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Summary (in english)

Oil remains the world’s leading fuel, and it accounted for a third of the global energy consumption
in 2016. Oil is mainly used as a source of energy, but it is also used for non-energy purposes, e.g.
for road surfaces, lubricants, and in the chemical industry. Furthermore, the global demand for oil
is expected to increase towards 2040 where it is predicted to account for 31% of the world’s energy
consumption.

The subject of this thesis is nonlinear model predictive control (NMPC) for closed-loop reservoir
management (CLRM). The purpose of NMPC for oil reservoirs management is to compute a
field-wide closed-loop feedback control strategy (i.e. an oil production strategy) that optimizes
a long-term financial measure of the oil production process, e.g. the total oil recovery or the net
present value over the reservoir life-time.

More specifically, this thesis is concerned with models and algorithms for NMPC of thermal
and isothermal compositional oil recovery processes. Two main principles are used to model such
processes: 1) mass and energy conservation, and 2) phase equilibrium. The conservation of energy
relates to the first law of thermodynamics, and the phase equilibrium relates to the second law
of thermodynamics (i.e. the entropy of a closed system in equilibrium is maximal). The phase
equilibrium problem that is relevant to thermal reservoir flow models is the UV flash which is a
direct statement of the second law of thermodynamics. For isothermal reservoir flow models, the
relevant phase equilibrium problem is the VT flash. The condition of maximal entropy does not
apply directly to isothermal systems because they are not closed. Instead, the Helmholtz energy is
minimal for isothermal systems in equilibrium. In this work, we formulate the phase equilibrium
problems as equality constrained optimization problems and the phase equilibrium conditions
as the corresponding first order optimality (or Karush-Kuhn-Tucker) conditions. Consequently,
the phase equilibrium conditions are a set of algebraic equations. The conservation equations
are a set of coupled partial differential equations. We use the method of lines to solve these
partial differential-algebraic equations, and we discretize the partial differential equations with a
finite volume method. The result is a set of differential equations, and combined with the phase
equilibrium conditions, the model equations are a set of differential-algebraic equations (DAEs)
which are in a specific semi-explicit form.

In this work, we describe algorithms for 1) simulation, 2) state estimation, 3) dynamic optimiza-
tion, and 4) NMPC of DAEs in this specific semi-explicit form. Numerical methods for simulation,
i.e. for numerical solution of initial value problems (IVPs), are central to the state estimation
algorithms and the dynamic optimization algorithm (and therefore also to the NMPC algorithm)
considered in this thesis. We consider the numerical solution of both deterministic and stochastic
IVPs that involve DAEs in the semi-explicit form. We present two approaches for the numerical
solution of the deterministic IVPs: 1) a simultaneous approach and 2) a nested approach. Both
approaches use Euler’s implicit method. In the simultaneous approach, the differential equations
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and the algebraic equations are solved simultaneously. In the nested approach, the solution of
the algebraic equations is nested into the solution of the differential equations. We present one
approach for the numerical solution of the stochastic IVPs. It is a simultaneous approach, and it
uses a semi-implicit discretization scheme. We consider the extended Kalman filter (EKF), the
unscented Kalman filter (UKF), a particle filter (PF), and the ensemble Kalman filter (EnKF) for
state estimation of continuous-discrete DAE systems in the semi-explicit form. Furthermore, we
describe an algorithm for gradient-based numerical solution of dynamic optimization problems that
involve DAEs in the semi-explicit form. The algorithm uses 1) the single-shooting method and
2) the discrete adjoint method for the computation of gradients. Finally, we describe an NMPC
algorithm which combines either of the four state estimation algorithms with the gradient-based
dynamic optimization algorithm.

It is natural to model other dynamic phase equilibrium processes using DAEs in the specific
semi-explicit form that we consider. Therefore, the above algorithms are relevant for dynamic
phase equilibrium processes in general.

We implement and test the algorithms on a small-scale flash separation process. The model of
this process consists of mass and energy conservation equations, and the relevant phase equilibrium
problem is the UV flash. Therefore, this flash separation process is representative of the thermal
and compositional reservoir flow process. For the flash separation process, we consider Matlab
implementations of the state estimation algorithms, Matlab and C implementations of the dynamic
optimization algorithm, and a mixed Matlab and C implementation of the NMPC algorithm.
For the thermal and the isothermal compositional reservoir flow models, we consider a C/C++
implementation of the dynamic optimization algorithm.

In this work, we develop an open-source thermodynamic software library called ThermoLib
which we use to evaluate the thermodynamic functions in the reservoir flow models and in the model
of the flash separation process. ThermoLib is available at www.psetools.org. The thermodynamic
model in ThermoLib is based on data and correlations from the DIPPR database and on cubic
equations of state. ThermoLib provides Matlab and C routines for evaluating the enthalpy, entropy,
and volume of 1) ideal gas mixtures, 2) ideal liquid mixtures, and 3) nonideal mixtures as functions
of temperature, pressure, and mixture composition (in moles). All other thermodynamic functions
can be computed from the enthalpy, entropy, and volume using fundamental thermodynamic
relations. The main novelty of ThermoLib is that its routines also evaluate the first and second
order derivatives of the thermodynamic functions with respect to the temperature, pressure, and
composition (in moles). The expressions for these derivatives are derived analytically.

This thesis consists of a summary report and a collection of twelve research papers and two
technical reports written in the period from August 2015 to August 2018: 1) one paper is published
in Computers and Chemical Engineering, 2) one paper is submitted to Journal of Process Control,
3) nine papers are published in conference proceedings, and 4) one paper is in preparation to be
submitted.



Summary (in danish)

For at undgå meningsforstyrrende oversættelser har vi i dette resumé bibeholdt nogle af de engelske
betegnelser. Vi skriver disse i kursiv. Derudover betegner vi ved strømningsmodeller, modeller af
strømningerne i et reservoir eller på engelsk ‘reservoir flow models’.

Olie er fortsat verdens førende brændstof, og en tredjedel af verdens energiforbrug blev i 2016
dækket af olie. Olie bruges hovedsageligt som energikilde, men bliver også brugt til andre formål,
for eksempel til vejbelægning, smøremidler, eller i den kemiske industri. Desuden forventes den
globale efterspørgsel på olie at stige hen imod 2040, hvor det forventes at dække 31% af verdens
energiforbrug.

Denne afhandling omhandler ikke-lineær model prædiktiv regulering (NMPC) til administration
af olieindvinding i lukket sløjfe (CLRM). Formålet med NMPC til administration af olieindvinding
er at beregne en feedback-baseret kontrol strategi for hele oliefeltet (altså en strategi for olieindvin-
dingen) der optimerer et langsigtet økonomisk aspekt af olieindvindingsprocessen, for eksempel den
totale mængde af produceret olie eller nutidsværdien beregnet over hele oliefeltets levetid.

Mere specifikt beskæftiger denne afhandling sig med modeller og algoritmer til NMPC af
termiske og isotermiske kompositionelle olieindvindingsprocesser. Der er to principper der bruges
til at modellere sådanne processer: 1) masse- og energibevarelse, og 2) faseligevægt. Energibe-
varelse er relateret til termodynamikkens første hovedsætning, og faseligevægt er relateret til
termodynamikkens anden hovedsætning (som siger at entropien i et lukket system i ligevægt er
maksimal). Det faseligevægtsproblem der er relevant for termiske strømningsmodeller betegnes som
et UV-flash hvilket er direkte baseret på termodynamikkens anden hovedsætning. For isotermiske
strømningsmodeller betegnes det relevante faseligevægtsproblem som et VT-flash. Betingelsen om
maksimal entropi gør sig ikke direkte gældende for isotermiske systemer fordi de ikke er lukkede. I
stedet er Helmholtz energi minimal for isotermiske systemer i ligevægt. I dette projekt formulerer
vi faseligevægtsproblemerne som optimeringsproblemer og faseligevægtsbetingelserne som de tilhø-
rende førsteordens optimalitetsbetingelser (eller Karush-Kuhn-Tucker betingelser). Det betyder
at faseligevægtsbetingelserne er et sæt af algebraiske ligninger. Bevarelsesligningerne er et sæt
af koblede partielle differentialligninger. Vi bruger en metode kaldet method of lines til at løse
disse partielle differentialalgebraiske ligninger, og vi diskretiserer de partielle differentialligninger
med en finite volume metode. Resultatet er et sæt af differentialligninger som, kombineret med
faseligevægtsbetingelserne, udgør et sæt af differentialalgebraiske ligninger (DAEer) der er på en
specifik semi-eksplicit form.

I dette projekt beskriver vi algoritmer til 1) simulering, 2) tilstandsestimering, 3) dynamisk
optimering, og 4) NMPC af DAEer på denne specifikke semi-eksplicitte form. Numeriske metoder
til simulering, altså til numerisk løsning af begyndelsesværdiproblemer (IVPer), er centrale for
tilstandsestimeringsalgoritmerne og den dynamiske optimeringsalgoritme (og derfor også for den
NMPC-algoritme) som vi beskæftiger os med i denne afhandling. Vi beskæftiger os både med
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numerisk løsning af deterministiske og stokastiske IVPer som involverer DAEer på den semi-
eksplicitte form. Vi præsenterer to metoder til at løse de deterministiske IVPer numerisk: 1) en
simultan metode og 2) en nestet metode. Begge metoder bruger Eulers implicitte metode. I den
simultane metode løses differentialligningerne og de algebraiske ligninger samtidigt. I den nestede
metode nestes løsningen af de algebraiske ligninger ind i løsningen af differentialligningerne. Vi
præsenterer en enkelt metode til at løse de stokastiske IVPer numerisk. Det er en simultan metode,
og den bruger en semi-implicit diskretisering. Vi bruger det udvidede Kalman filter (EKF), det
unscentede Kalman filter (UKF), et partikelfilter (PF), og ensemble Kalman filteret (EnKF) til
tilstandsestimering af kontinuert-diskrete DAE systemer på den semi-eksplicitte form. Derudover
beskriver vi en algoritme til gradient-baseret numerisk løsning af dynamiske optimeringsproblemer
der involverer DAEer på den semi-eksplicitte form. Algoritmen bruger 1) single-shooting metoden
og 2) den diskrete adjoint metode til beregning af gradienter. Som det sidste beskriver vi en NMPC-
algoritme som kombinerer en af de fire tilstandsestimeringsalgoritmer med den gradient-baserede
dynamiske optimeringsalgoritme.

Det er naturligt at modellere andre dynamiske faseligevægtsprocesser med DAEer på den
specifikke semi-eksplicitte form som vi beskæftiger os med. Derfor er de ovenstående algoritmer
relevante for dynamiske faseligevægtsprocesser generelt.

Vi implementerer og tester algoritmerne på en små-skala flash separationsproces. Modellen af
denne proces, består af masse- og energibevarelsesligninger, og det relevante faseligevægtsproblem
er UV-flash problemet. Denne flash separationsproces er derfor repræsentativ for den termiske
og kompositionelle strømningsmodel. Vi implementerer tilstandsestimeringsalgoritmerne i Mat-
lab, den dynamiske optimeringsalgoritme i Matlab og C, og NMPC-algoritmen i både Matlab
og C (altså en blandet implementering) for flash separationsprocessen. Vi implementerer den
dynamiske optimeringsalgoritme i C/C++ for den termiske og den isotermiske kompositionelle
strømningsmodel.

I dette projekt udvikler vi et open-source termodynamisk software bibliotek kaldet ThermoLib
som vi bruger til at evaluere de termodynamiske funktioner der optræder i strømningsmodellerne
og i modellen af flash separationsprocessen. ThermoLib er tilgængelig på www.psetools.org. Den
termodynamiske model i ThermoLib er baseret på data og korrelationer fra DIPPR-databasen og på
kubiske tilstandsligninger. ThermoLib indeholder Matlab og C rutiner til at evaluere entalpi, entropi,
og volumen af 1) ideelle gasblandinger, 2) ideelle væskeblandinger, og 3) ikke-ideelle blandinger
som funktioner af temperatur, tryk, og blandingskomposition (i mol). Alle andre termodynamiske
funktioner kan beregnes fra entalpi, entropi, og volumen ved hjælp af fundamentale termodynamiske
relationer. ThermoLibs primære bidrag er at dets rutiner også evaluerer de første- og andenordens
afledede af de termodynamiske funktioner med hensyn til temperatur, tryk, og blandingskomposition
(i mol). Udtrykkene for disse afledede er udledt analytisk.

Denne afhandling består af en sammenfattende rapport og en samling af tolv forskningsartikler
og to tekniske rapporter skrevet i perioden august 2015 til august 2018: 1) en artikel er udgivet i
Computers and Chemical Engineering, 2) en artikel er indsendt til Journal of Process Control, 3)
ni artikler er udgivet som konferenceartikler, og 4) en artikel er endnu ikke indsendt.
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Chapter 1
Introduction

The subject of this thesis is nonlinear model predictive control (NMPC) for oil reservoirs management.
The purpose of NMPC is to compute a closed-loop feedback control strategy for optimizing the
economics of a dynamical process (or for setpoint tracking). In the case of oil recovery processes,
the objective of NMPC is to optimize a long-term financial measure of the recovery process, e.g. the
amount of oil produced or the net present value over the life-time of the reservoir. NMPC algorithms
require a model of the dynamical process. In this work, we consider thermodynamically rigorous
thermal (varying temperature) and isothermal (constant temperature) compositional models of
oil reservoir flow. In particular, we focus on the formulation of the phase equilibrium problems
involved in these models. We describe both NMPC and reservoir flow models in more detail in this
chapter.

In Section 1.1, we provide a motivation for research on improving the economics of oil recovery
processes as well as a brief introduction to 1) oil production, 2) NMPC, 3) reservoir flow models,
and 4) phase equilibrium. In Section 1.2, we review the recent literature on subjects that are
relevant to NMPC for oil reservoirs. Next, we describe the objectives of this thesis and the main
contributions of this work in Section 1.3. Finally, we outline the structure of the thesis and briefly
discuss the content of each chapter in Section 1.4.

1.1 Introduction and motivation

Motivation. Oil remains the world’s leading fuel, and in 2016, it accounted for a third of the
global energy consumption [23]. Oil is mainly used as a source of energy, but it is also used for other
purposes. For instance, 14.5% of the EU oil consumption in 2015 was for non-energy purposes,
e.g. bitumen for road surfaces, lubricants for the reduction of friction, and various usage in the
chemical industry [53]. The U.S. Energy Information Administration (EIA) states that renewables
and nuclear energy are the fastest growing sources of energy (whereas the use of coal is stagnant)
[172]. Despite of this, EIA also projects that liquid fuels (mainly oil) will account for 31% of the
world’s energy consumption in 2040 whereas liquid fuels accounted for 33% in 2015. Similarly,
projections by the Organization of the Petroleum Exporting Countries (OPEC) indicate that the
global oil demand will increase from 95.4 million barrels per day in 2016 to 111.1 million barrels
per day in 2040 [117].

In conclusion, it is expected that the global demand for oil will remain significant for several
decades. This motivates research on methods that improve the economics and total recovery in oil
production processes. Control software based on NMPC algorithms is a cost-efficient approach for
reaching this goal because it is primarily used to better utilize existing recovery techniques (e.g.
waterflooding or enhanced oil recovery techniques).
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1. Introduction

Fig. 1.1: An illustration of offshore oil production facilities. The colors illustrate the heterogeneity of the
petrophysical properties of the reservoir rock (e.g. the porosity or the permeability). This figure originally
appeared in [176].

Oil production. Oil is located in porous subsurface reservoir rock, and it is produced (i.e. brought
to surface) using production wells that are drilled into the reservoir as illustrated in Fig. 1.1. Oil
production involves up to three stages:

a) Before production begins, the reservoir pressure is high. In the primary stage of recovery,
this initial pressure is used to push the reservoir fluid up to the surface.

b) During the primary stage, the reservoir pressure drops because the reservoir fluid is removed
from the reservoir. In the secondary stage, injection wells are drilled into the reservoir and
water is injected in order to maintain a high pressure.

c) The tertiary stage of recovery involves enhanced oil recovery techniques, e.g. chemical,
biological, or thermal injection. The purpose is to mobilize and recover the oil that remains
after the secondary stage.

After the oil has been recovered, it is refined to consumer products (using distillation), e.g. 1)
fuels (such as gasoline and kerosene), 2) bitumen for road surfaces and waterproofing products,
and 3) chemicals used to make plastics and pharmaceuticals. Depending on the specific production
scenario, it may be uneconomical to implement the secondary and tertiary stages. In this work,
we are concerned with NMPC of the secondary stage of recovery. However, NMPC is equally
applicable to all three stages.

There are several aspects of the reservoir flow dynamics that are important to take into account
during production planning. The petrophysical properties of the rock, e.g. porosity and permeability,
can vary throughout the reservoir. The porosity is the fraction of a given volume that is available
for fluid, and the permeability is a measure of the reservoir rock’s ability to transmit this fluid.
The permeability depends on several aspects of the pores in the rock, e.g. on how well-connected
they are. Both the porosity and the permeability have a significant effect on the fluid flow, and if
the rock is very heterogeneous, there is a risk of trapping the oil in certain regions of the reservoir
during the production. Furthermore, it can be important to account for changes in the oil and
gas compositions since they determine the flow properties of the reservoir fluid, e.g. the viscosity
(resistance to movement) and the relative permeability. Finally, it is not uncommon for a reservoir
to be perforated by multiple injection and production wells. The interaction between these wells can
be complex and may have a significant impact on the profitability of a given production strategy.
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Fig. 1.2: An illustration of the interaction between state estimation, dynamic optimization, and the process
in NMPC.

One important measure of the profitability of a production strategy is the recovery factor which is
the percentage of the initial oil in the reservoir that is recovered. According to Jansen [77], the
recovery factor is often between 10% and 50% after the secondary phase of recovery.

To conclude, it can be nontrivial and time-consuming to manually devise effective production
strategies (e.g. strategies with high recovery factors), and there is a significant potential for
improving the amount of recovered oil. The purpose of the NMPC algorithms that we consider
in this work is to improve the effectiveness of the production strategies by using model-based
optimization and data assimilation techniques (in which case the task of production planning will
be, at least partially, automated).
Nonlinear model predictive control. As mentioned previously, the subject of this thesis is
NMPC for oil reservoirs management. NMPC algorithms compute closed-loop feedback control
strategies by using the moving horizon optimization principle, i.e. by repeatedly solving dynamic
optimization problems for open-loop control strategies. Only the first part of these open-loop
control strategies is implemented in practice before a new strategy is computed based on new
process measurements. The objective of NMPC is to optimize the economics of a process (or to
follow setpoints) while satisfying constraints, e.g. due to equipment limitations, safety concerns,
or requirements related to supply and demand. Dynamic optimization problems are optimization
problems that involve dynamical constraints, i.e. difference or differential equations. These
dynamical constraints represent a model of the process, and they describe the temporal evolution
of a set of state variables. The dynamical equations require an initial condition (for the state
variables) in order to have a unique solution. Often, it is necessary to use state estimation (i.e.
data assimilation) techniques to determine this initial condition because direct measurement can
be 1) difficult or impossible, 2) insufficiently accurate, 3) prohibitively time-consuming, or 4) too
expensive. The purpose of state estimation is to reconstruct the state variables of a process based on
1) noisy measurements and 2) a dynamical model of the process. Fig. 1.2 illustrates the interaction
between state estimation, dynamic optimization, and the process in NMPC.

Oil reservoir management based on NMPC technology is an example of closed-loop reservoir
management (CLRM) which has been proposed to improve the long-term economics of oil recovery
processes [24, 75, 79, 80]. CLRM aims at increasing the oil recovery by combining data assimilation
(e.g. history matching) with model-based optimization (also referred to as production optimization).
Fig. 1.3 illustrates the concept of CLRM. In the red loop (data assimilation), iterative methods are
used to update one or more models of the reservoir based on measurements. This corresponds to
the state estimation in NMPC. In the blue loop (model-based optimization), iterative optimization
algorithms are used to compute a long-term field-wide production strategy that optimizes a financial
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Fig. 1.3: An illustration of CLRM. This figure originally appeared in [30].

measure, e.g. total recovery or net present value. This corresponds to the dynamic optimization in
NMPC. The noise on the input and the output from the reservoir represents the finite precision of
the production equipment and the measurement devices (also referred to as sensors). In NMPC of
oil recovery processes, the state estimation techniques are used to estimate both the current state
of the reservoir as well as uncertain model parameters, e.g. the porosity and permeability.

In practice, the role of NMPC-based software for oil reservoirs management will be to assist
reservoir engineers in planning the production of oil from the reservoirs. Currently, reservoir
engineers manually plan the production using simulation software (based on reservoir flow models)
to predict the amount of oil produced by a given production strategy. The NMPC-based software
will, in part, automate this task by automatically incorporating recent data and computing an
optimized production strategy (also using simulation software based on reservoir flow models). The
reservoir engineer may adjust the optimized strategy based on experience and on knowledge about
the reservoir that is not incorporated into the models.

Model predictive control (MPC) technology has been widely used in the downstream process
industries [58, 97, 133–135] for controlling complex systems, e.g. reactors and distillation columns.
Therefore, it is reasonable to believe that NMPC technology can be used for improving the economics
of oil recovery processes as well.
Models of oil recovery processes. The predictive model (i.e. the reservoir flow model) in
NMPC for oil reservoirs management is central to the effectiveness of the computed optimized
production strategies. There exist several types of models of subsurface reservoir flow, and the four
most common types are

a) thermal and compositional models

b) isothermal and compositional models

c) black oil models

d) two-phase flow models

Thermal and compositional models involve mass conservation equations for each of a number of
chemical components as well as a combined energy conservation equation for the internal energy
of the rock and the fluid.1 Isothermal and compositional models also involve a mass conservation
equation for each chemical component. However, the temperature is assumed to be constant
1It is possible to formulate separate energy conservation equations for the fluid and the rock (referred to as local
thermal nonequilibrium or LTNE models). However, that involves modeling of the energy transfer between the
fluid and the rock which is difficult in the context of subsurface reservoir flow.
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throughout the reservoir in isothermal models, and they do not involve an energy conservation
equation. Both thermal and isothermal compositional models involve phase equilibrium between
the fluid phases and the rock. The phase equilibrium conditions determine the temperature (in
the case of thermal models), pressure, and phase compositions based on the conserved properties.
Black oil models are special cases of isothermal and compositional models in which there are only
three components: a water component, a pseudo-oil component, and a pseudo-gas component. The
pseudo-gas component can dissolve into the oil phase, but the pseudo-oil component cannot vaporize
into the gas phase.2 Two-phase flow models are also special cases of isothermal and compositional
models, and they involve a water component and a pseudo-oil component. The water and the oil
phase are often assumed to be immiscible in such models.

The choice of model depends on the specific reservoir that is being modeled and the specific
recovery method that is used. Compositional models are suitable for modeling miscible flooding
(i.e. injection of miscible gases) which is one of the most commonly used enhanced oil recovery
processes [121, 122]. Furthermore, the Development Geology Reference Manual [2, 113] provides
the following discussion of the use of black oil models and compositional models. Black oil models
are widely used in industry because they can be used to describe the primary stage of recovery,
waterflooding, and certain types of gas injection for many oil and gas reservoirs. However, if the
reservoir contains volatile oil or gas condensates, it is in general necessary to use compositional
models. Thermal models are most often used to model thermal enhanced oil recovery processes
such as steam injection. It is possible to formulate thermal black oil models. However, it is often
necessary to use thermal and compositional models to describe thermal oil recovery processes.

There already exists a large body of research on NMPC and CLRM of two-phase flow models.
Furthermore, black oil models (as well as two-phase flow models) are special cases of compositional
models as mentioned above. Therefore, we are concerned with thermal and isothermal compositional
models in this work.3

Phase equilibrium. A key element of the thermal and isothermal compositional models is the
phase equilibrium conditions. In the numerical simulation of these models, the reservoir is discretized
into a set of grid cells, and the phase equilibrium between the fluid phases and the rock is enforced
in each grid cell.

In the reservoir simulation and optimization literature, the phase equilibrium conditions in
thermal and isothermal compositional models are often formulated as the isofugacity condition.4

That condition is derived from the PT flash which is the phase equilibrium problem that is relevant
to isothermal and isobaric (constant pressure) systems. It is called the PT or (PTn) flash because
it involves constraints on the temperature, T , pressure, P , and total mixture composition, n.

Although it is common to use the isofugacity condition, the phase equilibrium problem that is
relevant to thermal and compositional models is the UV (or UVn) flash. Its name indicates that it
involves constraints on the internal energy, U , the volume, V , and the total mixture composition, n.
It is also called the isoenergetic-isochoric (constant energy and volume) flash. The total composition
and the internal energy are given by the mass and energy conservation equations, and the volume
is the size of the grid cell. The solution to the UV flash is the equilibrium temperature, pressure,
and phase compositions that maximize the entropy subject to the constraints on the internal
energy, volume, and total composition. Therefore, it is a direct statement of the second law of
thermodynamics (i.e. the entropy of a closed system is maximal when it is in equilibrium).

The phase equilibrium problem that is relevant to isothermal and compositional models is the

2There are cases where it is relevant to modify the black oil models such that oil can vaporize into the gas phase, e.g.
for volatile oil and for gas condensates.

3Note that the extension of this work to black oil models will require modeling of the thermodynamic properties of
the pseudo-oil and pseudo-gas components. We do not address this issue.

4The fugacity is a thermodynamic function which is defined in terms of the derivative of the Gibbs energy of a given
phase with respect to the mole number of a given chemical component.
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VT (or VTn) flash. It involves constraints on the volume, V , temperature, T , and total mixture
composition, n, and it is also called the isochoric-isothermal (i.e. constant volume and temperature)
flash. The condition of maximal entropy does not apply directly to isothermal systems because
they are not closed. However, the second law of thermodynamics is valid for the combined system
consisting of the isothermal system and its surroundings. The condition of maximal entropy for the
combined system is equivalent to a condition of minimal Helmholtz energy for the isothermal system
alone. Therefore, the solution to the VT flash is the equilibrium pressure and phase compositions
that minimize Helmholtz energy subject to the constraints on the volume, temperature, and total
composition. As for the UV flash, the volume is the size of the grid cell, and the total composition
is given by the mass conservation equations.

A similar adaptation of the second law of thermodynamics to isothermal and isobaric systems
results in a condition of minimal Gibbs energy. This is the condition that is used in the PT flash,
and its solution is the equilibrium phase compositions which minimize Gibbs energy at specified
temperature, pressure, and total composition.

In this work, we use the UV and the VT flash in the thermal and isothermal compositional reser-
voir flow models, respectively, because they are directly related to the second law of thermodynamics.
Furthermore, because both the UV and the VT flash involve an extremum condition (maximal
entropy and minimal Helmholtz energy), we formulate them as equality constrained optimization
problems and the phase equilibrium conditions as the corresponding first order optimality conditions.
Therefore, the reservoir flow model equations are a set of differential-algebraic equations (DAEs).
The differential equations are the conservation equations, and the phase equilibrium conditions are
the algebraic equations.

1.2 Literature review

In this section, we present a literature review that provides the context and background for the
content and objectives of this thesis. In particular, we discuss 1) algorithms for state estimation
and history matching, 2) dynamic optimization algorithms and production optimization, and 3)
NMPC for oil recovery processes and CLRM. Furthermore, we discuss 4) models that involve the
UV and the VT flash, and 5) currently available open-source thermodynamic software. Finally, we
provide 6) references to supplementary literature that may be useful to the reader.
State estimation and history matching. The Kalman filter is an optimal state estimation
algorithm for linear systems [89]. However, oil recovery processes, and other phase equilibrium
processes, are inherently nonlinear. There exist several state estimation algorithms (filters) for
nonlinear systems, e.g. the extended Kalman filter (EKF), the unscented Kalman filter (UKF), and
particle filters (PFs) [160]. In the EKF, the original Kalman filter is applied to a linearization of the
nonlinear model equations. Consequently, the accuracy of the EKF can be insufficient for systems
with significant nonlinearities. The UKF represents the distribution of the state variables using a
set of deterministic particles [85].5 These particles are chosen such that the approximation of the
covariance matrix is accurate up to third order.6 However, the UKF can also suffer from limited
accuracy for severely nonlinear systems. PFs represent the distribution using a set of random
particles [169]. Therefore, they can be more accurate than the EKF and the UKF. A particular PF,
the ensemble Kalman filter (EnKF), has gained much attention in the fields of oceanography and
oil reservoir characterization because it is computationally tractable for very large-scale systems
[54–56, 63]. Originally, research on state estimation (including the above methods) has been focused
on stochastic difference and differential equations. However, authors have recently developed the

5The EKF represents the distribution of the states by the mean and covariance.
6The approximation of the covariance matrix in the EKF is accurate up to first order.
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EKF [14, 83, 112], the UKF [106, 107, 119, 131, 132], PFs [69, 70], and the EnKF [128] for stochastic
DAEs.

An alternative to the above state estimation algorithms is moving horizon estimation [3] in which
the state estimation problem is formulated as a dynamic optimization problem [20]. Consequently,
the state estimation problem can be solved using the dynamic optimization algorithms that we
discuss later in this literature review.

History matching is a data assimilation technique which aims at estimating the parameters
(e.g. petrophysical parameters) in a reservoir model such as to minimize the distance between
predicted and observed (i.e. measured) data. History matching in reservoir engineering typically
involves 1) the numerical solution of a dynamic optimization problem [38, 100, 189] or 2) the
EnKF [1, 71, 88, 187]. It is outside the scope of this review to discuss all relevant work on history
matching. Instead, we refer to the review by Udy et al. [170] and the benchmark study by Peters
et al. [120] which involves participants from both industry and academia.

In this work, we consider the EKF, UKF, PF, and EnKF for stochastic DAEs, although it is
also relevant to consider optimization-based approaches. For large-scale processes, we expect that
the EnKF is the most computationally tractable. However, it is outside the scope of this work
to test the state estimation algorithms using the thermal and isothermal reservoir flow models.
Instead, we test the algorithms using a representative small-scale flash separation process.
Dynamic optimization and production optimization. There exist several methods for solving
dynamic optimization problems. The single-shooting, multiple-shooting [22, 157], and simulta-
neous collocation [18] methods have proven to be the most successful for large-scale dynamic
optimization problems relevant to real-world applications [20]. They are collectively known as
direct methods because they transform the infinite-dimensional dynamic optimization problem into
a finite-dimensional nonlinear program (NLP). Single- and multiple-shooting methods involve the
numerical solution of initial value problems (IVPs), i.e. they involve numerical simulations. In
simultaneous collocation methods, the dynamical model equations are discretized and incorporated
directly as constraints in the resulting NLP. Efficient optimization algorithms for solving NLPs
require the gradient of the objective function and the Jacobian of the constraints [115]. Furthermore,
it can improve the computational efficiency to use the Hessians of the objective function and the
constraint functions. However, the necessary Hessian information can also be approximated effi-
ciently, e.g. with the BFGS method.7 For simultaneous collocation, the gradient, the Jacobian, and
the Hessians can be derived by straightforward differentiation. For single- and multiple-shooting
methods, the objective and constraint functions depend on the numerical solution of one or more
IVPs. In such cases, both adjoint methods [82] and forward methods [95, 96] can be used to
compute the relevant gradients and Jacobians. There exist both discrete and continuous versions of
adjoint methods [29, 33, 94] and forward methods. Recent research shows that continuous adjoint
methods can be more efficient than discrete adjoint methods [32, 33].

Research on production optimization often involves simple models, e.g. immiscible or partially
miscible two-phase flow models [161] or polymer flooding [98, 99, 191]. Data driven models, e.g.
neural networks, are also used [152]. Kourounis et al. [93] solve production optimization problems
that involve an isothermal and compositional model. Furthermore, Zaydullin et al. [190] and
Garipov et al. [61] consider simulation of thermal and compositional models. The above models do
not involve the UV or the VT flash. Polívka and Mikyška [125] consider simulation of an isothermal
and compositional model that does involve the VT flash. However, production optimization of
thermodynamically rigorous models of oil recovery processes based on the UV and VT flash has
not been considered before.

It is common to use single-shooting methods together with an adjoint method to solve production

7The BFGS method is named after Charles George Broyden, Roger Fletcher, Donald Goldfarb, and David Shanno
who developed it.
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optimization problems [25, 33, 59]. Multiple-shooting [31, 45] and simultaneous collocation [72]
methods have also been used. As an alternative to the adjoint method, authors also use the simulta-
neous pertubation stochastic approximation (SPSA) method [192] and an ensemble-based method
called EnOpt [39–41, 76]. Do and Reynolds [48] discuss the connection between the SPSA method
and the EnOpt method. The adjoint and forward methods compute the gradient exactly whereas
the SPSA and EnOpt algorithms approximate the gradient. In SPSA algorithms, the gradient is
approximated with a single random perturbation of all decision variables simultaneously, in contrast
to finite difference methods that involve a deterministic perturbation of each decision variable
individually. Similarly, the EnOpt algorithm uses an ensemble of perturbations to approximate the
gradient. Alternatively, (gradient-free) metaheuristic methods can be used, e.g. the particle swarm
optimization algorithm [116].

In this work, we use a single-shooting method together with a discrete adjoint method for the
numerical solution of dynamic optimization problems that involve DAEs in a specific semi-explicit
form (the DAEs represent the reservoir flow models). We implement and test the algorithm using
both a representative small-scale flash separation process and the thermal and the isothermal
compositional reservoir flow models.
NMPC of oil recovery processes and CLRM. As for production optimization, most research
on CLRM and NMPC of oil recovery processes involves two-phase flow models [62, 65, 78, 80, 177].
Neural network models are also used [66, 165]. The EnKF is often used for the history matching
[43, 114, 174], and the single-shooting method combined with the adjoint method is often used to
solve the production optimization problem [7–9, 114, 124, 153, 155, 156, 174, 175, 184]. However,
both the SPSA method [184, 192] and EnOpt [41, 158, 159] are used as well.

Existing reservoir simulation software is frequently used in CLRM, e.g. the open-source Matlab
Reservoir Simulation Toolbox (MRST) [7–9, 124], Stanford’s General Purpose Research Simulator
(GPRS) [154–156], and Schlumberger’s ECLIPSE [109]. Purkayastha et al. [129, 130] use the CMG
STARS software for linear MPC of steam-assisted gravity drainage (SAGD) processes, and Guevara
et al. [67] apply NMPC to SAGD processes.8 MPC can also be used for setpoint tracking based on
setpoints that are computed using production optimization [175]. Finally, Foss and Jensen [60]
analyze certain aspects of the control performance of CLRM, and Hou et al. [75] present a review
of CLRM.

In this work, we formulate an NMPC algorithm based on either the EKF, UKF, PF, or EnKF
as well as a gradient-based dynamic optimization algorithm which uses the single-shooting method
and the discrete adjoint method (as mentioned previously). As for the state estimation algorithms,
we do not implement and test the NMPC algorithm using the thermal and isothermal compositional
reservoir flow models. Instead, we use a representative small-scale flash separation process to test
the algorithm.
The UV flash and the VT flash. The UV flash has not been used in models of oil recovery
processes before, and only Polívka and Mikyška [125] have used the VT flash (not formulated as an
optimization problem) in an isothermal and compositional reservoir flow model. However, the UV
flash has been used in models of fluid vessels and flash drums [5, 35, 102], distillation columns [57],
and fluid dynamical problems [136]. The VT flash has been used in models of CO2-H2O systems9

[81], gravitational systems10 [52], centrifugation of natural gas [36], adsorption processes [27, 151],
diffusive phenomena [92], and permeation in flexible pipes [16]. Algorithms for robust simulation
of UV flash processes have been developed previously [34, 149, 188]. However, state estimation,
dynamic optimization, and NMPC of UV and VT flash processes, which we consider in this work,
have not been reported in the open literature.

8SAGD is an enhanced oil recovery method for the production of heavy oil, e.g. from tar sands.
9Such systems are relevant to CO2 injection in 1) oil recovery processes and 2) CO2 sequestration using subsurface
reservoirs.

10For instance, oil reservoirs.
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Thermodynamic software. Thermodynamic models are central to phase equilibrium compu-
tations. A few open-source thermodynamic software libraries have been reported in the open
literature, e.g. the C++ software CoolProp by Bell et al. [15], the Matlab software by Martín
et al. [108], and the thermodynamic module in the Open-Calphad software by Sundman et al.
[164]. Furthermore, there exist open-source libraries that are not reported in the literature, e.g.
the Simulink toolbox T-MATS by Chapman et al. [37] and the thermodynamic library in DWSIM
[50].11

However, none of the above software libraries provide both first and second order derivatives of
the thermodynamic properties. Such derivatives are necessary in efficient gradient-based algorithms
for simulation, state estimation, dynamic optimization, and NMPC of UV and VT flash processes
(and of other phase equilibrium processes).

Therefore, in this work, we develop an open-source thermodynamic software library (called
ThermoLib) which provides both the first and second order derivatives of the thermodynamic
properties.
Supplementary literature. The books by Chen [42] and by Chen et al. [44] describe models and
algorithms for numerical simulation of reservoir flow. For more information about thermodynamics,
we refer to the book on classical thermodynamics by Callen [28] and the books on chemical
engineering thermodynamics by Smith et al. [162], Gmehling et al. [64], and Koretsky [91]. For
more on phase equilibrium processes, we refer to the books by Walas [181] and Michelsen and
Mollerup [111]. The book by Holman [74] describes models of heat transfer which are relevant to
models of thermal oil recovery processes. As mentioned previously, phase equilibrium problems can
be formulated as optimization problems [110]. Consequently, dynamic optimization problems that
involve phase equilibrium processes belong to the class of bilevel optimization problems [46] and to
the closely related class of mathematical programs with equilibrium constraints [104, 118]. The
numerical solution of optimization problems is central to the direct dynamic optimization methods
(single-shooting, multiple-shooting, and simultaneous collocation). For more information about
numerical optimization, we refer to the book by Nocedal and Wright [115] and the books on 1)
gradient-based methods and process optimization by Biegler [19], 2) metaheuristic methods by
Burke and Kendall [26], and 3) stochastic optimization algorithms by Bhatnagar et al. [17]. For an
introduction and overview of state estimation algorithms, we refer to the book by Simon [160]. The
book on neural network-based state estimation by Talebi et al. [166] may also be relevant. Finally,
we refer to the book on predictive control by Maciejowski [105] and the book on MPC by Rawlings
et al. [138].

1.3 Main objectives and contributions

The main objectives of this work are to 1) formulate thermodynamically rigorous thermal and
isothermal compositional reservoir flow models using the UV and the VT flash (formulated as
optimization problems) and 2) develop algorithms for NMPC of thermal and isothermal oil recovery
processes using these models. First, we provide an overview of the objectives (and thereby also the
content) of this summary report, and next, we discuss the main contributions of the work presented
in this thesis. The objectives of this summary report are to

a) describe a thermodynamic model based on

– data and correlations from the DIPPR database
– cubic equations of state

b) describe thermodynamically rigorous models of

11The GitHub repository AwesomeThermodynamics [6] contains a list of open-source thermodynamic software as
well as other resources on thermodynamics.
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1. Introduction

– a flash separation process (using the UV flash)
– a thermal and compositional waterflooding process (also using the UV flash)
– an isothermal and compositional waterflooding process (using the VT flash)

c) demonstrate that the models in item b) are in a specific semi-explicit DAE form
d) describe state estimation algorithms for continuous-discrete stochastic semi-explicit DAEs:

– the EKF
– the UKF
– a PF
– the EnKF

e) describe an algorithm for gradient-based dynamic optimization of semi-explicit DAEs using
– the single-shooting method
– the discrete adjoint method (for gradient computations)
– off-the-shelf numerical optimization software (i.e. NLP solvers)

f) describe an algorithm for NMPC of semi-explicit DAEs using either of the state estimation
algorithms in item d) and the dynamic optimization algorithm in item e)

g) test the algorithms for state estimation, dynamic optimization, and NMPC using Matlab
and/or C implementations and the flash separation process

h) test the dynamic optimization algorithm using a C/C++ implementation and the thermal
and isothermal compositional reservoir flow models

Furthermore, in this summary report, we discuss the computational performance of the implementa-
tions in item g) and h) for a number of numerical examples. In particular, we present a performance
study of the implementation of the dynamic optimization algorithm in item g). In this performance
study, we compare 1) different approaches for the numerical solution of the involved semi-explicit
DAEs (in the dynamic optimization algorithm), 2) Matlab, C, and mixed implementations, 3)
different off-the-shelf optimization software, and 4) different compilers and linear algebra software.
The results of this performance study are relevant to the state estimation algorithms as well because
they also involve the numerical solution of semi-explicit DAEs. The results are also relevant to
the NMPC algorithm because it is based on the state estimation algorithms and the dynamic
optimization algorithm. In item g), we demonstrate (using a numerical example) that the state
estimation algorithms can be used for soft sensing of the phase compositions in the flash separation
process. Furthermore, we consider a numerical example of economical NMPC (using the EKF in
the NMPC algorithm) for disturbance rejection in the flash separation process.

