by the interaction between the matrix and the 

highly anisotropic structure of the particles has a significant impact on the DCI response at 

small strains. 
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Figure 10 – Tensile stress predicted by the full model during the combined increment 1&2, for simulations 
with increasing level of complexity (the assumptions made for the mechanical behavior of the particles, the 
interface type and the initial stress state are indicated in the legend). The experimental data measured during 
the in-situ tensile test is also reported. 

 

 

Figure 11 – Relative error of the full model in terms of tensile stress (empty bars) and lateral contraction of 
the specimen (full bars) at the end of the combined increment 1&2. A positive error indicates that the quantity 
is overpredicted, a negative error that the quantity is underpredicted. 
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Figure 12 – Derivative of the numerical tensile curves of figure 10 at very small strains. The experimental 
data of (Kohout, 2001) is reported for comparison, in both the original (unmodified) and the normalized form. 
The normalized form corresponds to normalizing the experimental stress and strain by the ratio between the 
yield stress of the material used in (Kohout, 2001) and that of the DCI employed in the present investigation. 

 

5.1.2 Hardening behavior 

The magnitude of the third and final strain increment applied to the specimen was adjusted 

to produce extensive plastic deformation, in order to investigate the hardening behavior of 

the material. The evolution of the macroscopic stress as predicted by the model up to the 

corresponding strain level is shown in figure 13. A small kink in the curves can be seen at 

0.32 % deformation, which marks the end of the combined increment 1&2 and the 

beginning of increment 3. The reason is the change in the shape of the displacement pattern 

prescribed as boundary condition, which drives the deformation of the model. Smaller 

increments would probably minimize this effect. Figure 14 reports the model errors in 

terms of stress and lateral contraction with respect to the corresponding experimental values 

of 348.9 MPa and 1.38 %, as determined at the end of increment 3. To discuss the influence 

of the simulation parameters, it is convenient to focus on the assumption made for the 

interface behavior, as its impact on the results seems considerably greater than that of the 

residual stresses and of the particles’ mechanical behavior, at least when the latter is 
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assumed elastic. Indeed, both the error on the stress and that on the lateral contraction are 

greater than 20 % when a strong interface is assumed, whereas they are consistently in the 

order of 8 - 12 % when a weak interface is considered. The large overestimation in the 

former case is due to the fact that, at this level of deformation, the interface is likely broken 

over a large portion of the particles’ surface, as complete debonding is expected before 

macroscopic fracture of the material (Hütter et al., 2015). In this respect, it is worth 

pointing out that the stress overestimation is at a minimum when either the particles are 

assimilated to voids or they are assumed to deform plastically. The reason is that, as 

mentioned previously, the particles can continue hindering the lateral contraction of the 

matrix even after debonding has occurred at the interface locations perpendicular to the 

direction of macroscopic straining. According to the simulations run considering a weak 

interface and elastic behavior of the particles, the compressive stresses over the portion of 

the particles’ surface parallel to the straining direction are, on average, as high as ≈ 300 

MPa. These very high values, which are a consequence of the purely elastic model used to 

describe the particles, are probably unrealistic. Indeed, once the particles are not confined 

by the matrix in all directions anymore, due to partial debonding, they will likely deform 

plastically at some point to fill the empty volume. It is worth emphasizing, though, that 

when the load carrying capacity of the particles is decreased, the matrix can contract more, 

and this increases the overestimation of the lateral contraction. Indeed, figure 14 shows that 

the corresponding error is of ≈ 10 % for the simulations run considering a weak interface 

and elastic behavior, whereas it is ≈ 17 % when the particles are either assimilated to voids 

or allowed to deform plastically. This suggests that error sources other than the particles’ 

behavior come into play at this relatively large level of deformation. 
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Figure 13 – Tensile stress predicted by the model during both the combined increment 1&2 and increment 3, 
for simulations with increasing level of complexity (the assumptions made for the mechanical behavior of the 
particles, the interface type and the initial stress state are indicated in the legend). The experimental data 
measured during the in-situ tensile test is also reported. 

 

 

Figure 14 – Relative error of the full model in terms of tensile stress (empty bars) and lateral contraction of 
the specimen (full bars) at the end of increment 3. A positive error indicates that the quantity is overpredicted, 
a negative error that the quantity is underpredicted. 
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5.2 Full model vs. experiments: Microscale comparison 
The comparison between model predictions and DVC data is not straightforward when a 

subset-based DVC algorithm is employed, due to the different locations at which the 

displacement vector is known. In the present case, as the finite element mesh is much finer 

than the grid used in the DVC procedure, it was decided to make the comparison at the 

level of the DVC grid. Accordingly, the displacement of each subvolume, as predicted by 

the model, was considered equal to the mean displacement of all the finite element nodes 

located inside that subvolume. To enable the comparison in terms of a quantity related to 

the material deformation, a new grid translated by ½ of the size of the subvolumes along all 

the three axes was introduced. Then, at each grid point, the equivalent strain 𝜀𝜀𝑒𝑒𝑒𝑒 =

�2𝜀𝜀𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖/3�
0.5

 was calculated from the displacement at the centers of the eight neighboring 

subvolumes by means of the shape functions of the standard 8-node tetrahedron. 