Next, we describe the main contributions of this work, and we provide references to the
publications (which are part of this thesis) in which the contributions are described. We also
present some of the key equations involved in this work (i.e. the semi-explicit DAE form, the state
estimation problem, and the dynamic optimization problem) in order to give a brief overview of
the types of models and problems that we consider. Finally, we mention that although several of
the main contributions are related to UV flash processes, these contributions are also relevant for
other dynamical flash processes (e.g. VT flash processes) because they can be modeled using DAEs
in the same semi-explicit form. The main contributions of this thesis are as follows.
ThermoLib. We develop an open-source thermodynamic software library called ThermoLib
[142, 143]. The thermodynamic model in ThermoLib uses 1) correlations and data from the DIPPR
database and 2) cubic equations of state. ThermoLib provides Matlab and C routines for evaluating
the enthalpy, entropy, and volume of ideal gas mixtures, ideal liquid mixtures, and nonideal mixtures
(both vapor and liquid). The main novelty of ThermoLib is that its routines also evaluate the first
and second order derivatives of the thermodynamic functions. We derive the expressions for these
derivatives analytically.
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Thermodynamically rigorous thermal and isothermal compositional reservoir flow
models. We present novel and thermodynamically rigorous thermal and isothermal composi-
tional reservoir flow models using the UV and the VT flash formulated as equality constrained
optimization problems [145, 147, 148]. Thermal and compositional reservoir flow models based on
the UV flash have not been considered before, and the VT flash has not previously been formulated
as an optimization problem in isothermal and compositional reservoir flow models.
Semi-explicit DAE form. We demonstrate that it is natural to formulate the thermal and
isothermal compositional reservoir flow models as DAEs in the semi-explicit form [145, 147, 148]

G(x(t), y(t), z(t)) = 0, (1.1a)
ẋ(t) = F (y(t), u(t), d(t)). (1.1b)

x(t) is a vector of state variables, y(t) is a vector of algebraic variables, and z(t) is a vector of adjoint
algebraic variables. u(t) are manipulated inputs, and d(t) are disturbance variables. The algebraic
equations (1.1a) represent phase equilibrium conditions, the differential equations (1.1b) represent
conservation equations, and x(t) are the conserved quantities. In the semi-explicit DAE form (1.1),
the right-hand side of the conservation equations is independent of the conserved quantities, i.e.
x(t) does not appear in the right-hand side of (1.1b).

We formulate the phase equilibrium problems as equality constrained optimization problems in
the form

min
y

f(y), (1.2a)

subject to g(y) = x, (1.2b)
h(y) = 0. (1.2c)

The first order optimality conditions (also called Karush-Kuhn-Tucker or KKT conditions) of the
optimization problem (1.2) are the phase equilibrium conditions which are represented by the
algebraic equations (1.1a). We describe the first order optimality conditions of (1.2) in Appendix
A.
State estimation of UV flash processes. We consider state estimation of UV flash processes
[144, 146]. We use the continuous-discrete EKF, UKF, PF, and EnKF, and we consider stochastic
semi-explicit DAEs in the form

G(x(t),y(t), z(t)) = 0, (1.3a)
dx(t) = F (y(t), u(t), d(t))dt+ σ(y(t), u(t), d(t))dω(t). (1.3b)

The states, x(t), the algebraic variables, y(t), and the adjoint algebraic variables, z(t), are
stochastic variables. The second term in (1.3b) represents the uncertainty in the process, e.g. due
to 1) uncertainty in the process inputs, 2) unmodeled dynamics, or 3) limited accuracy of model
parameters. ω(t) is a standard Wiener process. The measurements, ym(tk), of the process outputs,
zm(tk), are obtained at discrete times, tk:

zm(tk) = H(y(tk)), (1.4a)
ym(tk) = zm(tk) + v(tk). (1.4b)

(1.4a) is a model of the sensors, and v(tk) represents the measurement noise.
Dynamic optimization of UV flash processes. We consider dynamic optimization of UV flash
processes using a novel gradient-based dynamic optimization algorithm based on the single-shooting
method and the discrete adjoint method [139–141]. We formulate the algorithm for dynamic
optimization problems in the form

min
[x(t);y(t);z(t)]

tf
t0
,{uk}N−1

k=0

φ =
∫ tf

t0

Φ(y(t), u(t), d(t))dt, (1.5a)

11
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subject to

x(t0) = x̂0, (1.5b)
G(x(t), y(t), z(t)) = 0, t ∈ [t0, tf ], (1.5c)
ẋ(t) = F (y(t), u(t), d(t)), t ∈ [t0, tf ], (1.5d)
u(t) = uk, t ∈ [tk, tk+1[, k = 0, . . . , N − 1, (1.5e)
d(t) = d̂k, t ∈ [tk, tk+1[, k = 0, . . . , N − 1, (1.5f)
{uk}N−1

k=0 ∈ U . (1.5g)

(1.5b) is an initial condition, and (1.5c)-(1.5d) are the semi-explicit DAEs (1.1) used to model the
UV flash processes. (1.5e) and (1.5f) are zero-order-hold (ZOH) parametrizations of the manipulated
inputs and the disturbance variables. Finally, (1.5g) represents constraints on the manipulated
inputs. t0 and tN = tf are the initial and final time, and N is the number of control intervals.
[x(t); y(t); z(t)]tft0 is a vector of dependent decision variables, and {uk}N−1

k=0 are independent decision
variables. The initial estimate of the states, x̂0, and the predicted disturbance variables, {d̂k}N−1

k=0 ,
are parameters in the optimization problem.
NMPC of UV flash processes. We formulate an algorithm for NMPC of UV flash processes
using the state estimation algorithms and the gradient-based dynamic optimization algorithm
mentioned above. For each new set of measurements, the state estimation algorithm is used to
estimate the current states. Next, the dynamic optimization algorithm is used to solve a dynamic
optimization problem in the form (1.5) where the current state estimate is the initial condition in
(1.5b). The NMPC algorithm is described in the paper in Appendix N which is in preparation for
submission.
Dynamic optimization of thermal and isothermal waterflooding processes. We use the
gradient-based dynamic optimization algorithm and the thermodynamically rigorous thermal and
isothermal compositional reservoir flow models to compute optimized waterflooding strategies
[145, 147, 148]. Dynamic optimization of thermal and isothermal compositional reservoir flow
models based on the UV and the VT flash has not been considered before.

1.4 Outline of the thesis

Part I Models (Chapter 2-4). In this part, we formulate the models of the flash separation
process and the thermal and isothermal waterflooding processes. In Chapter 2, we describe the
thermodynamic model (implemented in ThermoLib) that we use to evaluate the thermodynamic
functions in these models. We present the model of the flash separation process in Chapter 3, and
we present the thermal and isothermal compositional reservoir flow models in Chapter 4.
Part II Algorithms (Chapter 5-8). We describe numerical algorithms for simulation, state
estimation, dynamic optimization, and NMPC of semi-explicit DAEs in this part. In Chapter 5,
we describe two approaches for the numerical simulation of (deterministic) semi-explicit DAEs
based on Euler’s implicit method. Furthermore, we present an approach for numerical simulation
of stochastic semi-explicit DAEs based on a semi-implicit discretization scheme. In Chapter 6, we
describe the continuous-discrete EKF, UKF, PF, and EnKF, and we present the gradient-based
dynamic optimization algorithm in Chapter 7. Finally, we discuss the NMPC algorithm in Chapter
8.
Part III Examples (Chapter 9-10). In this part, we present numerical examples which involve
the models described in Part I and the algorithms described in Part II. In Chapter 9, we present
numerical examples of state estimation, dynamic optimization, and NMPC of the flash separa-
tion process. Furthermore, we discuss the computational performance of the Matlab and/or C
implementations of the algorithms for these examples, and we present a performance study of
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the dynamic optimization algorithm. In Chapter 10, we present numerical examples of dynamic
optimization of the thermal and isothermal compositional waterflooding processes, and we discuss
the computational efficiency of the C/C++ implementation of the dynamic optimization algorithm
for these examples.
Part IV Conclusions (Chapter 11-12). We present conclusions in Chapter 11, and we provide
a number of suggestions for future work in Chapter 12.
Part V Appendix (Appendix A-P). This part contains 1) appendices and 2) the twelve
research papers and the two technical reports written during this Ph.D. project. In Appendix A, we
describe the first order optimality conditions of the optimization problem (1.2), and in Appendix
B, we describe the workstation that we use for carrying out the numerical examples presented
in Part III. In the appendix, the papers and the technical reports are organized in chronological
order as shown in Fig. 1.4 (the paper that is published in Computers and Chemical Engineering,
abbreviated C&CE, is positioned after the date of online publication). Here, we present the papers
and the technical reports based on subject.

In the technical report in Appendix O, we describe the thermodynamic model that is implemented
in ThermoLib. The technical report also contains analytical expressions for the first and second
order derivatives of the thermodynamic functions. The paper in Appendix D presents a performance
study of the ThermoLib routines.

The technical report in Appendix P describes 1) the computation of fugacities (and fugacity
coefficients) based on the thermodynamic model in ThermoLib, 2) the solution of the PT flash, and
3) the computation of phase envelopes. The paper in Appendix H discusses 1) the formulation of
flash problems as optimization problems, 2) the relations between different types of flash problems,
and 3) the sensitivity computations that are relevant to efficient gradient-based dynamic simulation
and optimization of flash processes.

The papers in Appendix C, E, and G describe the algorithm for gradient-based dynamic
optimization of UV flash processes, i.e. of semi-explicit DAEs. We use that algorithm for dynamic
optimization of the thermodynamically rigorous models of thermal and isothermal compositional
reservoir flow in the papers in Appendix I, L, and M. The papers in Appendix J and K describe
the continuous-discrete EKF, UKF, PF, and EnKF for state estimation of UV flash processes,
and the paper in Appendix N describes NMPC of UV flash processes (using the EKF in the
NMPC algorithm). Finally, the author of this thesis has coauthored the paper in Appendix F
on gradient-based dynamic optimization of a distillation column (which is modeled using the UV
flash).
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Fig. 1.4: An overview of the papers written during this Ph.D. project. In the papers, we present
numerical examples of dynamic optimization (Dyn opt.), state estimation (State est.), and NMPC of a
flash separation process (leftmost picture in the bottom), a distillation column (middle picture in the
bottom), and waterflooding processes (rightmost picture in the bottom). Furthermore, one paper discusses
the ThermoLib software library and another paper discusses phase equilibrium computations in reservoir
simulation and optimization (Flash comp.). We refer to Appendix C-N for more information about where
the papers are published.
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Chapter 2
Thermodynamic model

In this chapter, we describe the thermodynamic model that is implemented in ThermoLib. The
model consists of a set of expressions for the enthalpy, H = H(T, P, n), entropy, S = S(T, P, n),
and volume, V = V (T, P, n), of a mixture as functions of temperature, T , pressure, P , and mixture
composition (in moles), n. All other thermodynamic functions can be computed using fundamental
thermodynamic relations: the internal energy is U = H − PV , the Gibbs energy is G = H − TS,
and the Helmholtz energy is A = U − TS. The thermodynamic functions appear in the model of
the flash separation process described in Chapter 3 and in the reservoir flow models described in
Chapter 4. The first and second order derivatives of the thermodynamic functions are necessary
in the gradient-based algorithms described in Part II. However, we omit the description of these
derivatives for the sake of the presentation. Instead, we refer to the technical report in Appendix O
where they are described. We briefly describe the thermodynamic model in Section 2.1. In Section
2.2, we describe the DIPPR correlations that are relevant to the thermodynamic properties of ideal
gas and ideal liquid mixtures described in Section 2.3 and Section 2.4. In Section 2.5, we present
expressions for the thermodynamic properties of nonideal mixtures. Finally, we present a brief
summary of this chapter in Section 2.6. The content of this chapter is based on the technical report
in Appendix O.

2.1 Brief description

In this chapter, we present expressions for the enthalpy, entropy, and volume of 1) ideal gas mixtures,
2) ideal liquid mixtures, and 3) nonideal mixtures (i.e. both nonideal gas and liquid mixtures). We
use the ideal gas law and a correlation for the pure component ideal gas heat capacity (from the
DIPPR database) to describe the thermodynamic properties of ideal gas mixtures. In order to
describe the thermodynamic properties of ideal liquid mixtures, we use 1) a DIPPR correlation for
the pure component vaporization (or saturation) pressure, 2) a DIPPR correlation for the pure
component liquid volume, and 3) the expressions for the thermodynamic properties of ideal gas
mixtures. Finally, we use the expressions for the thermodynamic properties of ideal gas mixtures
together with expressions based on the cubic equations of state to describe the thermodynamic
properties of nonideal mixtures.

2.2 DIPPR correlations

In this section, we describe correlations for the ideal gas heat capacity, the vaporization pressure, and
the liquid volume of a pure component as functions of temperature, T , in K. The correlations and the
parameters come from the DIPPR database. These properties are relevant to the thermodynamic
properties of ideal gas and liquid mixtures that are described in Section 2.3 and 2.4.
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2. Thermodynamic model

2.2.1 The ideal gas heat capacity

The DIPPR correlation for the ideal gas heat capacity of component k, cigP,k = cigP,k(T ), is

cigP,k = Ak +Bk

(
Ck

T

sinh
(
Ck

T

))2

+Dk

(
Ek

T

cosh
(
Ek

T

))2

. (2.1)

The parameters in the correlation, Ak, Bk, Ck, Dk, and Ek, are specific to this correlation and to
each chemical component. The unit of the heat capacity is J/(kmol ·K). We use the integral of
the heat capacity in the expressions for the ideal gas enthalpy. We express the integral using the
auxiliary function Γk = Γk(T ):∫ T1

T0

cigP,kdT = Γk(T1)− Γk(T0), (2.2a)

Γk(T ) = AkT +BkCk coth
(
Ck
T

)
−DkEk tanh

(
Ek
T

)
. (2.2b)

Furthermore, we use the integral of the heat capacity divided by temperature in the expression for
the ideal gas entropy. We express this integral using another auxiliary function, Πk = Πk(T ):∫ T1

T0

cigP,k
T

dT = Πk(T1)−Πk(T0), (2.3a)

Πk(T ) = Ak ln(T ) +Bk

(
Ck
T

coth
(
Ck
T

)
− ln sinh

(
Ck
T

))
−Dk

(
Ek
T

tanh
(
Ek
T

)
− ln cosh

(
Ek
T

))
. (2.3b)

2.2.2 Vaporization pressure

The vaporization pressure (or saturation pressure) of component k, P satk = P satk (T ), is

P satk = exp
(
lnP satk

)
, (2.4a)

lnP satk = Ak + Bk
T

+ Ck ln(T ) +DkT
Ek . (2.4b)

Again, the correlation parameters, Ak, Bk, Ck, Dk, and Ek, are specific to the above correlation
and to each chemical component. The unit of the vaporization pressure is Pa. Furthermore,
the expressions for the thermodynamic properties of ideal liquid mixtures involve the first order
derivative of the vaporization pressure,

∂P satk

∂T
= P satk

∂ lnP satk

∂T
, (2.5a)

∂ lnP satk

∂T
= 1
T

(
Ck −

Bk
T

+DkEkT
Ek

)
. (2.5b)

2.2.3 Liquid volume

The DIPPR correlation for the molar liquid volume of the k’th component, vlk = vlk(T ), is

vlk =
B

1+
(

1− T
Ck

)Dk

k

Ak
. (2.6)

As with the other two correlations, the parameters, Ak, Bk, Ck, and Dk, are specific to each
chemical component and to the above correlation. The unit of the molar liquid volume is m3/kmol.
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The expressions for the ideal liquid properties also involve the first order derivative of the molar
liquid volume,

∂vlk
∂T

= − lnBk
Dk

Ck

(
1− T

Ck

)Dk−1
vlk. (2.7a)

2.3 Ideal gas mixtures

In this section, we present expressions for the enthalpy, entropy, and volume of an ideal gas
mixture that consists of NC chemical components. The composition of the mixture (in moles) is
n = [n1; · · · ;nNC

]. In Section 2.3.1, we describe the molar enthalpy, entropy, and volume of a pure
component ideal gas that consists of the k’th component. Next, we use those properties to describe
the ideal gas mixture properties in Section 2.3.2.

2.3.1 Pure component ideal gas

The DIPPR database provides the molar enthalpy and entropy at a reference temperature, T0, and
pressure, P0, i.e. higk (T0, P0) and sigk (T0, P0). In order to derive expressions for the molar enthalpy
and entropy at arbitrary temperature and pressure, we consider the combination of an isobaric
(constant pressure) and an isothermal (constant temperature) process. The derivations are based
on the following fundamental thermodynamic relations applied to the molar ideal gas properties
[111, Table 3]. For the isobaric process,

∂higk
∂T

= cigP,k, (2.8a)

∂sigk
∂T

=
cigP,k
T

, (2.8b)

and for the isothermal process,

∂higk
∂P

= vigk − T
∂vigk
∂T

, (2.9a)

∂sigk
∂P

= −
∂vigk
∂T

. (2.9b)

The molar ideal gas volume of the k’th component, vigk = vigk (T, P ), is given by the ideal gas law:

vigk = RT

P
. (2.10)

R is the gas constant. The partial derivative of the molar ideal gas volume with respect to
temperature is

∂vigk
∂T

= R

P
. (2.11)

For the isobaric process, we integrate the thermodynamic relations (2.8) from T0 to T :

higk (T, P0) = higk (T0, P0) +
∫ T

T0

cigP,k dT, (2.12a)

sigk (T, P0) = sigk (T0, P0) +
∫ T

T0

cigP,k
T

dT. (2.12b)

For the isothermal process, we integrate the relations (2.9) from P0 to P :

higk (T, P ) = higk (T, P0) +
∫ P

P0

vigk − T
∂vigk
∂T

dP, (2.13a)

sigk (T, P ) = sigk (T, P0)−
∫ P

P0

∂vigk
∂T

dP. (2.13b)
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The integrand in (2.13a) is zero because vigk is linear in the temperature. Therefore, the molar ideal
gas enthalpy is independent of pressure, i.e. higk (T, P ) = higk (T, P0) = higk (T ). We use (2.2a) and
(2.3a) to obtain the final expressions for the molar ideal gas enthalpy, higk = higk (T ), and entropy,
sigk = sigk (T, P ):

higk = higk (T0, P0) + Γk(T )− Γk(T0), (2.14a)
sigk = sigk (T0, P0) + Πk(T )−Πk(T0)−R(ln(P )− ln(P0)). (2.14b)

The auxiliary functions, Γk(T ) and Πk(T ), are given by (2.2b) and (2.3b).

2.3.2 Ideal gas mixture

The enthalpy, Hig = Hig(T, n), entropy, Sig = Sig(T, P, n), and volume, V ig = V ig(T, P, n), of the
ideal gas mixture are

Hig =
NC∑
k=1

nkh
ig
k , (2.15a)

Sig =
NC∑
k=1

nks
ig
k −R

NC∑
k=1

nk ln(yk), (2.15b)

V ig = NRT

P
, (2.15c)

where the vapor mole fraction, yk, and the total amount of moles, N , are

yk = nk
N
, (2.16a)

N =
NC∑
k=1

nk. (2.16b)

The second term in (2.15b) is the entropy of mixing, and (2.15c) is the ideal gas law.

2.4 Ideal liquid mixtures

In this section, we present expressions for the enthalpy, entropy, and volume of an ideal liquid
mixture of NC components with a composition of n = [n1; · · · ;nNC

]. As for the ideal gas properties,
we 1) describe the molar enthalpy, entropy, and volume of a pure component ideal liquid consisting of
the k’th component and 2) use those expressions to describe the properties of the ideal liquid mixture.
Unlike the ideal gas properties, the ideal liquid properties are not relevant to the thermodynamic
properties of nonideal mixtures that we describe in Section 2.5.

2.4.1 Pure component ideal liquid

First, we describe the molar enthalpy, entropy, and volume of vaporization, and use those properties
to express the ideal liquid properties at vaporization (or saturation) conditions, i.e. at T and
P satk = P satk (T ). Finally, we consider an isothermal process from P satk (T ) to P as in Section 2.3.1.
The volume, ∆vvapk = ∆vvapk (T ), entropy, ∆svapk = ∆svapk (T ), and enthalpy, ∆hvapk = ∆hvapk (T ), of
vaporization are

∆vvapk = RT

P satk

− vlk, (2.17a)

∆svapk = ∂P satk

∂T
∆vvapk , (2.17b)

∆hvapk = T∆svapk . (2.17c)
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The first term in (2.17a) is the molar ideal gas volume (2.10), and vlk = vlk(T ) is the liquid
volume given by the DIPPR correlation (2.6). (2.17b) is the Clausius-Clapeyron relation, and
(2.17c) is a consequence of the fact that the Gibbs energy of vaporization is zero, i.e. ∆gvapk =
∆hvapk − T∆svapk = 0. The molar ideal liquid enthalpy, hsatk = hsatk (T ), and entropy, ssatk = ssatk (T ),
at saturation conditions are

hsatk = higk (T )−∆hvapk , (2.18a)
ssatk = sigk (T, P satk )−∆svapk , (2.18b)

where the molar ideal gas enthalpy and entropy are given by (2.14a) and (2.14b). As mentioned, we
integrate the fundamental relations (2.9), applied to the molar ideal liquid properties, from P satk =
P satk (T ) to P in order to obtain expressions for the molar ideal liquid enthalpy, hidk = hidk (T, P ),
and entropy, sidk = sidk (T, P ):

hidk = hsatk +
(
vlk − T

∂vlk
∂T

)(
P − P satk

)
, (2.19a)

sidk = ssatk − ∂vlk
∂T

(
P − P satk

)
. (2.19b)

2.4.2 Ideal liquid mixture

The enthalpy, Hid = Hid(T, P, n), entropy, Sid = Sid(T, P, n), and volume, V id = V id(T, n), of the
ideal liquid mixture are

Hid =
NC∑
k=1

nkh
id
k , (2.20a)

Sid =
NC∑
k=1

nks
id
k −R

NC∑
k=1

nk ln xk, (2.20b)

V id =
NC∑
k=1

nkv
l
k, (2.20c)

where the liquid mole fraction, xk, and the total amount of moles, N , are

xk = nk
N
, (2.21a)

N =
NC∑
k=1

nk. (2.21b)

The second term in (2.20b) is the entropy of mixing.

2.5 Nonideal mixtures

In this section, we describe the enthalpy, entropy, and volume of a nonideal mixture (either vapor or
liquid) based on a cubic equation of state, e.g. the Soave-Redlich-Kwong (SRK) or Peng-Robinson
(PR) equation of state. The mixture consists of NC components and the composition (in moles)
is n = [n1; · · · ;nNC

]. First, we describe the cubic equations of state and the residual properties
that are derived from them. Next, we describe the enthalpy, entropy, and volume of the nonideal
mixture.
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2.5.1 Residual properties

We compute the molar residual enthalpy and entropy, as well as the volume, from a cubic equation
of state,

P = RT

v − bm
− am

(v + εbm)(v + σbm) . (2.22)

The scalars ε and σ are specific to each equation of state. We omit the description of the
parameters am = am(T, n) and bm = bm(n). They are described in the technical report in
Appendix O. In practice, the equation of state (2.22) is often solved for the compressibility factor,
Z = Z(T, P, n) = Pv/(RT ).1 Consequently, the molar volume of the mixture, v = v(T, P, n), is

v = RTZ

P
. (2.23)

For cubic equations of state, the molar residual enthalpy, hR = hR(T, P, n), and entropy, sR =
sR(T, P, n), are

hR = RT (Z − 1) + 1
ε− σ

1
bm

(
T
∂am
∂T
− am

)
ln
(
Z + εB

Z + σB

)
, (2.24a)

sR = R ln(Z −B) + 1
ε− σ

1
bm

∂am
∂T

ln
(
Z + εB

Z + σB

)
. (2.24b)

We omit the definition of B = B(T, P, n), and we refer to the technical reports in Appendix O and
Appendix P for more details on residual properties based on cubic equations of state.

2.5.2 Nonideal mixture

The molar enthalpy, h = h(T, P, n), and entropy, s = s(T, P, n), of a nonideal mixture are

h = hig + hR, (2.25a)
s = sig + sR, (2.25b)

where hig = hig(T, n) and sig = sig(T, P, n) are the molar enthalpy and entropy of an ideal gas
mixture, i.e. hig = Hig/N and sig = Sig/N where Hig and Sig are given by (2.15a) and (2.15b).
The total amount of moles, N , is

N =
NC∑
k=1

nk. (2.26)

Finally, the enthalpy, H = H(T, P, n), entropy, S = S(T, P, n), and volume, V = V (T, P, n), of the
nonideal mixture are

H = Nh, (2.27a)
S = Ns, (2.27b)
V = Nv. (2.27c)

2.6 Summary

In this chapter, we have presented expressions for the enthalpy, entropy, and volume of 1) ideal
gas mixtures, 2) ideal liquid mixtures, and 3) nonideal mixtures (either vapor or liquid). The
thermodynamic properties are central to the model equations in Chapter 3 and Chapter 4. Chapter
9 contains a numerical example that involves an ideal gas and liquid mixture. However, almost all
of the numerical examples in this work involve nonideal mixtures, and we compute the involved
thermodynamic functions using the expressions in Section 2.5, i.e. using a cubic equation of state.
1The cubic equation of state (2.22) has up to three solutions where one corresponds to a vapor phase, and another
corresponds to a liquid phase.

22



Chapter 3
Flash separation

In this chapter, we present a model of a flash separation process. The model is based on 1) a set of
mass and energy conservation equations and 2) a set of phase equilibrium conditions derived from
the second law of thermodynamics. The flash separation process does not involve spatial dynamics,
and it is a small-scale process compared to the reservoir flow models that we present in Chapter
4. However, it is representative of the thermal and compositional reservoir flow model because
the involved conservation equations and phase equilibrium problems are conceptually similar. In
Chapter 9, we test the algorithms that we present in Part II using the flash separation process
presented in this chapter.

We present a brief description of the separation process in Section 3.1. In Section 3.2, we
describe the phase equilibrium problem (i.e. the UV flash), and we present the conservation
equations in Section 3.3. In Section 3.4, we demonstrate that the model of the flash separation
process is in a semi-explicit DAE form. The algorithms in Part II are formulated for systems in
this form. Finally, we briefly summarize this chapter in Section 3.5. The model presented in this
chapter is based on the models that are presented in the papers in Appendix C, E, G, J, K, and N.

3.1 Brief description

The flash separation process is illustrated in Fig. 3.1. The separator is continuously supplied by a
vapor-liquid mixture feed that consists of NC chemical components. The vapor phase and the liquid
phase exit the separator through separate vapor-liquid streams. The separator is subject to either
heating or cooling. The vapor phase and the liquid phase in the flash separator are assumed to be
in thermal, mechanical, and chemical equilibrium at all times, and we assume that both phases
always exist. The total vapor flow rate, FV , the total liquid flow rate, FL, and the heat input, Q,
are manipulated inputs, i.e. they are used to control the process. In Chapter 9, we present several
numerical examples that involve this flash separation process. The examples include 1) estimation
of the compositions of the vapor-liquid mixture based on temperature and pressure measurements
(an example of soft sensing) and 2) control strategies that minimize energy consumption (in terms
of cooling) while satisfying an upper bound on the separator pressure (as well as other constraints).

3.2 Phase equilibrium

As mentioned, the vapor phase (v) and the liquid phase (l) in the separator are in thermal,
mechanical, and chemical equilibrium. The thermal equilibrium implies that the temperature of
the vapor phase, T v, and the liquid phase, T l, are identical, and the mechanical equilibrium implies
that the pressure of the vapor phase, P v, and the liquid phase, P l, are identical, i.e. T = T v = T l
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3. Flash separation
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Fig. 3.1: A schematic of the flash separator. This figure originally appeared in [139].

and P = P v = P l. The chemical equilibrium implies that for each chemical component, there
is no net exchange of mass between the two phases. The second law of thermodynamics states
that the entropy, S, of a closed system in equilibrium is maximal. Furthermore, the volume,
V , of the separator is fixed, and the internal energy, U , and the total amounts of moles of
each component, n = [n1; · · · ;nNC

], are given by the conservation equations that we describe in
Section 3.3. Consequently, the equilibrium temperature, T , pressure, P , and phase compositions,
nv = [nv1; · · · ;nvNC

] and nl = [nl1; · · · ;nlNC
], maximize the entropy while satisfying the constraints

on the internal energy, the volume, and the total amounts of moles:

max
T,P,nv,nl

S = Sv(T, P, nv) + Sl(T, P, nl), (3.1a)

subject to Uv(T, P, nv) + U l(T, P, nl) = U, (3.1b)
V v(T, P, nv) + V l(T, P, nl) = V, (3.1c)
nvk + nlk = nk, k = 1, . . . , NC . (3.1d)

(3.1) is referred to as the UV flash optimization problem because U and V are specified parameters in
the problem. It is also called the UVn flash (because n is also specified) or the isoenergetic-isochoric
(constant energy-constant volume) flash. The phase equilibrium conditions are the corresponding
first order optimality conditions (also called Karush-Kuhn-Tucker or KKT conditions). The
thermodynamic functions involved in (3.1) are discussed in Chapter 2.

3.3 Mass and energy conservation

The conservation equations describe the temporal evolution of the internal energy, U , and the total
amount of moles of the k’th component, nk, in the vapor-liquid mixture in the separator:

U̇(t) = Hv
F (t) +H l

F (t)−HV (t)−HL(t) +Q(t), (3.2a)
ṅk(t) = fvF,k(t) + f lF,k(t)− vk(t)− lk(t), k = 1, . . . , NC . (3.2b)

In (3.2), we have assumed that the kinetic and potential energies of the feed stream and the
vapor-liquid streams are negligible. Hv

F = Hv
F (TF , PF , fvF ) and H l

F = H l
F (TF , PF , f lF ) are the

vapor-liquid enthalpies of the feed stream. TF and PF are the temperature and pressure of the feed
stream, and fvF,k and f lF,k are the molar vapor and liquid feed flow rates of the k’th component.
HV = FV h

v and HL = FLh
l are the enthalpies of the vapor-liquid streams where hv = hv(T, P, nv)

and hl = hl(T, P, nl) are the molar enthalpies of the vapor and liquid phases of the mixture in the
separator. vk = ykFV and lk = xkFL are the molar flow rates of the k’th component in the vapor
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3.4. Semi-explicit differential-algebraic form

and liquid streams, and yk and xk are the vapor and liquid mole fractions of the mixture in the
separator. As mentioned previously, FV and FL are the total flow rates of the vapor-liquid streams,
and Q is the heat input. The total flow rate of the feed stream is FF =

∑NC

k=1(fvF,k + f lF,k).

3.4 Semi-explicit differential-algebraic form

In this section, we demonstrate that the model of the flash separator is in the semi-explicit DAE
form (1.1) which we repeat here:

G(x(t), y(t), z(t)) = 0, (3.3a)
ẋ(t) = F (y(t), u(t), d(t)). (3.3b)

The states, x(t), the algebraic variables, y(t), and the adjoint algebraic variables, z(t), are

x = [U ;n] ∈ R1+NC , (3.4a)
y = [T ;P ;nv;nl] ∈ R2+2NC , (3.4b)
z = [η;µ] ∈ R2+NC , (3.4c)

and the manipulated inputs, u(t), and the disturbance variables, d(t), are

u = [Q;FV ;FL] ∈ R3, (3.4d)
d = [TF ;PF ; fvF ; f lF ] ∈ R2+2NC . (3.4e)

The algebraic equations (3.3a) represent the phase equilibrium conditions, i.e. the first order
optimality conditions of the UV flash optimization problem (3.1). η and µ in (3.4c) are the
corresponding Lagrange multipliers. The differential equations (3.3b) represent the conservation
equations (3.2). We discuss the phase equilibrium conditions in Section 3.4.1 and the conservation
equations in Section 3.4.2.

3.4.1 Phase equilibrium conditions

The UV flash optimization problem (3.1) is in the form

min
y

f(y), (3.5a)

subject to g(y) = x, (3.5b)
h(y) = 0. (3.5c)

The objective function in (3.5a) is the entropy of the vapor-liquid mixture in the separator with a
negative sign, −S.1 The constraint (3.5b) represents the specification of the internal energy, U ,
and the total amounts of moles, n, and the constraint (3.5c) represents the specification of the
volume, V . The first order optimality conditions of the optimization problem (3.5) are derived in
Appendix A. They are in the form

G(x, y, z) = 0. (3.6)

The Lagrange multipliers, z = [η;µ], are associated with the constraints (3.5b) and (3.5c).

1The sign is negative because (3.1) is a maximization problem and (3.5) is a minimization problem.
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3. Flash separation

3.4.2 Conservation equations

The left-hand side of the conservation equations (3.2) contains the time derivatives of the internal
energy, U , and the total amounts of moles, n, i.e. the time derivatives of the state variables, x. The
quantities related to the feed stream depend only on the properties of the feed: TF , PF , fvF , and
f lF . The quantities related to the vapor-liquid streams depend on 1) the properties of the mixture
in the separator, i.e. T , P , nv, and nl, and 2) the manipulated inputs FV and FL. Finally, the
heat input, Q, in the energy conservation equation is a manipulated input. No quantity on the
right-hand side depends on the internal energy, U , or the total amounts of moles, n. In conclusion,
the right-hand side of the conservation equations (3.2) depends only on the algebraic variables, y,
the manipulated inputs, u, and the disturbance variables, d, i.e. the conservation equations are in
the form

ẋ(t) = F (y(t), u(t), d(t)). (3.7)

3.5 Summary

In this chapter, we have presented a model of a flash separation process. The model consists of
a set of phase equilibrium conditions (algebraic equations) and a set of conservation equations
(differential equations). We formulate the phase equilibrium problem (i.e. the UV flash) as an
optimization problem based on the second law of thermodynamics, and we have demonstrated that
the model is in a semi-explicit DAE form. The algorithms in Part II are formulated for systems
in this form. We use the model of the flash separation process in the numerical examples and
performance tests in Chapter 9. Furthermore, the conservation equations and the phase equilibrium
problem in the model of the flash separation process are conceptually similar to those in the thermal
and compositional reservoir flow model that we present in Chapter 4.
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Chapter 4
Reservoir flow

In this chapter, we present models of thermal and isothermal waterflooding processes. The models
are compositional, and they consist of 1) a set of conservation equations (partial differential
equations) and 2) phase equilibrium conditions (algebraic equations) derived from the second law of
thermodynamics. The thermal and compositional model involves both mass and energy conservation
equations. The isothermal and compositional model only involves mass conservation equations,
and they are identical to the ones in the thermal and compositional model. The phase equilibrium
problem in the thermal model (the UV flash) is conceptually similar to the phase equilibrium
problem in the model of the flash separation process presented in Chapter 3. The second law of
thermodynamics states that the entropy of a closed system in equilibrium is maximal. Consequently,
it does not apply to isothermal systems because they are not closed. However, the combination
of an isothermal system and its surroundings is closed. The condition of maximal entropy of
the combination of the isothermal system and its surroundings is equivalent to a condition of
minimal Helmholtz energy of the isothermal system alone [28]. This is the condition used in the VT
flash which is the phase equilibrium problem that is relevant to the isothermal and compositional
model. We use a finite volume method to discretize the conservation equations, and we enforce
the condition of phase equilibrium in each grid cell in the discretized reservoir. In Chapter 10, we
use the dynamic optimization algorithm that we describe in Chapter 7 to optimize thermal and
isothermal waterflooding strategies based on the two models that we present in this chapter.

We briefly describe the thermal and isothermal waterflooding processes in Section 4.1. In
Section 4.2 and 4.3, we present the thermal and isothermal compositional models and demonstrate
that they are both in the semi-explicit DAE form. Finally, we briefly summarize this chapter in
Section 4.4. The content of this chapter is based on the papers in Appendix I, L, and M.

4.1 Brief description

Fig. 4.1 illustrates the waterflooding process for a rectangular (discretized) reservoir. We consider
an oil reservoir that consists of a porous rock which contains water, oil, and gas as illustrated in
Fig. 4.2. The water phase is not miscible with the oil and the gas phases, and it only contains a
single water component. We assume that the oil and gas phases contain NC chemical components
that exist in both phases. The three fluid phases are in thermal and mechanical equilibrium with
each other and with the reservoir rock. Furthermore, the oil and the gas phases are in chemical
equilibrium. We assume that all three fluid phases always exist and that equilibrium is reached
instantaneously, i.e. that the three fluid phases and the rock are in equilibrium at all times. There
can be several injector and producer wells drilled into the reservoir. The injector wells inject water
into the reservoir, and the producer wells produce all three fluid phases. The injectors and producers
create pressure gradients which, together with gravity, cause an advective flow of the reservoir fluid.
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Injection well

Production wellwater

oil and gas

Fig. 4.1: An illustration of waterflooding. This figure originally appeared in [145].

The flow of energy in the reservoir is caused by 1) the advection of the fluid, 2) thermal conduction
in the rock due to temperature gradients, and 3) exchange of energy with the surroundings of the
reservoir. The isothermal model involves an assumption of constant temperature throughout the
reservoir, and therefore, it does not contain an energy conservation equation. We consider the
porosity field to be heterogeneous and the permeability field to be heterogeneous and anisotropic.
The manipulated inputs are the bottom-hole pressures (BHPs) in the injectors and producers. In
Chapter 10, we present optimized thermal and isothermal waterflooding strategies which maximize
the amount of oil produced over a period of several years.

4.2 Thermal and compositional reservoir flow model

In this section, we describe the thermal and compositional reservoir flow model. We describe the
phase equilibrium problem in Section 4.2.1 and the conservation equations in Section 4.2.2 and
Section 4.2.3. We describe the well flow equations in Section 4.2.4, and we discuss Darcy’s law,
relative permeability, and viscosity in Section 4.2.5. Finally, we discretize the mass and energy
conservation equations using a finite volume method in Section 4.2.7, and we demonstrate that the
resulting equations are in a semi-explicit DAE form in Section 4.2.8.

4.2.1 Phase equilibrium

As mentioned previously, the reservoir fluid consists of water (w), oil (o), and gas (g). These three
fluid phases are in thermal and mechanical equilibrium with the reservoir rock (r), i.e. Tα = T and
Pα = P for α ∈ {w, o, g, r}. Furthermore, the oil and the gas phases are in chemical equilibrium.
The phase equilibrium problem is the UV flash optimization problem:

max
T,P,nw,no,ng

S = Sw + So + Sg + Sr, (4.1a)

subject to Uw + Uo + Ug + Ur = U, (4.1b)
V w + V o + V g + V r = V, (4.1c)
nw = nw, (4.1d)
nok + ngk = nk, k = 1, . . . , NC . (4.1e)

Sα = Sα(T, P, nα) is the entropy, Uα = Uα(T, P, nα) is the internal energy, and V α = V α(T, P, nα)
is the volume of phase α ∈ {w, o, g, r}. nα is the composition (in moles) of phase α ∈ {w, o, g, r}.
The condition of maximal entropy is given by the second law of thermodynamics. U , nw, and nk
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Fig. 4.2: An illustration of the fluid phases (water, oil, and gas) and the rock in a grid cell. This figure
originally appeared in [145].

are the specified internal energy and the total amounts of moles of water and component k. They
are given by the conservation equations. V is the specified volume, i.e. the volume of the grid cell in
the discretized reservoir. The solution to the UV flash optimization problem (4.1) is the equilibrium
temperature, pressure, and fluid phase compositions, i.e. T , P , and nα for α ∈ {w, o, g}. The rock
composition, nr, and the specified quantities, U , V , nw, and n = [n1; · · · ;nNC

], are parameters in
the phase equilibrium problem.

4.2.2 Conservation of mass

The mass conservation equations describe the temporal evolution of the molar concentrations of the
water component, Cw, and the k’th component, Ck. The conservation equations contain 1) a flux
term that describes the flow in the reservoir and 2) a source term that describes the well flows:

∂tCw = −∇ ·Nw +Qw, (4.2a)
∂tCk = −∇ ·Nk +Qk, k = 1, . . . , NC . (4.2b)

Nk is the molar flux of the k’th component:

Nk = xkNo + ykNg, k = 1, . . . , NC . (4.3)

We describe the molar flux of phase α ∈ {w, o, g}, Nα, in Section 4.2.5. xk and yk are the oil and
gas mole fractions of the k’th component, respectively. The source terms are

Qw = Qw,inj −Qw,prod, (4.4a)
Qk = −

(
xkQ

o,prod + ykQ
g,prod) , k = 1, . . . , NC . (4.4b)

In Section 4.2.4, we describe the molar water injection flow rate, Qw,inj, and the molar production
flow rate of phase α ∈ {w, o, g}, Qα,prod.

4.2.3 Conservation of energy

First, we formulate the energy conservation equations without assuming thermal equilibrium
between the fluid (f) and the rock (r). Therefore, we distinguish between their temperatures, T f

and T r. Subsequently, we assume that energy is transferred instantaneously between the fluid and
the rock such that they are always in thermal equilibrium, and we derive a single combined energy
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4. Reservoir flow

conservation equation. The energy conservation equations describe the temporal evolution of the
internal energy per unit volume of the fluid, uf , and the rock, ur:

∂tu
f = −∇ ·Nf

u +Qfu, (4.5a)
∂tu

r = −∇ ·Nr
u +Qru. (4.5b)

The heat flux of the fluid is

Nf
u = hwNw + hoNo + hgNg, (4.6)

where hα is the molar enthalpy of phase α ∈ {w, o, g}. We describe the conductive heat flux in the
rock using Fourier’s law of thermal conduction [74, Chap. 1]:

Nr
u = −krT∇T r. (4.7)

krT is the thermal conductivity of the rock. The source term in (4.5a) represents 1) the flow of
energy to and from the wells and 2) the flow of energy from the rock to the fluid:

Qfu = hw,injQw,inj −
∑

α∈{w,o,g}

hαQα,prod +Qrf . (4.8)

hw,inj is the molar enthalpy of the water that is injected into the reservoir. We use Newton’s law of
cooling [74, Chap. 1] to model the thermal conduction from the rock to the fluid:

Qrf = −krfT (T f − T r). (4.9)

krfT is the thermal conductivity of the interface between the fluid and the rock. The source term in
(4.5b) represents the flow of energy from the rock to 1) the fluid and 2) the surroundings (s) of the
reservoir:

Qru = −Qrf −Qrs. (4.10)

We use Newton’s law of cooling to describe the flow of energy from the rock to the surroundings of
the reservoir:

Qrs = −krsT (T s − T r). (4.11)

krsT is the thermal conductivity of the interface between the rock and the reservoir surroundings.
The temperature of the reservoir surroundings is T s.

Now, we assume that the thermal conductivity of the interface between the fluid and the rock,
krfT , is infinite. Consequently, energy is transferred instantaneously between the fluid and the
rock such that they are in thermal equilibrium at all times, i.e. T f = T r = T . We add the two
conservation equations, (4.5a) and (4.5b), in order to obtain a single conservation equation for the
internal energy of both the fluid and the rock, u = uf + ur:

∂tu = −∇ ·Nu +Qu. (4.12)

The heat flux and the source term in the combined energy conservation equation are

Nu = hwNw + hoNo + hgNg − krT∇T, (4.13a)

Qu = hw,injQw,inj −
∑

α∈{w,o,g}

hαQα,prod −Qrs. (4.13b)
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4.2. Thermal and compositional reservoir flow model

4.2.4 Well flow rates

The injection and production well flow rates are only nonzero for grid cells in which the injection
and production wells are perforated. The water injection flow rate is

Qw,inj = 1
V
WIρw k

w
r

µw
(
P bhp − P

)
, (4.14)

and the production flow rates are

Qα,prod = 1
V
WIρα k

α
r

µα
(
P − P bhp) , α ∈ {w, o, g}. (4.15)

V is the volume of the grid cell, WI is the well index, ρα is the molar density of phase α ∈ {w, o, g},
and P bhp is the BHP. We describe the relative permeability, kαr , and the viscosity, µα, in Section
4.2.5.

4.2.5 Darcy’s law, relative permeability, and viscosity

The molar phase flux is

Nα = ραuα, α ∈ {w, o, g}, (4.16)

where the volumetric phase flux is given by Darcy’s law:

uα = −k
α
r

µα
K (∇P − ρ̄αg∇z) , α ∈ {w, o, g}. (4.17)

K is the permeability tensor, and g is the gravity acceleration. z is the depth, and ρ̄α is the
mass density of phase α ∈ {w, o, g}. We describe the relative permeabilities using Stone’s model
II [47]. The relative permeability of phase α ∈ {w, o, g} is a function of the saturation, Ŝα =
V α/(V w + V o + V g). Therefore, the relative permeabilities are functions of temperature, pressure,
and all phase compositions:

kαr = kαr (T, P, nw, no, ng), α ∈ {w, o, g}. (4.18)

We use the model by Lohrenz et al. [103] to describe the viscosities of the oil and the gas phases as
functions of temperature, pressure, and phase composition.1 We describe the water viscosity using
the relation (1/µw)(∂µw/∂P ) = cwµ . cwµ is the viscosibility of the water phase. In conclusion, the
viscosities depend on the temperature, pressure, and phase composition:

µα = µα(T, P, nα), α ∈ {w, o, g}. (4.19)

We describe the relative permeabilities and the oil and gas viscosities in the paper in Appendix M.

4.2.6 Thermodynamics

We model the oil and the gas phase as nonideal mixtures, i.e. we use the expressions from Section
2.5 to describe their thermodynamic properties. We model the water phase as an ideal liquid, i.e. we
use the expressions from Section 2.4. The thermodynamic properties of the rock, Hr = Hr(T, P, nr),
Sr = Sr(T, P, nr), and V r = V r(T, P, nr), are based on a temperature-independent equation of
state, i.e. (1/V r)(∂V r/∂P ) = cr where cr is the rock compressibility.

1In equation (14) in the paper by Lohrenz et al. [103], they use an expression for the pure component viscosities by
Jossi et al. [84]. However, there is a typo, i.e. the factor 0.40758 should be 0.040758 (a factor of 10 smaller).
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4.2.7 Finite volume discretization

In this section, we first describe the finite volume discretization of partial differential equations in
the form

∂tC = −∇ ·N +Q. (4.20)

Next, we apply the finite volume discretization to the mass and energy conservation equations, (4.2)
and (4.12), which are in this form. We discretize the reservoir using a set of grid cells, {Ωi}i∈N .
The set N contains the indices of the grid cells. We assume that 1) each grid cell is a polyhedron
and 2) each face of the grid cell is shared by exactly two cells.

We integrate the partial differential equation (4.20) over each grid cell:

∂t

∫
Ωi

C dV = −
∫

Ωi

∇ ·N dV +
∫

Ωi

QdV, i ∈ N . (4.21)

We have interchanged integration and differentiation in the left-hand side of (4.21). Next, we apply
Gauss’ divergence theorem to the integral of the divergence of the flux:∫

Ωi

∇ ·N dV =
∫
∂Ωi

N · n dA, i ∈ N . (4.22)

∂Ωi denotes the boundary of Ωi, and n denotes the outward normal vector. We express the
boundary integral as the sum of integrals over each face of the grid cell:∫

∂Ωi

N · n dA =
∑

j∈N (i)

∫
γij

N · n dA, i ∈ N . (4.23)

The set N (i) contains the indices of the cells that share a face with Ωi, and γij is the face shared
by Ωi and Ωj . We approximate the integral of the source term in (4.21) and the integral over the
face in (4.23) using quadrature:∫

Ωi

QdV ≈ (QV )i, i ∈ N , (4.24a)∫
γij

N · n dA ≈ (AN · n)ij , i ∈ N , j ∈ N (i). (4.24b)

Vi is the volume of the grid cell Ωi, and Aij is the area of the face γij .
Now, we apply the finite volume discretization to the mass and energy conservation equations.

We can evaluate the integrals of the internal energy per unit volume and the concentrations exactly:

∫
Ωi

u dV = Ui, i ∈ N , (4.25a)∫
Ωi

Cw dV = nw,i, i ∈ N , (4.25b)∫
Ωi

Ck dV = nk,i, i ∈ N . (4.25c)

We use the two-point flux approximation described by Lie [101] to evaluate the flux at the center
of γij in the right-hand side of (4.24b). For the mass and energy conservation equations, this
approximation results in

(ANu · n)ij ≈ −
∑

α∈{w,o,g}

(hαΓĤα∆Φα)ij + (ΓT∆T )ij , i ∈ N , j ∈ N (i), (4.26a)

(ANw · n)ij ≈ −(ΓĤw∆Φw)ij , i ∈ N , j ∈ N (i), (4.26b)
(ANk · n)ij ≈ −(xkΓĤo∆Φo + ykΓĤg∆Φg)ij , i ∈ N , j ∈ N (i). (4.26c)
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4.2. Thermal and compositional reservoir flow model

∆Tij = Tj − Ti is the temperature difference. The geometric part of the transmissibilities, Γij , is

Γij = Aij

(
Γ̂−1
ij + Γ̂−1

ji

)−1
, i ∈ N , j ∈ N (i), (4.27a)

Γ̂ij =
(
Ki

cij − ci
|cij − ci|2

)
· nij , i ∈ N , j ∈ N (i). (4.27b)

ci is the cell center, cij is the face center, and Γ̂ij is referred to as the one-sided transmissibility.
ΓT,ij is defined similarly:

ΓT,ij = Aij

(
Γ̂−1
T,ij + Γ̂−1

T,ji

)−1
, i ∈ N , j ∈ N (i), (4.28a)

Γ̂T,ij =
(
krT,i

cij − ci
|cij − ci|2

)
· nij , i ∈ N , j ∈ N (i). (4.28b)

The main difference between (4.27) and (4.28) is that the thermal rock conductivity, krT,i, appears
in place of the permeability tensor, Ki, in (4.28). The difference in potential and the fluid part of
the transmissibilities are given by

∆Φαij = (∆P − ραg∆z)ij , i ∈ N , j ∈ N (i), (4.29a)

Ĥα
ij =

{
(ραkαr /µα)i, ∆Φαij < 0,
(ραkαr /µα)j , ∆Φαij ≥ 0,

i ∈ N , j ∈ N (i). (4.29b)

The pressure difference is ∆Pij = Pj − Pi, and the difference in depth is ∆zij = zj − zi. We use
averaging to approximate the density at the face center in (4.29a), i.e. ραij ≈ (ραi + ραj )/2. We have
upwinded the fluid part of the transmissibilities in (4.29b) in order to ensure numerical stability.
We also upwind the phase enthalpy, hαij , in (4.26a) and the oil and gas mole fractions, xk,ij and
yk,ij , in (4.26c).

In conclusion, we obtain a set of differential equations which describe the temporal evolution of
the internal energy and the total amounts of moles in each grid cell:

U̇i =
∑

j∈N (i)

 ∑
α∈{w,o,g}

(hαΓĤα∆Φα)ij + (ΓT∆T )ij

+ (QuV )i, i ∈ N , (4.30a)

ṅw,i =
∑

j∈N (i)

(ΓĤw∆Φw)ij + (QwV )i, i ∈ N , (4.30b)

ṅk,i =
∑

j∈N (i)

(xkΓĤo∆Φo + ykΓĤg∆Φg)ij + (QkV )i, i ∈ N . (4.30c)

The internal energy, Ui, and the total amounts of moles, nw,i and nk,i, appear as specified quantities
in the UV flash optimization problem (4.1) for the i’th grid cell.

4.2.8 Semi-explicit DAE form

The UV flash optimization problem (4.1) is in the form

min
yi

f(yi), (4.31a)

subject to g(yi) = xi, (4.31b)
h(yi) = 0. (4.31c)

The state variables, the algebraic variables, and the adjoint algebraic variables associated with the
i’th grid cell are

xi = [U ;nw;n]i ∈ R2+NC , (4.32a)
yi = [T ;P ;nw;no;ng]i ∈ R3+2NC , (4.32b)
zi = [η;µ]i ∈ R3+NC . (4.32c)
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4. Reservoir flow

η and µ in (4.32c) are Lagrange multipliers associated with the constraints (4.31b)-(4.31c). In
Appendix A, we show that the first order optimality conditions of the optimization problem (4.31)
are in the form

Gi(xi, yi, zi) = 0. (4.33)

The left-hand side of the discretized conservation equations (4.30) consists of the time derivatives
of the state variables. The right-hand side depends on the algebraic variables in the i’th cell and
its neighboring cells, i.e. yi and {yj}j∈N (i) , as well as the manipulated inputs and the disturbance
variables:

ẋi(t) = Fi(yi(t), {yj(t)}j∈N (i) , ui(t), di(t)). (4.34)

The manipulated inputs and the disturbance variables associated with the i’th grid cell are

ui = P bhp
i ∈ R, (4.35a)

di = T inj
i ∈ R. (4.35b)

The temperature of the injected water, T inj, affects its molar enthalpy, hw,inj, which enters into the
expression for the source term (4.13b) in the energy conservation equation. If no well is perforated
in the i’th cell, there are no corresponding manipulated inputs. Similarly, if no injector is perforated
in the i’th cell, there are no corresponding disturbance variables. Finally, the collection of the
phase equilibrium conditions (4.33) and the discretized conservation equations (4.34) for all grid
cells is in the semi-explicit DAE form

G(x(t), y(t), z(t)) = 0, (4.36a)
ẋ(t) = F (y(t), u(t), d(t)). (4.36b)

4.3 Isothermal and compositional reservoir flow model

As mentioned previously, the isothermal and compositional reservoir flow model consists of 1) a set
of mass conservation equations and 2) a set of phase equilibrium conditions. The mass conservation
equations in the isothermal model are identical to the mass conservation equations in the thermal
model described in Section 4.2. The two key assumptions in the isothermal model are that 1)
all involved thermal conductivities are infinite and 2) the heat capacity of the surroundings is
infinite. The consequence of the first assumption is that energy is transferred instantaneously
between the reservoir fluid, the reservoir rock, and the surroundings, i.e. they reach thermal
equilibrium instantaneously. The consequence of the second assumption is that the temperature
of the surroundings is unaffected by the transfer of energy to or from the reservoir fluid and
rock. Therefore, the temperature of the fluid and the rock will be exactly the temperature of the
surroundings. We describe the phase equilibrium problem in Section 4.3.1, and we argue that the
isothermal and compositional model is also in a semi-explicit DAE form in Section 4.3.2.

4.3.1 Phase equilibrium

The phase equilibrium problem in the isothermal and compositional model is the VT flash opti-
mization problem:

min
P,nw,no,ng

A = Aw +Ao +Ag +Ar, (4.37a)

subject to V w + V o + V g + V r = V, (4.37b)
nw = nw, (4.37c)
nok + ngk = nk, k = 1, . . . , NC . (4.37d)
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4.4. Summary

As mentioned previously, the condition that the Helmholtz energy is minimal for an isothermal
system in equilibrium is derived from the second law of thermodynamics. Aα = Aα(T, P, nα) is
the Helmholtz energy of phase α ∈ {w, o, g, r}. The solution to the VT flash optimization problem
(4.37) is the equilibrium pressure, P , and phase compositions, nα for α ∈ {w, o, g}, which minimize
the Helmholtz energy while satisfying the constraints on the volume and the total amounts of moles
at the specified temperature, T . The total amounts of moles, nw and nk, are determined by the
mass conservation equations.

4.3.2 Semi-explicit DAE form

The VT flash optimization problem (4.37) is in the same form as the UV flash optimization problem
(4.1) in the thermal model:

min
yi

f(yi), (4.38a)

subject to g(yi) = xi, (4.38b)
h(yi) = 0. (4.38c)

The state variables, the algebraic variables, and the adjoint algebraic variables associated with the
i’th grid cell are

xi = [nw;n]i ∈ R1+NC , (4.39a)
yi = [P ;nw;no;ng]i ∈ R2+2NC , (4.39b)
zi = [η;µ]i ∈ R2+NC , (4.39c)

and the manipulated inputs are the same as in the thermal model:

ui = P bhp
i ∈ R. (4.39d)

There are no disturbance variables in the isothermal model. The main differences between the
variables in the thermal and the isothermal models are that in the isothermal model 1) the internal
energy is not a state variable, 2) the temperature is a parameter instead of an algebraic variable,
and 3) there is one less Lagrange multiplier because there is one less constraint in the VT flash than
in the UV flash. In Section 4.2.8, we demonstrated that the thermal model is in the semi-explicit
DAE form

G(x(t), y(t), z(t)) = 0, (4.40a)
ẋ(t) = F (y(t), u(t), d(t)). (4.40b)

The same arguments are valid for the isothermal model, i.e. the phase equilibrium conditions are
in the same form, the left-hand side of the discretized mass conservation equations contains the
time derivatives of the state variables, and the right-hand side is independent of the state variables.
In conclusion, the isothermal model is in the form (4.40).

4.4 Summary

In this chapter, we have presented 1) a thermal and compositional reservoir flow model and 2) an
isothermal and compositional reservoir flow model. Both models consist of 1) a set of conservation
equations (partial differential equations) and 2) phase equilibrium conditions (algebraic equations)
derived from the second law of thermodynamics. The phase equilibrium problems that are relevant
to the thermal and isothermal models are the UV and the VT flash, respectively. We discretize the
conservation equations in space using a finite volume method, and we have demonstrated that the
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4. Reservoir flow

resulting equations, together with the phase equilibrium conditions, are in a semi-explicit DAE
form. In Part II, we describe algorithms for simulation, state estimation, dynamic optimization,
and NMPC of models in this form. The two reservoir flow models describe waterflooding processes,
and in Chapter 10, we present examples of optimized waterflooding strategies.
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Algorithms
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Chapter 5
Simulation

In this chapter, we describe numerical methods for the solution of IVPs (i.e. numerical simulations)
that involve deterministic and stochastic semi-explicit DAEs in the forms (1.1) and (1.3), respectively.
We assume that the DAEs are of index 1, i.e. that the algebraic equations, G(x, y, z) = 0, can be
solved for y = y(x) and z = z(x) when x is specified. This is true for the flash separation process
and the reservoir flow processes that we describe in Chapter 3 and Chapter 4.

In Section 5.1, we describe the deterministic and the stochastic IVPs, and in Section 5.2, we
present two approaches for the numerical solution of the deterministic IVP: 1) a simultaneous
approach and 2) a nested approach. We use Euler’s implicit method in both approaches. In the
simultaneous approach, the discretized differential equations and the algebraic equations are solved
simultaneously. In the nested approach, the solution of the algebraic equations is nested into the
solution of the discretized differential equations. In Section 5.3, we consider the numerical solution
of the stochastic IVP which refers to the computation of a single realization of the stochastic
state variables, algebraic variables, and adjoint algebraic variables.1 The numerical method for
the stochastic IVP is based on a semi-implicit discretization scheme which solves the discretized
differential equations and the algebraic equations simultaneously. We briefly summarize this chapter
in Section 5.4.

The state estimation algorithms that we describe in Chapter 6 involve the numerical solution of
either deterministic or stochastic IVPs. Furthermore, the dynamic optimization algorithm that
we present in Chapter 7 involves the numerical solution of a deterministic IVP. In Chapter 9,
we compare the efficiency of the dynamic optimization algorithm when using the simultaneous
approach and the nested approach. In the same chapter, we test the state estimation algorithms
and the NMPC algorithm using the flash separation process, and we use the numerical solution of
a stochastic IVP to represent the true real-life process. The content of this chapter is based on
content from the papers in Appendix C, E, G, I, J, K, and N.

5.1 Problem formulation

In this section, we describe the deterministic and the stochastic IVPs that we consider in this work.
We consider deterministic IVPs in the form

x(t0) = x0, (5.1a)
G(x(t), y(t), z(t)) = 0, t ∈ [t0, tf ], (5.1b)
ẋ(t) = F (y(t), u(t), d(t)), t ∈ [t0, tf ]. (5.1c)

(5.1a) is an initial condition for the states at the initial time, t0, and tf is the final time.
1Whereas deterministic IVPs have a single unique solution (under suitable conditions), stochastic IVPs allow for an
entire family of solutions (or realizations) which can be characterized by its distribution (as a function of time).
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5. Simulation

In contrast to the deterministic IVPs, the stochastic IVPs represent the uncertainty in the
process, and they can be derived by assuming that expressions or parameters in the differential
equations (5.1c) are stochastic (i.e. uncertain). Examples of sources of uncertainty are 1) unmodeled
dynamics, 2) uncertain process inputs, and 3) limited accuracy of model parameters. We consider
stochastic IVPs in the form

x(t0) ∼ N(x̂0, P0), (5.2a)
G(x(t),y(t), z(t)) = 0, t ∈ [t0, tf ], (5.2b)
dx(t) = F (y(t), u(t), d(t))dt+ σ(y(t), u(t), d(t))dω(t), t ∈ [t0, tf ]. (5.2c)

The initial condition (5.2a) requires the states to be normally distributed with mean x̂0 and
covariance P0 at the initial time, t0. As for the deterministic IVP, tf is the final time. ω(t) is a
standard Wiener process, i.e. the incremental covariance of ω(t) is Idt. The right-hand side of the
stochastic differential equation (5.2c) contains a drift term (the first term) and a diffusion term
(the second term). The drift term represents the dynamics of the process, and the diffusion term
represents the uncertainty in the process.

In this work, we assume a ZOH parametrization of the manipulated inputs, u(t), and the
disturbance variables, d(t):

u(t) = uk, t ∈ [tk, tk+1[, k = 0, . . . , N − 1, (5.3a)
d(t) = d̂k, t ∈ [tk, tk+1[, k = 0, . . . , N − 1. (5.3b)

We often refer to both u(t) and {uk}N−1
k=0 as the manipulated inputs, and {d̂k}N−1

k=0 are predictions
of the disturbance variables. N is the number of control intervals.

5.2 Numerical solution of deterministic initial value problems

In this section, we present the simultaneous and the nested approach for the numerical solution of
deterministic IVPs in the form (5.1) subject to the ZOH parametrizations (5.3) of the manipulated
inputs and the disturbance variables. For notational simplicity, we assume that the time steps in
the two approaches coincide with the boundaries of the control intervals, i.e. that there is one time
step per control interval.

5.2.1 Simultaneous approach

In the simultaneous approach, we do not consider the algebraic variables, y(t), and the adjoint
algebraic variables, z(t), to be implicit functions of the states, x(t), as we do in the nested approach
in Section 5.2.2. We use Euler’s implicit method to approximate the solution to (5.1) for given
initial condition, x0, manipulated inputs, {uk}N−1

k=0 , and predicted disturbances, {d̂k}N−1
k=0 , i.e. we

sequentially solve the residual equations,

Rk+1 = Rk+1(wk+1) = Rk+1(wk+1;xk, uk, d̂k)
= Rk+1(xk+1, yk+1, zk+1;xk, uk, d̂k)

=
[
Dk+1(xk+1, xk, yk+1, uk, d̂k)

G(xk+1, yk+1, zk+1)

]
= 0, k = 0, . . . , N − 1, (5.4)

for wk+1 = [xk+1; yk+1; zk+1] ≈ [x(tk+1); y(tk+1); z(tk+1)]. Dk+1 = 0 are the discretized differential
equations where

Dk+1 = Dk+1(xk+1, xk, yk+1, uk, d̂k)
= xk+1 − F (yk+1, uk, d̂k)∆tk − xk. (5.5)
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We solve the residual equations, Rk+1 = 0, with an inexact Newton method, i.e. we sequentially
update the estimate of wk+1 by

wm+1
k+1 = wmk+1 + ∆wmk+1. (5.6)

The Newton update, ∆wmk+1, is the solution to the linear system

MR∆wmk+1 = −Rk+1(wmk+1). (5.7)

We use w0
k+1 = wk as the initial guess for the Newton iterations.2 The iteration matrix is

MR ≈
∂Rk+1

∂wk+1
=
[

I −∂F∂y ∆tk 0
∂G
∂x

∂G
∂y

∂G
∂z

]
. (5.8)

The Jacobian matrix in (5.8) contains an identity matrix. Next, we describe how we exploit this
structure when we solve the linear system for the Newton update in (5.7).
5.2.1.1 Efficient computation of the Newton update. Because of the structure of the Jaco-
bian matrix in (5.8), we can obtain an explicit expression for ∆xmk+1 from (5.7):

∆xmk+1 =
(
∂F

∂y
∆tk

)
∆ymk+1 −Dk+1. (5.9)

Next, we obtain a reduced linear system for ∆ymk+1 and ∆zmk+1 using (5.7) and (5.9):

M̄

[
∆ymk+1
∆zmk+1

]
= ∂G

∂x
Dk+1 −G(xmk+1, y

m
k+1, z

m
k+1). (5.10)

The reduced iteration matrix is

M̄ ≈
[
∂G
∂y + ∂G

∂x
∂F
∂y ∆tk ∂G

∂z

]
. (5.11)

To summarize, we first solve (5.10) for ∆ymk+1 and ∆zmk+1, and next, we compute ∆xmk+1 from (5.9).
Finally, the Newton update is given by ∆wmk+1 = [∆xmk+1; ∆ymk+1; ∆zmk+1].

5.2.2 Nested approach

In the nested approach, we formulate the deterministic IVP (5.1) as

x(t0) = x0, (5.12a)
ẋ(t) = F (y(x(t)), u(t), d(t)), (5.12b)

where the algebraic variables, y(x(t)), and the adjoint algebraic variables, z(x(t)), are implicit
functions of the state variables, x(t), given by the algebraic equations,

G(x(t), y(x(t)), z(x(t))) = 0. (5.13)

This formulation of the IVP is equivalent to the formulation (5.1). As in the simultaneous approach,
we use Euler’s implicit method to approximate the solution to (5.12) for given initial condition,
x0, manipulated inputs, {uk}N−1

k=0 , and predicted disturbances, {d̂k}N−1
k=0 . We sequentially solve the

residual equations,

Dk+1 = Dk+1(xk+1) = Dk+1(xk+1, xk, yk+1, uk, d̂k)
= xk+1 − F (yk+1, uk, d̂k)∆tk − xk = 0, k = 0, . . . , N − 1, (5.14)

2Note that for k = 0, y0 and z0 (which are part of w0) are not available from the previous time step. They can be
computed by solving G(x0, y0, z0) = 0 using an inexact Newton method as described in Section 5.2.2.1. However,
this also requires an initial guess (of y0 and z0).
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for the state variables, xk+1 ≈ x(tk+1), where yk+1 = y(xk+1) ≈ y(x(tk+1)). We solve the residual
equations, Dk+1 = 0, with an inexact Newton method, i.e. we sequentially update the estimate of
the states by

xm+1
k+1 = xmk+1 + ∆xmk+1. (5.15)

The Newton update, ∆xmk+1, is the solution to the linear system

MD∆xmk+1 = −Dk+1(xmk+1). (5.16)

We use x0
k+1 = xk as initial guess, and the iteration matrix is

MD ≈
∂Dk+1

∂xk+1
= I−

(
∂F

∂y
∆tk

)
∂yk+1

∂xk+1
. (5.17)

Next, we describe the numerical solution of the algebraic equations (5.13) for the algebraic and
adjoint algebraic variables which is necessary when evaluating the right-hand side function in
the differential equations (5.12b), F , and its Jacobian. We also describe the computation of the
sensitivities of the algebraic variables which are necessary when evaluating the Jacobian matrix in
(5.17).
5.2.2.1 Solution of the algebraic equations. We use an inexact Newton method to solve the
algebraic equations,

G(xk+1, yk+1, zk+1) = 0, (5.18)

for yk+1 and zk+1 = z(xk+1) ≈ z(x(tk+1)), i.e. we sequentially update the estimates of the algebraic
and adjoint algebraic variables by[

yl+1
k+1
zl+1
k+1

]
=
[
ylk+1
zlk+1

]
+
[

∆ylk+1
∆zlk+1

]
. (5.19)

The Newton updates, ∆ylk+1 and ∆zlk+1, are the solutions to the linear system

MG

[
∆ylk+1
∆zlk+1

]
= −G(xk+1, y

l
k+1, z

l
k+1). (5.20)

We use y0
k+1 = yk and z0

k+1 = zk as initial guesses,3 and the iteration matrix is

MG ≈
[
∂G
∂y

∂G
∂z

]
. (5.21)

We compute the sensitivities with respect to the states, ∂yk+1
∂xk+1

and ∂zk+1
∂xk+1

, using the implicit function
theorem:  ∂yk+1

∂xk+1

∂zk+1
∂xk+1

 = −
[
∂G
∂y

∂G
∂z

]−1 ∂G

∂x
. (5.22)

The sensitivities of the algebraic variables are necessary for evaluating the Jacobian matrix in
(5.17). The sensitivities of the adjoint algebraic variables are not necessary in the nested approach.
However, ∂yk+1

∂xk+1
cannot be isolated in (5.22). Therefore, it is necessary to compute ∂zk+1

∂xk+1
as well.

3Note that for k = 0, y0 and z0 are not available from the previous time step.
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5.3 Numerical solution of stochastic initial value problems

In this section, we describe the numerical solution of the stochastic IVP (5.2). We use a semi-implicit
numerical scheme to approximate a single realization of the solution to (5.2) when the mean and
covariance of the initial states, x̂0 and P0, the manipulated inputs, {uk}N−1

k=0 , and the predictions
of the disturbance variables, {d̂k}N−1

k=0 , are given. In this scheme, we discretize the drift term in the
stochastic differential equation (5.2c) with a right rectangle rule and the diffusion term with a left
rectangle rule (this is the reason that we refer to the scheme as semi-implicit):

Dk+1 = Dk+1(xk+1, xk, yk+1, yk, uk, d̂k)
= xk+1 − F (yk+1, uk, d̂k)∆tk − σ(yk, uk, d̂k)∆ωk − xk = 0. (5.23)

The initial states, x0, are sampled from N(x̂0, P0), and the increment ∆ωk is sampled from
N(0, I∆tk). We sequentially solve the residual equations,

Rk+1 = Rk+1(wk+1) = Rk+1(wk+1;xk, yk, uk, d̂k)
= Rk+1(xk+1, yk+1, zk+1;xk, yk, uk, d̂k)

=
[
Dk+1(xk+1, xk, yk+1, yk, uk, d̂k)

G(xk+1, yk+1, zk+1)

]
= 0, k = 0, . . . , N − 1, (5.24)

for wk+1 = [xk+1; yk+1; zk+1] using an inexact Newton method, i.e. we sequentially update the
estimate of wk+1 by

wm+1
k+1 = wmk+1 + ∆wmk+1. (5.25)

The Newton update, ∆wmk+1, is the solution to the linear system

MR∆wmk+1 = −Rk+1(wmk+1). (5.26)

As in the simultaneous approach for the deterministic IVP, we use w0
k+1 = wk as initial guess (see

footnote 2 on page 41). The iteration matrix is

MR ≈
∂Rk+1

∂wk+1
=
[

I −∂F∂y ∆tk 0
∂G
∂x

∂G
∂y

∂G
∂z

]
. (5.27)

The Jacobian matrix in (5.27) is identical to the Jacobian matrix in (5.8) in the simultaneous
approach for the deterministic IVP. Therefore, we use the approach described in Section 5.2.1.1 to
exploit the structure when we solve the linear system (5.26) for the Newton update.4

5.4 Summary

In this chapter, we have described 1) a simultaneous and a nested approach for the numerical
solution of deterministic IVPs and 2) a simultaneous approach for the numerical solution of
stochastic IVPs. The deterministic and the stochastic IVPs that we consider involve semi-explicit
DAEs in the forms (1.1) and (1.3), respectively. The two approaches for the deterministic IVPs
use Euler’s implicit method, and the numerical method for the stochastic IVPs uses a semi-implicit
discretization scheme. For notational simplicity, we have assumed that there is only one time step
per control interval when we describe the methods. The papers in Appendix N and K describe
the simultaneous approach for the deterministic IVPs and the numerical method for the stochastic
IVPs, respectively, with multiple time steps per control interval. The numerical solution of both
4Note that the right-hand sides of the equations for the Newton updates, (5.7) and (5.26), are not identical because
there is no diffusion term in the differential equation in the deterministic IVP.
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deterministic and stochastic IVPs is relevant to the state estimation algorithms that we describe
in Chapter 6, and the dynamic optimization algorithm that we present in Chapter 7 involves the
numerical solution of a deterministic IVP. In Chapter 9, we compare the efficiency of using the
simultaneous and the nested approach in the dynamic optimization algorithm. Furthermore, we use
a stochastic IVP to simulate the real-life flash separation process when we test the state estimation
algorithms and the NMPC algorithm in the same chapter.
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Chapter 6
State estimation

In this chapter, we consider state estimation of continuous-discrete systems that involve stochastic
semi-explicit DAEs in the form (1.3).1 We describe the EKF, UKF, PF, and EnKF for state
estimation of such systems. These algorithms consist of 1) a measurement-update and 2) a time-
update. In the measurement-update, the information from the measurements is incorporated
into the state estimate using a model of the sensors (also called measurement devices). In the
time-update, the dynamical model of the process is used to propagate the state estimate through
the time in between measurements. The EKF is based on a linearization of the nonlinear model
equations. Consequently, it can suffer from limited accuracy for highly nonlinear systems. The
UKF uses a set of deterministic samples (or particles) to improve the accuracy over the EKF.
However, the accuracy of the UKF can also be insufficient for severely nonlinear systems. The PF
uses random particles, and it can be more precise than the EKF and the UKF if sufficiently many
particles are used. The EnKF is in fact a type of PF, and the time-updates in the two algorithms
are identical. However, the measurement-updates are different.

In Section 6.1, we describe the state estimation problem. Furthermore, we discuss the estimation
of unknown disturbances and parameters. We describe the EKF in Section 6.2, the UKF in Section
6.3, the PF in Section 6.4, and the EnKF in Section 6.5. Finally, we summarize this chapter in
Section 6.6. State estimation is central to the NMPC algorithm that we describe in Chapter 8,
and we compare the accuracy and the computational performance of the four state estimation
algorithms in Chapter 9 using the flash separation process described in Chapter 3. The content of
this chapter is based on the papers in Appendix J, K, and N.

6.1 Problem formulation

State estimation is concerned with the reconstruction of the state of a dynamical process using
measurements, a model of the process, and a model of the sensors. We formulate the state estimation
algorithms for stochastic semi-explicit DAEs in the form (1.3) which we repeat here for convenience:

G(x(t),y(t), z(t)) = 0, (6.1a)
dx(t) = F (y(t), u(t), d(t))dt+ σ(y(t), u(t), d(t))dω(t). (6.1b)

At the initial time, t0, the states are normally distributed, i.e. x(t0) ∼ N(x0, P0). ω(t) is a standard
Wiener process (which means that its incremental covariance is Idt), and the noisy measurements,

1Continous-discrete systems are systems with continuous dynamics and discrete measurements.
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ym(tk), of the process outputs, zm(tk), at time tk are given by the model of the sensors:

zm(tk) = H(y(tk)), (6.2a)
ym(tk) = zm(tk) + v(tk). (6.2b)

The measurement noise, vk = v(tk), is normally distributed, i.e. vk ∼ N(0, Tk). To summarize,
the objective of the state estimation algorithms that we present in this chapter is to estimate
the state variables, algebraic variables, and adjoint algebraic variables of a real-life process using
measurements together with the models (6.1) and (6.2).

As mentioned previously, the algorithms consist of a measurement-update and a time-update.
The objective of the measurement-update is to compute the filtered states, x̂k|k, and the correspond-
ing covariance matrix, Pk|k, which denote the estimates of the states and the covariance matrix
at time tk given information up to (and including) time tk. The objective of the time-update is
to compute the one-step ahead prediction of the states, x̂k+1|k, and the corresponding covariance
matrix, Pk+1|k, which denote the estimates at time tk+1 given information up to and including
time tk. The estimates of the algebraic variables can be computed from the estimates of the states.
We use the above subscript notation for all relevant variables and covariance matrices.

6.1.1 Estimation of unknown disturbances and parameters

Below, we describe an approach for estimating unknown disturbances using the state estimation
algorithms that we present in this chapter. The same approach can be used for estimating
parameters. We include a model of the (now stochastic) disturbance variables:

G(x(t),y(t), z(t)) = 0, (6.3a)
dx(t) = F (y(t), u(t),d(t))dt+ σ(y(t), u(t),d(t))dω(t), (6.3b)
dd(t) = σddωd(t). (6.3c)

The diffusion coefficient, σd, is used for tuning purposes, and ωd(t) is a standard Wiener process
(i.e. its incremental covariance is Idt). The state vector is augmented with the disturbance variables
in order to obtain an augmented system:

G̃(x̃(t),y(t), z(t)) = 0, (6.4a)
dx̃(t) = F̃ (x̃(t),y(t), u(t))dt+ σ̃(x̃(t),y(t), u(t))dω̃(t). (6.4b)

The augmented system (6.4) is no longer in the form (6.1). However, the state estimation algorithms
that we describe can also be formulated for systems in the form (6.4), and the estimates of the
augmented states will contain estimates of both the states and the disturbance variables. In the
paper in Appendix N, we describe the EKF for simultaneous estimation of the states and unknown
disturbances. In that description, we exploit the structure of the augmented system (6.4).

As mentioned, the above approach can also be used for parameter estimation. Whereas the
disturbance variables only enter into the drift term and the diffusion term in the stochastic
differential equation (6.1b), the parameters may also enter into the algebraic equations (6.1a) and
the model of the sensors in (6.2a). This must be accounted for in the formulation of the algorithms
for combined state and parameter estimation.