Figure 15 (a) and (b) compare the equivalent strain based on the DVC displacement with 

that based on the displacement predicted by the model, for the combined increment 1&2. 

The region chosen for the comparison is the specimen’s cross-section located mid-way 

between the 𝑧𝑧− and the 𝑧𝑧+ face, which is the most distant from the model boundaries where 

the displacement is prescribed. The contours show that non-negligible differences exist 

between the two sets of data, despite the fact that the one associated with the model relates 

to the simulation that gives the lowest error at the macro-scale, i.e. the one where the 

particles are considered elastic anisotropic, a weak interface is assumed and the micro-scale 

residual stresses are accounted for. To quantify the differences the following deviation 

parameter is introduced: 

 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑛𝑛 = �
∑ �𝜀𝜀𝑒𝑒𝑒𝑒,𝑘𝑘

𝐷𝐷𝑉𝑉𝐷𝐷 − 𝜀𝜀𝑒𝑒𝑒𝑒,𝑘𝑘
𝐹𝐹𝐹𝐹 �

2
𝑘𝑘

∑ �𝜀𝜀𝑒𝑒𝑒𝑒,𝑘𝑘
𝐷𝐷𝑉𝑉𝐷𝐷�

2
𝑘𝑘

 (12) 

where the superscripts DVC and FE refer to DVC-based and model-based data, 

respectively, and the summation spans all the grid points located on the cross-section. 

According to this formula, the deviation is as large as 44 %, and varies by no more than +1 

% if the outcome of the other simulations is considered for the comparison. Negligible 
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changes are also recorded when the simulations are repeated prescribing all the 

displacement components on the 𝑧𝑧− and the 𝑧𝑧+ face of the model, instead of just the one 

along the z-axis. Figure 15 (c) shows that the two sets of data differ mainly near the edges 

of the cross-section, close to the locations where odd values of the displacement field were 

recorded with DVC – see figure 4 (b) and (c) and the related discussion in the text. In all 

the other areas, the strain difference does not exceed 0.2 % and, therefore, it can be 

explained by the noise affecting the DVC data. Indeed, with respect to the same cross-

section, the equivalent strain associated with the two CT maps of the specimen in the 

unloaded configuration – which should vanish, as discussed in section 3.2.1 – has an 

average value of 0.16 % and a peak of 0.26 %. 

The situation changes completely when the third increment is considered, i.e. after 

significant plastic deformation of the specimen. Indeed, figure 16 shows that in this case the 

equivalent strain contour reconstructed via DVC agrees very well with that predicted by the 

model, except for a tiny area close to the top edge of the cross-section. Accordingly, figure 

17 indicates that the deviation calculated with equation (12) for all the 11 simulations is 

much smaller, ranging from 8 % to 13 %. Concerning this, the pattern of figure 17 

resembles very much that of the error on the specimen’s lateral contraction seen in figure 

14, meaning that the macro-scale and the micro-scale comparisons are consistent with each 

other. Thus, it can be concluded that the factors responsible for the differences between the 

equivalent strain contours of figure 15 (a) and (b) become unimportant when DCI is 

strained beyond its macroscopic yield point. This supports the hypothesis that the former 

deviation is mainly an artifact of the insufficient resolution of the DVC procedure, and 

vanishes at a larger deformation because the latter improves as discussed in section 3.2.1. 

As a final remark, it is worth pointing out that the results of figure 16 and figure 17 suggest 

that the model assumption of neglecting both the anisotropy of the individual grains of the 

matrix as well as the heterogeneity associated with the small amount of pearlite is 

reasonable within the context of the present analysis. 
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(a) (b) (c) 

Figure 15 – Contour of the equivalent strain (in %) corresponding to the combined increment 1&2 over the 
specimen’s cross-section located mid-way between the 𝑧𝑧− and the 𝑧𝑧+ face. (a) DVC reconstruction. (b) Model 
prediction, assuming anisotropic elastic behavior of the particles, weak particles-matrix interface and 
accounting for the micro-scale residual stress. (c) Absolute value of the difference between (a) and (b). 