6.2 The extended Kalman filter

In the EKF, the original Kalman filter equations are applied to a linearization of the nonlinear
model equations. The initial estimate of the states and the corresponding covariance matrix are
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initialized with the mean and covariance of the initial states:

x̂0|−1 = x0, (6.5a)
P0|−1 = P0. (6.5b)

The initial estimates of the algebraic variables, ŷ0|−1, and the adjoint algebraic variables, ẑ0|−1, are
obtained by solving the algebraic equations,

G(x̂0|−1, ŷ0|−1, ẑ0|−1) = 0. (6.6)

6.2.1 Measurement-update

The (one-step ahead) predictions of the outputs, the measurements, and the approximate covariance
of the measurements are

ẑmk|k−1 = H(ŷk|k−1), (6.7a)

ŷmk|k−1 = ẑmk|k−1, (6.7b)

Tk|k−1 = CkPk|k−1C
′
k + Tk. (6.7c)

The estimate of the algebraic variables, ŷk|k−1, and the covariance matrix Pk|k−1 are available from
the previous time-update. As mentioned previously, Tk is the covariance of the normally distributed
measurement noise at time tk, i.e of vk. The expression (6.7c) is obtained from a linearization of
the sensor model in (6.2), and the matrix Ck is

Ck = ∂H

∂x
(ŷk|k−1)

= ∂H

∂y
(ŷk|k−1)

∂ŷk|k−1

∂x̂k|k−1
. (6.8)

The sensitivities of the algebraic and adjoint algebraic variables are obtained by using the implicit
function theorem, i.e. by solving the linear system

[
∂G
∂y

∂G
∂z

] [ ∂ŷk|k−1
∂x̂k|k−1
∂ ẑk|k−1
∂x̂k|k−1

]
= −∂G

∂x
. (6.9)

The Jacobian matrices are evaluated at x̂k|k−1, ŷk|k−1, and ẑk|k−1 which are available from the
previous time-update. The innovation is

ek = ymk − ŷmk|k−1, (6.10)

where ymk are the measurements obtained at time tk. The Kalman filter gain matrix is given by

Kfx,k = Pk|k−1C
′
kT
−1
k|k−1. (6.11)

The filtered state variables and the corresponding approximate covariance matrix are

x̂k|k = x̂k|k−1 +Kfx,kek, (6.12a)
Pk|k = Pk|k−1 −Kfx,kTk|k−1K

′
fx,k. (6.12b)

The estimates of the algebraic and adjoint algebraic variables corresponding to the filtered states,
ŷk|k and ẑk|k, are the solutions to the algebraic equations,

G(x̂k|k, ŷk|k, ẑk|k) = 0, (6.13)
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and the corresponding covariance matrices are

Py,k|k = Φyx(tk, tk)Pk|kΦyx(tk, tk)′, (6.14a)
Pz,k|k = Φzx(tk, tk)Pk|kΦzx(tk, tk)′. (6.14b)

The sensitivities, Φyx(tk, tk) = ∂ŷk|k
∂x̂k|k

and Φzx(tk, tk) = ∂ ẑk|k
∂x̂k|k

, are obtained by using the implicit
function theorem, i.e. by solving the linear system

[
∂G
∂y

∂G
∂z

] [Φyx(tk, tk)
Φzx(tk, tk)

]
= −∂G

∂x
. (6.15)

The Jacobian matrices are evaluated at x̂k|k, ŷk|k, and ẑk|k. We have used the same notation for
the sensitivities as in the description of the time-update in Section 6.2.2.

6.2.2 Time-update

In the time-update, we compute the estimates of the states, the algebraic variables, and the adjoint
algebraic variables in between measurements. They satisfy the IVP

x̂k(tk) = x̂k|k, (6.16a)
G(x̂k(t), ŷk(t), ẑk(t)) = 0, t ∈ [tk, tk+1], (6.16b)
dx̂k(t)
dt

= F (ŷk(t), u(t), d(t)), t ∈ [tk, tk+1], (6.16c)

where x̂k|k is available from the previous measurement-update. The one-step ahead estimates
used in the subsequent measurement-update are x̂k+1|k = x̂k(tk+1), ŷk+1|k = ŷk(tk+1), and
ẑk+1|k = ẑk(tk+1). The sensitivities of the solutions to (6.16) at time t with respect to the state
estimate at time s, Φxx(t, s) = ∂x̂k(t)

∂x̂k(s) , Φyx(t, s) = ∂ŷk(t)
∂x̂k(s) , and Φzx(t, s) = ∂ ẑk(t)

∂x̂k(s) , satisfy the IVP

Φxx(s, s) = I, (6.17a)
∂G

∂x
Φxx(t, s) + ∂G

∂y
Φyx(t, s) + ∂G

∂z
Φzx(t, s) = 0, (6.17b)

dΦxx(t, s)
dt

= ∂F

∂y
Φyx(t, s). (6.17c)

The Jacobian matrices in (6.17b) are evaluated at x̂k(t), ŷk(t), and ẑk(t), and the Jacobian matrix
in (6.17c) is evaluated at ŷk(t), u(t), and d(t). We use the sensitivities to compute the covariance
matrix [83]:

Pk(t) = Φxx(t, tk)Pk|kΦxx(t, tk)′

+
∫ t

tk

Φxx(t, s)σ(ŷk(s), u(s), d(s))σ(ŷk(s), u(s), d(s))′Φxx(t, s)′ds. (6.18)

Pk|k is computed in the previous measurement-update. The covariance matrix that is used in
the following measurement-update is Pk+1|k = Pk(tk+1). Next, we briefly describe the numerical
solution of the above equations.2 Furthermore, we stress that it may be necessary to use multiple
time steps in the numerical solution in order to achieve sufficient accuracy if the time interval
between the measurements is large.

2We include the description of the numerical solution for the EKF because it does not only involve the solution of
IVPs.
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6.3. The unscented Kalman filter

6.2.2.1 Numerical solution. We use the simultaneous approach described in Section 5.2.1 (which
is based on Euler’s implicit method) to solve the IVP (6.16). However, we consider Nk time steps
per control interval. Consequently, we use an inexact Newton method to solve[

Dk,n+1(x̂k,n+1, x̂k,n, ŷk,n+1, uk, d̂k)
G(x̂k,n+1, ŷk,n+1, ẑk,n+1)

]
= 0, n = 0, . . . , Nk − 1. (6.19)

We have assumed the same ZOH parametrization of the manipulated inputs and the disturbance
variables as described in Section 5.1. Furthermore, we assume that the boundaries of the control
intervals coincide with the measurement times. The discretized differential equations are Dk,n+1 = 0
where

Dk,n+1 = Dk,n+1(x̂k,n+1, x̂k,n, ŷk,n+1, uk, d̂k)
= x̂k,n+1 − F (ŷk,n+1, uk, d̂k)∆tk,n − x̂k,n, n = 0, . . . , Nk − 1, (6.20)

and x̂k,0 = x̂k|k. We also use Euler’s implicit method for the sensitivity equations (6.17), i.e. we
compute the sensitivities by solving

[
I −∂F∂y ∆tk,n 0
∂G
∂x

∂G
∂y

∂G
∂z

]Φxx(tk,n+1, tk,n)
Φyx(tk,n+1, tk,n)
Φzx(tk,n+1, tk,n)

 =
[
I
0

]
, n = 0, . . . , Nk − 1. (6.21)

The Jacobian matrix of F is evaluated at ŷk,n+1, uk, and d̂k, and the Jacobian matrices of G are
evaluated at x̂k,n+1, ŷk,n+1, and ẑk,n+1. When we solve the linear system (6.21), we exploit the
structure of the system matrix in the same way as in Section 5.2.1.1. Finally, we use a left rectangle
rule to approximate the integral in the expression for the covariance matrix in (6.18). This allows
us to compute the covariance matrix at each time step in a sequential manner:

Pk,n+1 = Φxx(tk,n+1, tk,n)Λk,nΦxx(tk,n+1, tk,n)′, n = 0, . . . , Nk − 1, (6.22a)
Λk,n = Pk,n + σ(ŷk,n, uk, d̂k)σ(ŷk,n, uk, d̂k)′∆tk,n, n = 0, . . . , Nk − 1. (6.22b)

The initial covariance matrix is Pk,0 = Pk|k.

6.3 The unscented Kalman filter

Both the measurement-update and the time-update in the UKF use unscented transformations [87]
in order to compute the state estimates and the corresponding covariance matrices. Unscented
transformations are used to approximately propagate a probability density function through a
nonlinear function. They propagate a set of deterministic samples (also called sigma points) through
the nonlinear function and use the (weighted) mean and covariance of the samples to approximate
the mean and covariance of the true distribution. As in the EKF, the initial estimate of the states
and the corresponding covariance matrix are

x̂0|−1 = x0, (6.23a)
P0|−1 = P0. (6.23b)

6.3.1 Measurement-update

In the measurement-update, we use an unscented transformation to approximate the mean, co-
variance, and cross-covariance (with the states) of the process outputs in order to compute the
filtered states and the corresponding covariance matrix. We compute 2nx + 1 samples of the states,

49



6. State estimation

{x̂(i)
k|k−1}

2nx
i=0 , based on the one-step ahead prediction, x̂k|k−1, and the corresponding covariance

matrix, Pk|k−1, from the previous time-update:

x̂
(0)
k|k−1 = x̂k|k−1, (6.24a)

x̂
(i)
k|k−1 = x̂k|k−1 +

√
c
(√

Pk|k−1

)
i
, i = 1, . . . , nx, (6.24b)

x̂
(i+nx)
k|k−1 = x̂k|k−1 −

√
c
(√

Pk|k−1

)
i
, i = 1, . . . , nx. (6.24c)

nx is the dimension of the state vector, and c = α2(nx + κ) where α ∈]0; 1]. We set κ to zero in
this work. We use a Cholesky factorization to compute

√
Pk|k−1, and we denote by

(√
Pk|k−1

)
i

the i’th column of
√
Pk|k−1 [85]. Furthermore, we introduce two sets of weights [86]:

W (0)
m = λ

nx + λ
, (6.25a)

W (0)
c = λ

nx + λ
+ (1− α2 + β), (6.25b)

W (i)
m = 1

2(nx + λ) , i = 1, . . . , 2nx, (6.25c)

W (i)
c = 1

2(nx + λ) , i = 1, . . . , 2nx. (6.25d)

λ = α2(nx + κ)− nx, and we use β = 2 in this work. The samples (6.24) and the weights (6.25)
are chosen such that the sample mean and covariance approximate the true mean and covariance
up to third order [160, Chap. 14].3 We solve the algebraic equations,

G(x̂(i)
k|k−1, ŷ

(i)
k|k−1, ẑ

(i)
k|k−1) = 0, i = 0, . . . , 2nx, (6.26)

for the samples of the algebraic variables, {ŷ(i)
k|k−1}

2nx
i=0 , and the adjoint algebraic variables,

{ẑ(i)
k|k−1}

2nx
i=0 , corresponding to the samples of the states, {x̂(i)

k|k−1}
2nx
i=0 . Next, we compute the

output for each sample:

ẑ
m,(i)
k|k−1 = H(ŷ(i)

k|k−1), i = 0, . . . , 2nx. (6.27)

The mean, the covariance, and the cross-covariance of the samples of the process outputs are

ẑmk|k−1 =
2nx∑
i=0

W (i)
m ẑ

m,(i)
k|k−1, (6.28a)

Tk|k−1 =
2nx∑
i=0

W (i)
c

(
ẑ
m,(i)
k|k−1 − ẑ

m
k|k−1

)(
ẑ
m,(i)
k|k−1 − ẑ

m
k|k−1

)′
+ Tk, (6.28b)

Sk|k−1 =
2nx∑
i=0

W (i)
c

(
x̂

(i)
k|k−1 − x̂k|k−1

)(
ẑ
m,(i)
k|k−1 − ẑ

m
k|k−1

)′
. (6.28c)

The innovation is

ek = ymk − ŷmk|k−1, (6.29)

where ymk are the measurements, and the estimate of the measurements is ŷmk|k−1 = ẑmk|k−1 (because
the measurement noise is zero-mean and Gaussian). The Kalman filter gain matrix is

Kfx,k = Sk|k−1T
−1
k|k−1, (6.30)

3In comparison, the same approximations in the EKF are accurate up to first order.
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and the filtered states and the corresponding covariance matrix are

x̂k|k = x̂k|k−1 +Kfx,kek, (6.31a)
Pk|k = Pk|k−1 −Kfx,kTk|k−1K

′
fx,k. (6.31b)

The corresponding estimates of the algebraic variables, ŷk|k, and the adjoint algebraic variables,
ẑk|k, are computed by solving the algebraic equations,

G(x̂k|k, ŷk|k, ẑk|k) = 0. (6.32)

6.3.2 Time-update

In the time-update, we use an unscented transformation to approximate the mean and covariance
of the states at time tk+1. The process noise in (6.1) is non-additive. Therefore, we sample
both the states and the process noise. We define ñ = nx + nω where nω is the dimension of the
standard Wiener process ω(t). Furthermore, we define the sets N0 = {0}, Nx = {1, . . . , 2nx}, and
Nω = {2nx + 1, . . . , 2nx + 2nω}. We compute 2ñ+ 1 samples of the states based on the filtered
states, x̂k|k, and the corresponding covariance matrix, Pk|k, from the previous measurement-update:

x̂
(i)
k|k = x̂k|k, i ∈ N0 ∪Nω, (6.33a)

x̂
(i)
k|k = x̂k|k +

√
c̃
(√

Pk|k

)
i
, i = 1, . . . , nx, (6.33b)

x̂
(i+nx)
k|k = x̂k|k −

√
c̃
(√

Pk|k

)
i
, i = 1, . . . , nx. (6.33c)

The definition of the parameter c̃ is similar to that of the parameter c in the measurement-update,
i.e. c̃ = α2(ñ+ κ). We repeat that we use κ = 0 in this work. As in the measurement-update, we
compute

√
Pk|k using a Cholesky factorization, and we define two sets of weights analogous to the

weights in (6.25):

W̃ (0)
m = λ̃

ñ+ λ̃
, (6.34a)

W̃ (0)
c = λ̃

ñ+ λ̃
+ (1− α2 + β), (6.34b)

W̃ (i)
m = 1

2(ñ+ λ̃)
, i = 1, . . . , 2ñ, (6.34c)

W̃ (i)
c = 1

2(ñ+ λ̃)
, i = 1, . . . , 2ñ. (6.34d)

The definition of λ̃ is similar to the definition of λ in the measurement-update: λ̃ = α2(ñ+ κ)− ñ.
The estimates of the states, the algebraic variables, and the adjoint algebraic variables in between
measurements satisfy the deterministic IVPs

x̂
(i)
k (tk) = x̂

(i)
k|k, i ∈ N0 ∪Nx, (6.35a)

G(x̂(i)
k (t), ŷ(i)

k (t), ẑ(i)
k (t)) = 0, i ∈ N0 ∪Nx, t ∈ [tk, tk+1], (6.35b)

dx̂
(i)
k (t) = F (ŷ(i)

k (t), u(t), d(t))dt, i ∈ N0 ∪Nx, t ∈ [tk, tk+1], (6.35c)

and

x̂
(i)
k (tk) = x̂

(i)
k|k, i ∈ Nω, (6.36a)

G(x̂(i)
k (t), ŷ(i)

k (t), ẑ(i)
k (t)) = 0, i ∈ Nω, t ∈ [tk, tk+1], (6.36b)

dx̂
(i)
k (t) = F (ŷ(i)

k (t), u(t), d(t))dt+ σ(ŷ(i)
k (t), u(t), d(t))dω(i)(t), i ∈ Nω, t ∈ [tk, tk+1]. (6.36c)
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The increments are sampled deterministically:

dω(i+2nx)(t) =
(√

c̃ dt
)
ei, i = 1, . . . , nω, (6.37a)

dω(i+2nx+nω)(t) = −
(√

c̃ dt
)
ei, i = 1, . . . , nω. (6.37b)

All elements of the vector ei are zero except for the i’th element which is one. The IVP (6.36) is
deterministic because the increments, dω(i)(t), are deterministic. We solve the IVP (6.35) with
the simultaneous approach described in Section 5.2.1, and we use the semi-implicit discretization
scheme described in Section 5.3 for the IVP (6.36). As we mentioned in the description of the EKF,
it may be necessary to use multiple time steps in the numerical solution of the IVPs in order to
achieve sufficiently accurate numerical solutions. The one-step ahead prediction of the states and
the corresponding covariance matrix are the (weighted) sample mean and covariance, i.e.

x̂k+1|k =
2ñ∑
i=0

W̃ (i)
m x̂

(i)
k+1|k, (6.38a)

Pk+1|k =
2ñ∑
i=0

W̃ (i)
c

(
x̂

(i)
k+1|k − x̂k+1|k

)(
x̂

(i)
k+1|k − x̂k+1|k

)′
, (6.38b)

where x̂(i)
k+1|k = x̂

(i)
k (tk+1).

6.4 The particle filter

As in the UKF, the result of propagating a probability density function through a nonlinear
function is approximated using particles (or samples) in the PF. However, the PF uses a set of
random particles.4 In the measurement-update, the particles are resampled and the sample mean
and covariance constitute the filtered states and the corresponding covariance matrix. In the
time-update, the particles are simply propagated through the stochastic DAEs (6.1). We sample
Np particles, {x̂(i)

0|−1}
Np

i=1, from the distribution of the states at the initial time, N(x0, P0). Next,
we solve the algebraic equations,

G(x̂(i)
0|−1, ŷ

(i)
0|−1, ẑ

(i)
0|−1) = 0, i = 1, . . . , Np, (6.39)

for the algebraic and adjoint algebraic variables, {ŷ(i)
0|−1}

Np

i=1 and {ẑ(i)
0|−1}

Np

i=1, corresponding to the
states, {x̂(i)

0|−1}
Np

i=1.

6.4.1 Measurement-update

In the measurement-update, we resample the particles based on the likelihood of observing the
actual measurements assuming that the predicted process outputs are true. The filtered states and
the corresponding covariance matrix are the mean and covariance of the resampled particles. For
each particle, we compute the process output:

ẑ
m,(i)
k|k−1 = H(ŷ(i)

k|k−1), i = 1, . . . , Np. (6.40)

The one-step ahead predictions of the algebraic variables, {ŷ(i)
k|k−1}

Np

i=1, are available from the
previous time-update. Next, we compute the difference between the measurements, ymk , and the
process outputs:

e
(i)
k = ymk − ẑ

m,(i)
k|k−1, i = 1, . . . , Np. (6.41)

4The number of particles should be chosen according to the required accuracy and the available computational
resources. The accuracy of the PF is expected to increase with the number of particles. However, the computational
demands increase as well.
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The relative likelihood that ymk is observed, assuming that the process output ẑm,(i)k|k−1 is true, is

q̃(i) = 1√
(2π)nm |Tk|

exp
(
−1

2

(
e

(i)
k

)′
T−1
k e

(i)
k

)
, i = 1, . . . , Np, (6.42)

where nm is the dimension of the process output vector, and |Tk| is the determinant of the
measurement noise covariance matrix, Tk. The expression in (6.42) is the probability density
function for a normal distribution (because the measurement noise is normally distributed). The
normalized relative likelihoods are

q(i) = q̃(i)∑Np

j=1 q̃
(j)
, i = 1, . . . , Np. (6.43)

We resample the particles using systematic resampling [49, 73]. Consequently, we compute

p(i) = ((i− 1) + p̃)/Np, i = 1, . . . , Np, (6.44)

where p̃ is a uniformly distributed scalar, i.e. p̃ ∼ U(]0, 1]). Next, we compute m(i) which is the
number of indices, l, for which p(l) is contained in the interval ]s(i−1), s(i)] where s(i) =

∑i
j=1 q

(j).
The resampled particles, {x̂(i)

k|k}
Np

i=1, contain m(i) instances (or copies) of x̂(i)
k|k−1. Based on the

resampled particles, we compute the filtered states and the corresponding covariance matrix:

x̂k|k = Wm

Np∑
i=1

x̂
(i)
k|k, (6.45a)

Pk|k = Wc

Np∑
i=1

(
x̂

(i)
k|k − x̂k|k

)(
x̂

(i)
k|k − x̂k|k

)′
. (6.45b)

The weights are Wm = 1/Np and Wc = 1/(Np − 1). We solve the algebraic equations,

G(x̂k|k, ŷk|k, ẑk|k) = 0, (6.46)

for the estimates of the algebraic variables, ŷk|k, and the adjoint algebraic variables, ẑk|k.

6.4.2 Time-update

In the time-update, we propagate the particles through the stochastic DAEs (6.1), i.e. we use the
numerical method described in Section 5.3 to approximate the solutions to the stochastic IVPs

x̂
(i)
k (tk) = x̂

(i)
k|k, i = 1, . . . , Np, (6.47a)

G(x̂(i)
k (t), ŷ(i)

k (t), ẑ(i)
k (t)) = 0, i = 1, . . . , Np, t ∈ [tk, tk+1],

(6.47b)

dx̂
(i)
k (t) = F (ŷ(i)

k (t), u(t), d(t))dt+ σ(ŷ(i)
k (t), u(t), d(t))dω(t), i = 1, . . . , Np, t ∈ [tk, tk+1].

(6.47c)

Note that the initial condition (6.47a) specifies the state estimates at time tk exactly, whereas
the initial condition considered in Section 5.1 specifies the distribution of the initial states. The
resampled particles, {x̂(i)

k|k}
Np

i=1, are available from the previous measurement-update. The numer-
ical solution of the stochastic IVPs (6.47) provides the one-step ahead predictions, {x̂(i)

k+1|k}
Np

i=1,
{ŷ(i)
k+1|k}

Np

i=1, and {ẑ
(i)
k+1|k}

Np

i=1, which are used in the subsequent measurement-update. As mentioned
previously, it may be necessary to use multiple time steps in the numerical solution in order to
obtain sufficiently accurate approximations to the solutions of the IVPs.

53



6. State estimation

6.5 The ensemble Kalman filter

As mentioned previously, the EnKF is a type of PF, i.e. it involves a set of particles. However, the
measurement-update does not involve resampling of the particles as in the PF described in Section
6.4. Instead, it involves an update based on the Kalman filter gain matrix as in the EKF and the
UKF described in Section 6.2 and Section 6.3. We sample Np particles, {x̂(i)

0|−1}
Np

i=1, from N(x0, P0),
i.e. from the distribution of the initial states. Furthermore, we compute the algebraic variables,
{ŷ(i)

0|−1}
Np

i=1, and the adjoint algebraic variables, {ẑ(i)
0|−1}

Np

i=1, by solving the algebraic equations,

G(x̂(i)
0|−1, ŷ

(i)
0|−1, ẑ

(i)
0|−1) = 0, i = 1, . . . , Np. (6.48)

6.5.1 Measurement-update

In the measurement-update, we compute means, covariances, and cross-covariances of the samples
in order to compute the Kalman filter gain matrix which we use to update the state estimate for
each particle. Finally, the filtered states and the corresponding covariance matrix are given by the
mean and covariance of the updated state estimates. First, we compute the process outputs:

ẑ
m,(i)
k|k−1 = H(ŷ(i)

k|k−1), i = 1, . . . , Np. (6.49)

The one-step ahead predictions of the algebraic variables, {ŷ(i)
k|k−1}

Np

i=1, are available from the
previous time-update. Next, we compute the means of the states and the process outputs as well
as the covariance and cross-covariance (with respect to the states) of the process outputs:

x̂k|k−1 = Wm

Np∑
i=1

x̂
(i)
k|k−1, (6.50a)

ẑmk|k−1 = Wm

Np∑
i=1

ẑ
m,(i)
k|k−1, (6.50b)

Tk|k−1 = Wc

Np∑
i=1

(
ẑ
m,(i)
k|k−1 − ẑ

m
k|k−1

)(
ẑ
m,(i)
k|k−1 − ẑ

m
k|k−1

)′ + Tk, (6.50c)

Sk|k−1 = Wc

Np∑
i=1

(
x̂

(i)
k|k−1 − x̂k|k−1

)(
ẑ
m,(i)
k|k−1 − ẑ

m
k|k−1

)′
. (6.50d)

The weights are Wm = 1/Np and Wc = 1/(Np − 1), and the one-step ahead predictions of the
states, {x̂(i)

k|k−1}
Np

i=1, are computed in the previous time-update. For each particle, we sample a
measurement:

ŷ
m,(i)
k|k−1 = ẑ

m,(i)
k|k−1 + v

(i)
k , i = 1, . . . , Np. (6.51)

The sampled measurement noise, v(i)
k , is drawn from the normal distribution N(0, Tk). We compute

the innovation for each particle:

e
(i)
k = ymk − ŷ

m,(i)
k|k−1, i = 1, . . . , Np. (6.52)

ymk are the measurements, and the Kalman filter gain matrix is given by

Kfx,k = Sk|k−1T
−1
k|k−1. (6.53)

We use the Kalman filter gain matrix to update the state estimate for each particle:

x̂
(i)
k|k = x̂

(i)
k|k−1 +Kfx,ke

(i)
k , i = 1, . . . , Np. (6.54)
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6.6. Summary

Finally, the filtered states and the corresponding covariance matrix are

x̂k|k = Wm

Np∑
i=1

x̂
(i)
k|k, (6.55a)

Pk|k = Wc

Np∑
i=1

(
x̂

(i)
k|k − x̂k|k

)(
x̂

(i)
k|k − x̂k|k

)′
, (6.55b)

and the estimates of the algebraic variables, ŷk|k, and the adjoint algebraic variables, ẑk|k, are
obtained by solving the algebraic equations,

G(x̂k|k, ŷk|k, ẑk|k) = 0. (6.56)

6.5.2 Time-update

The time-update in the EnKF is identical to the time-update in the PF, i.e. the particles are
propagated through the stochastic DAEs (6.1). As in the PF, we use the numerical method
described in Section 5.3 to approximate the solutions to the IVPs

x̂
(i)
k (tk) = x̂

(i)
k|k, i = 1, . . . , Np, (6.57a)

G(x̂(i)
k (t), ŷ(i)

k (t), ẑ(i)
k (t)) = 0, i = 1, . . . , Np, t ∈ [tk, tk+1],

(6.57b)

dx̂
(i)
k (t) = F (ŷ(i)

k (t), u(t), d(t))dt+ σ(ŷ(i)
k (t), u(t), d(t))dω(t), i = 1, . . . , Np, t ∈ [tk, tk+1],

(6.57c)

which are identical to the IVPs (6.47). The numerical solution provides the one-step ahead
predictions for each particle, {x̂(i)

k+1|k}
Np

i=1, {ŷ
(i)
k+1|k}

Np

i=1, and {ẑ
(i)
k+1|k}

Np

i=1, which are used in the
following measurement-update. As mentioned in the descriptions of the other filters, it may be
necessary to use multiple time steps in the numerical solution in order to obtain sufficient accuracy.

6.6 Summary

In this chapter, we have described the EKF, the UKF, the PF, and the EnKF for state estimation
of continous-discrete systems that involve stochastic semi-explicit DAEs in the form (1.3). All four
algorithms consist of 1) a measurement-update that incorporates information from the measurements
and 2) a time-update that predicts the dynamical behavior of the system in between measurements.
The EKF is based on a linearization of the nonlinear model equations while the UKF, PF, and
EnKF involve samples (or particles). The UKF uses deterministic particles, whereas the PF and the
EnKF use random particles. The state estimation algorithms are relevant to the NMPC algorithm
that we present in Chapter 8, and in Chapter 9, we compare the four algorithms on accuracy and
computational performance using the flash separation process described in Chapter 3.
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Chapter 7
Dynamic optimization

In this chapter, we present an algorithm for gradient-based numerical solution of dynamic opti-
mization problems in the form (1.5). The algorithm uses a single-shooting approach in which the
infinite-dimensional dynamic optimization problem is transcribed into a finite-dimensional NLP. We
solve the NLP using off-the-shelf optimization software. The evaluation of the objective function
in the NLP requires the solution of a deterministic IVP. We formulate the dynamic optimization
algorithm using both a simultaneous approach as described in Section 5.2.1 and a nested approach
as described in Section 5.2.2 for the numerical solution of the involved IVPs.1 Efficient algorithms
for the numerical solution of NLPs require the gradient of the objective function. The dynamic
optimization algorithm that we present uses a discrete adjoint method to compute this gradient.
We describe the adjoint method corresponding to both the simultaneous and the nested approach.

We describe the dynamic optimization problem in Section 7.1, and we present the dynamic
optimization algorithm in Section 7.2. We briefly summarize this chapter in Section 7.3. Dynamic
optimization is central to the NMPC algorithm that we describe in Chapter 8, and in Chapter
9, we test the computational performance of the dynamic optimization algorithm when using the
simultaneous and the nested approach. The performance test involves the flash separation process
described in Chapter 3. In Chapter 10, we use the dynamic optimization algorithm to optimize
the thermal and isothermal waterflooding processes described in Chapter 4, and we discuss the
computational performance of the algorithm for these examples. The content of this chapter is
based on content from the papers in Appendix C, E, G, I, and N.

7.1 Problem formulation

Dynamic optimization problems are constrained optimization problems in which the constraints
contain differential (or difference) equations. The differential equations constitute a model (or
part of a model) of a dynamical process. The purpose of dynamic optimization is to compute an
open-loop control strategy which optimizes a performance measure of the process over a given
horizon.2 The performance measure can represent 1) the distance to predefined setpoints (to be
minimized) or 2) the economics of the dynamical process (to be optimized). We consider dynamic
optimization problems in the form

min
[x(t);y(t);z(t)]

tf
t0
,{uk}N−1

k=0

φ = φ
(

[y(t);u(t); d(t)]tft0
)

=
∫ tf

t0

Φ(y(t), u(t), d(t))dt, (7.1a)

1Dynamic optimization algorithms can also be described as nested or simultaneous. However, we stress that when
we refer to simultaneous and nested approaches, we refer to the approaches described in Section 5.2 for solving
IVPs that involve DAEs. In this work, we only use the single-shooting method (sometimes referred to as a nested
approach). Therefore, there should be little risk of confusion.

2Open-loop control strategies do not involve feedback from the process (in contrast to closed-loop control strategies).
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7. Dynamic optimization

subject to

x(t0) = x̂0, (7.1b)
G(x(t), y(t), z(t)) = 0, t ∈ [t0, tf ], (7.1c)
ẋ(t) = F (y(t), u(t), d(t)), t ∈ [t0, tf ], (7.1d)
u(t) = uk, t ∈ [tk, tk+1[, k = 0, . . . , N − 1, (7.1e)
d(t) = d̂k, t ∈ [tk, tk+1[, k = 0, . . . , N − 1, (7.1f)
{uk}N−1

k=0 ∈ U . (7.1g)

The vector [x(t); y(t); z(t)]tft0 contains the states, x(t), the algebraic variables, y(t), and the adjoint
algebraic variables, z(t), which are dependent decision variables. t0 and tN = tf are the initial
and the final time. N is the number of control intervals. The manipulated inputs, {uk}N−1

k=0 , are
independent decision variables. As mentioned above, the objective function, φ, in (7.1a) represents
a performance measure of the process over the horizon [t0, tf ]. The estimated initial state, x̂0, in
the initial condition (7.1b) is a parameter in the optimization problem. The semi-explicit DAEs
(7.1c)-(7.1d) constitute the model of the dynamical process. (7.1e)-(7.1f) are ZOH parametrizations
of the manipulated inputs and the disturbance variables. The predicted disturbance variables,
{d̂k}N−1

k=0 , in (7.1f) are also parameters in the problem. Finally, (7.1g) represents constraints on the
manipulated inputs.

7.2 The dynamic optimization algorithm

In this section, we present the gradient-based algorithm for numerical solution of the dynamic
optimization problem (7.1). In Section 7.2.1, we use the single-shooting method to transcribe the
dynamic optimization problem into an NLP. In Section 7.2.2 and Section 7.2.3, we describe the
evaluation of the objective function in the NLP using the simultaneous approach from Section 5.2.1
and the nested approach from Section 5.2.2, respectively, for the numerical solution of the involved
IVPs. In the same sections, we describe the corresponding discrete adjoint methods for computing
the gradients of the objective function.

7.2.1 Single-shooting

Fig. 7.1 illustrates the main principle in the single-shooting approach: the manipulated inputs, u(t),
are parametrized, and the continuous states, x(t), algebraic variables, y(t), and adjoint algebraic
variables, z(t), are considered implicit functions of the parametrized manipulated inputs determined
by the IVP in the dynamic optimization problem. The solution to the IVP is used for evaluating
the objective function. Using this principle, the single-shooting method transcribes the dynamic
optimization problem (7.1) into an NLP:

min
{uk}N−1

k=0

ψ = ψ
(
{uk}N−1

k=0 ; x̂0, {d̂k}N−1
k=0

)
, (7.2a)

subject to {uk}N−1
k=0 ∈ U . (7.2b)

For given {uk}N−1
k=0 , x̂0, and {d̂k}N−1

k=0 , the objective function ψ in (7.2a) is defined as the objective
function φ in (7.1a) evaluated using the solution to the IVP (7.1b)-(7.1d) subject to the ZOH
parametrizations of the manipulated inputs and the disturbance variables (7.1e)-(7.1f):

ψ = ψ
(
{uk}N−1

k=0 ; x̂0, {d̂k}N−1
k=0

)
= {φ : (7.1b)-(7.1f)} . (7.3)

Efficient gradient-based numerical optimization algorithms for the solution of the NLP (7.2) require
the evaluation of the objective function, ψ, as well as the gradients, {∇uk

ψ}N−1
k=0 . In order to
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t
t0 t1 tN

x0

Cont. states x(t)

u0
u1

uN−1
Disc. inputs uk

Fig. 7.1: A sketch of the continuous states, x(t), which are implicit functions of the parametrized manipulated
inputs, {uk}N−1

k=0 , in the single-shooting approach. This figure originally appeared in [139].

evaluate ψ, we use the simultaneous approach from Section 5.2.1 and the nested approach from
Section 5.2.2 for numerical solution of the IVP (7.1b)-(7.1d) subject to (7.1e)-(7.1f). In order to
evaluate the gradients, {∇uk

ψ}N−1
k=0 , we use a discrete adjoint method.

7.2.2 The simultaneous approach

In the simultaneous approach described in Section 5.2.1, we use Euler’s implicit method to solve
the IVP (7.1b)-(7.1d) subject to the ZOH parametrizations (7.1e)-(7.1f). Consequently, we solve a
set of residual equations, Rk+1 = 0, for wk+1 = [xk+1; yk+1; zk+1] ≈ [x(tk+1); y(tk+1); z(tk+1)] in
each time step. We substitute these residual equations into the objective function ψ in (7.3):

ψ = ψ
(
{uk}N−1

k=0 ; x̂0, {d̂k}N−1
k=0

)
(7.4a)

=
{
φ =

N−1∑
k=0

Φk(yk+1, uk, d̂k) : (7.4b)

x0 = x̂0, (7.4c)
Rk+1(wk+1;xk, uk, d̂k) = 0, k = 0, . . . , N − 1, (7.4d)

[xk+1; yk+1; zk+1] = wk+1, k = 0, . . . , N − 1
}
. (7.4e)

We have used a right rectangle rule to approximate the integral in the expression for the objective
function φ in (7.1a). The result of the approximation is the sum in (7.4b) where

Φk = Φk(yk+1, uk, d̂k) = Φ(yk+1, uk, d̂k)∆tk, (7.5)

approximates the integral from tk to tk+1. We use a right rectangle rule because it is consistent
with Euler’s implicit method. We repeat the residual equations (5.4) here:

Rk+1 = Rk+1(wk+1) = Rk+1(wk+1;xk, uk, d̂k)
= Rk+1(xk+1, yk+1, zk+1;xk, uk, d̂k)

=
[
Dk+1(xk+1, xk, yk+1, uk, d̂k)

G(xk+1, yk+1, zk+1)

]
= 0, k = 0, . . . , N − 1. (7.6)

We also repeat the expression (5.5) for Dk+1:

Dk+1 = Dk+1(xk+1, xk, yk+1, uk, d̂k)
= xk+1 − F (yk+1, uk, d̂k)∆tk − xk, k = 0, . . . , N − 1. (7.7)

In the adjoint method, we compute the adjoints, {λk}Nk=1, sequentially in a backwards manner
in order to compute the gradients of ψ in (7.4) with respect to the manipulated inputs, {∇uk

ψ}N−1
k=0 .

For clarity of the presentation, we first present the adjoint equations, and thereafter, we present
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the expressions for the involved gradients and Jacobian matrices. First, we compute λN by solving
the linear system (

∂RN
∂wN

)′
λN = −∇wN

ΦN−1, (7.8)

and we compute the corresponding gradient, ∇uN−1ψ, by

∇uk
ψ = ∇uk

Φk +
(
∂Rk+1

∂uk

)′
λk+1, k = 0, . . . , N − 1. (7.9)

We compute the subsequent adjoints by solving the linear systems(
∂Rk
∂wk

)′
λk = −

(
∂Rk+1

∂wk

)′
λk+1 −∇wk

Φk−1, k = N − 1, . . . , 1, (7.10)

starting from k = N − 1 and marching backwards. For each of the subsequent adjoints, we compute
the corresponding gradient using (7.9). The adjoint equations must be solved in a backwards
manner because 1) λN can be computed by solving (7.8) and 2) it is necessary to compute λk+1

before solving (7.10) for λk.
The gradients of Φk with respect to wk+1 and the manipulated inputs, uk, are

∇wk+1Φk =
[
0; ∇yΦ(yk+1, uk, d̂k)∆tk; 0

]
, k = 0, . . . , N − 1, (7.11a)

∇uk
Φk = ∇uΦ(yk+1, uk, d̂k)∆tk, k = 0, . . . , N − 1. (7.11b)

The Jacobian matrices of the residual function Rk+1 with respect to wk+1, the manipulated inputs,
uk, and wk are

∂Rk+1

∂wk+1
=
[

I −∂F∂y ∆tk 0
∂G
∂x

∂G
∂y

∂G
∂z

]
, k = 0, . . . , N − 1, (7.12a)

∂Rk+1

∂uk
=
[
−∂F∂u ∆tk

0

]
, k = 0, . . . , N − 1, (7.12b)

∂Rk+1

∂wk
=
[
−I 0 0
0 0 0

]
, k = 1, . . . , N − 1. (7.12c)

To summarize, the objective function ψ in (7.4) is evaluated by 1) sequentially solving the
residual equations in (7.4d) in a forward manner starting from the initial condition in (7.4c) and
2) evaluating the sum in (7.4b) using the solution to the residual equations. The gradients of ψ
are computed sequentially in a backwards manner (starting from k = N − 1) by 1) solving for the
adjoints, λk+1, and 2) using the adjoints to compute the corresponding gradient, ∇uk

ψ. We stress
that it is necessary to solve the residual equations in (7.4d) before computing the gradients using
(7.8)-(7.10) in order to be able to evaluate the involved gradients and Jacobian matrices.

7.2.3 The nested approach

In the nested approach described in Section 5.2.2, the algebraic and adjoint algebraic variables are
considered implicit functions of the states. The differential equations are solved with Euler’s implicit
method, i.e. in each time step, the discretized differential equations, Dk+1 = 0, are solved for the
states, xk+1 ≈ x(tk+1). In order to evaluate the right-hand side function in the differential equations,
it is necessary to solve the algebraic equations, G(xk+1, yk+1, zk+1) = 0, for the algebraic variables,
yk+1 = y(xk+1) ≈ y(x(tk+1)), and the adjoint algebraic variables, zk+1 = z(xk+1) ≈ z(x(tk+1)).
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We substitute the discretized differential equations and the algebraic equations into the objective
function ψ in (7.3):

ψ = ψ({uk}N−1
k=0 ; x̂0, {d̂k}N−1

k=0 ) (7.13a)

=
{
φ =

N−1∑
k=0

Φk(yk+1, uk, d̂k) : (7.13b)

x0 = x̂0, (7.13c)
Dk+1(xk+1, xk, yk+1, uk, d̂k) = 0, k = 0, . . . , N − 1, (7.13d)

G(xk+1, yk+1, zk+1) = 0, k = 0, . . . , N − 1
}
. (7.13e)

As in Section 7.2.2, we have approximated the integral in the expression for φ in (7.1a) using a left
rectangle rule, and Φk = Φk(yk+1, uk, d̂k) in (7.13b) is given by (7.5). The sum in (7.13b) is the
approximation of the integral. We repeat the expression for the discretized differential equations
(5.14):

Dk+1 = Dk+1(xk+1) = Dk+1(xk+1, xk, yk+1, uk, d̂k)
= xk+1 − F (yk+1, uk, d̂k)∆tk − xk = 0, k = 0, . . . , N − 1. (7.14)

Again, we first present the adjoint equations, and thereafter, we present the expressions for
the involved gradients and Jacobian matrices. The adjoint equations corresponding to the nested
approach are analogous to the adjoint equations presented in Section 7.2.2. First, we solve the
linear system (

∂DN

∂xN

)′
λN = −∇xN

ΦN−1, (7.15)

for λN , and we compute the corresponding gradient, ∇uN−1ψ, using

∇uk
ψ = ∇uk

Φk +
(
∂Dk+1

∂uk

)′
λk+1, k = 0, . . . , N − 1. (7.16)

The subsequent adjoints are computed by solving(
∂Dk

∂xk

)′
λk = −

(
∂Dk+1

∂xk

)′
λk+1 −∇xk

Φk−1, k = N − 1, . . . , 1, (7.17)

for λk marching backwards in a sequential manner (starting with k = N − 1).
The gradients of Φk with respect to the states, xk+1, and the manipulated inputs, uk, are

∇xk+1Φk =
(
∂yk+1

∂xk+1

)′
∇yΦ(yk+1, uk, d̂k)∆tk, k = 0, . . . , N − 1, (7.18a)

∇uk
Φk = ∇uΦ(yk+1, uk, d̂k)∆tk, k = 0, . . . , N − 1. (7.18b)

The Jacobian matrices of Dk+1 with respect to the states in the current time step, xk+1, the
manipulated inputs, uk, and the states in the previous time step, xk, are

∂Dk+1

∂xk+1
= I−

(
∂F

∂y
∆tk

)
∂yk+1

∂xk+1
, k = 0, . . . , N − 1, (7.19a)

∂Dk+1

∂uk
= −∂F

∂u
∆tk, k = 0, . . . , N − 1, (7.19b)

∂Dk+1

∂xk
= −I, k = 1, . . . , N − 1. (7.19c)
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In summary, the objective function ψ in (7.13) is evaluated by computing the sum in (7.13b)
using the algebraic variables corresponding to the solution to the discretized differential equations
in (7.13d) which are solved sequentially starting from the initial condition in (7.13c) and marching
forward. The right-hand side function in the discretized differential equations involves the algebraic
variables which (together with the adjoint algebraic variables) satisfy the algebraic equations
(7.13e). Furthermore, the gradients of ψ are evaluated based on the adjoints which are computed
sequentially in a backwards manner. The discretized differential equations in (7.13d) must be solved
before computing the gradients using the adjoint equations (7.15)-(7.17). The expressions for the
gradient of Φk in (7.18a) and the Jacobian matrix of Dk+1 in (7.19a) involve the sensitivities of the
algebraic variables, ∂yk+1

∂xk+1
. We discuss the computation of these sensitivities in Section 5.2.2.1.

7.3 Summary

In this chapter, we have presented a gradient-based algorithm for numerical solution of the dynamic
optimization problem (1.5). The algorithm uses the single-shooting method to transcribe the
dynamic optimization problem into an NLP, and it uses the discrete adjoint method to compute
the necessary gradients. We use both the simultaneous approach from Section 5.2.1 and the nested
approach from Section 5.2.2 for the numerical solution of the involved deterministic IVPs. We have
presented the adjoint method corresponding to both of these approaches.

We use the dynamic optimization algorithm in the NMPC algorithm that we present in Chapter
8, and we present a performance test of the dynamic optimization algorithm in Chapter 9 using
the flash separation process described in Chapter 3. In the performance test, we compare the
computational efficiency of the simultaneous and the nested approach (among other things). In
Chapter 10, we present examples of optimized thermal and isothermal waterflooding strategies
(based on the reservoir flow models described in Chapter 4), and we discuss the computational
performance of the dynamic optimization algorithm for these examples.
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Chapter 8
Nonlinear model predictive control

In this chapter, we describe an algorithm for NMPC of stochastic semi-explicit DAEs in the form
(1.3). NMPC algorithms use the moving horizon optimization principle to compute a closed-loop
feedback control strategy, i.e. they compute a sequence of open-loop control strategies by solving
a sequence of dynamic optimization problems. A new open-loop control strategy is computed
every time new measurements become available. The objective of the optimization is either to 1)
minimize the distance to predefined setpoints or 2) optimize the economics of the process. In order
to solve the involved dynamic optimization problems, it is necessary to estimate the states (and
potentially also unknown disturbances or parameters) based on the measurements. The NMPC
algorithm that we present uses either of the four state estimation algorithms described in Chapter
6 together with the dynamic optimization algorithm presented in Chapter 7.

In Section 8.1, we discuss the control problem, and in Section 8.2, we discuss the NMPC
algorithm. We summarize this chapter in Section 8.3. In Chapter 9, we present a numerical example
of economical NMPC for disturbance rejection in the flash separation process described in Chapter
3, i.e. the NMPC algorithm estimates unknown disturbances while optimizing the economics of the
process. In this work, the NMPC algorithm is only implemented using the EKF. The content of
this chapter is based on the paper in Appendix N.

8.1 Problem formulation

In order to control a given process, it is necessary to compute expressions for the manipulated
inputs, u(t), according to some objective. The objective can either be to 1) follow predefined
setpoints or 2) optimize the economics of the process. As mentioned previously, NMPC algorithms
compute a closed-loop control strategy by computing a sequence of open-loop control strategies.
Open-loop control strategies do not incorporate information from the actual process (such as
measurements), whereas closed-loop control strategies do. In this work, we consider processes with
measurements at discrete points in time, i.e. ymk = ym(tk) for discrete times tk. For such processes,
the objective of closed-loop control is to compute expressions for the manipulated inputs for the
time interval between tk and tk+1 every time new measurements, ymk , arrive. We mention that
NMPC algorithms consider a time horizon which extends past the next measurements when they
compute expressions for the manipulated inputs. Furthermore, they use a dynamical model of the
process (as well as a model of the sensors) in the computation of these expressions.

In this work, we consider processes that can be modeled by stochastic semi-explicit DAEs in
the form (1.3) which we repeat here:

G(x(t),y(t), z(t)) = 0, (8.1a)
dx(t) = F (y(t), u(t), d(t))dt+ σ(y(t), u(t), d(t))dω(t). (8.1b)
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8. Nonlinear model predictive control

The right-hand side of the stochastic differential equations (8.1b) contains 1) a drift term (the first
term) which models the nominal dynamics of the process and 2) a diffusion term (the second term)
which models the uncertainty in the process, e.g. due to unmodeled dynamics, uncertainty in the
process inputs, or limited accuracy of the parameters in the model.

As mentioned above, the measurements, ym(tk), are obtained at discrete points in time, tk, and
the sensor model is

zm(tk) = H(y(tk)), (8.2a)
ym(tk) = zm(tk) + v(tk). (8.2b)

zm(tk) are the process outputs, and the measurements are corrupted by measurement noise,
vk = v(tk), which is normally distributed, i.e. vk ∼ N(0, Tk).

8.2 The nonlinear model predictive control algorithm

In the NMPC algorithm, a new open-loop control strategy is computed whenever new measurements
become available. We assume that the sampling times (the times of the measurements) coincide
with the boundaries of the control intervals, i.e. that there is a single control interval between any
two consecutive measurements. At time tk, the open-loop control strategy is computed by solving
the dynamic optimization problem

min
[x(t);y(t);z(t)]

tk+Nh
tk

,{uj|k}
k+Nh−1
j=k

φ = φ
(

[y(t);u(t); d(t)]tk+Nh
tk

)
=
∫ tk+Nh

tk

Φ(y(t), u(t), d(t))dt, (8.3a)

subject to

x(tk) = x̂k|k, (8.3b)
G(x(t), y(t), z(t)) = 0, t ∈ [tk, tk+Nh

], (8.3c)
ẋ(t) = F (y(t), u(t), d(t)), t ∈ [tk, tk+Nh

], (8.3d)
u(t) = uj|k, t ∈ [tj , tj+1[, j = k, . . . , k +Nh − 1, (8.3e)
d(t) = d̂j|k, t ∈ [tj , tj+1[, j = k, . . . , k +Nh − 1, (8.3f)
{uj|k}k+Nh−1

j=k ∈ U , (8.3g)

which is in the form (1.5). The vector [x(t); y(t); z(t)]tk+Nh
tk

contains the state variables, algebraic
variables, and adjoint algebraic variables which are dependent decision variables. The manipulated
inputs, {uj|k}k+Nh−1

j=k , are independent decision variables, and the control horizon is Nh control
intervals. The objective function φ in (8.3a) represents the objective of the control strategy (i.e.
to minimize the distance to setpoints or to optimize the economics of the process). The objective
function is an integral of the stage cost function, Φ, over the prediction horizon which is [tk, tk+Nh

],
i.e. it is identical to the control horizon. The initial condition (8.3b) involves the filtered states, x̂k|k,
which is the estimate of the states at time tk given information (in particular from measurements)
up to and including time tk. In the dynamic optimization problem, we disregard the uncertainty
in the process. Consequently, there is no diffusion term in the differential equations, and the
semi-explicit DAEs (8.3c)-(8.3d) are deterministic. (8.3e)-(8.3f) are ZOH parametrizations of the
manipulated inputs and the disturbance variables. {d̂j|k}k+Nh−1

j=k are predictions of the disturbance
variables, and (8.3g) represents constraints on the manipulated inputs.

As mentioned previously, the NMPC algorithm combines either of the four state estimation
algorithms described in Chapter 6 with the gradient-based dynamic optimization algorithm described
in Chapter 7. Fig. 8.1 illustrates the exchange of information between the process, the state
estimation algorithm, and the dynamic optimization algorithm. At time tk, a set of measurements,
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Dynamic
Optimization

State
Estimation

Process

NMPC

x̂k|k

ymk

uk|k

Fig. 8.1: Sketch of the exchange of information between 1) the process, 2) the state estimation algorithm,
and 3) the dynamic optimization algorithm in NMPC. At time tk, measurements, ym

k , are obtained using
the sensors. The state estimation algorithm computes the filtered states, x̂k|k, based on the measurements.
The filtered states are used by the dynamic optimization algorithm which computes an open-loop control
strategy, {uj|k}k+Nh−1

j=k . Finally, the manipulated inputs corresponding to the first control interval, uk|k,
are applied to the process. At time tk+1, new measurements arrive, and the computations are repeated.

ymk , are obtained. The state estimation algorithm uses these measurements, together with the
models of the process and the sensors (8.1)-(8.2), to compute the filtered states, x̂k|k. The dynamic
optimization algorithm is used for numerical solution of the dynamic optimization problem (8.3)
which involves x̂k|k as mentioned above. The solution to the dynamic optimization problem includes
the open-loop control strategy, i.e. the manipulated inputs {uj|k}k+Nh−1

j=k . Only the manipulated
inputs corresponding to the first control interval, uk|k, are applied to the process.

In this work, we present one numerical example that involves NMPC. In this example (which is
presented in Chapter 9), we consider NMPC for disturbance rejection, i.e. the NMPC algorithm
estimates unknown disturbances. Consequently, the state estimation algorithm computes estimates
of both the states, x̂k|k, and the disturbance variables, d̂k|k, using the approach described in Section
6.1.1. The dynamic optimization problem (8.3) involves predictions of the disturbance variables,
{d̂j|k}k+Nh−1

j=k . We use d̂j|k = d̂k|k for j = k + 1, . . . , k +Nh − 1 corresponding to an assumption of
constant disturbance variables.

The state estimation algorithms that we consider in this work consist of a measurement-update
and a time-update. We organize the computations in the NMPC algorithm such that after a set
of measurements arrive, we 1) perform a measurement-update, 2) compute the open-loop control
strategy, and 3) perform a time-update. Essentially, the time-update that is used in the estimation
of the states after the next measurement arrives is initiated as soon as the current open-loop control
strategy has been computed. This reduces the delay (due to nonzero computation time) from
the next measurements arrive until the corresponding manipulated inputs can be applied to the
process.1 However, we assume that there is no delay (corresponding to zero computation time) in
the numerical examples in this work.

8.3 Summary

In this chapter, we have described an NMPC algorithm which uses either of the state estimation
algorithms from Chapter 6 as well as the gradient-based dynamic optimization algorithm from

1Depending on the state estimation algorithm, the size of this delay may be dominated by the time used to compute
the open-loop control strategy.
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8. Nonlinear model predictive control

Chapter 7. NMPC algorithms compute a closed-loop feedback control strategy by computing a
new open-loop control strategy every time new measurements become available (only the first part
of the open-loop control strategy is applied to the process). We use the gradient-based dynamic
optimization algorithm to compute the open-loop control strategy, i.e. as the solution to a dynamic
optimization problem. In order to solve the dynamic optimization problem, it is necessary to
estimate the states (using a state estimation algorithm) based on the new measurements.

In Chapter 9, we present a numerical example of economical NMPC for disturbance rejection.
The example involves the flash separation process described in Chapter 3, and the NMPC algorithm
uses the EKF to estimate the states (as well as the unknown disturbance).
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Chapter 9
Numerical examples – flash separation

In this chapter, we present numerical examples of 1) state estimation, 2) dynamic optimization,
and 3) NMPC of the flash separation process described in Chapter 3. In Section 9.1, we compare
the accuracy and the computational efficiency of the four state estimation algorithms presented in
Chapter 6, i.e. the EKF, the UKF, the PF, and the EnKF, using the flash separation process. We
implement the algorithms in Matlab. In Section 9.2, we present numerical solutions to two dynamic
optimization problems that involve the flash separation process: 1) a tracking-type problem and 2)
an economical dynamic optimization problem. We implement the dynamic optimization algorithm
in Matlab and in C, and we also consider a mixed Matlab and C implementation. Furthermore,
we present a performance study where we compare 1) the use of the simultaneous and the nested
approach in the dynamic optimization algorithm (for numerical solution of IVPs), 2) exact and
inexact Newton methods (in the simultaneous and the nested approach), 3) different optimization
software, and 4) different compilers and linear algebra software. In Section 9.3, we present a
numerical example of economical NMPC for disturbance rejection in the flash separation process.
We consider a mixed Matlab and C implementation of the NMPC algorithm which uses the EKF
to estimate the states and the unknown disturbances. The numerical examples were carried out
using the workstation described in Appendix B. Finally, we summarize this chapter in Section 9.4.
The numerical results presented in this chapter are based on the results presented in the papers in
Appendix C, E, G, K, and N.

9.1 State estimation

In this section, we present a numerical example of state estimation of the flash separation process
described in Chapter 3 using the state estimation algorithms described in Chapter 6. In this
example, the state estimation algorithms use measurements of the temperature and pressure to
estimate the states. Furthermore, we demonstrate that the state estimates can be used for soft
sensing of the total mole fractions, the vapor-liquid mole fractions, and the vapor fraction of the
mixture in the separator.1 Physical sensors for measuring compositions (e.g. mole fractions) can be
slow, expensive, and insufficiently accurate. Soft sensing based on state estimation algorithms is an
economical alternative to such physical sensors. We implement the algorithms in Matlab, and we
model the vapor phase and the liquid phase of the mixture in the separator as nonideal. Therefore,
we use the thermodynamic model described in Section 2.5 (based on the Peng-Robinson equation
of state). Furthermore, we mention that in this example, we do not reformulate the equations in
the model of the flash separation process as we do in Section 9.2.

We represent the true flash separation process using the same model as the one used in the

1Soft sensing refers to the use of software, e.g. based on state estimation algorithms, to estimate quantities that are
not directly measured with physical sensors.
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9. Numerical examples – flash separation

Table 9.1: Values of 1) the parameters and inputs in the model of the flash separation process and 2)
the parameters in the state estimation algorithms. The diffusion coefficient is σ(y(t), u(t), d(t)) = σ =
diag([σU ;σC1 ;σC2 ;σC3 ;σn-C7 ;σCO2 ]). Std. dev. refers to the standard deviation of the temperature and
pressure measurement noise (temp. meas. and pres. meas.). The unit of the covariance matrix P0 is
omitted because its elements have different units. α and β are parameters in the UKF. Np is the number
of particles in the PF and the EnKF. Nk is the number of time steps in between measurements (in all four
state estimation algorithms).

Model
Quantity Value Unit
Total time of operation 72 h
Volume of the separator 0.2 m3

Composition of the feed 60% C1, 8% C2, 5% C3, 25% n-C7, 2% CO2
FF (t) 1.0 kmol/h
FV (t) 0.4 kmol/h
FL(t) 0.6 kmol/h

Q(t)
{
−9 for t ∈ [ 0 h, 24 h[
−4 for t ∈ [24 h, 72 h]

MJ/h

σU 1 MJ
σC1 1.0 · 10−3 kmol
σC2 1.0 · 10−3 kmol
σC3 0.1 · 10−3 kmol
σn-C7 1.0 · 10−3 kmol
σCO2 0.1 · 10−3 kmol
Sampling time 30 min
Std. dev. (temp. meas.) 10 K
Std. dev. (pres. meas.) 10−1/2 MPa

Algorithms
Quantity Value Unit
P0 σσ′ –
α 0.1
β 2
Np 100 #
Nk 6 #

state estimation algorithms, i.e. we assume that there is no plant-model mismatch. Table 9.1
shows the values of the parameters and inputs in the model of the flash separation process together
with the values of the parameters in the state estimation algorithms used in this example. We
use the numerical method described in Section 5.3 for the numerical simulation of the true flash
separation process (with the same number of time steps between measurements as in the state
estimation algorithms, i.e. Nk = 6). The separator feed contains CO2 and four hydrocarbons. At
the initial time, t0, the states of the process are normally distributed according to N(x0, P0) where
x0 is a steady state of the separation process when the uncertainty in the system is disregarded
(i.e. when the diffusion term is zero, and the semi-explicit DAEs are deterministic). The steady
state is obtained using the values of the parameters and the inputs shown in Table 9.1 (with
Q(t) = −9 MJ/h). We also use x0 and P0 in the initialization of the four state estimation
algorithms.

Fig. 9.1 shows the true states together with the (filtered) estimates computed using the state
estimation algorithms. Furthermore, it shows the true and the estimated temperature and pressure.
In general, the state estimates are close to the true states. In order to quantify the accuracy of the
state estimates, we introduce the root-mean-square deviation (RMSD) of the estimate of the i’th
state variable:

RMSDi =
(

1
N + 1

N∑
k=0

(x̂i,k|k − xi,k)2

)1/2

. (9.1)

x̂i,k|k and xi,k are the (filtered) estimate and the true value of the i’th state variable at time tk.
N = 144 is the number of sampling intervals. Both the units and the orders of magnitude vary
between the state variables. Therefore, we normalize the RMSD with the time average of the true
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9.2. Dynamic optimization

Table 9.2: Accuracy of the EKF, the UKF, the PF, and the EnKF (in terms of average NRMSD) and
average computation times of the measurement-updates and the time-updates in the algorithms. The
model of the flash separation process involves 6 differential equations and 19 algebraic equations. This
table originally appeared in [146].

EKF UKF PF EnKF
Avg. NRMSD (%) 2.16 1.66 1.61 1.99
Avg. CPU time of measurement-update (ms) 1.27 12.74 2.13 3.22
Avg. CPU time of time-update (ms) 8.44 161.81 773.75 805.78
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Fig. 9.1: The true values and the (filtered) estimates of the state variables (i.e. the internal energy and the
total composition in moles), the temperature, and the pressure. This figure originally appeared in [146].

values of the corresponding state variables, x̄i, i.e. the average of the set {xi,k}Nk=0. Consequently,
the normalized RMSD (NRMSD) of the i’th state variable is NRMSDi = RMSDi/x̄i.

Table 9.2 shows the average of the set {NRMSDi}nx
i=1 for each state estimation algorithm

(nx = 6 is the number of state variables). The table also shows the average computation time of
the measurement-updates and the time-updates in the algorithms. The EKF is significantly faster
than the other three algorithms while the PF is the most accurate. The accuracy of the UKF is
close to that of the PF while the average NRMSD of the EnKF is significantly higher than those
of the UKF and the PF. However, the EKF is the least accurate. For all four algorithms, the
time-update is more computationally demanding than the measurement-update. The time-update
in the EKF is close to twenty times faster than the time-update in the UKF which is almost five
times faster than the time-updates in the PF and the EnKF. This is coherent with the fact that 1)
the time-update in the EKF involves the numerical solution of a single deterministic IVP as well
the corresponding sensitivity equations, 2) each time-update in the UKF involves the numerical
solution of 2nx + 2nω + 1 = 25 deterministic IVPs (nω = nx = 6 in this example), and 3) each
time-update in the PF and the EnKF involves the numerical solution of Np = 100 stochastic IVPs.

In Fig. 9.2, we demonstrate that the state estimates can be used for soft sensing of 1) the total
mole fractions, 2) the vapor-liquid mole fractions, and 3) the vapor fraction. These estimates are
computed using the (filtered) state estimates obtained with the PF.

9.2 Dynamic optimization

In this section, we present numerical solutions to 1) a tracking-type dynamic optimization problem
and 2) an economical dynamic optimization problem (with the objective of minimizing the energy
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Fig. 9.2: Estimates of the total mole fractions, the vapor-liquid mole fractions, and the vapor fraction
corresponding to the (filtered) state estimates computed with the PF. The graphs corresponding to the C3
and n-C7 vapor mole fractions are omitted because they are below 1%. This figure originally appeared in
[146].

spent on cooling). In Section 9.2.1 and Section 9.2.2, we describe the dynamic optimization problems
and discuss their numerical solutions. In Section 9.2.3, we present a performance study based on
the numerical solution of the two dynamic optimization problems. The performance study involves
comparisons of 1) using the simultaneous and the nested approach in the dynamic optimization
algorithm (for the numerical solution of IVPs), 2) using exact and inexact Newton methods (also in
the numerical solution of IVPs), 3) different optimization software, and 4) different compilers and
linear algebra software. Furthermore, we consider both Matlab and C implementations (as well as
a mixed implementation) in the performance study. In the numerical examples presented in this
section, we have reformulated the equations in the model of the flash separation process as described
in Section 6 of the paper in Appendix G. However, it is the author’s belief that the conclusions
presented in this section would remain valid (and that the numerical solutions to the two dynamic
optimization problems would be the same) if the model equations presented in Chapter 3 were used
without reformulation.

9.2.1 The tracking-type problem

We consider the flash separation of a mixture of benzene, toluene, and diphenyl in a 10 m3 separator.
In this particular example, we model the vapor phase and the liquid phase of the mixture in the
separator as an ideal gas and an ideal liquid, respectively. This is reasonable because of the
similarity of the three chemical components and because we consider high temperatures and low
pressures.

The objective in this tracking-type dynamic optimization problem is to compute an optimized
control strategy for following predefined temperature, pressure, and liquid volume setpoints over a
time interval of 4 hours, i.e. t0 = 0 h and tf = 4 h. Consequently, the objective is to minimize
the distance between the controlled variables (temperature, pressure, and liquid volume) and their
setpoints (indicated by the superscript set):

φ =
∫ tf

t0

αT
(
lnT − lnT set)2 + αP

(
lnP − lnP set)2 + αV l

(
V l − V l,set)2 dt. (9.2)

When we reformulate the equations in the model of the flash separation process (as described in
Section 6 of the paper in Appendix G), the algebraic variables include the logarithmic temperature
and pressure. Therefore, we also use the logarithmic temperature and pressure in the objective
function (9.2) instead of the temperature and pressure. We use the weights αT = 2000, αP = 20,
and αV l = 2000 to control the relative importance of tracking each of the controlled variables. We
supplement the objective function (9.2) with a regularization term which penalizes 1) the temporal
change in the manipulated inputs and 2) the difference between the manipulated inputs in the
first control interval and a set of reference values which are Q−1 = −1 MJ/h, FV,−1 = 0.4 kmol/h,
and FL,−1 = 0.6 kmol/h. Consequently, the discrete stage costs that are used in the dynamic
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9.2. Dynamic optimization

optimization algorithm are

Φ̂k = Φk +
(
αQ (Qk −Qk−1)2 + αFV

(FV,k − FV,k−1)2 + αFL
(FL,k − FL,k−1)2

)
∆tk, (9.3)

for k = 0, . . . , N − 1. The sizes of the control intervals are ∆tk = 5 min, and we use the weights
αQ = 0.05, αFV

= 10, and αFL
= 10 to control the relative sizes of the penalizations. The

derivatives of the additional regularization terms are derived analytically, and we add them to the
derivatives computed with the adjoint method.

The sum of the total flow rates of the vapor-liquid streams is bounded from above by a factor
of αF = 1.2 times the total flow rate of the feed stream:

FV,k + FL,k ≤ αFFF,k, k = 0, . . . , N − 1. (9.4)

Furthermore, the manipulated inputs are constrained to the intervals

Qk ∈ [−60 MJ/h, 10 MJ/h], k = 0, . . . , N − 1, (9.5a)
FV,k ∈ [0.1 kmol/h, 1.5 kmol/h], k = 0, . . . , N − 1, (9.5b)
FL,k ∈ [0.1 kmol/h, 1.5 kmol/h], k = 0, . . . , N − 1. (9.5c)

The derivatives of the constraints (9.4)-(9.5) are derived analytically.
Fig. 9.3a shows the controlled variables (temperature, pressure, and liquid volume) obtained

with an optimized strategy (blue solid) and with a reference strategy (green dashed). Both the
setpoints and the manipulated inputs in the reference strategy are piecewise constant, i.e. they are
constant during the first and the last 2 hours. The values of the setpoints during the first 2 hours
correspond to the steady state obtained with the values of the manipulated inputs in the reference
strategy in the same time interval, and similarly for the values of the setpoints during the last 2
hours. The transition to the new values of the setpoints is significantly faster with the optimized
strategy than with the reference strategy. This demonstrates that the fast transition obtained with
the optimized strategy is not simply due to the inherent dynamics of the process. Fig. 9.3b shows
the manipulated inputs in the optimized strategy and the reference strategy together with the total
feed flow rate. The two control strategies are almost identical at the beginning and the end of the
considered time interval. However, they are qualitatively different during the transition between
the different setpoint values. Fig. 9.4 demonstrates that the total composition and the vapor-liquid
compositions of the mixture in the separator change significantly during this transition. The vapor
fraction, shown in Fig. 9.3a, also changes considerably. This is due to the large differences in the
values of the setpoints.

9.2.2 The economical dynamic optimization problem

We consider the flash separation of a mixture of methane (C1), ethane (C2), propane (C3), n-heptane
(n-C7), and hydrogen sulfide (H2S) in a 1 m3 separator. In this example, we model both the
vapor phase and the liquid phase of the mixture in the separator as nonideal, and we use the
thermodynamic model described in Section 2.5 (with the Peng-Robinson equation of state).

The objective of the dynamic optimization problem is to minimize the energy consumption (in
terms of cooling) over 24 hours of operation, i.e. t0 = 0 h and tf = 24 h. Since cooling corresponds
to Q ≤ 0, the objective function (to be minimized) is

φ = −
∫ tf

t0

Qdt. (9.6)

The composition of the feed is piecewise constant, i.e. it is constant during the first and the last 12
hours. The total H2S mole fraction of the feed is 2% during the first 12 hours, and it is 6% during
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(a) The controlled variables and the vapor fraction.
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(b) The manipulated inputs and the feed flow rate.

Fig. 9.3: Tracking of temperature, pressure, and liquid volume setpoints (black dashed) using 1) an
optimized strategy (blue solid) subject to bound constraints (red dash-dotted) and 2) a reference strategy
(green dashed). Black solid lines refer to properties of the feed. This figure originally appeared in [139].
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Fig. 9.4: The total mole fractions and the vapor-liquid mole fractions of the mixture in the separator
obtained with the optimized tracking strategy as well as the total feed mole fractions. The mixture consists
of benzene (blue solid), toluene (red dashed), and diphenyl (green dash-dotted). This figure originally
appeared in [139].

the last 12 hours. The dynamic optimization problem involves an upper bound on the H2S vapor
mole fraction (i.e. the H2S mole fraction in the vapor stream): yH2S,k ≤ ymax

H2S,k for k = 1, . . . , N .
The upper bound is 2% during the first 12 hours and 4% during the last 12 hours:

ymax
H2S,k =

{
0.02, k = 1, . . . , N/2,
0.04, k = N/2 + 1, . . . , N.

(9.7)

In this work, we do not model the disappearance of phases, i.e. we assume that the vapor fraction
is always in the interval ]0, 1[. Consequently, we constrain the vapor fraction such as to avoid the
single-phase regions where the model of the flash separation process is invalid: εβ ≤ βk ≤ 1− εβ for
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k = 1, . . . , N . We consider a (small) backoff, εβ = 0.05, for practical reasons. We incorporate the
constraints on the H2S vapor mole fraction and the vapor fraction into the objective function using
logarithmic barrier functions. Consequently, the stage costs are

Φk = −Qk∆tk − αH2S ln
(
ymax

H2S,k+1 − yH2S,k+1
)
− αβ

(
ln (βk+1 − εβ) + ln ((1− εβ)− βk+1)

)
,

(9.8)

for k = 0, . . . , N − 1. The sizes of the control intervals are ∆tk = 5 min, and we choose the
weights αH2S = 1.0 and αβ = 0.6. As in Section 9.2.1, we augment the objective function with a
regularization term which penalizes the temporal change in the manipulated inputs, i.e. the stage
costs used in the dynamic optimization algorithm are

Φ̂k = Φk +
[
αQ (Qk −Qk−1)2 + αFV

(FV,k − FV,k−1)2 + αFL
(FL,k − FL,k−1)2

]
∆tk, (9.9)

for k = 1, . . . , N − 1, and Φ̂0 = Φ0. In this example, we do not penalize the difference between
the manipulated inputs in the first interval and a set of reference values as we did in Section 9.2.1.
The derivatives of the regularization terms are derived analytically and added to the derivatives
computed with the adjoint method.

The sum of the total flow rates of the vapor-liquid streams must equal the total feed flow rate:

FV,k + FL,k = FF,k, k = 0, . . . , N − 1. (9.10)

Furthermore, the manipulated inputs are constrained to the intervals

Qk ∈ [−150 MJ/h, 0 MJ/h], k = 0, . . . , N − 1, (9.11a)
FV,k ∈ [6 kmol/h, 8 kmol/h], k = 0, . . . , N − 1, (9.11b)
FL,k ∈ [4 kmol/h, 6 kmol/h], k = 0, . . . , N − 1. (9.11c)

The derivatives of the constraints (9.10)-(9.11) are derived analytically.
Fig. 9.5a shows the cumulative energy consumption and the H2S vapor mole fraction obtained

with an optimized control strategy (blue solid) and a reference strategy (green dashed). The
manipulated inputs in the reference strategy are piecewise constant (i.e. they are constant during
the first and the last 12 hours), and the values of the manipulated inputs are chosen such that
the upper bound on the H2S vapor mole fraction and the constraints on the vapor fraction are
satisfied throughout the 24 hours of operation. During the first 12 hours, the optimized strategy
operates the H2S vapor mole fraction closer to its upper bound than the reference strategy (while
still satisfying the bound). Consequently, the optimized strategy is able to reduce the energy
consumption during the first 12 hours. The energy consumption in the two strategies is almost
identical during the last 12 hours. This is because the total H2S mole fraction of the feed increases
more (from 2% to 6%) than the upper bound on the H2S vapor mole fraction (which increases from
2% to 4%). Furthermore, the value of the barrier parameter αH2S must be chosen so high that
the upper bound on the H2S vapor mole fraction is satisfied throughout the 24 hours of operation
during all iterations of the NLP solver. The optimized strategy can potentially be improved (in
terms of the total energy consumption) by using different barrier parameters for each time step
or by adjusting the value of the barrier parameter dynamically during the iterations of the NLP
solver.2 For the optimized control strategy, the total energy consumption over the 24 hours of
operation is around 1700 MJ which is 26% lower than the 2400 MJ consumed with the reference
strategy. This difference in energy consumption is also evident from Fig. 9.5c which shows the
2We have not adjusted the barrier parameter dynamically because we use off-the-shelf optimization software (which
does not allow the user to do so).
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(a) The cumulative energy consumption and the H2S vapor mole fraction.
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(b) The temperature, the pressure, the liquid volume, and the vapor fraction.
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(c) The manipulated inputs and the total flow rate of the feed.

Fig. 9.5: Flash separation of a mixture consisting of four hydrocarbons and hydrogen sulfide using 1) an
optimized control strategy (blue solid) subject to constraints (red dash-dotted) and 2) a reference strategy
(green dashed). Black solid lines refer to properties of the feed. This figure originally appeared in [139].

manipulated inputs and the total feed flow rate. The main differences between the two strategies
are 1) the values of the heat input during the first 12 hours and 2) the values of the total flow rates
of the vapor-liquid streams during the first 2 hours.

The effect of the reduced cooling in the optimized strategy (during the first 12 hours) can be
seen in Fig. 9.5b which shows the temperature, pressure, liquid volume, and vapor fraction. These
quantities are very different for the two strategies up until time t = 18 h after which they are
almost identical. The temperature, pressure, and vapor fractions reach significantly higher values
with the optimized strategy while the liquid volume reaches significantly lower values. The total
mole fractions and the vapor-liquid mole fractions corresponding to the optimized control strategy
are shown (on a logarithmic scale) in Fig. 9.6 together with the mole fractions of the feed. The
compositions do not change significantly during the 24 hours of operation. The vapor phase is
mainly methane while the liquid phase is mainly n-heptane (and methane).
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Fig. 9.6: The total mole fractions and the vapor-liquid mole fractions of the mixture in the separator
corresponding to the optimized control strategy as well as the total feed mole fractions. The mixture
consists of methane (blue dotted), ethane (green dash-dotted), propane (red dashed), heptane (black solid),
and hydrogen sulfide (blue solid). This figure originally appeared in [139].

Table 9.3: Key characteristics of the tracking-type problem and the economical dynamic optimization
problem presented in Section 9.2.1 and Section 9.2.2, respectively.

Problem Tracking Economical
Independent decision variables 144 864
Control intervals/time steps 48 288
Differential equations 4 6
Algebraic equations 5 7

9.2.3 Performance study

As mentioned previously, we present a performance study based on the numerical solution of the
tracking-type problem discussed in Section 9.2.1 and the economical dynamic optimization problem
discussed in Section 9.2.2. Table 9.3 shows four key characteristics of the two dynamic optimization
problems. The main difference between the two problems is the number of control intervals (and
therefore also the number of independent decision variables). The economical dynamic optimization
problem involves more independent decision variables (manipulated inputs). Consequently, it is also
more computationally demanding to solve. In the performance study, we compare the efficiency
of using 1) the simultaneous and the nested approach (for the numerical solution of IVPs in the
dynamic optimization algorithm), 2) exact and inexact Newton methods (in the simultaneous
and the nested approach), 3) different NLP solvers, and 4) different compilers and linear algebra
software.
9.2.3.1 The simultaneous and the nested approach. We compare the simultaneous and the
nested approach using a Matlab implementation of the dynamic optimization algorithm. The
implementation uses Matlab routines from the thermodynamic library ThermoLib as well as an
interior point barrier method implemented in Matlab’s NLP solver, fmincon. Table 9.4 shows several
key performance indicators (KPIs) of the implementation. It shows that it is more efficient (in terms
of computation time) to use the simultaneous approach in the dynamic optimization algorithm
regardless of whether an exact or an inexact Newton method is used. Furthermore, the table
shows that the dynamic optimization algorithm requires fewer factorizations, back substitutions,
and evaluations of thermodynamic functions when the simultaneous approach is used. Table
9.5 shows the computation times of the factorizations, back substitutions, and thermodynamic
function evaluations in Matlab and in C. In Matlab, the computation time of the thermodynamic
function evaluations is significantly higher than the computation times of the factorizations and
back substitutions. Consequently, it is mainly because of the fewer evaluations of thermodynamic
functions (and their derivatives) that the dynamic optimization algorithm is more efficient when
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Table 9.4: Key performance indicators of a Matlab implementation of the dynamic optimization algorithm
for the numerical solution of the tracking-type problem and the economical dynamic optimization problem
discussed in Section 9.2.1 and Section 9.2.2, respectively. Sim. refers to the use of the simultaneous
approach for numerical solution of the involved IVPs, and Nest. refers to the use of the nested approach.
We test both approaches using both exact and inexact Newton methods. CPU time refers to the relative
computation times of the numerical solution of the involved IVPs and the computation of gradients using
the adjoint method (Adj.). We stress that the relative computation times in the two problems are unrelated.
Iter. and Func. refer to the number of iterations and function evaluations in the NLP solver (Matlab’s
fmincon). Fact. and Back. sub. refer to the number of factorizations and back substitutions in the solution
of the involved linear systems. Finally, Thermo. eval. refers to the number of evaluations of thermodynamic
properties (and their derivatives) necessary to evaluate the residual equations (Res. eq.) and the Jacobian
matrices (Jac.) in the numerical solution of the IVPs and the computation of the gradients with the adjoint
method. This table originally appeared in [139].

The tracking-type problem
CPU time NLP solver Lin. Alg. Thermo. eval.
IVP Adj. Iter. Func. Fact. Back. sub. Res. eq. Jac.

Sim. (inexact) 0.271 0.118 202 203 20,881 42,946 33,202 20,881
Sim. (exact) 0.264 0.118 202 203 32,632 32,632 0 42,376
Nest. (inexact) 1.000 0.145 202 203 138,358 179,585 105,328 118,853
Nest. (exact) 0.680 0.140 202 203 142,507 142,507 0 113,792

The economical dynamic optimization problem
CPU time NLP solver Lin. Alg. Thermo. eval.
IVP Adj. Iter. Func. Fact. Back. sub. Res. eq. Jac.

Sim. (inexact) 0.184 0.094 156 173 103,763 159,501 109,677 103,763
Sim. (exact) 0.300 0.116 147 213 166,462 166,462 0 227,806
Nest. (inexact) 1.000 0.129 150 230 738,140 889,473 475,960 605,349
Nest. (exact) 0.792 0.123 146 205 654,674 654,674 0 507,831

the simultaneous approach is used. In C, the computation time of the thermodynamic function
evaluations is also higher, but the difference is significantly larger in Matlab.
9.2.3.2 Exact and inexact Newton methods. We use the same Matlab implementation as in
Section 9.2.3.1 to compare the use of exact and inexact Newton methods in the simultaneous and
the nested approach. The computation times are shown in Table 9.4. When the nested approach is
used in the dynamic optimization algorithm, it is more efficient to use an exact Newton method for
both of the dynamic optimization problems. Presumably, this is because the Jacobian matrix is
updated frequently in the inner Newton iterations when using an inexact Newton method. When
the simultaneous approach is used in the dynamic optimization algorithm, it is not advantageous to
use an inexact Newton method for the tracking-type problem (where the vapor phase and the liquid
phase are modeled as ideal). This is because there is little difference in the computation times
associated with the evaluation of the thermodynamic functions (and their derivatives) for 1) the
residual equations and 2) the Jacobian matrices as can be seen from Table 9.5. For the economical
dynamic optimization problem (where the vapor phase and the liquid phase are modeled as nonideal),
it is significantly more computationally demanding to evaluate the thermodynamic functions (and
their derivatives) for the Jacobian matrices than for the residual equations. Consequently, the
computation time of the dynamic optimization algorithm is approximately 35% lower for the
economical dynamic optimization problem when using the simultaneous approach with an inexact
Newton method. This improvement in efficiency is also partly due to the lower number of function
evaluations in the NLP solver.
9.2.3.3 Programming language, NLP solvers, and compilers. Table 9.6 shows KPIs for
several implementations of the dynamic optimization algorithm. All implementations use the
simultaneous approach for the numerical solution of the involved IVPs. We implement the dynamic
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Table 9.5: The absolute computation times (given in microseconds) of 1) evaluating thermodynamic
properties and their derivatives and 2) solving Ax = b for x where A is dense. The sizes of the matrices are
the same as the sizes of the system matrices involved in the Newton iterations in the simultaneous approach
(Sim.) and in the inner Newton iterations (Nest. inner) and the outer Newton iterations (Nest. outer) in
the nested approach. As in Table 9.4, we distinguish between evaluating the thermodynamic properties
and derivatives necessary for evaluating the residual equations (Res. eq.) and the Jacobian matrices (Jac.)
in the simultaneous and the nested approach and in the corresponding adjoint methods. We use an LU
factorization (Fact.) and a back substitution (Back. sub.) to solve the linear systems. In C, we use Netlib’s
LAPACK routines dgetrf and dgetrs to carry out the factorizations and the back substitutions. This
table originally appeared in [139].