 

   
(a) (b) (c) 

Figure 16 – Contour of the equivalent strain (in %) corresponding to the increment 3 over the specimen’s 
cross-section located mid-way between the 𝑧𝑧− and the 𝑧𝑧+ face. (a) DVC reconstruction. (b) Model prediction, 
assuming anisotropic elastic behavior of the particles, weak particles-matrix interface and accounting for the 
micro-scale residual stress. (c) Absolute value of the difference between (a) and (b). 
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Figure 17 – Overall deviation – calculated by means of equation (12) – between the equivalent strain contour 
reconstructed via DVC and that predicted by the full model, over the specimen’s cross-section located mid-
way between the 𝑧𝑧− and the 𝑧𝑧+ face. Data refer to the increment 3. 

5.3 Full model vs. unit cell model 
As mentioned in the introduction, the third and final aim of this investigation is to clarify 

whether the significant effort required to develop the full model is justified. Concerning 

this, figure 18 shows the relative difference between the macroscale predictions of the 

much less expensive unit cell model and those of the full model, for the combined 

increment 1&2. It can be seen that the outcome of the two models is essentially equivalent 

in terms of lateral contraction, as the largest difference is only 4 %. This positive result 

might be a consequence of the fact that, in the unit cell, the macroscopic strain along the 

loading direction is prescribed as boundary condition. On the other hand, the tensile stress 

calculated with the unit cell model is systematically 7 % - 13 % larger than that calculated 

with the full model. One reason could be the spurious bending occurring during the tensile 

test as described in section 3.2.2, which is not accounted for in the unit cell model. To 

check this hypothesis, the full model simulations were repeated neglecting the contribution 

of bending to the displacement field prescribed as boundary condition. The gray bars in 

figure 18 indicate that, with this operation, the difference between the stress predictions of 

the two models decreases, but only by ≈ 1/3, meaning that the main cause of such a 

difference is not the spurious bending. In this respect, figure 19 shows that the discrepancy 

between the two models seems to attenuate during the third increment, i.e. once plasticity 
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has propagated extensively in the matrix. This suggests that the stress over-prediction of the 

unit cell model in the increment 1&2 is rather connected to the impossibility to account for 

the precise geometry of the initial plastic shear bands forming in the matrix, which is 

known to be strongly affected by the real distribution of the graphite particles in the 

microstructure (Kasvayee et al., 2017). 

In order to evaluate the capacity of the unit cell model to isolate the effect of the individual 

micro-scale features considered in the present work, the predictions of both models for the 

eight simulations in which the particles are assumed elastic are analyzed within the 

framework of the design of experiments (Montgomery, 2012). Accordingly, the values of 

the predicted tensile stress – either at the end of increment 1&2 or at the end of increment 3 

– are fitted with the following regression model: 

 
𝜎𝜎 = 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝛽𝛽𝐴𝐴𝑥𝑥𝐴𝐴 + 𝛽𝛽𝐵𝐵𝑥𝑥𝐵𝐵 + 𝛽𝛽𝐷𝐷𝑥𝑥𝐷𝐷 + 𝛽𝛽𝐴𝐴𝐵𝐵𝑥𝑥𝐴𝐴𝑥𝑥𝐵𝐵 + 𝛽𝛽𝐴𝐴𝐷𝐷𝑥𝑥𝐴𝐴𝑥𝑥𝐷𝐷 + 

+𝛽𝛽𝐵𝐵𝐷𝐷𝑥𝑥𝐵𝐵𝑥𝑥𝐷𝐷 + 𝛽𝛽𝐴𝐴𝐵𝐵𝐷𝐷𝑥𝑥𝐴𝐴𝑥𝑥𝐵𝐵𝑥𝑥𝐷𝐷 
(13) 

where 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎 denotes the mean value, the 𝛽𝛽𝛽𝛽 are the regression coefficients and the variables 

𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵 , 𝑥𝑥𝐷𝐷 represent the factors under investigation, i.e. the initial stress state, the type of 

elastic behavior of the particles and the interface strength. These variables are defined on a 

normalized two-level scale [-1, +1] and the simulation parameters associated with either the 

level -1 or +1 are defined in table 2. The outcome of the fitting procedure is reported in 

table 3. Focusing on the combined increment 1&2, the very first observation that can be 

made is that the value of 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎 of the unit cell model is 17 MPa larger than that of the full 

model, which confirms the systematic over prediction pointed out in the previous 

paragraph. Concerning the main effects of the three factors at hand, which are quantified by 

twice the values of 𝛽𝛽𝐴𝐴, 𝛽𝛽𝐵𝐵 and 𝛽𝛽𝐷𝐷, it can be stated that the two models lead to the same 

conclusion: The initial stress state and the interface type are the main factors controlling the 

tensile stress at the macroscopic yield point. However, the unit cell model indicates that the 

impact of the former is 50 % higher than that of the latter, whereas, according to the full 

model, they have approximately the same impact. Remarkably, both models agree that 

during the hardening stage – see the results for the increment 3 in table 3 – the impact of 

the initial stress state becomes negligible while that of the interface type becomes even 

more pronounced. Conversely, the significant mismatch in the values of 𝛽𝛽𝐵𝐵 indicates that 
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the two models differ in the prediction of the main effect of the particles’ elastic behavior. 