The tracking-type problem
Thermo. eval. Sim. (A ∈ R9×9) Nest. inner (A ∈ R5×5) Nest. outer (A ∈ R4×4)

Res. eq. Jac. Fact. Back. sub. Fact. Back. sub. Fact. Back. sub.
Matlab 34.588 39.829 3.514 2.271 2.844 2.117 2.634 1.887
C 1.435 1.428 0.575 0.188 0.205 0.112 0.145 0.092

The economical dynamic optimization problem
Thermo. eval. Sim. (A ∈ R13×13) Nest. inner (A ∈ R7×7) Nest. outer (A ∈ R6×6)

Res. eq. Jac. Fact. Back. sub. Fact. Back. sub. Fact. Back. sub.
Matlab 211.319 464.254 5.121 2.516 3.169 2.213 3.032 2.151
C 4.305 6.431 1.165 0.290 0.359 0.150 0.288 0.129

optimization algorithm in both Matlab and C. The Matlab implementation uses the Matlab routines
from ThermoLib and the C implementations use the C routines. The implementations use either of
four different NLP solvers: Matlab’s fmincon, IPOPT 3.12.4 [180], NPSOL 5.0, and KNITRO 10.2.
Matlab’s fmincon and KNITRO both implement four algorithms. In both cases, we use an interior
point barrier method. IPOPT also uses an interior point barrier method, and NPSOL uses an active
set sequential quadratic programming (SQP) method. For the C implementations, we use 1) GCC
compilers and Netlib’s implementation of BLAS and LAPACK (for linear algebra computations)
and 2) Intel compilers and Intel’s MKL (for linear algebra computations). We compile ThermoLib
and IPOPT with a C compiler, and we compile NPSOL with a Fortran compiler. KNITRO is
compiled by the software vendor.

The least efficient implementation is the pure Matlab implementation which uses fmincon. A
mixed Matlab and C implementation which uses fmincon together with C implementations of the
simultaneous approach (for the numerical solution of the IVPs) and the corresponding adjoint
method (for the gradient computations) is 10 times faster than the pure Matlab implementation for
the tracking-type problem and 3.7 times faster for the economical dynamic optimization problem.
The C implementation that uses IPOPT is inefficient for the tracking-type problem because it uses
a limited-memory BFGS approximation of the Hessian. The economical dynamic optimization
problem involves more independent decision variables. Consequently, the implementation that uses
IPOPT is more efficient for this problem where its performance matches the performance of the
implementations that use KNITRO and NPSOL (when GCC compilers and Netlib’s BLAS/LAPACK
implementation are used). In general, the implementation using NPSOL is the fastest, and its
performance is improved significantly when Intel compilers and Intel’s MKL are used. In this
case, it is 83 times faster than the pure Matlab implementation for the tracking-type problem
and 55 times faster for the economical dynamic optimization problem. The use of Intel compilers
and Intel’s MKL does not improve the computational performance of the other implementations
significantly.
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Table 9.6: The absolute computation times (given in seconds) and the relative computation times of
solving the tracking-type problem and the economical dynamic optimization problem using the dynamic
optimization algorithm (with the simultaneous approach). Iter. and Func. refer to the number of iterations
and function evaluations in the NLP solver. The computation times are averaged over 10 numerical solutions
of the dynamic optimization problems. We compare the use of GCC compilers and Netlib’s implementation
of BLAS/LAPACK to the use of Intel compilers and Intel’s MKL. This table originally appeared in [139].

The tracking-type problem
GCC and Netlib Intel

NLP Sol. fmincon fmincon IPOPT KNITRO NPSOL fmincon IPOPT KNITRO NPSOL
Prog. Matlab C C C C C C C C
Iter. 202 202 486 186 152 202 486 186 152
Func. 203 203 1517 190 153 203 1517 190 153
Absolute 8.503 0.851 1.319 0.291 0.223 0.843 0.911 0.245 0.102
Relative 1.000 0.100 0.155 0.034 0.026 0.099 0.107 0.029 0.012
Speedup 1.0 10.0 6.4 29.2 38.1 10.1 9.3 34.7 83.4

The economical dynamic optimization problem
GCC and Netlib Intel

NLP Sol. fmincon fmincon IPOPT KNITRO NPSOL fmincon IPOPT KNITRO NPSOL
Prog. Matlab C C C C C C C C
Iter. 156 156 328 117 150 156 328 117 150
Func. 173 173 1364 121 152 173 1364 121 152
Absolute 137.803 37.525 6.868 6.654 7.002 37.929 6.437 8.149 2.481
Relative 1.000 0.272 0.050 0.048 0.051 0.275 0.047 0.059 0.018
Speedup 1.0 3.7 20.1 20.7 19.7 3.6 21.4 16.9 55.5

9.3 Nonlinear model predictive control

In this section, we present a numerical example of economical NMPC of the flash separation process
described in Chapter 3. We stress that in this example, we do not reformulate the model equations
as we did in Section 9.2. We consider the separation of a mixture of hydrogen sulfide (H2S) and
four hydrocarbons. We assume that the vapor phase and the liquid phase of the mixture are
nonideal, and we use the thermodynamic model presented in Section 2.5 (with the Peng-Robinson
equation of state). The objective is to minimize the energy consumption in terms of cooling while
satisfying constraints on 1) the H2S vapor mole fraction, 2) the vapor fraction, and 3) the pressure.
The NMPC algorithm uses the EKF to estimate the states as well as an unknown disturbance
variable (the feed temperature) based on measurements of the temperature and the pressure of the
mixture in the separator. We use the approach described in Section 6.1.1 to estimate the unknown
disturbance with the EKF. We consider a mixed Matlab and C implementation of the NMPC
algorithm where the simultaneous approach (for the numerical solution of the involved IVPs) and
the corresponding adjoint method (for the computation of gradients) are implemented in C, and the
remaining parts of the algorithm (e.g. the EKF) are implemented in Matlab. The implementation
uses an interior point barrier method from Matlab’s fmincon to solve the involved NLPs.

We represent the true flash separation process with the same model as the one used in the
NMPC algorithm. However, the NMPC algorithm does not know the true temperature of the feed,
TF , as mentioned above. The vapor phase and the liquid phase of the feed mixture is assumed
to be in thermal, mechanical, and chemical equilibrium at specified temperature, TF , pressure,
PF , and composition, fF . Consequently, the vapor-liquid composition of the feed (in moles) is the
solution to a PT flash which involves the feed temperature.3 We refer to Section VI of the paper in
3In the NMPC algorithm, we only solve the PT flash for the vapor-liquid composition of the feed once for each
dynamic optimization problem because the disturbance variables are assumed to be constant in time (in the dynamic
optimization problems).
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Appendix N for more details on the relation between the feed temperature and the vapor-liquid
composition of the feed in this example. Table 9.7 shows 1) the values of the parameters and
the inputs in the model of the flash separation process and 2) the values of the parameters in
the NMPC algorithm. We use the numerical method described in Section 5.3 for the numerical
simulation of the true flash separation process (using the same number of time steps in between the
measurements as in the NMPC algorithm, i.e. Nk = 1). The initial states of the true process are
sampled from N(x0, P

xx
0 ) where x0 is a steady state of the nominal separation process, i.e. when

the process noise is disregarded and the diffusion term in the stochastic differential equation is zero.
We use P xx0 instead of P0 to distinguish it from P dd0 which is the covariance of the initial estimate
of the disturbance variable. x0 and P xx0 are also used in the initialization of the EKF in the NMPC
algorithm. The steady state, x0, is obtained using the values of the parameters and the inputs
shown in Table 9.7 as well as Q(t) = −100 MJ/h, FV (t) = 6.5 kmol/h, and FL(t) = 5.5 kmol/h.
The values of σd and P dd0 are relevant to the estimation of the unknown disturbance, and the
values shown in Table 9.7 are chosen by numerical experiment. A high value of σd allows for
rapid variations in the estimated feed temperature, and a high value of P dd0 corresponds to low
confidence in the initial estimate of the feed temperature. The initial estimate is equal to the actual
temperature of the feed at the initial time which is 335 K. However, after 2 hours of operation, the
real feed temperature increases instantaneously to 340 K. The NMPC algorithm does not know
about this increase.

As mentioned previously, the objective is to minimize the energy spent on cooling. Consequently,
the objective function in the dynamic optimization problem that is solved at time tk is

φ = −
∫ tk+Nh

tk

Q(t) dt, (9.12)

since Q ≤ 0 in the case of cooling. The length of the prediction and control horizon is 6 h
corresponding to Nh = 72 since we use control intervals of length 5 min. As in the economical
dynamic optimization problem described in Section 9.2.2, we consider 1) an upper bound on the
H2S vapor mole fraction (i.e. the H2S mole fraction of the vapor stream) and 2) bounds on the
vapor fraction (such as to avoid the single-phase regions where the model of the flash separation
process is invalid). Furthermore, we consider an upper bound on the pressure, P . We incorporate
these constraints into the objective function using logarithmic barrier functions. The constraints
on the H2S vapor mole fraction and the vapor fraction are incorporated as described in Section
9.2.2, and the upper bound on the pressure is incorporated in a similar manner (using the barrier
parameter αP ). The upper bound on the H2S vapor mole fraction is 2%, and we do not consider a
backoff in the constraints on the vapor fraction, i.e. εβ = 0. The values of the barrier parameters are
αH2S = 10, αβ = 10, and αP = 5. Furthermore, we penalize the rate of change of the manipulated
inputs and the difference between the manipulated inputs in the first control interval and a set
of reference values as described in Section 9.2.1. For the dynamic optimization problem that is
solved at time tk, the reference values are the manipulated inputs in the previous control interval,
uk−1|k−1. The penalization weights are αQ = 1, αFV

= 60, and αFL
= 60. Finally, the manipulated

inputs are subject to the constraints

Q(t) ∈ [−100 MJ/h, 0 MJ/h], (9.13a)
FV (t) ∈ [6.5 kmol/h, 8.5 kmol/h], (9.13b)
FL(t) ∈ [3.5 kmol/h, 5.5 kmol/h]. (9.13c)

Fig. 9.7 shows a closed-loop simulation of economical NMPC for disturbance rejection (i.e.
estimation of the unknown disturbance) in the flash separation process using the NMPC algorithm.
Both the H2S vapor mole fraction and the pressure are operated close to their upper bounds
which are satisfied throughout the 8 hours of operation despite the unknown disturbance and the
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Table 9.7: Values of 1) the parameters and the inputs in the model of the flash separation process
and 2) the parameters in the NMPC algorithm. The diffusion coefficient is σ(y(t), u(t), d(t)) = σ =
diag([σU ;σC1 ;σC2 ;σC3 ;σn-C7 ;σH2S]). Std. dev. refers to the standard deviation of the temperature and
pressure measurement noise (temp. meas. and pres. meas.). The unit of the covariance matrix P xx

0 is
omitted because its elements have different units. The EKF uses σd and P dd

0 in the estimation of the
unknown disturbance. Nk is the number of time steps in between measurements in the EKF and in the
dynamic optimization algorithm.

Model
Quantity Value Unit
Total time of operation 8 h
Volume of the separator 1 m3

Composition of the feed 60% C1, 10% C2, 5% C3, 23% n-C7, 2% H2S

Feed temperature
{

335 for t ∈ [0 h, 2 h[
340 for t ∈ [2 h, 8 h]

K

FF (t) 12 kmol/h
σU 0.2 MJ
σC1 2.0 · 10−3 kmol
σC2 2.0 · 10−3 kmol
σC3 0.2 · 10−3 kmol
σn-C7 2.0 · 10−3 kmol
σH2S 0.2 · 10−3 kmol
Sampling time 5 min
Std. dev. (temp. meas.) 2.5 K
Std. dev. (pres. meas.) 0.05 MPa

Algorithm
Quantity Value Unit
Prediction/control horizon 6 h
Length of control intervals 5 min
Pxx

0 σσ′ –
σd 0.5 K
P dd

0 0.252 K2

Nk 1 #

uncertainty in the process. The vapor fraction is never close to its bounds. Fig. 9.8 shows the
estimated feed temperature (i.e. the unknown disturbance variable) and the manipulated inputs
which are applied to the process (i.e. uk|k for each control interval). The EKF is able to track the
increase in the true feed temperature, and 4 hours after the increase, the estimate almost equals
the true value. Furthermore, the NMPC algorithm is able to reduce the energy spent on cooling,
and the manipulated inputs are almost constant towards the end of the 8 hours of operation.

It is important for the computational feasibility of real-time implementation of NMPC algorithms
that the computation time per control interval is significantly lower than the length of the control
intervals. In this example, the computation time is highest (3.14 s) for the first control interval.
This is because the initial guess for the first dynamic optimization problem is chosen manually. For
the subsequent dynamic optimization problems, the previous optimized control strategy is used in
the construction of the initial guess. The second-highest, the mean, and the lowest computation
time are 1.11 s, 0.64 s, and 0.21 s, respectively. These computation times are significantly lower
than the size of the control intervals (5 min). The computation times reported in the paper in
Appendix N are based on a pure Matlab implementation of the NMPC algorithm. Therefore, they
are significantly higher than the above computation times.

9.4 Summary

In this chapter, we have presented numerical examples of 1) state estimation, 2) dynamic optimiza-
tion, and 3) NMPC of the flash separation process described in Chapter 3.

In the state estimation example, we compare the accuracy and the computational performance
of Matlab implementations of the four state estimation algorithms. For this example, the estimates
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Fig. 9.7: Closed-loop simulation of economical NMPC for disturbance rejection in the flash separation
process. The red dash-dotted lines indicate bounds. This figure originally appeared in the paper in
Appendix N.
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Fig. 9.8: The estimated and the true feed temperature, TF , and the manipulated inputs. The red dash-dotted
lines indicate bounds. This figure originally appeared in the paper in Appendix N.

computed with the four algorithms are all close to the true states. Furthermore, the EKF is
significantly faster than the other state estimation algorithms, but it is also less accurate. The PF
is the most accurate, but it is also significantly slower than the EKF and the UKF. The UKF is
only slightly less accurate than the PF. Finally, the EnKF is roughly as slow as the PF but less
accurate. Furthermore, we have demonstrated that the state estimation algorithms can be used for
soft sensing of the vapor-liquid compositions and the vapor fraction of the mixture in the separator.

We have presented a performance study of the dynamic optimization algorithm based on the
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9. Numerical examples – flash separation

numerical solution of two dynamic optimization problems. In this performance study, we conclude
that 1) the simultaneous approach (for the numerical solution of IVPs) is more efficient than the
nested approach, 2) it is more efficient to use an inexact Newton method in the simultaneous
approach for one of the problems, and it is faster to use an exact Newton method in the nested
approach for both problems, 3) the C implementations are significantly faster than the pure Matlab
implementation and the mixed Matlab and C implementation, and 4) the NLP solver NPSOL
provides the best computational performance of the dynamic optimization algorithm (when using
Intel compilers and Intel’s MKL).

In the NMPC example, we consider economical NMPC for disturbance rejection in the flash
separation process using a mixed Matlab and C implementation of the NMPC algorithm. The
algorithm uses the EKF to estimate an unknown disturbance (as well as the states), and the
objective is to minimize the energy consumption while satisfying output constraints (i.e. constraints
that involve the dependent decision variables in the dynamic optimization problem). We also
discuss the computational performance of the NMPC algorithm in this example.
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Chapter 10
Numerical examples – waterflooding

In this chapter, we present numerical examples of optimized thermal and isothermal waterflooding
strategies, i.e. we consider dynamic optimization problems that involve the thermal and isothermal
compositional reservoir flow models described in Chapter 4. In Section 10.1, we use the dynamic
optimization algorithm presented in Chapter 7 for the numerical solution of the two dynamic
optimization problems, i.e. to compute the optimized thermal and isothermal waterflooding
strategies. Furthermore, we discuss the computational performance of the algorithm for these two
problems. The computations were carried out using the workstation described in Appendix B. We
briefly summarize this chapter in Section 10.2. The numerical results presented in this chapter are
based on the results presented in the paper in Appendix M.

10.1 Dynamic optimization

In this section, we present the optimized thermal and isothermal waterflooding strategies, and we
discuss the computational performance of the dynamic optimization algorithm for the computation
of these two strategies. We consider a 110× 110× 10 m rectangular reservoir, and we discretize the
reservoir using an 11× 11× 1 rectangular grid. At the initial time, the temperature of the reservoir
fluid and rock is 50◦C. The temperature of the injected water is 90◦C in the thermal waterflooding
strategy and 50◦C in the isothermal strategy. The oil and the gas phase of the reservoir fluid
contain methane (C1), ethane (C2), propane (C3), n-heptane (n-C7), and hydrogen sulfide (H2S).
As mentioned in Section 4.2.6 in the description of the reservoir flow models, we model the oil
and the gas phase as nonideal and the water phase as an ideal liquid. Consequently, we use the
thermodynamic model described in Section 2.5 (based on the Peng-Robinson equation of state) to
evaluate the thermodynamic properties of the oil and the gas phase, and we use the thermodynamic
model described in Section 2.4 to evaluate the thermodynamic properties of the water phase. The
objective of the optimization is to maximize the total oil production (in moles) over a period of
three years, i.e. t0 = 0 y and tf = 3 y. The objective function is

φ = −
∫ tf

t0

Qo,prod dt. (10.1)

The sign is negative because the objective is to minimize φ. The manipulated inputs are the BHPs
of four injectors and a single producer. The BHPs are constrained to the intervals

P bhp
i,k ∈ [10 MPa, 12 MPa], i ∈ I, k = 0, . . . , N − 1, (10.2a)

P bhp
i,k ∈ [ 9 MPa, 10 MPa], i ∈ P, k = 0, . . . , N − 1, (10.2b)

where I and P contain the indices of the grid cells in which the injectors and producers are
perforated, respectively. Each well is only perforated in one grid cell. We consider N = 36 control
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Fig. 10.1: The permeability field (in mD) and the locations of the injectors (white circles) and the producer
(white X). This figure originally appeared in [145].

intervals, and each control interval can contain multiple time steps because the time step sizes are
chosen automatically as described below. The locations of the injectors and the producer are shown
in Fig. 10.1 together with the (heterogeneous and isotropic) permeability field. We assume that 1)
there is no heat exchange with the surroundings of the reservoir, 2) the rock is incompressible, and
3) the porosity field is homogeneous. The porosity is 0.25, the thermal heat capacity of the rock is
0.92 kJ/(kg ·K), and the thermal conductivity of the rock is 2.5 W/(m ·K). These values resemble
the properties of sandstone [51, Chap. 2].

We consider a C++ implementation of the dynamic optimization algorithm based on the
open-source software DUNE for grid management [11, 12] and for the solution of linear systems
with iterative methods [21]. We solve the involved linear systems using the GMRES method (an
iterative method) with a block ILU(1) preconditioner. We use the simultaneous approach for the
numerical solution of the involved IVPs, and we use a simplified form of the scheme described by
Völcker et al. [178] for automatic time step size selection. We use a sequential linear-quadratic
programming (SLQP) method [115, Chap. 18] from KNITRO 10.2 to solve the involved NLPs.
Finally, we use C routines from ThermoLib, and we compile the code using GCC C/C++ compilers.

Fig. 10.2 shows the optimized thermal and isothermal waterflooding strategies, i.e. the optimized
injector and producer BHPs. Furthermore, it shows the cumulative volume of the injected water
and the produced oil and gas. In both strategies, the producer is operated close to its minimum
BHP. Furthermore, the BHPs of injector 3 and 4 are operated close to their maxima. This is
because they are located in areas with low permeability. The BHPs of injector 1 and 2 are varied
significantly in both the thermal and the isothermal strategy. The two strategies inject almost the
same volume of water, and they produce almost the same volume of oil and gas. However, the
thermal strategy injects slightly less water, produces slightly less oil, and produces slightly more
gas. Fig. 10.3 and Fig. 10.4 show the temperature (for the thermal strategy), the pressure, and
the oil and gas saturations in the reservoir. The pressure and the oil and gas saturations are fairly
similar in the two optimized strategies. For both strategies, some oil remains in the upper part of
the reservoir after the three years of production. This suggests that it is difficult to retrieve all of
the oil in this part in three years.

Table 10.1 shows four key characteristics of the two dynamic optimization problems as well as a
number of KPIs of the dynamic optimization algorithm (for the numerical solution of these two
problems). The number of independent decision variables (and control intervals) is the same in
the two dynamic optimization problems. However, there are more differential equations and more
algebraic equations in the thermal model. The dynamic optimization of the isothermal strategy is
more than twice as fast as the dynamic optimization of the thermal strategy. One reason for this is
that the NLP solver uses 15 iterations for the thermal strategy and 6 iterations for the isothermal
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Fig. 10.2: The optimized injector and producer BHPs and the cumulative volume of the injected water, the
produced oil, and the produced gas. This figure originally appeared in [145].

strategy. However, each iteration of the NLP solver requires, on average, more numerical simulations
(i.e. numerical solutions of IVPs) in the optimization of the isothermal strategy. Consequently, the
computation time per iteration of the NLP solver is almost the same for the two problems.

The numerical simulation of the thermal and the isothermal waterflooding strategies require
almost the same number of time steps. However, the numerical simulations of the thermal strategy
require roughly one more Newton iteration than the numerical simulations of the isothermal
strategy. Therefore, the number of evaluations of F and G (in the semi-explicit DAEs (1.1) which
constitute the reservoir flow models) and their Jacobians is also close to one higher. Finally, the
GMRES method requires 0.8 more iterations on average to solve the linear systems in the numerical
simulations of the thermal strategy.

The number of iterations of the NLP solver and the GMRES method may be specific to these
two particular examples. However, the difference in the number of Newton iterations may be due
to the additional energy balance equation in the thermal reservoir flow model, e.g. because of the
different scales of 1) the mass and energy equations and 2) the internal energy and the total mole
numbers. If this is the case, it may be possible to reduce the number of Newton iterations in the
numerical simulation of the thermal strategy by rescaling the equations and variables appropriately.

To conclude, the above results suggest that the numerical simulation (and therefore also the
dynamic optimization) of thermal waterflooding strategies is more computationally demanding
than the numerical simulation (and dynamic optimization) of isothermal strategies.

10.2 Summary

In this chapter, we have presented numerical examples of optimized thermal and isothermal
waterflooding strategies. The two strategies are computed using the gradient-based dynamic
optimization algorithm described in Chapter 7 and the thermal and isothermal compositional
reservoir flow models presented in Chapter 4. The algorithm is implemented in C/C++ using the
open-source software DUNE and ThermoLib as well as the commercial software KNITRO 10.2.
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Fig. 10.3: The oil and gas saturations, the pressure, and the temperature for the optimized thermal
waterflooding strategy. The temperature of the injected water is 90◦C. This figure originally appeared in
[145].

We compile the code using GCC compilers. The computation time of the dynamic optimization
algorithm is more than two times higher for the thermal strategy than for the isothermal strategy.
The reasons are that for the thermal strategy: 1) the NLP solver requires more iterations, 2) the
numerical simulations require more Newton iterations (roughly one more iteration on average),
and 3) the iterative solutions of the involved linear systems (with the GMRES method) require
0.8 more iterations on average. The differences in the number of iterations of the NLP solver and
the GMRES method may be specific to these two examples, whereas the difference in the number
of Newton iterations may be due to the additional energy conservation equation in the thermal
reservoir flow model.

In conclusion, the dynamic optimization of the thermal strategy is more computationally
demanding than the dynamic optimization of the isothermal strategy for the examples considered
in this chapter.
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Fig. 10.4: The oil and gas saturations and the pressure for the optimized isothermal waterflooding strategy.
The temperature of the injected water is 50◦C, i.e. it is the same as the temperature of the reservoir fluid
and the reservoir rock. This figure originally appeared in [145].

Table 10.1: Key characteristics of the two dynamic optimization problems and KPIs of the dynamic
optimization algorithm. The gradient computations are carried out with the adjoint method. The function
evaluations refer to the evaluations of F and G in the semi-explicit DAEs (1.1) which constitute the
reservoir flow models. The Jacobian evaluations refer to the evaluations of the Jacobians of F and G. The
KPIs related to the numerical solution of IVPs (also referred to as numerical simulations) are averaged
over all the numerical solutions (of IVPs) involved in the numerical solution of the dynamic optimization
problems. The iterations per linear system refer to the iterations in the iterative GMRES method. This
table originally appeared in [145].

Thermal Isothermal
Problem
Independent decision variables 180 180
Control intervals 36 36
Differential equations 847 726
Algebraic equations 2541 2299

Numerical solution of the NLP
Iterations 15 6
Numerical solutions of IVPs 27 20
Gradient computations 16 7
CPU time (s) 661.16 287.18
CPU time per iteration (s) 44.08 47.86

Numerical solution of the IVPs
Time steps 218.37 212.55
Newton iterations per time step 4.04 3.02
Function evaluations per time step 6.07 5.07
Jacobian evaluations per time step 5.67 4.41
Iterations per linear system 9.03 8.21
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Chapter 11
Conclusions

In this chapter, we present conclusions of the work presented in this thesis. First, we briefly
discuss the main subjects of this work. Thereafter, we discuss each subject and the corresponding
conclusions in more detail. Finally, we discuss the perspectives of the present work in terms of its
applicability to other processes than the ones considered here.

The work presented in this thesis is concerned with models and algorithms for NMPC of thermal
and isothermal compositional reservoir flow processes. The main subjects of this work are

a) ThermoLib – an open-source thermodynamic software with sensitivity capabilities

b) state estimation of UV flash processes

c) dynamic optimization of UV flash processes

d) NMPC of UV flash processes

e) dynamic optimization of thermal and isothermal compositional reservoir flow models

In this work, we present thermodynamically rigorous thermal and isothermal compositional reservoir
flow models. Thermal and compositional reservoir flow is a UV flash process because the involved
phase equilibrium problem is the UV flash. Similarly, isothermal and compositional reservoir flow
is a VT flash process. We demonstrate that both the thermal and the isothermal model are in a
semi-explicit DAE form, and we formulate algorithms for state estimation, dynamic optimization,
and NMPC of such semi-explicit DAE systems. Therefore, these algorithms are applicable to both
UV and VT flash processes (as well as other dynamical phase equilibrium processes), although this
work is mainly concerned with UV flash processes.

The underlying thermodynamic model is central to the reservoir flow models, and in this work,
we develop an open-source thermodynamic software library called ThermoLib which has capabilities
for sensitivity computations. Such capabilities are necessary in the state estimation algorithms, the
dynamic optimization algorithm, and the NMPC algorithm considered in this work.

We implement and test the algorithms using a small-scale UV flash separation process which is
representative of the thermal and compositional reservoir flow process. In particular, the model
of this flash separation process is in the same semi-explicit DAE form as the thermal and the
isothermal compositional reservoir flow models. Furthermore, we implement and test the dynamic
optimization algorithm using the thermal and the isothermal reservoir flow models. However, it
is outside the scope of this work to implement the state estimation algorithms and the NMPC
algorithm for the two reservoir flow models.

Next, we present conclusions for each of the above five subjects as well as one additional subject.
The conclusions for item b) through d) are mainly related to the flash separation process, whereas
the conclusions for item e) are related to the thermal and isothermal reservoir flow models (although
thermal reservoir flow is also a UV flash process). Furthermore, we discuss the perspectives of the
present work.
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ThermoLib. In this work, we develop an open-source thermodynamic library called ThermoLib
which is available at www.psetools.org. The thermodynamic model in ThermoLib is based on 1)
data and correlations from the DIPPR database and 2) cubic equations of state. ThermoLib provides
Matlab and C routines for evaluating the enthalpy, entropy, and volume of a mixture as functions of
the temperature, pressure, and mixture composition (in moles). All other thermodynamic functions
can be computed from the enthalpy, entropy, and volume using fundamental thermodynamic
relations. The novelty of ThermoLib is that its routines also evaluate both the first and the second
order derivatives of the thermodynamic functions with respect to the temperature, pressure, and
composition. We derive the expressions for these derivatives analytically.
State estimation of UV flash processes. We describe four algorithms for state estimation of
UV flash processes. State estimation of such processes has not been addressed before. We model
the UV flash processes using stochastic semi-explicit DAEs, and we consider the continuous-discrete
EKF, UKF, PF, and EnKF. We have implemented the four algorithms in Matlab and presented a
numerical example of state estimation of a UV flash separation process. For this example: 1) the
EKF is significantly faster but also less accurate than the other filters and 2) the PF and the UKF
are the most accurate, but the UKF is significantly faster than the PF.
Dynamic optimization of UV flash processes. We present a novel algorithm for gradient-based
numerical solution of dynamic optimization problems that involve UV flash processes. Dynamic
optimization of UV flash processes has not been addressed previously. The algorithm is based on 1)
the single-shooting method and 2) the discrete adjoint method for the computation of gradients.
We model the UV flash processes using deterministic semi-explicit DAEs. The numerical solution
of these DAEs (also referred to as a numerical simulation) is central to the dynamic optimization
algorithm, and we describe two approaches for this purpose: 1) a simultaneous approach and 2) a
nested approach. The differential equations and the algebraic equations are solved simultaneously
in the simultaneous approach, and the solution of the algebraic equations is nested into the solution
of the differential equations in the nested approach.

We implement the dynamic optimization algorithm in Matlab and C, and we present two
numerical examples of dynamic optimization of a UV flash separation process. Furthermore, we
present a performance study based on the numerical solution of these two dynamic optimization
problems. In the performance study, we compare the computational efficiency of using 1) the
simultaneous and the nested approach (in the dynamic optimization algorithm), 2) exact and
inexact Newton methods (in the simultaneous and the nested approaches), 3) Matlab’s fmincon,
IPOPT, KNITRO, and NPSOL, and 4) GCC compilers together with Netlib’s implementation
of BLAS/LAPACK (a linear algebra software) and Intel compilers together with Intel’s MKL
(also a linear algebra software). The performance study demonstrates that 1) the simultaneous
approach is faster than the nested approach for both problems, 2) an exact Newton method results
in better performance for the nested approach, and for the simultaneous approach, an inexact
Newton method is faster for one of the problems, 3) the C implementations of the algorithm are
faster than the implementations using Matlab (including a mixed Matlab and C implementation),
and 4) the best computational performance is obtained with NPSOL, Intel compilers, and Intel’s
MKL.
NMPC of UV flash processes. We describe an NMPC algorithm based on 1) either of the four
state estimation algorithms and 2) the gradient-based dynamic optimization algorithm. NMPC of
UV flash processes has not been addressed before. We present a numerical example of economical
NMPC for disturbance rejection in a UV flash separation process. In this example, we consider a
mixed Matlab and C implementation of the NMPC algorithm which uses the EKF to estimate the
states as well as an unknown disturbance. Furthermore, we discuss the computational performance
of the algorithm for this example.
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Dynamic optimization of reservoir flow models. We consider dynamic optimization of novel
and thermodynamically rigorous models of thermal and isothermal compositional reservoir flow.
Thermal and compositional reservoir flow models that involve the UV flash have not been presented
previously. Isothermal and compositional reservoir flow models based on the VT flash have been
presented before. However, the VT flash has not been formulated as an optimization problem in
these previous models. Furthermore, dynamic optimization of thermal and isothermal compositional
reservoir flow models based on the UV and the VT flash has not been addressed before.

We present numerical examples of optimized thermal and isothermal waterflooding strategies
computed using the gradient-based dynamic optimization algorithm mentioned above and the two
reservoir flow models. Furthermore, we compare the computational performance of the algorithm
for these two examples. This comparison shows that the numerical simulation (and therefore also
the dynamic optimization) of the thermal reservoir flow model is more computationally demanding
than the numerical simulation (and dynamic optimization) of the isothermal reservoir flow model.
Relations between the UV flash, the VT flash, and the isofugacity condition. As men-
tioned above, the phase equilibrium problems that are relevant to the thermal and isothermal
compositional reservoir flow processes considered in this work are the UV and the VT flash.
We formulate the UV and the VT flash as optimization problems and the corresponding phase
equilibrium conditions as the first order optimality conditions. However, it is common in the
reservoir simulation and optimization literature to formulate the phase equilibrium conditions as
the isofugacity condition. The isofugacity condition is derived from the PT flash which can also be
formulated as an optimization problem.1 In the paper in Appendix G, we show that the UV flash
optimization problem is equivalent to the combination of 1) the PT flash optimization problem
and 2) constraints on the internal energy and the volume. Similarly, in the paper in Appendix L,
we show that the VT flash optimization problem is equivalent to the combination of the PT flash
optimization problem and a constraint on the volume.

In conclusion, the commonly used isofugacity condition can be derived from the UV and the
VT flash.
Perspectives. In this work, we consider three particular phase equilibrium processes: 1) a thermal
and compositional reservoir flow process, 2) an isothermal and compositional reservoir flow process,
and 3) a flash separation process. As mentioned previously, the models of these processes are
comprised of DAEs in the semi-explicit form (1.1). It is natural to model the dynamical behavior of
other phase equilibrium processes with DAEs in this form as well, including fluid vessels, distillation
columns, two-phase flow in pipes (e.g. in pipelines), CO2 sequestration, and magmatic hydrothermal
flow. Therefore, the algorithms described in this work can be used for 1) simulation, 2) state
estimation, 3) dynamic optimization, and 4) NMPC of such processes as well.

1In the paper in Appendix H and in the technical report in Appendix P, we present 1) expressions for the fugacities
based on cubic equations of state and 2) the derivation of the isofugacity condition from the PT flash optimization
problem.
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Chapter 12
Suggestions for future work

In this chapter, we present suggestions for future work based on the work presented in this thesis.
The first suggestion is to implement and test the state estimation algorithms and the NMPC
algorithm (described in this thesis) for the thermal and the isothermal compositional reservoir flow
models (also described in this thesis). The remaining suggestions can be categorized as

a) modeling of phase appearance and disappearance

b) application of algorithms to other phase equilibrium processes

c) general improvements of the computational efficiency of the algorithms

For some phase equilibrium processes (including oil recovery processes), it is relevant to model
the appearance or disappearance of phases in order to accurately predict the dynamical behavior
of the process. We do not model such appearance and disappearance of phases in this work, i.e.
we assume that all phases are nonempty at all times. Furthermore, the algorithms described in
this thesis can be applied to other phase equilibrium processes than the waterflooding processes
(and the flash separation process) that we consider, e.g other oil recovery processes. Finally, the
computational efficiency of the algorithms that we describe can be improved, e.g. by considering
more advanced algorithms for iterative solution of linear systems, numerical simulation, numerical
solution of NLPs, gradient computations, etc. Next, we present the specific suggestions and discuss
them in detail.
State estimation and NMPC of the reservoir flow models. As mentioned above, the
first suggestion is to implement state estimation and NMPC of the thermal and the isothermal
compositional reservoir flow models presented in this thesis. We suggest to implement the EnKF
for these models because it is computationally tractable for large-scale systems.

In this work, we implement the dynamic optimization algorithm (described in this thesis)
in C/C++ and test it for the computation of optimized thermal and isothermal waterflooding
strategies. Therefore, we also develop C/C++ code for numerical simulation of the thermal and the
isothermal reservoir flow models. This code can be reused in the implementation of state estimation
and NMPC of the two reservoir flow models.
Modeling of the appearance and disappearance of phases. The models presented in this
work are only valid when all the involved phases are nonempty. However, the appearance and
disappearance of phases is common in oil recovery processes (and in other phase equilibrium
processes). For instance, the initial pressure in a reservoir can be so high that the gas is completely
condensed, and only the liquid oil phase is present. When the reservoir fluid is produced, the
pressure drops, and a gas phase may appear. Furthermore, in order to model steam injection
processes, it is necessary to model the appearance of the steam phase because it is not initially
present in the reservoir.

In this work, we formulate the phase equilibrium problems as optimization problems in the
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12. Suggestions for future work

form (1.2). The decision variables in the optimization problem are the algebraic variables, y, which
include composition vectors (i.e. mole numbers) and possibly also the temperature and pressure
(depending on the specific phase equilibrium problem). All of these quantities must be nonnegative.1

This condition can be incorporated explicitly into the phase equilibrium optimization problems:

min
y

f(y), (12.1a)

subject to g(y) = x, (12.1b)
h(y) = 0, (12.1c)
y ≥ 0. (12.1d)

The only difference between the form (1.2) considered in this work and (12.1) is the inequality
constraint (12.1d). The phase equilibrium conditions are the first order optimality conditions of
(12.1). Because of the additional inequality constraint, the first order optimality conditions contain
both inequalities and complementarity conditions [115] which will be part of the model equations.
Consequently, the dynamic optimization problem (which determines the optimal open-loop control
strategy) will contain complementarity constraints. Therefore, its numerical solution may require
specialized algorithms [13, 19, 137]. Furthermore, the state estimation problem will also involve
inequalities. Therefore, algorithms for constrained state estimation are necessary. There exist
versions of the state estimation algorithms considered in this work for constrained state estimation
[90, 123, 126, 127, 167, 171, 173, 193]. The state estimation problem can also be formulated as
a dynamic optimization problem [20] and solved using dynamic optimization algorithms (as in
moving horizon estimation [3]).

An alternative approach is to formulate the phase equilibrium conditions as a set of nonsmooth
algebraic equations [150, 186]. The numerical solution (and the associated sensitivity computations)
of such nonsmooth equations also requires specialized algorithms [10, 163].
Application to steam injection. In this work, we present a model of thermal and compositional
waterflooding. However, thermal (enhanced) oil recovery strategies more often involve steam
injection or steam-assisted gravity drainage (SAGD) [4, 168]. It is straightforward to extend the
phase equilibrium problem in the thermal model presented in this work (i.e. the UV flash) to
incorporate a steam phase, and the thermodynamic properties of the steam phase may be computed
using the model presented in Section 2.3. Additionally, it is necessary to describe the viscosity and
the relative permeability of the steam phase.
Application to distillation columns. In the paper in Appendix F, the dynamic optimization
algorithm described in this thesis is used to compute an open-loop optimal control strategy which
optimizes the economics of a cryogenic air separation (CAS) process, i.e. of a cryogenic distillation
column. Distillation columns involve a number of stages, and in the paper, the phase equilibrium
problem for each stage is the UV flash formulated as an optimization problem. This work can be
extended to state estimation and NMPC of distillation columns (i.e. for other distillation processes
as well).
General improvements of the computational efficiency of the algorithms. Here, we
provide a number of suggestions for improving the computational efficiency of the algorithms
described in this thesis.

First, in the dynamic optimization algorithm that we describe, we use off-the-shelf optimization
software (i.e. NLP solvers) for the numerical solution of the involved NLPs. It may be possible to
improve the computational efficiency by implementing a customized optimization algorithm, e.g.

1Note that mole fractions commonly appear in thermodynamic models (this is also the case for the thermodynamic
models described in this thesis). In such cases, the thermodynamic functions are undefined if a phase is completely
empty because the expressions for the mole fractions involve division by the total amount of moles in the phase.
Consequently, if the phase is empty, a division by zero occurs.
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an SQP method [115, Chap. 18]. For instance, it can ease the handling of output constraints, i.e.
constraints that involve the dependent decision variables in the dynamic optimization problem.

Next, in this work, we use Euler’s implicit method for the numerical solution of the semi-explicit
DAEs. However, it can be more efficient to use higher-order ESDIRK methods [31–33, 178, 179].
Furthermore, we use a discrete adjoint method for the gradient computations. It can be more
efficient to use a continuous adjoint method [32, 33].

Finally, in the C/C++ implementation of the dynamic optimization algorithm for the thermal
and isothermal reservoir flow models, it is necessary to solve large sparse linear systems of equations.
The linear systems arise in 1) the numerical solution of the semi-explicit DAEs (i.e. in the
involved Newton iterations) and 2) the adjoint equations. We use a GMRES method with a block
ILU preconditioner to solve these linear systems. However, constrained pressure residual (CPR)
preconditioners may outperform ILU preconditioners [182, 183, 185]. The linear systems in the
Newton iterations involve the Jacobian matrices, whereas the linear systems in the adjoint equations
involve the transposed Jacobian matrices. Consequently, CPR preconditioners must be formulated
specifically for the adjoint equations [68].
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AppendixA
First order optimality conditions

The content of this appendix is based on the paper in Appendix G. In this appendix, we derive
the first order optimality conditions (also called Karush-Kuhn-Tucker or KKT conditions) of
optimization problems in the form

min
y

f(y), (A.1a)

subject to g(y) = x, (A.1b)
h(y) = 0. (A.1c)

In order to derive the first order optimality conditions of (A.1), we introduce the Langrange
function:

L(y, η, µ;x) = f(y)− η′(g(y)− x)− µ′h(y). (A.2)

η and µ are the Lagrange multipliers associated with the constraints (A.1b) and (A.1c), respectively.
The first order optimality conditions for the optimization problem (A.1) are

∇yL(y, η, µ;x) = ∇f(y)−∇g(y)η −∇h(y)µ = 0, (A.3a)
∇ηL(y, η, µ;x) = −(g(y)− x) = 0, (A.3b)
∇µL(y, η, µ;x) = −h(y) = 0. (A.3c)

We introduce z = [η;µ] such that we can rewrite (A.3) as

G(x, y, z) = 0. (A.4)

We refer to the paper in Appendix H for more details on flash optimization problems. The Jacobian
matrices of the first order optimality conditions (A.4) are

∂G

∂x
=

0
I
0

 , (A.5a)

[
∂G
∂y

∂G
∂z

]
= K, (A.5b)

where the matrix K = K(y, z;x) = K(y, η, µ;x) is the KKT matrix for (A.1):

K(y, η, µ;x) =

∇2
yyL(y, η, µ;x) −∇g(y) −∇h(y)
−∇g(y)′ 0 0
−∇h(y)′ 0 0

 , (A.6)

The Hessian of the Lagrange function, ∇2
yyL = ∇2

yyL(y, η, µ;x), is

∇2
yyL = ∇2f(y)−

∑
i

ηi∇2gi(y)−
∑
i

µi∇2hi(y). (A.7)

The sums in (A.7) span over each element of the functions g(y) and h(y).
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AppendixB
Description of workstation

The numerical examples presented in Chapter 9 and Chapter 10 are carried out using a 64-bit
workstation with an Ubuntu 16.04 operating system. The workstation has 15.6 GB RAM and four
Intel Core i7 3.60 GHz cores. The workstation has 8,192 KB level 3 cache which is shared among
all cores. Each core has 256 KB level 2 cache and 64 KB level 1 cache.
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Abstract

UV flash processes, also referred to as isoenergetic-isochoric flash processes, occur for dynamic simula-

tion and optimization of vapor-liquid equilibrium processes. Dynamic optimization and nonlinear model

predictive control of distillation columns, certain two-phase flow problems, as well as oil reservoirs with

significant compositional and thermal effects may be conducted as dynamic optimization of UV flash

processes. The dynamic optimization problem involving a UV flash problem is formulated as a bilevel

optimization problem. This problem is solved using a gradient based single-shooting method. The gra-

dients are computed using the adjoint method and different off-the-shelf optimization software (fmincon,

IPOPT, KNITRO, NPSOL) are used for the numerical optimization. Computational results are reported

for a flash process involving benzene, toluene and diphenyl. The computational experiments demonstrate

that the optimization solver, the compiler, and high-performance linear algebra software are all important

for efficient dynamic optimization of UV flash processes.

Keywords

Optimization, Optimal Control, Differential Algebraic Equations, Vapor-Liquid Equilibrium

1 Introduction

Dynamic optimization of vapor-liquid equilibrium

(VLE) processes are used in operation and control of

distillation columns, certain two-phase flow problems,

and oil reservoirs with significant thermal and composi-

tional effects. Therefore, such processes require efficient

computational methods for dynamic optimization of UV

flash processes. The UV flash problem is also known as

the isoenergetic-isochoric flash problem or the UVn flash

problem. UVn refers to specification of the internal en-

ergy, U , the total volume, V , and the total material

amount (moles), n. The second law of thermodynamics,

i.e. the entropy of a closed system is maximal, is used

to determine the equilibrium composition with U , V ,

and n specified (Michelsen, 1999). The UV flash prob-

lem is different from the more common PT flash prob-

lem that occurs in steady-state optimization problems.

However, it can be demonstrated that the PT flash prob-

lem with additional constraints on the internal energy,

U , and the volume, V , is equivalent to the UV flash

∗Corresponding author jbjo@dtu.dk. Funded by the Danish

Advanced Technology Foundation (OPTION; 63-2013-3).

problem. Algorithmic oriented approaches to dynamic

optimization of VLE processes use a nested method in

which PT flash problems are solved in the inner loop,

and outer loops converge the internal energy, U , and vol-

ume, V , to their specified values. Such approaches suffer

from computational inefficiency and complicated com-

putations for the gradients. Alternatively, simultane-

ous methods (Biegler, 2010), multiple- or single-shooting

methods (Capolei and Jørgensen, 2012) may be used for

dynamic optimization of UV flash processes. In this

paper, we present a novel algorithm for dynamic opti-

mization of UV flash processes. The algorithm is based

on the single-shooting method and an adjoint method is

used for computation of the gradients (Jørgensen, 2007).

The numerical integration of the semi-explicit index-1

differential algebraic (DAE) system is the key compu-

tational operation in the single-shooting method. We

report numerical results for a three-component dynamic

UV flash as well as the computational performance for

implementations in C and Matlab using different opti-

mization software, different linear algebra software, and

different compilers.



2 Optimal Control Problem

We consider the following optimal control problem

(OCP)

min
[x(t);y(t);z(t)]

tf
t0
,{uk}k∈N

φ = φ
(

[y(t);u(t); d(t)]
tf
t0

)
(1a)

subject to

x(t0) = x̂0, (1b)

G(x(t), y(t), z(t)) = 0, t ∈ T , (1c)

ẋ(t) = F (y(t), u(t), d(t)), t ∈ T , (1d)

u(t) = uk, t ∈ [tk, tk+1[, k ∈ N , (1e)

d(t) = d̂k, t ∈ [tk, tk+1[, k ∈ N , (1f)

{uk}k∈N ∈ U , (1g)

where the objective function is in Lagrange form

φ =

∫ tf

t0

Φ(y(t), u(t), d(t))dt. (2)

x(t) is the state vector, y(t) is a vector of algebraic vari-

ables, and z(t) is a vector of adjoint algebraic variables.

The estimated initial states, x̂0, and the predicted dis-

turbances, {d̂k}k∈N , are parameters in the optimization

problem. [x(t); y(t); z(t)]
tf
t0 is a vector of dependent de-

cision variables, whereas {uk}k∈N are independent de-

cision variables. The time interval is T = [t0, tf ] and

the control indices are N = {0, 1, . . . , N − 1}.
The OCP (1) includes algebraic constraints (1c) and

differential equations (1d). The algebraic constraints

(1c) are formulated such that they can be used to model

equilibrium processes, e.g. VLE processes. Equilib-

rium processes can be formulated as optimization prob-

lems and (1c) can represent the Karush-Kuhn-Tucker

(KKT) conditions of these optimization problems. The

differential equations (1d) are obtained from conserva-

tion principles and the states, x(t), represent the con-

served quantities. The right-hand-side in (1d) depends

on the algebraic variables, y(t), which are implicit func-

tions of the states through the algebraic constraints (1c),

i.e. y(t) = y(x(t)). By this statement, we assume that

given x(t), it is possible to compute y(t) = y(x(t)) and

z(t) = z(x(t)) by solving G(x(t), y(t), z(t)) = 0. This is

true for the VLE processes considered in this work. We

define the single shooting objective ψ by

ψ = ψ({uk}k∈N ; x̂0, {d̂k}k∈N ) =

{
φ : (1b)-(1f)

}
. (3)

Given {uk}k∈N , x̂0, and {d̂k}k∈N , ψ is computed as the

objective function, φ, obtained by integrating (2) using

t
t0 t1 tN

x0

Cont. states x(t)

u0
u1

uN−1
Disc. controls uk

Figure 1. Sketch of the single shooting principle. The

controls, u(t), are discretized in time and the continu-

ous states, x(t), are considered functions of the controls.

The objective is evaluated by solving the semi-explicit

DAEs for a given initial value, x0, and a given set of

controls, {uk}N−1k=0 .

the solution of (1c)-(1d) with x(t0) = x̂0, u(t) = uk for

t ∈ [tk, tk+1[ and k ∈ N , and d(t) = d̂k for t ∈ [tk, tk+1[

and k ∈ N , i.e. (1b) and (1e)-(1f). Figure 1 illustrates

the discretization of the inputs, u, and the numerical

computation of the continuous states, x. This is the

principle in the single-shooting method and the princi-

ple that is used for computation of ψ. With ψ defined

by (3), the OCP (1) with the objective function (2) can

be expressed as the finite dimensional constrained opti-

mization problem

min
{uk}k∈N

ψ = ψ
(
{uk}k∈N ; x̂0, {d̂k}k∈N

)
, (4a)

s.t. {uk}k∈N ∈ U . (4b)

The set U is often a polyhedron such that the con-

straints (4b) can be expressed by umin ≤ u ≤ umax and

bl ≤ Au ≤ bu where u = [u0; u1; . . . ; uN−1]. Gradient-

based optimization algorithms for solution of the nonlin-

ear program (4), and thus the optimal control problem

(1), require evaluation of the objective function, ψ, and

the gradients, {∇uk
ψ}k∈N . These computations involve

numerical solution of the differential-algebraic equations

(DAE), (1c) and (1d), along with computation of the in-

tegral (2).

2.1 Equilibrium Constraints

The equilibrium processes that are considered in this

work can be described as the solution to a parametric

equality constrained optimization problem in the follow-

ing form

min
y

f(y) (5a)

s.t. g(y) = x, (5b)

h(y) = 0. (5c)



The Langrange function associated with the equilibrium

optimization problem (5) is

L(y, η, µ;x) = f(y)− ηT (g(y)− x)− µTh(y), (6)

where η and µ are Lagrange multipliers associated

with (5b) and (5c), respectively. The KKT condi-

tions (first order optimality conditions) for a minimizer

(y = y(x), η = η(x), µ = µ(x)) are

∇yL(y, η, µ;x) = ∇f(y)−∇g(y)η −∇h(y)µ = 0, (7a)

∇ηL(y, η, µ;x) = −(g(y)− x) = 0, (7b)

∇µL(y, η, µ;x) = −h(y) = 0. (7c)

By introducing the vector z = [η; µ], we can rewrite the

system (7) as the algebraic constraints (1c).

3 Numerical Method

The computation of (3) requires solution of the semi-

explicit differential-algebraic initial value problem (1b)-

(1d). Subsequently, when (y(t), u(t), d(t)) is given, ψ =

φ is computed by quadrature. The system (1b)-(1d) is

stiff. Therefore, an implicit method must be used for

numerically efficent solution of (1b)-(1d). We exemplify

the involved numerical computation using Euler’s im-

plicit method. However, the principal numerical meth-

ods are also applicable with other implicit solvers such

as the ESDIRK methods (Kristensen et al., 2004) and

BDF based methods (Barton and Lee, 2002). Further-

more, we describe computation of∇uk
ψ for k ∈ N by an

adjoint method (Jørgensen, 2007; Völcker et al., 2011;

Capolei and Jørgensen, 2012). These gradients (sensi-

tivities) may also be computed by a forward method.

3.1 Numerical Integration

Define w =
[
x; y; z

]
and define the residual function

Rk+1 = Rk+1(wk+1) = Rk+1(wk+1;xk, uk, dk)

= Rk+1(xk+1, yk+1, zk+1;xk, uk, dk)

=

[
Dk+1(xk+1, xk, yk+1, uk, dk)

G(xk+1, yk+1, zk+1)

] (8)

for k ∈ N with Dk+1 = xk+1−xk−∆tkF (yk+1, uk, dk).

Given x0 = x̂0, {uk}N−1k=0 , and {dk = d̂k}N−1k=0 , the im-

plicit Euler discretization of (1b)-(1d) corresponds to

solving

Rk+1 = Rk+1(wk+1) = 0, k ∈ N (9)

sequentially for {wk+1}N−1k=0 by marching forward. Equa-

tion (9) is solved by an inexact Newton method, i.e. by

solving a sequence of linear systems

wm+1
k+1 = wmk+1 −M−1k+1Rk+1(wmk+1), (10)

until some convergence criteria is satisfied. The iteration

matrix is

Mk+1 =
∂Rk+1

∂wk+1
=

[
I −∆tk

∂F
∂y 0

∂G
∂x

∂G
∂y

∂G
∂z

]
, (11)

where

∂G

∂x
=




0

I

0


 , K =

[
∂G
∂y

∂G
∂z

]
=



∇2
yyL −∇g −∇h
−∇gT 0 0

−∇hT 0 0


 .

K denotes the KKT matrix of the equilibrium conditions

(7). The second derivative of the Lagrangian, L, with

respect to y is given by

∇2
yyL = ∇2f −

∑

i

ηi∇2gi −
∑

i

µi∇2hi. (12)

3.2 Gradients by the Adjoint Method

We substitute the discrete residual function (8) for

the differential-algebraic constraints (1c)-(1d) in the

function ψ given by (3) to obtain the following single

shooting objective function, in which the zero-order-hold

parametrization of the input and disturbances (1e)-(1f)

have been applied

ψ = ψ({uk}k∈N ; x̂0, {d̂k}k∈N ) (13a)

=

{
φ =

∑

k∈N
Φk(yk+1, uk, d̂k) : (13b)

x0 = x̂0, (13c)

Rk+1(wk+1, xk, uk, d̂k) = 0, k ∈ N , (13d)

[xk+1; yk+1; zk+1] = wk+1, k ∈ N
}
. (13e)

The Lagrange objective (2) is approximated by the

sum (13b) in which Φk approximates the integral over

[tk, tk+1[ using the rectangle rule with yk+1 (rather than

yk)

Φk = Φk(yk+1, uk, d̂k) = ∆tkΦ(yk+1, uk, d̂k). (14)

The adjoints, {λk}Nk=1, are computed by marching back-

wards in the equations

(
∂RN
∂wN

)T
λN = −∇wN

ΦN−1, (15a)

(
∂Rk
∂wk

)T
λk = −

(
∂Rk+1

∂wk

)T
λk+1 −∇wk

Φk−1, (15b)



for k ∈ {N − 1, N − 2, . . . , 1}. The Jacobian of the

discrete residual ∂Rk+1

∂wk+1
(wk+1, wk, uk, d̂k) was defined in

(11) and the Jacobian with respect to the states and the

algebraic variables in the previous timestep is

∂Rk+1

∂wk
(wk+1, wk, uk, d̂k) = −

[
I 0 0

0 0 0

]
, (16)

for k = 1, . . . , N − 1. The gradient of the objective is

∇wk+1
Φk =




0

∇yk+1
Φk

0


 , k ∈ N . (17)

The gradients of ψ with respect to the inputs,

{∇uk
ψ}k∈N , are computed by

∇uk
ψ = ∇uk

Φk +

(
∂Rk+1

∂uk

)T
λk+1, k ∈ N . (18)

4 UV Flash Example

Neglecting kinetic and potential energy, the energy-

and mass balance of a flash unit may be expressed as

U̇(t) = Hv
F (t) +H l

F (t)−HV (t)−HL(t) +Q(t), (19a)

ṅi(t) = fvF,i(t) + f lF,i(t)− vi(t)− li(t), (19b)

for the components i = 1, .., NC . U is the internal energy

and ni is the total holdup of component i. HV and

HL are the enthalpies of the vapor and liquid streams

respectively, and Hv
F and H l

F are the vapor and liquid

enthalpies of the feed. fvF,i and f lF,i are the vapor and

liquid component flow rates of the feed. vi and li are the

component flow rates of the vapor and liquid streams.

The conservation equations (19) are in the form of the

differential equation (1d) where the function F is

F (y(t), u(t), d(t)) =
[
Hv
F (t) +H l

F (t)−HV (t)−HL(t) +Q(t)

fvF (t) + f lF (t)− v(t)− l(t)

]
. (20)

Let the state variables, x, the algebraic variables, y, the

Lagrange multipliers, z, the manipulated variables, u,

and the disturbance variables, d, be defined as:

x = [U ;n] ∈ R1+NC , (21a)

y =
[
T ;P ;nv;nl

]
∈ R2+2NC , (21b)

z = [µ; η] ∈ R2+NC , (21c)

u = [Q;FV ;FL] ∈ R3, (21d)

d =
[
TF ;PF ; fvF ; f lF

]
∈ R2+2NC . (21e)

The VLE in the flash tank is governed by

max
T,P,nv,nl

S = Sv(T, P, nv) + Sl(T, P, nl) (22a)

s.t. Uv(T, P, nv) + U l(T, P, nl) = U, (22b)

V v(T, P, nv) + V l(T, P, nl) = V, (22c)

nvi + nli = ni, i = 1, . . . , NC . (22d)

The VLE problem (22) is in the form of equation (5)

where the functions f , g and h are

f(y) = f(T, P, nv, nl)

= −
(
Sv(T, P, nv) + Sl(T, P, nl)

)
, (23a)

g(y) = g(T, P, nv, nl)

=

[
Uv(T, P, nv) + U l(T, P, nl)

nv + nl

]
, (23b)

h(y) = h(T, P, nv, nl)

= V v(T, P, nv) + V l(T, P, nl)− V, (23c)

We consider a mixture of benzene, toluene and diphenyl

that is separated in a flash tank. Figure 2 shows the

controlled variables and the manipulated variables for

a least-squares optimal transition between two steady

states. The optimal transition is computed by dy-

namic optimization and compared to an open-loop non-

optimized transition. The optimized transition is signif-

icantly faster than the transition based on the steady

state values of the manipulated variables. Figures 3-

5 show the composition variables, selected thermody-

namic functions (H, S, G), and the state variables for

the optimal transition.

Table 1 shows the computation time for solving the

OCP (4) with the presented dynamic optimization algo-

rithm using different compilers, optimization libraries,

and linear algebra libraries. fmincon is at least 10 times

faster when used with a compiled C implementation for

numerical integration compared to a Matlab implemen-

tation for numerical integration. When the compiled C

code is called from Matlab, it will in all cases be using

Intel MKL. Using IPOPT gives a modest speedup of be-

tween 6 and 8, because IPOPT uses a limited-memory

BFGS update strategy tailored for large-scale systems.

KNITRO results in a speedup of between 41 and 48 com-

pared to a pure Matlab implementation, and NPSOL

gives a speedup of between 47 and 66. The Intel com-

pilers and Intel MKL generally have a positive effect on

the implementations using KNITRO and NPSOL. The

compiler icc (Intel) rather than the compiler gcc and In-

tel MKL rather than Netlib’s BLAS/LAPACK have a

negative effect on the implementation using IPOPT.
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Figure 2. Transition between two steady states by dynamic optimization (blue) and use of steady state inputs

(green dashed).

5 Conclusion

We presented an adjoint single-shooting algorithm

for gradient-based dynamic optimization of flash pro-

cesses. The algorithm simultaneously solves the equilib-

rium conditions and the differential conservation equa-

tions. A simulation example demonstrates that dynamic

optimization enables fast transition between steady

states. This is an important feature for nonlinear model

predictive control applications. The numerical experi-

ments show that using a simultaneous numerical inte-

gration scheme in the adjoint single shooting algorithm

yields faster solution than with a nested numerical in-

tegration scheme. This is primarily due to fewer evalu-

ations of the thermodynamic properties. Furthermore,

the computational time of the adjoint single-shooting al-

gorithm is compared for four optimization solvers (KNI-

TRO, NPSOL, IPOPT and fmincon [Matlab]) and il-

lustrates that using a compiled language together with

an appropriate NLP solver library is essential to good

computational performance. KNITRO and NPSOL give

significant speedup compared to a pure Matlab imple-

mentation. IPOPT is designed for large-scale problems

and less appropriate for the small dense problem con-

sidered in this work. Furthermore, the Intel compil-

ers in combination with the Intel MKL are generally

more efficient than using GNU compilers and Netlib’s

BLAS/LAPACK distribution. Using the suggested al-

gorithm, we can we can solve a dynamic UV flash op-

timization problem with 3 components in less than 0.2

seconds.
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Figure 3. Composition variables of the optimal transi-

tion. Overall, z, liquid, x, and vapor, y, mole fractions

as well as the vapor fraction, β.
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tank in the optimal transition. H is the enthalpy, S is
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Table 1. Absolute (in seconds) and relative computation

time of solving the OCP (4) using simultaneous numeri-

cal integration. Average over 10 calls. fmincon (C) uses

a C implementation of simultaneous numerical integra-

tion and fmincon (M) uses a Matlab implementation.

Sp.up is short for speed-up compared to the pure Matlab

implementation, i.e. fmincon (M).

fmincon IPOPT KNITRO NPSOL

Matlab C C C C

Iter. 192 192 445 168 158

Func. 195 195 1435 171 159

gcc, gfortran, Netlib BLAS/LAPACK

Abs. 12.461 1.185 1.663 0.298 0.263

Rel. 1.000 0.095 0.133 0.024 0.021

Sp.up 1.0 10.5 7.5 41.8 47.4

icc, gfortran, Netlib BLAS/LAPACK

Abs. 12.461 1.081 1.753 0.277 0.246

Rel. 1.000 0.087 0.141 0.022 0.020

Sp.up 1.0 11.5 7.1 45.0 50.7

icc, gfortran, Intel MKL

Abs. 12.461 1.138 1.876 0.277 0.213

Rel. 1.000 0.091 0.151 0.022 0.017

Sp.up 1.0 10.9 6.6 45.0 58.5

icc, ifort, Intel MKL

Abs. 12.461 1.149 1.618 0.262 0.189

Rel. 1.000 0.092 0.130 0.021 0.015

Sp.up 1.0 10.8 7.7 47.6 65.9
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Tobias K. S. Ritschel, Jozsef Gaspar, John Bagterp Jørgensen

Department of Applied Mathematics and Computer Science &
Center for Energy Resources Engineering (CERE),

Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

Abstract: Process system tools, such as simulation and optimization of dynamic systems, are
widely used in the process industries for development of operational strategies and control for
process systems. These tools rely on thermodynamic models and many thermodynamic models
have been developed for different compounds and mixtures. However, rigorous thermodynamic
models are generally computationally intensive and not available as open-source libraries for
process simulation and optimization. In this paper, we describe the application of a novel open-
source rigorous thermodynamic library, ThermoLib, which is designed for dynamic simulation
and optimization of vapor-liquid processes. ThermoLib is implemented in Matlab and C and
uses cubic equations of state to compute vapor and liquid phase thermodynamic properties.
The novelty of ThermoLib is that it provides analytical first and second order derivatives.
These derivatives are needed for efficient dynamic simulation and optimization. The analytical
derivatives improve the computational performance by a factor between 12 and 35 as compared
to finite difference approximations. We present two examples that use ThermoLib routines in
their implementations: (1) simulation of a vapor-compression cycle, and (2) optimal control of
an isoenergetic-isochoric flash separation process. The ThermoLib software used in this paper
is distributed as open-source software at www.psetools.org.

Keywords: Thermodynamic library, Process simulation, Dynamic optimization, Vapor
compression cycle, Vapor-liquid equilibrium, Flash separation

1. INTRODUCTION

Rigorous thermodynamic computations of vapor and liq-
uid properties (volume, enthalpy, entropy) constitute a
significant part of the computations in the dynamic sim-
ulation and optimization of many industrial processes
governed by vapor-liquid equilibrium. Such processes are
ubiquitous and include power cycles, vapor compression
cycles, refrigeration systems, vapor-liquid separations in
tanks, distillation columns, and oil reservoirs modeled
by compositional and thermal models. Thermodynamic
models, such as equations of state (EOS) and activity
coefficient models, are widely used in the process industries
and represent a certain level of complexity. As process
simulation and optimization software depends critically
on thermodynamic property computations, it is crucial
to the computational performance that such thermody-
namic models are implemented efficiently. Simulation and
gradient-based optimization of dynamic process systems
governed by vapor-liquid equilibrium require in addition to
the thermodynamic properties themselves also first and in
many cases second order derivatives of the thermodynamic
properties.

� This project is funded partly by: 1) Innovation Fund Denmark
in the CITIES project (1305-00027B) and in the OPTION project
(63-2013-3), 2) the interreg project Smart Cities Accelerator (10606
SCA), and 3) EUDP 64013-0558 in the IEA Annex for energy efficient
process control.

In this paper, we present a performance study of a
recently developed open-source thermodynamic library,
ThermoLib, which is designed for efficient dynamic simu-
lation and optimization. It is implemented in Matlab and
C. The novelty of ThermoLib is that it provides routines
for evaluating analytical first and second order derivatives
with respect to temperature, pressure, and mole numbers.
The derivatives are obtained with symbolic differentiation.
The library is based on parameters and correlations from
the DIPPR database (Thomson, 1996), the Peng-Robinson
(PR) EOS (Peng and Robinson, 1976), the Soave-Redlich-
Kwong (SRK) EOS (Soave, 1972), and the van der Waals
mixing rules (Shibata and Sandler, 1989). ThermoLib is an
open-source library and is available from www.psetools.org
(Ritschel et al., 2016). There are already a few open-
source libraries such as the simulink toolbox T-MATS by
Chapman et al. (2014) and a Matlab library by Mart́ın
et al. (2011). Furthermore, the CALPHAD software Open-
Calphad developed by Sundman et al. (2015) contains
an open-source module for evaluation of thermodynamic
properties. However, none of these libraries provide both
first and second order derivatives.

We present two examples that use ThermoLib routines in
their implementations, namely simulation of a heat pump
and dynamic optimization of an isoenergetic-isochoric
flash separation process. Heat pumps are promising for
the recovery of waste and ground heat and have numer-
ous complex applications in heating and cooling, i.e. air
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1. INTRODUCTION

Rigorous thermodynamic computations of vapor and liq-
uid properties (volume, enthalpy, entropy) constitute a
significant part of the computations in the dynamic sim-
ulation and optimization of many industrial processes
governed by vapor-liquid equilibrium. Such processes are
ubiquitous and include power cycles, vapor compression
cycles, refrigeration systems, vapor-liquid separations in
tanks, distillation columns, and oil reservoirs modeled
by compositional and thermal models. Thermodynamic
models, such as equations of state (EOS) and activity
coefficient models, are widely used in the process industries
and represent a certain level of complexity. As process
simulation and optimization software depends critically
on thermodynamic property computations, it is crucial
to the computational performance that such thermody-
namic models are implemented efficiently. Simulation and
gradient-based optimization of dynamic process systems
governed by vapor-liquid equilibrium require in addition to
the thermodynamic properties themselves also first and in
many cases second order derivatives of the thermodynamic
properties.
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In this paper, we present a performance study of a
recently developed open-source thermodynamic library,
ThermoLib, which is designed for efficient dynamic simu-
lation and optimization. It is implemented in Matlab and
C. The novelty of ThermoLib is that it provides routines
for evaluating analytical first and second order derivatives
with respect to temperature, pressure, and mole numbers.
The derivatives are obtained with symbolic differentiation.
The library is based on parameters and correlations from
the DIPPR database (Thomson, 1996), the Peng-Robinson
(PR) EOS (Peng and Robinson, 1976), the Soave-Redlich-
Kwong (SRK) EOS (Soave, 1972), and the van der Waals
mixing rules (Shibata and Sandler, 1989). ThermoLib is an
open-source library and is available from www.psetools.org
(Ritschel et al., 2016). There are already a few open-
source libraries such as the simulink toolbox T-MATS by
Chapman et al. (2014) and a Matlab library by Mart́ın
et al. (2011). Furthermore, the CALPHAD software Open-
Calphad developed by Sundman et al. (2015) contains
an open-source module for evaluation of thermodynamic
properties. However, none of these libraries provide both
first and second order derivatives.

We present two examples that use ThermoLib routines in
their implementations, namely simulation of a heat pump
and dynamic optimization of an isoenergetic-isochoric
flash separation process. Heat pumps are promising for
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Kwong (SRK) EOS (Soave, 1972), and the van der Waals
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Chapman et al. (2014) and a Matlab library by Mart́ın
et al. (2011). Furthermore, the CALPHAD software Open-
Calphad developed by Sundman et al. (2015) contains
an open-source module for evaluation of thermodynamic
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first and second order derivatives.

We present two examples that use ThermoLib routines in
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and dynamic optimization of an isoenergetic-isochoric
flash separation process. Heat pumps are promising for
the recovery of waste and ground heat and have numer-
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conditioning, floor heating, cryogenic air distillation, dry-
ing processes, etc. The European Heat Pump Association
(2015) has reported that a total heat pump capacity of
approximately 6.6 GW was installed in Europe during
2014, producing 13 TWh of energy and reducing CO2-
equivalent emissions by 2.09 Mt. Consequently, efficient
simulation of heat pump devices is important to the de-
sign of economically attractive control methodologies, and
will contribute to energy savings in both household and
industrial applications. In the second example, we consider
separation of hydrogen sulfide (H2S) from a gas conden-
sate. This is an example of a multi-component vapor-
liquid equilibrium process that appears in e.g. distillation
columns and is ubiquitous in the oil and chemical process
industries.

This paper is structured as follows. Section 2 gives a
brief description of the ThermoLib interface and presents
a set of performance tests of selected library routines.
Section 3 presents simulations of the heat pump and
Section 4 presents an optimal control strategy for the flash
separation process. Conclusions are given in Section 5.

2. THERMODYNAMIC LIBRARY

This section briefly discusses the interfaces of the Ther-
moLib Matlab routines that are used in the heat pump
simulations presented in Section 3 and the optimal flash
separation presented in Section 4. Furthermore, we present
a set of performance tests that illustrate the efficiency of
selected library routines. ThermoLib is open-source soft-
ware available at www.psetools.org and its methods are
described by Ritschel et al. (2016).

2.1 ThermoLib Matlab Interface

Fig 1(a) shows a Matlab script that computes molar vapor
and liquid enthalpy, entropy, and volume of Freon-12 which
is one of the refrigerants that are used in the heat pump
simulations. The thermodynamic properties are evaluated
at a temperature of T = 300 K and a pressure of
P = 1 MPa. The Thermolib routine LoadParams must
be called before using any other routine. It loads DIPPR
parameters and in this case also PR EOS parameters.
The two routines PureRealVapHSV and PureRealLiqHSV
return the thermodynamic properties together with first
and second order temperature and pressure derivatives.
Fig. 1(b) shows a Matlab script that computes enthalpy,
entropy and volume of a hydrocarbon mixture. ThermoLib
requires that the user specifies a set of binary interaction
parameters, kij . These are all zero for hydrocarbons. The
properties are evaluated at a temperature of T = 300 K
and a pressure of P = 10 MPa. The two routines MixReal-
VapHSV and MixRealLiqHSV return the thermodynamic
properties, vectors of first order derivatives, and matrices
of second order derivatives.

2.2 Computational Performance of ThermoLib

Fig. 2 shows a set of performance tests that evaluate eight
of the main routines in ThermoLib. The routines compute
vapor and liquid properties of real and ideal mixtures as
well as of pure components. Fig. 2(a) compares the effi-
ciency of the library routines to numerical differentiation.

The mixture routines are between 12 and 35 times faster
than numerical differentiation, while the pure component
routines are around 5 times faster. The speedup is lower for
the pure component routines because they only evaluate
temperature and pressure derivatives. Fig. 2(b) shows the
computation time of the Matlab, C and Mex routines. The
C routines are more than a hundred times faster than the
Matlab routines and around ten times faster than the Mex
routines. The order of magnitude ranges from milliseconds
for the Matlab routines to microseconds for the C routines.
Fig. 2(c) and 2(d) show the increase in computation time
for the Matlab and C routines with respect to the number
of components. There is hardly any increase for the Matlab
routines, which is due to efficient vectorization, while the
increase is close to linear for the C routines.

3. VAPOR-COMPRESSION CYCLE

In this section we describe a vapor-compression cycle
(VCC) for the modeling of heat pumps or refrigerators.
Furthermore, we present the effect of ambient conditions
on the performance of a heat pump in order to emphasize
the need for thermodynamically rigorous computation of
the efficiency of heat pumps.

A heat pump is a reversed heat engine that transfers
heat from a low temperature zone to one with a higher
temperature using mechanical work for compression. Fig.
3 shows a schematic drawing of a VCC with a typical
temperature-entropy diagram. The VCC consists of four
steps. First the low pressure and low temperature refriger-
ant (point 1) is evaporated in a heat exchanger producing
a saturated vapor (point 2). This saturated low pressure
vapor is compressed isentropically by supplying work, Wc,
in the compressor to produce a high temperature and high
pressure vapor (point 3). Afterwards, heat is released in
the condenser at constant pressure, producing a saturated
liquid phase (point 4). Finally, the saturated liquid is
expanded to its original pressure at isenthalpic conditions
in a turbine or in a throttling valve (point 1). The coef-
ficient of performance (COP) provides the overall energy
efficiency of a VCC used for either heating, COPheat, or
cooling, COPcool. These COPs are defined as

COPheat =
h3 − h4

h3 − h2
, (1a)

COPcool =
h2 − h1

h3 − h2
, (1b)

where h1, h2, h3, and h4 are the enthalpies of the refriger-
ant in the four points in the cycle. At nominal operating
conditions, a COP of a heat pump is often set to 3. This
indicates that the extracted heat is 3 times the energy
input to the compressor. However, the COP is a nonlin-
ear function of the evaporation temperature, condensation
temperature, the active load, and the isentropic efficiency
of the compressor. Therefore, thermodynamically correct
and accurate modeling of this unit is necessary for reliably
determining the performance of a VCC and for realistic
optimal control of processes with integrated heat pumps.
The dynamics of VCCs are in general much faster than the
dynamics of buildings and industrial processes (Halvgaard
et al., 2012; Hovgaard et al., 2013; Jensen and Skogestad,
2007; Svensson, 1996; Zhao et al., 2003). Therefore, we im-
plement a static model of a heat pump. This model is based
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significant part of the computations in the dynamic sim-
ulation and optimization of many industrial processes
governed by vapor-liquid equilibrium. Such processes are
ubiquitous and include power cycles, vapor compression
cycles, refrigeration systems, vapor-liquid separations in
tanks, distillation columns, and oil reservoirs modeled
by compositional and thermal models. Thermodynamic
models, such as equations of state (EOS) and activity
coefficient models, are widely used in the process industries
and represent a certain level of complexity. As process
simulation and optimization software depends critically
on thermodynamic property computations, it is crucial
to the computational performance that such thermody-
namic models are implemented efficiently. Simulation and
gradient-based optimization of dynamic process systems
governed by vapor-liquid equilibrium require in addition to
the thermodynamic properties themselves also first and in
many cases second order derivatives of the thermodynamic
properties.
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ThermoLib, which is designed for efficient dynamic simu-
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C. The novelty of ThermoLib is that it provides routines
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with respect to temperature, pressure, and mole numbers.
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et al. (2011). Furthermore, the CALPHAD software Open-
Calphad developed by Sundman et al. (2015) contains
an open-source module for evaluation of thermodynamic
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first and second order derivatives.
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In this paper, we present a performance study of a
recently developed open-source thermodynamic library,
ThermoLib, which is designed for efficient dynamic simu-
lation and optimization. It is implemented in Matlab and
C. The novelty of ThermoLib is that it provides routines
for evaluating analytical first and second order derivatives
with respect to temperature, pressure, and mole numbers.
The derivatives are obtained with symbolic differentiation.
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1. INTRODUCTION

Rigorous thermodynamic computations of vapor and liq-
uid properties (volume, enthalpy, entropy) constitute a
significant part of the computations in the dynamic sim-
ulation and optimization of many industrial processes
governed by vapor-liquid equilibrium. Such processes are
ubiquitous and include power cycles, vapor compression
cycles, refrigeration systems, vapor-liquid separations in
tanks, distillation columns, and oil reservoirs modeled
by compositional and thermal models. Thermodynamic
models, such as equations of state (EOS) and activity
coefficient models, are widely used in the process industries
and represent a certain level of complexity. As process
simulation and optimization software depends critically
on thermodynamic property computations, it is crucial
to the computational performance that such thermody-
namic models are implemented efficiently. Simulation and
gradient-based optimization of dynamic process systems
governed by vapor-liquid equilibrium require in addition to
the thermodynamic properties themselves also first and in
many cases second order derivatives of the thermodynamic
properties.
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conditioning, floor heating, cryogenic air distillation, dry-
ing processes, etc. The European Heat Pump Association
(2015) has reported that a total heat pump capacity of
approximately 6.6 GW was installed in Europe during
2014, producing 13 TWh of energy and reducing CO2-
equivalent emissions by 2.09 Mt. Consequently, efficient
simulation of heat pump devices is important to the de-
sign of economically attractive control methodologies, and
will contribute to energy savings in both household and
industrial applications. In the second example, we consider
separation of hydrogen sulfide (H2S) from a gas conden-
sate. This is an example of a multi-component vapor-
liquid equilibrium process that appears in e.g. distillation
columns and is ubiquitous in the oil and chemical process
industries.

This paper is structured as follows. Section 2 gives a
brief description of the ThermoLib interface and presents
a set of performance tests of selected library routines.
Section 3 presents simulations of the heat pump and
Section 4 presents an optimal control strategy for the flash
separation process. Conclusions are given in Section 5.

2. THERMODYNAMIC LIBRARY

This section briefly discusses the interfaces of the Ther-
moLib Matlab routines that are used in the heat pump
simulations presented in Section 3 and the optimal flash
separation presented in Section 4. Furthermore, we present
a set of performance tests that illustrate the efficiency of
selected library routines. ThermoLib is open-source soft-
ware available at www.psetools.org and its methods are
described by Ritschel et al. (2016).

2.1 ThermoLib Matlab Interface

Fig 1(a) shows a Matlab script that computes molar vapor
and liquid enthalpy, entropy, and volume of Freon-12 which
is one of the refrigerants that are used in the heat pump
simulations. The thermodynamic properties are evaluated
at a temperature of T = 300 K and a pressure of
P = 1 MPa. The Thermolib routine LoadParams must
be called before using any other routine. It loads DIPPR
parameters and in this case also PR EOS parameters.
The two routines PureRealVapHSV and PureRealLiqHSV
return the thermodynamic properties together with first
and second order temperature and pressure derivatives.
Fig. 1(b) shows a Matlab script that computes enthalpy,
entropy and volume of a hydrocarbon mixture. ThermoLib
requires that the user specifies a set of binary interaction
parameters, kij . These are all zero for hydrocarbons. The
properties are evaluated at a temperature of T = 300 K
and a pressure of P = 10 MPa. The two routines MixReal-
VapHSV and MixRealLiqHSV return the thermodynamic
properties, vectors of first order derivatives, and matrices
of second order derivatives.

2.2 Computational Performance of ThermoLib

Fig. 2 shows a set of performance tests that evaluate eight
of the main routines in ThermoLib. The routines compute
vapor and liquid properties of real and ideal mixtures as
well as of pure components. Fig. 2(a) compares the effi-
ciency of the library routines to numerical differentiation.

The mixture routines are between 12 and 35 times faster
than numerical differentiation, while the pure component
routines are around 5 times faster. The speedup is lower for
the pure component routines because they only evaluate
temperature and pressure derivatives. Fig. 2(b) shows the
computation time of the Matlab, C and Mex routines. The
C routines are more than a hundred times faster than the
Matlab routines and around ten times faster than the Mex
routines. The order of magnitude ranges from milliseconds
for the Matlab routines to microseconds for the C routines.
Fig. 2(c) and 2(d) show the increase in computation time
for the Matlab and C routines with respect to the number
of components. There is hardly any increase for the Matlab
routines, which is due to efficient vectorization, while the
increase is close to linear for the C routines.

3. VAPOR-COMPRESSION CYCLE

In this section we describe a vapor-compression cycle
(VCC) for the modeling of heat pumps or refrigerators.
Furthermore, we present the effect of ambient conditions
on the performance of a heat pump in order to emphasize
the need for thermodynamically rigorous computation of
the efficiency of heat pumps.