In relation to this, it is worth noting that some factor interaction exists according to the full 

model, as revealed by the non-negligible value of the coefficient 𝛽𝛽𝐵𝐵𝐷𝐷. This has to do with 

the particles’ elastic behavior being significant when a strong interface is considered, but 

becoming negligible, despite 𝛽𝛽𝐵𝐵 = 5.94 MPa, when the assumption of weak interface is 

made, due to the opposite values of 𝛽𝛽𝐵𝐵 and 𝛽𝛽𝐵𝐵𝐷𝐷 which make the effect of the former factor 

vanish according to equation (13). Apparently, this type of interaction is not captured by the 

unit cell model, for which the effect of the particles’ elastic behavior on the tensile stress is 

always negligible, no matter the value of the interface strength. 

Table 2 – Definitions of factors and levels with respect to the regression model of equation (13). 

Factor Initial stress state (A) Particles’ elastic behavior (B) Interface strength (C) 
Level -1 +1 -1 +1 -1 +1 
Definition No RS With RS Isotropic Anisotropic Strong Weak 

 

Table 3 – Coefficients of the regression model of equation (13). The full model data relate to simulations 
performed neglecting the influence of the spurious bending. Units are MPa.  

Model type 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽𝐴𝐴 𝛽𝛽𝐵𝐵  𝛽𝛽𝐷𝐷  𝛽𝛽𝐴𝐴𝐵𝐵  𝛽𝛽𝐴𝐴𝐷𝐷  𝛽𝛽𝐵𝐵𝐷𝐷  𝛽𝛽𝐴𝐴𝐵𝐵𝐷𝐷  

Combined increment 1&2 

Full model 257.6   -8.72 1.43 -8.36 -1.10 2.56 -2.35  0.21 
Periodic unit cell 274.5 -13.12  0.20 -7.07  0.07 1.91 -0.29 -0.08 

Increment 3 
Full model 414.9   1.12  5.94 -38.53  0.11 1.01 -6.11  0.04 

Periodic unit cell 405.2   0.16 -0.22 -44.99 -0.03 0.33  0.14  0.03 
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Figure 18 – Relative difference between the values of tensile stress and lateral contraction predicted by the 
periodic unit cell and those predicted by the full model, at the end of the combined increment 1&2. The gray 
bars show the same quantity when the contribution of bending to the deformation of the full model is 
neglected. 

 

 

Figure 19 – Relative difference between the values of tensile stress and lateral contraction predicted by the 
periodic unit cell and those predicted by the full model, at the end of the increment 3. The gray bars show the 
same quantity when the contribution of bending to the deformation of the full model is neglected. 
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6 Conclusions 
In the present work, a DCI specimen was imaged in-situ with X-rays during a tensile test 

and the microscale displacement field was reconstructed via digital volume correlation. A 

finite element model of the full microstructure between two cross-sections was setup and 

used to simulate both the formation of microscale residual stresses during manufacturing as 

well as the subsequent tensile deformation. Different options were investigated for the 

graphite particles’ mechanical behavior and for the strength of the particles-matrix 

interface. By comparing the model predictions to the macroscale experimental data, to the 

microscale DVC-based strain field, and to the outcome of a simple periodic unit cell model, 

the following conclusions can be drawn: 

1. At the macroscale, the error of the model is always minimized by assuming a weak 

interface between the particles and the matrix. If accounted for, the microscale 

residual stress field allows for a significant improvement in the model accuracy up 

to the macroscopic yield point and, in particular, allows justifying the early 

deviation of DCI from the ideal linear elastic behavior. Modelling the elastic 

anisotropy associated with the complex internal structure of the particles has an 

impact – positive – only at very small strains. 

2. At the microscale, the strain field predicted by the model compares well with that 

reconstructed via DVC, and the effect of the microscale residual stress field, the 

particles’ mechanical behavior and the interface strength is consistent with that 

recorded at the macroscale. However, this good agreement is only seen after 

significant plastic deformation of the specimen. Before, non-negligible differences 

between the predicted and the reconstructed strain fields exist, which can be 

explained mostly by the noise affecting the DVC data. 

3. The greater effort required by the present experimental-computational approach 

appears justified, as, at the macroscopic yield point, a difference of ≈ 10 % exists 

compared to the predictions of the unit cell model. The main reason seems to be the 

incapability of the latter to account for the real geometry of the microstructure and, 
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to a lesser extent, for the actual deformation experienced by the specimen during the 

tensile test. 
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