A heat pump is a reversed heat engine that transfers
heat from a low temperature zone to one with a higher
temperature using mechanical work for compression. Fig.
3 shows a schematic drawing of a VCC with a typical
temperature-entropy diagram. The VCC consists of four
steps. First the low pressure and low temperature refriger-
ant (point 1) is evaporated in a heat exchanger producing
a saturated vapor (point 2). This saturated low pressure
vapor is compressed isentropically by supplying work, Wc,
in the compressor to produce a high temperature and high
pressure vapor (point 3). Afterwards, heat is released in
the condenser at constant pressure, producing a saturated
liquid phase (point 4). Finally, the saturated liquid is
expanded to its original pressure at isenthalpic conditions
in a turbine or in a throttling valve (point 1). The coef-
ficient of performance (COP) provides the overall energy
efficiency of a VCC used for either heating, COPheat, or
cooling, COPcool. These COPs are defined as

COPheat =
h3 − h4

h3 − h2
, (1a)

COPcool =
h2 − h1

h3 − h2
, (1b)

where h1, h2, h3, and h4 are the enthalpies of the refriger-
ant in the four points in the cycle. At nominal operating
conditions, a COP of a heat pump is often set to 3. This
indicates that the extracted heat is 3 times the energy
input to the compressor. However, the COP is a nonlin-
ear function of the evaporation temperature, condensation
temperature, the active load, and the isentropic efficiency
of the compressor. Therefore, thermodynamically correct
and accurate modeling of this unit is necessary for reliably
determining the performance of a VCC and for realistic
optimal control of processes with integrated heat pumps.
The dynamics of VCCs are in general much faster than the
dynamics of buildings and industrial processes (Halvgaard
et al., 2012; Hovgaard et al., 2013; Jensen and Skogestad,
2007; Svensson, 1996; Zhao et al., 2003). Therefore, we im-
plement a static model of a heat pump. This model is based

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

3602



3544 Tobias K.S. Ritschel  et al. / IFAC PapersOnLine 50-1 (2017) 3542–3547

(a) Computation of thermodynamic properties of Freon-12. (b) Computation of thermodynamic properties of a hydrocar-
bon mixture.

Fig. 1. Examples of Matlab scripts that use ThermoLib routines to compute thermodynamic properties.

on energy conservation equations, and ThermoLib routines
are used for the computation of enthalpy, entropy, and sat-
uration pressure as well as their temperature and pressure
derivatives. Fig. 4 shows the solution methodology that
is used to compute the COP of this static VCC model.
For a single component refrigerant, this implementation
relies on the ThermoLib routines PureRealVapHSV and
PureRealLiqHSV, whose interfaces were briefly presented
in Section 2, and the PureRealSatTemp routine.

3.1 Simulation Results

This section presents simulations of two frequently en-
countered operational scenarios and it illustrates that the
efficiency of a heat pump is strongly dependent on ambient
conditions and the type of the refrigerant.

Fig. 5 shows the simulation results for Freon-12 and CO2.
Fig. 5(a) shows the effect of changes in the evaporation
temperature on the performance (COP) of a heat pump.
The condenser operates at a fixed 20◦C. This scenario
frequently occurs in the case of heat pumps for indoor
climate control aiming at maintaining a constant room
temperature during daily and seasonal changes of the
ground temperature. Fig. 5(b) shows the COP as function
of the condensation temperature at a fixed evaporation
temperature of −10◦C. This scenario occurs when heat
pumps absorb energy from a constant heat source while the
released heat is a manipulated variable. Such scenarios are
encountered in many industrial applications, for instance
in cryogenic air distillation. The results shown in Fig. 5
illustrate that the COP is significantly affected by changes
in the operation parameters and that it also depends on
the type of refrigerant. Consequently, the assumption of
a constant COP, often used in control applications, is not
realistic. Realistic simulations and conclusions require a
rigorous thermodynamic library such as ThermoLib.

4. FLASH SEPARATION PROCESS

In this section, we present an optimal control strategy
for a flash separation process in which H2S is removed
from a gas condensate. The condensate consists of eleven
hydrocarbons as well as CO2, N2, and H2S. The separation
process is assumed to be at vapor-liquid equilibrium. The
dynamic optimization of the isoenergetic-isochoric (UV)
flash process can be formulated as a bilevel optimization
problem (Ritschel et al., 2017). The inner optimization
problem is the 2nd law of thermodynamics that says that
equilibrium of a closed systems is obtained at maximum
entropy of the system. The outer dynamic optimization
problem has the differential mass and energy balances in
addition to the equilibrium conditions as constraints. The
mass and energy balances are affected by a feed stream
that supplies the gas condensate to the separator unit,
a vapor stream that extracts gas, a liquid stream that
extracts liquid, and a heat input. The separator unit is
sketched in Fig. 6. We apply a model-based approach to
find an optimal control strategy with respect to a given
performance measure, while satisfying a set of constraints.
We use a single shooting approach which combines dy-
namic simulation with an iterative optimization algorithm
(Binder et al., 2001). Fig. 7 illustrates the solution method-
ology. Model-based control is advantageous because it can
be used for both setpoint tracking and economical control,
and because it can handle constraints. However, it is also
computationally expensive and therefore it is important
to accelerate the computations by applying a gradient-
based optimization method. This requires the first and
second order derivatives of thermodynamic properties be-
cause the first order derivatives appear in the vapor-liquid
equilibrium conditions in the model. They are provided by
ThermoLib. The gradients of input bound constraints are
derived analytically while output bound constraints are in-
corporated into the objective function using a logarithmic
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(a) Speedup in computation time compared to numerical
forward difference approximations of first and second order
derivatives for benzene, toluene and diphenyl.

(b) Computation times of the Matlab, C and Mex rou-
tines. Pure component routines evaluate benzene proper-
ties and mixture routines evaluate properties of a mixture
of benzene, toluene and diphenyl.

(c) Computation times of the Matlab routines for 3 com-
ponents: n-C1 to n-C3, 7 components: n-C1 to n-C7, and
11 components: n-C1 to n-C11.

(d) Computation times of the C routines for 3 components:
n-C1 to n-C3, 7 components: n-C1 to n-C7, and 11
components: n-C1 to n-C11.

Fig. 2. Performance tests of eight Matlab, C, and Mex routines from ThermoLib. The functionality is related to the
routine names as follows. Mix: mixture properties, Pure: pure component properties, Real: real properties, Id: ideal
properties, Vap: vapor properties and Liq: liquid properties.

Fig. 3. Schematic representation and temperature-entropy
diagram of a vapor-compression cycle.

barrier function. An adjoint method is used for computing
the gradients of the objective function (Jørgensen, 2007).

Fig. 4. Solution methodology for simulation of the static
model of the vapor-compression cycle. T1 through T4

are temperatures, and P1 through P4 are pressures.

4.1 Optimal Control Example

We present an example where the gas condensate is
processed over a time interval of six hours, i.e. t ∈ [t0, tf ] =
[0 hr, 6 hr]. During the middle two hours the H2S content
of the feed increases significantly as shown in Fig. 8(a).
The manipulated variables are the vapor stream flow rate,
FV , and the heat input, Q. We consider the heat input to
be a cooling device such that Q ≤ 0. The objective is to
minimize the amount of energy spent on cooling, i.e. to
maximize the functional
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[0 hr, 6 hr]. During the middle two hours the H2S content
of the feed increases significantly as shown in Fig. 8(a).
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(a) COP as function of evaporation temperature.
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(b) COP as function of condensation temperature.

Fig. 5. Heat pump simulations of common operational
scenarios. Blue solid: Freon-12. Green dashed: CO2.

φ =

∫ tf

t0

Q(t)dt (2)

subject to the following constraint on the H2S vapor mole
fraction, yH2S

yH2S(t) ≤ ymax
H2S , t ∈ [t0, tf ], (3)

where ymax
H2S

= 0.02 is an upper bound on the level of
impurity of the gas condensate. The liquid stream flow
rate is controlled such that the total mass is constant, i.e.
FL = FF − FV where FF = 12 kmol/hr is the feed flow
rate. We compare the optimal strategy with a reference
strategy, which also satisfies the constraint (3). The vapor
mole fraction of H2S is shown in Fig. 8(a), and Fig. 8(b)
shows the optimal control strategy (solid blue) and the
reference strategy (green dashed). The optimal control
solution only applies cooling during the step in the H2S
feed content where it is used to ensure that the constraint
(3) is satisfied. The optimal strategy makes active use of
the vapor flow rate. However, it processes the same amount
of gas as the reference strategy. The energy spent on
cooling is decreased from 600 MJ for the reference strategy
to 370 MJ for the optimal strategy. This is an improvement
of 38%. The single-shooting method requires 165 dynamic
simulations to converge to the optimal control strategy
shown in Fig. 8(b). The dynamic simulations are the main
computational part of the single shooting approach. If the
gradients of the objective function were approximated with
finite differences it would not be necessary to compute
second order derivatives of the thermodynamic properties.
However, that would require at least 19,724 dynamic
simulations. This is nearly 120 times as many simulations
and it is likely that the computation time would increase
by two orders of magnitude. This illustrates the potential
of using the ThermoLib routines for efficient gradient-
based solution of dynamic optimization problems.

5. CONCLUSIONS

We have presented a performance study of the recently
developed thermodynamic library, ThermoLib, which is
implemented in Matlab and C. The study shows that
the computation time is of the order milliseconds for the
Matlab routines and microseconds for the C routines.

Vapor
phase

Liquid
phase

Feed stream,
(FF )

Vapor stream,
(FV )

Liquid stream,
(FL)

Heat input, (Q)

Fig. 6. Sketch of vapor-liquid flash separation unit.

Fig. 7. Flow diagram of a gradient-based single shooting
approach for dynamic optimization.

ThermoLib routines evaluate first and second order deriva-
tives analytically which is an order of magnitude faster
than numerical differentiation for mixture properties and
around 5 times faster for pure component properties. The
computation time is nearly constant with respect to the
number of components for the Matlab routines and close
to linear for the C routines.

Furthermore, we have used ThermoLib in the simula-
tion of a vapor-compression cycle and for optimal control
of a flash separation process. The study of the vapor-
compression cycle outlined the importance of a rigorous
thermodynamic approach for reliable predictions of pro-
cess performance and economics with respect to different
operating conditions and different types of refrigerants.
The study demonstrated that assuming a constant coef-
ficient of performance for a compression cycle, as is gener-
ally considered in control studies, may lead to significant
prediction errors. Furthermore, we have solved a dynamic
optimization problem involving a flash process using ef-
ficient gradient-based methods based on ThermoLib rou-
tines. The dynamic optimization problem involved non-
linear output constraints that were incorporated into the
objective function using a barrier function, and the gra-
dients of the objective were computed using an adjoint
method. In both examples the availability of first and
second order gradients is crucial to the good computational
performance.
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Mart́ın, Á., Bermejo, M. D., Mato, F. A., Cocero, M. J.,
2011. Teaching advanced equations of state in applied
thermodynamics courses using open source programs.
Education for Chemical Engineers 6 (4), e114–e121.

Peng, D.-Y., Robinson, D. B., 1976. A new two-constant
equation of state. Industrial & Engineering Chemistry
Fundamentals 15 (1), 59–64.

Ritschel, T. K. S., Capolei, A., Jørgensen, J. B., 2017. Dy-
namic optimization of UV flash processes. In: FOCAPO
/ CPC 2017.

Ritschel, T. K. S., Gaspar, J., Capolei, A., Jørgensen, J. B.,
2016. An open-source thermodynamic software library.
Tech. Rep. DTU Compute Technical Report-2016-12,
Department of Applied Mathematics and Computer
Science, Technical University of Denmark.

Shibata, S. K., Sandler, S. I., 1989. Critical evaluation
of equation of state mixing rules for the prediction of
high-pressure phase equilibria. Industrial & engineering
chemistry research 28 (12), 1893–1898.

Soave, G., 1972. Equilibrium constants from a modified
Redlich-Kwong equation of state. Chemical Engineering
Science 27 (6), 1197–1203.

Sundman, B., Kattner, U. R., Palumbo, M., Fries, S. G.,
2015. OpenCalphad - a free thermodynamic software.
Integrating Materials and Manufacturing Innovation
4 (1).

Svensson, M. C., 1996. Model-based optimizing control of a
water-to-water heat pump unit. Modeling, Identification
and Control 17 (4), 279–295.

Thomson, G. H., 1996. The DIPPR R© databases. Interna-
tional Journal of Thermophysics 17 (1), 223–232.

Zhao, L., Zhao, L. L., Zhang, Q., Ding, G. L., 2003.
Theoretical and basic experimental analysis on load
adjustment of geothermal heat pump systems. Energy
Conversion and Management 44 (1), 1–9.

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

3606



AppendixE
Paper III

The Adjoint Method for Gradient-based Dynamic Optimization of UV Flash
Processes

Authors:
Tobias K. S. Ritschel, Andrea Capolei, and John Bagterp Jørgensen

Published in:
Computer Aided Chemical Engineering 40, 2071–2076, 2017.
DOI: https://doi.org/10.1016/B978-0-444-63965-3.50347-0.

133

https://doi.org/10.1016/B978-0-444-63965-3.50347-0




Antonio Espuña, Moisès Graells and Luis Puigjaner (Editors), Proceedings of the 27th European
Symposium on Computer Aided Process Engineering – ESCAPE 27
October 1st - 5th, 2017, Barcelona, Spain © 2017 Elsevier B.V. All rights reserved.

The Adjoint Method for Gradient-based Dynamic Op-
timization of UV Flash Processes
Tobias K. S. Ritschela, Andrea Capoleia and John B. Jørgensena*

aDepartment of Applied Mathematics & Center for Energy Resources Engineering,
Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
jbjo@dtu.dk

Abstract
This paper presents a novel single-shooting algorithm for gradient-based solution of op-
timal control problems with vapor-liquid equilibrium constraints. Dynamic optimization
of UV flash processes is relevant in nonlinear model predictive control of distillation
columns, certain two-phase flow problems, and oil reservoir production with significant
compositional and thermal effects. Gradients are computed with the adjoint method and
we use various optimization software (fmincon, IPOPT, KNITRO, and NPSOL) for the
numerical optimization. We present computational results for a non-ideal five-component
flash process which demonstrate the importance of the optimization solver, the compiler,
and the linear algebra software for the efficiency of dynamic optimization of UV flash
processes.

Keywords: Optimization, Optimal Control, Differential-Algebraic Equations, Vapor-
Liquid Equilibrium

1. Introduction

Dynamic optimization of vapor-liquid equilibrium (VLE) processes is used in control
algorithms for distillation columns, certain two-phase flow problems, and oil reservoir
production with significant thermal and compositional effects. Computationally efficient
algorithms for dynamic optimization of UV flash processes are thus relevant for such ap-
plications. The UV flash problem is sometimes referred to as the isoenergetic-isochoric
flash problem or as the UVn flash problem since the internal energy, U , the volume, V ,
and the total amount of moles, n, are specified. The equilibrium composition is deter-
mined using the second law of thermodynamics (Michelsen, 1999) which states that the
entropy of a closed system is maximal. The UV flash problem is different from the more
commonly known PT flash problem. However, the UV flash can be shown to be equiv-
alent to a UV-constrained PT flash problem, i.e. with constraints on the internal energy,
U , and the volume, V . Nested approaches are often used in the simulation and dynamic
optimization of VLE processes. In such approaches a PT flash problem is solved in an in-
ner loop while the specified properties, internal energy, U , and volume, V , are converged
in an outer loop. Nested approaches are, however, computationally inefficient. In this
paper we present an algorithm for dynamic optimization which is based on the single-
shooting method and the adjoint method for the computation of gradients (Jørgensen,
2007). The algorithm has previously been considered by Ritschel et al. (2017) for ideal
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mixtures, whereas we consider non-ideal mixtures in this work. There are alternatives to
the single-shooting method such as the multiple-shooting method (Capolei and Jørgensen,
2012) and the simultaneous method (Biegler, 2010). We present numerical results for a
five-component dynamical UV flash process as well as the computational performance of
Matlab and C implementations using different optimization software, compilers, and lin-
ear algebra software. The thermodynamic library ThermoLib (www.psetools.org) is used
for the evaluation of the thermodynamic functions.

2. Optimal control problem

We consider an optimal control problem (OCP) in the form

min
[x(t);y(t);z(t)]

t f
t0
,{uk}k∈N

φ =
∫ t f

t0
Φ(y(t),u(t),d(t))dt, (1a)

subject to x(t0) = x̂0, (1b)
G(x(t),y(t),z(t)) = 0, t ∈T , (1c)
ẋ(t) = F(y(t),u(t),d(t)), t ∈T , (1d)
u(t) = uk, t ∈ [tk, tk+1[, k ∈N , (1e)

d(t) = d̂k, t ∈ [tk, tk+1[, k ∈N , (1f)
{uk}k∈N ∈U , (1g)

where x(t) is the state vector, y(t) is a vector of algebraic variables, and z(t) is a vector
of adjoint algebraic variables. In this optimal control problem the estimated initial state,
x̂0, and the estimated disturbance variables, {d̂k}k∈N , are considered parameters. The
inputs, {uk}k∈N , are independent decision variables, and [x(t); y(t); z(t)]

t f
t0 is a vector of

dependent decision variables. The indices of the control intervals are N = {0,1, . . . ,N−
1}, and the time horizon is T = [t0, t f ]. The algebraic equations in Eq. (1c) are used
to model equilibrium conditions for VLE processes, and the differential equations in Eq.
(1d) are based on conservation principles. We assume that it is possible to solve the
equilibrium conditions G(x(t),y(t),z(t)) = 0 for y(t) = y(x(t)) and z(t) = z(x(t)) when
x(t) is given. We define the objective function

ψ = ψ({uk}k∈N ; x̂0,{d̂k}k∈N ) =

{
φ : (1b)-(1f)

}
, (2)

which is computed as the objective function φ in Eq. (1a) using the solution of the
differential-algebraic equations (DAEs) in Eq. (1c)-(1d) with the initial condition x(t0) =
x̂0, u(t) = uk for t ∈ [tk, tk+1[ and k ∈N , and d(t) = dk for t ∈ [tk, tk+1[ and k ∈N , i.e.
Eq. (1b) and Eq. (1e)-(1f). The OCP in Eq. (1) can thus be expressed as the following
finite-dimensional constrained optimization problem

min
{uk}k∈N

ψ = ψ
(
{uk}k∈N ; x̂0,{d̂k}k∈N

)
, (3a)

s.t. {uk}k∈N ∈U . (3b)

The constraints in Eq. (3b) are often bound constraints, umin ≤ u≤ umax, and linear con-
straints, bl ≤ Au≤ bu, where u = [u0;u1; . . . ;uN−1]. Efficient gradient-based optimization
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algorithms for solving the optimization problem in Eq. (3) require the evaluation of both
the objective function, ψ , and its gradients, {∇uk ψ}k∈N . Such computations are based
on numerical integration of the DAE system in Eq. (1c)-(1d) and of the integral in the
objective function φ in Eq. (1a).

2.1. The equilibrium constraints

In this work we consider equilibrium processes that can be described as the solution to
the following parametric equality constrained optimization problem

min
y

f (y), (4a)

s.t. g(y) = x, (4b)
h(y) = 0. (4c)

The Lagrange function associated with the optimization problem in Eq. (4) is

L (y,η ,μ;x) = f (y)−ηT (g(y)− x)−μT h(y), (5)

where η and μ are Lagrange multipliers associated with the constraints in Eq. (4b) and
(4c), respectively. The Karush-Kuhn-Tucker (KKT) conditions (or first order optimality
conditions) for a minimizer (y = y(x),η = η(x),μ = μ(x)) are

∇yL (y,η ,μ;x) = ∇ f (y)−∇g(y)η−∇h(y)μ = 0, (6a)
∇ηL (y,η ,μ;x) =−(g(y)− x) = 0, (6b)
∇μL (y,η ,μ;x) =−h(y) = 0. (6c)

We introduce the vector of adjoint algebraic variables z = [η ; μ] such that the KKT system
in Eq. (6) can be expressed as the algebraic equations in Eq. (1c).

3. Numerical algorithm

The DAE system in Eq. (1c)-(1d) is stiff and we therefore discretize the differential equa-
tions with Euler’s implicit method. Alternatively, ESDIRK methods (Kristensen et al.,
2004) or BDF based methods (Barton and Lee, 2002) can be used. Furthermore, we de-
scribe the computation of {∇uk ψ}k∈N by an adjoint method. These gradients may also
be computed with a forward method. We define w = [x; y; z] and the residual equations

Rk+1 = Rk+1(wk+1;xk,uk, d̂k) =

[
Dk+1(xk+1,xk,yk+1,uk, d̂k)

G(xk+1,yk+1,zk+1)

]
= 0, k ∈N , (7)

where Dk+1 = xk+1−xk−ΔtkF(yk+1,uk, d̂k) are the discretized differential equations. The
residual equations, Rk+1 = 0, are solved by an inexact Newton method, i.e. by solving a
sequence of linear systems

wm+1
k+1 = wm

k+1−
(
Mm

k+1
)−1 Rk+1(wm

k+1), Mm
k+1 ≈

∂Rk+1

∂wk+1
(wm

k+1) (8)
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until a given convergence criteria is satisfied. The objective function, φ , in Eq. (1a) is
approximated by a discrete sum, and the residual equations in Eq. (7) are substituted for
the DAE system in the objective function, ψ , in Eq. (2) in order to obtain

ψ = ψ({uk}k∈N ; x̂0,{d̂k}k∈N ) =

{
φ = ∑

k∈N

ΔtkΦ(yk+1,uk, d̂k) : (9a)

x0 = x̂0, (9b)

Rk+1(wk+1;xk,uk, d̂k) = 0, k ∈N

}
. (9c)

The adjoints, {λk}N
k=1, are computed in a backwards manner by solving the equations

(
∂RN

∂wN

)T

λN =−Δtk∇wNΦN−1, (10a)

(
∂Rk

∂wk

)T

λk =−
(

∂Rk+1

∂wk

)T

λk+1−Δtk∇wkΦk−1, k = N−1, . . . ,1. (10b)

The gradients of ψ with respect to the inputs, {∇uk ψ}k∈N , are then computed by

∇uk ψ = Δtk∇ukΦk +

(
∂Rk+1

∂uk

)T

λk+1, k ∈N . (11)

4. Dynamic UV flash example

The energy and mass balance of a flash unit may be expressed by the following differential
equations where kinetic and potential energy are neglected

U̇(t) = Hv
F(t)+Hl

F(t)−HV (t)−HL(t)+Q(t), (12a)

ṅi(t) = f v
F,i(t)+ f l

F,i(t)− vi(t)− li(t), i = 1, . . . ,NC. (12b)

U is the internal energy, and ni is the total holdup of the i’th component. Hv
F and Hl

F are
the vapor and liquid enthalpies of the feed, and HV and HL are the enthalpies of the vapor
and liquid streams. f v

F,i and f l
F,i are the vapor and liquid component flow rates of the feed,

and vi and li are the component flow rates of the vapor and liquid streams. Q is a heat
input. The conservation equations in Eq. (12) are in the form of the differential equations
in Eq. (1d). The UV flash problem is a mathematical statement of the second law of
thermodynamics, i.e. the entropy of a closed system, S, is maximal, and it is formulated
as the following optimization problem (Michelsen, 1999)

max
T,P,nv,nl

S = Sv(T,P,nv)+Sl(T,P,nl), (13a)

s.t. Uv(T,P,nv)+Ul(T,P,nl) = U, (13b)

V v(T,P,nv)+V l(T,P,nl) = V, (13c)

nv
i +nl

i = ni, i = 1, . . . ,NC. (13d)

Superscripts v and l denote properties of the vapor and liquid phase, respectively. The
optimization problem in Eq. (13) is in the form of the parametric optimization problem
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Table 1: Absolute computation time (in seconds) and speedup compared to the pure Mat-
lab implementation of the solution of the OCP. The C code has been compiled with GCC
compilers (and Netlibs BLAS/LAPACK) and with Intel compilers (and Intel MKL).

fmincon fmincon IPOPT KNITRO NPSOL fmincon IPOPT KNITRO NPSOL
Compilers GCC GCC GCC GCC Intel Intel Intel Intel
Prog. lang. Matlab C C C C C C C C
Iterations 156 156 328 117 150 156 328 117 150
Func. eval. 173 173 1364 121 152 173 1364 121 152
Absolute 137.803 37.525 6.868 6.654 7.002 37.929 6.437 8.149 2.481
Speedup 1.0 3.7 20.1 20.7 19.7 3.6 21.4 16.9 55.5

in Eq. (4). The thermodynamic functions are computed using the Peng-Robinson equa-
tion of state. We consider the flash separation of methane, ethane, propane, heptane, and
hydrogen sulfide (H2S). The flash unit is cooled, i.e. Q≤ 0, and the objective is to mini-
mize the energy consumption, i.e. to maximize Q, while satisfying an upper bound on the
H2S vapor mole fraction. Fig. 1 shows the optimal strategy (solid) together with a refer-
ence strategy (dashed) which also satisfies the constraints (dash-dotted). The manipulated
inputs are the vapor flow rate, the liquid flow rate, and the heat input, Q. The optimal
strategy reduces the energy consumption by 26 % as compared to the open-loop reference
strategy. The constraints on the H2S vapor mole fraction and on the overall vapor fraction
are incorporated into the objective function with logarithmic barrier functions.

Table 1 shows several performance indicators for the solution of the OCP by means of
the single-shooting algorithm using various optimization software, compilers, and linear
algebra software. We use the efficiency of a pure Matlab implementation, which uses
fmincon, as a benchmark for the remaining implementations. The pure Matlab imple-
mentation solves the OCP in 137.8 s. A mixed implementation, which uses fmincon and
C routines for the simulation and gradient computations, is only four times faster than
the pure Matlab implementation. This indicates that the efficiency of the optimization
software is important to the overall performance of the algorithm. IPOPT, KNITRO,
and NPSOL perform equally well when GCC compilers and Netlibs BLAS/LAPACK are
used. The Intel compilers and Intels linear algebra library (Intel MKL) only improve
the performance when NPSOL is used. This suggests that Intels Fortran compiler (ifort)
is significantly more efficient than GCCs Fortran compiler (gfortran) and that Intels C
compiler (icc) is as efficient as GCCs C compiler (gcc) for the present implementations.

5. Conclusions

We have presented a single-shooting algorithm for gradient-based dynamic optimization
of flash processes. The algorithm solves the differential equations and the equilibrium
conditions simultaneously. An example demonstrates the capabilities of the algorithm for
output-constrained economical control of a flash unit. Furthermore, a performance study
has shown that C implementations of the single-shooting algorithm are significantly more
efficient than a pure Matlab implementation. There is little or no improvement in perfor-
mance when Intels C compiler is used for the implementations using fmincon, IPOPT, and
KNITRO. Intels C and Fortran compilers do, however, improve the performance of the
implementation using NPSOL by a factor of almost 3. The most efficient implementation
solved the OCP in 2.5 s which is 55.5 times faster than the pure Matlab implementation.
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Figure 1: Minimal cooling strategy. Solid: Optimal strategy. Dashed: Reference strategy.
Dash-dotted: Bounds.
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Abstract
Cryogenic air separation (CAS) is the leading technology for large scale production of
pure N2, O2 and Ar. This process is very electric-energy intensive; thus it is a likely
candidate for load balancing of power stations in a smart grid. This type of intermittent
operation of CAS, requires a non-linear model based control to achieve optimal techno-
economic performance. Accordingly, this work presents a computationally efficient and
novel approach for solving a tray-by-tray equilibrium model and its implementation for
open-loop optimal-control of a cryogenic distillation column. Here, the optimisation ob-
jective is to reduce the cost of compression in a volatile electricity market while meeting
the production requirements, i.e. product flow rate and purity. This model is implemented
in Matlab and uses the ThermoLib rigorous thermodynamic library. The present work
represents a first step towards plant-wide dynamic modelling and smart control of a cryo-
genic distillation plant.

Keywords: Cryogenic air separation, load balancing, distillation column, dynamic mod-
eling, optimal-control.

1. Introduction

Cryogenic air separation (CAS) is the leading and the most mature technology to pro-
duce gaseous and liquid O2, N2, and Ar for various industries, e.g. steel, petrochemical,
fertilizer, coal, liquefaction, etc. (Smith and Klosek, 2001). This process is very energy
intensive with electricity being the major operating cost. However, the electricity price
varies significantly from hour to hour during a day due to the increasing share of renew-
able energy and due to changes in industrial and domestic demands (Miller et al., 2008).
Therefore, intermittent operation with large changes in the production rate and quick shut-
down/start-up can drastically reduce the operating cost of cryogenic air separation. Pro-
cess non-linearities are highly relevant for these operating conditions, and some type of
non-linear control will be essential to achieve optimal techno-economic performance.

Linear and non-linear model predictive control (MPC) had widely spread as state-of-the
art technology for improving the economic benefits and controllability of CAS. Linear
MPC has proven to be successful for achieving high product purities and stable control
but only over a limited range of production rates (Roffel et al., 2000; Meziou, 2000). Non-
linear MPC (NMPC) has also been investigated for operation of cryogenic distillation
during load changes. Chen et al. (2010) implemented a NMPC and evaluated its perfor-
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mance for ±30% changes in the production rate demand. They demonstrated that NMPC
has better performance compared to linear MPC. Huang and Biegler (2012) presented an
economic NMPC that minimizes the cost of air separation for a day ahead respectively
for a real-time-pricing electricity markets. They showed an approximately 10% cost re-
duction when using economic NMPC compared to a set-point tracking NMPC. These
studies generally rely on some kind of reduced order/simplified model since NMPC is
computationally intensive, limiting its potential for on-line control of CAS.

Several studies used models of moderate complexity in the dynamic design and perfor-
mance analysis of air separation units. White et al. (1996) minimized the transition time
between two steady-state operating points using compartmental model for dynamic op-
timization. Schenk et al. (2002) considered integrated design and control of a cryogenic
plant by formulating a dynamic optimization problem to improve the cost of separation.
Sirdeshpande et al. (2005) formulated a mixed-integer problem to determine cost-optimal
process configuration of CAS and they analysed the flexibility of the optimal design for
different production rates. This study is based on regressed algebraic model from Aspen
HYSYS. Later, Cao et al., 2015 improved the agility of a cryogenic N2 plant to success-
fully respond to±20% demand changes by solving a open-loop optimal-control problem.
However, there is still a great need to understand and further improve the agility of a
cryogenic plant in presence of large fluctuations.

This study presents a dynamic distillation column model and the open-loop optimal-
control of a cryogenic air separation column. The control objective is to minimize the
cost of air separation while assuring the desired purity in a volatile energy market, i.e. we
use an hour-by-hour pricing scheme with an economic objective function, to minimize
the future daily cost while meeting the production demands. This study is performed in
Matlab using an open-source thermodynamic library (ThermoLib, www.psetools.org) for
thermal properties and phase equilibrium. In addition, we show that ThermoLib greatly
improves the computational load by using analytical derivatives of the thermal properties.

2. Cryogenic air separation

The development of a dynamic model for a cryogenic distillation column is the focus of
this section. This low-temperature distillation column is the main unit of a cryogenic air
separation plant (CAS) and it involves: (a) compression and cooling of the air feed, (b)
boiling of the O2 rich phase at the bottom and (c) condensation of the N2 rich phase at the
top. The development of a dynamic model for this column is the focus of this section.

2.1. Dynamic model for cryogenic air distillation

The distillation column is a tray-by-tray equilibrium model, consisting of differential
equations for the mass and energy balances around each tray and a set of algebraic equa-
tions for phase equilibrium, physical properties and the boundary conditions. In the de-
velopment of the model we assumed: (a) perfect mixing in both phases and on all stages,
(b) thermal and thermodynamic equilibrium between phases and (c) constant molar liq-
uid/gas flows. Here, we apply a UV-flash instead of the more common PT-flash that
occurs in steady-state optimization problems. The UV-flash corresponds to the rigorous
description of the second law of thermodynamics, i.e. the entropy of a closed system is
maximal at equilibrium (Ritschel, 2017).
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The model consists of N stages (trays) where the first stage represents the reboiler and
the last stage corresponds to the condenser. Therefore, the mass and energy conservation
equations for stages j = 2, . . . ,N−1 are:

U̇ j(t) = HL
j+1(t)+HV

j−1(t)−HL
j (t)−HV

j (t)+HFeed(t), (1a)

ṅi, j(t) = li, j+1(t)+ vi, j−1(t)− li, j(t)− vi, j(t)+ fi,Feed(t). (1b)

U is internal energy and ni is the total holdup of component i. HL and HV are the en-
thalpies of the liquid respectively vapor streams. li and vi represent the liquid respectively
the vapor flow rates. fi,Feed is the feed flow rate of component i and HFeed is the enthalpy
of the feed. Note, fi,Feed and HFeed are zero for all stages excluding feed stages.

The reboiler and the condenser behave like normal trays with the addition/removal of
heat. The mass and energy conservation equations for the reboiler ( j = 1) are:

U̇1(t) = HL
2 (t)−HL

1 (t)−HV
B (t)+QR(t), (2a)

ṅi, j(t) = li,2(t)− li,1(t)−Bi(t), (2b)

The conservation equations for the condenser ( j = N) are:

U̇1(t) = HV
N−1(t)−HV

j (t)−HL
R(t)+QC(t), (3a)

ṅi, j(t) = vi,N−1(t)− vi,N(t)−Ri(t). (3b)

Bi is the boil-up flow rate of component i; Ri is the reflux flow rate of component i;
QR and QC are the reboiler respectively condenser heat duties. These are manipulated
variables. For more details regarding the development of a dynamic column model, we
refer to Kröner et al. (2001) and Roffel et al. (2000).

3. Optimal-control formulation

The objective of this study is to find a set of manipulated variables for the cryogenic
distillation unit over a given scheduling horizon that minimizes the cost of compression
while meeting production demands, i.e. producing a minimum amount of N2 and O2
per day with a predefined purity of 90% N2 respectively 75% O2. This optimal-control
problem (OCP) is formulated as follows:

min
u(t)

φ =
∫ t f

t0
c(t)Wc(u(t),d(t))dt (4a)

s.t. x(t0) = x0, (4b)
G(x(t),y(t)) = 0, t ∈ [t0, t f ] (4c)
ẋ(t) = F(y(t),u(t),d(t)), t ∈ [t0, t f ] (4d)
h(x(t),y(t),u(t),d(t))≤ 0, t ∈ [t0, t f ] (4e)
h f (x(t f ),y(t f ),u(t f ),d(t f ))≤ 0, (4f)

where x(t) is a vector of the total moles and the internal energy at each stage; x0 is the
initial state vector; y(t) consists of the temperature, pressure, vapor mole numbers, and
liquid mole numbers on each stage. u(t) represent the manipulated variables: the feed
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flow rate, reflux flow rate, boil-up flow rate and reboiler/condenser duty. d(t) are the dis-
turbance variables, i.e. feed composition and feed vapor fraction. The objective function
Φ in Eq. (4a) describes the cost of feed compression over the entire control horizon [t0, t f ].
The electricity price enters this optimization as the cost coefficient, c(t). The compres-
sion work,Wc depends on the feed flow rate and discharge pressure (Smith and Van Ness,
1987).

The algebraic equation (4c) represents the phase equilibrium conditions on each stage,
and the differential equations in eq. (4d) represents the conservation of mass and energy
on each stage, eqs. (1) - (3). Equation (4e) represents a set of constraints to regulate the
system behaviour during transition. These are: lower bound constraint on the N2 compo-
sition in the condenser; lower bound constraint on the O2 composition in the bottom stage
respectively lower and upper bound constraints on the vapor and liquid holdup on each
stage. Furthermore, we include a set of terminal constraints, eq. (4f) in order to assure a
minimum daily production of N2 and O2.

3.1. Solution methodology

The optimal-control problem in eq. (4) is solved with a single shooting algorithm which
uses an adjoint method for gradient computations. The single shooting algorithm requires
the numerical solution of the stiff differential-algebraic initial value problem in eq. (4b)-
(4f). The differential equation (4d) are discretized using the Euler’s implicit method. The
discretized differential equations and the algebraic equations are solved simultaneously
with an inexact Newton method. This is an important feature for dynamic optimization
applications as it yields faster solution than with a nested numerical integration scheme
(Ritschel, 2017).

The thermal properties and the liquid-vapor phase equilibrium, together with analytical
temperature and pressure derivatives are calculated with the ThermoLib open-source ther-
modynamic library (www.psetools.org). The use of analytical derivatives is essential for
dynamic simulation and gradient based optimization. We compared the efficiency of the
implemented analytical first and second order derivatives to numerical forward difference
approximations for: (a) 79%N2 + 21%O2 and (b) 78.09%N2 + 20.93%O2 + 0.93%Ar
+ 0.04%CO2. The results outlined that the analytical derivatives are roughly 5 times
faster than numerical differentiation for pure component calculations and they are ap-
proximately 10 times faster for binary mixture, i.e. N2 +O2. The results also showed
that the gain in computational efficiency increases greatly with the number of compo-
nents: the analytical derivatives are 17 to 25 times more efficient than numerical forward
differentiation for a quaternary mixture.

4. Case study

To illustrate the potential of the economic optimal-control formulation for a cryogenic
distillation unit, we simulate a two scenarios using hour-by-hour electricity prices from
Nordpool, the Nordic power exchange market. We use a 24 hours scheduling horizon
with an optimal control signal every 12 minutes. The simulated unit corresponds to a
distillation column with a capacity of 3 t/hr air. In this study, the air feed consists of
79% N2 + 21% O2 and it is compressed to 324 kPa at −180oC. The column model has
15 stages, the 8th stage being the feed-stage. It is important to note that we consider a
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Figure 1: Optimal open-loop performance of CAS with fluctuating electricity price

nitrogen-limited distillation column, i.e. the production is driven by the nitrogen demand.

Figure 1 shows the market electricity price, the compressor power, and the optimal open-
loop schedule for the manipulated variables. Scenario 1 corresponds to a case with excess
of wind energy when the electricity price is relatively low and stable, 28-40 EUR/MWh.
Scenario 2 reflects a case with largely fluctuating energy demand (32-65 EUR/MWh).
This scenario may occurs during significant increase in the domestic and industrial elec-
tricity demand or when there is not enough wind for electricity generation.

Figure 1a shows the variation of the electricity price and the corresponding optimal com-
pressor power. This figure shows how the compressor power (thus the feed flow rate)
increases during periods with lower electricity price and vice-versa. In addition, Figure
1b shows that the N2 and O2 product purity are always above their lower bounds. Fig-
ure 1c and 1d present the trajectory for the other manipulated variables, i.e. reflux flow,
boil-up flow and condenser/reboiler duty. These figures shows how the plant smoothly
changes the process inputs during the 24 hours simulation window, without large fluctu-
ations. This adds to robustness of the numerical optimization routine and it is important
from an operational point of view. Note, the abrupt change between the two scenarios is
because a new open-loop optimization period is started.

Therefore, the volatility of the energy market can be used to reduce the cost of air sepa-
ration by shifting the energy consumption to periods with low electricity prices and still
maintaining product requirements. Furthermore, intermittent operation of CAS is a viable
option for balancing of demand and production of electricity in a smart grid.

An efficient and rigorous thermodynamic library and optimal-control of a 1547
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5. Conclusions

In this paper, we presented a dynamic model for cryogenic air distillation and we demon-
strated the potential of open-loop optimal-control for reducing the cost of air separation
in a volatile electricity market. The dynamic model and the optimization algorithm uses
the ThermoLib thermodynamic library to compute thermal properties and their analytical
derivatives. We showed that analytical derivatives lead to large decrease of the simula-
tion time, i.e. for a binary mixture the analytical derivatives are up to 12 times faster
then numerical differentiation. Using real market electricity prices, we demonstrated
that open-loop dynamic optimization shifts the compressor power consumption to pe-
riods with lower electricity prices. This control approach results in lower production of
N2 and O2 during peaks in the electricity price and high production rate during execs of
electricity. This work represent a first step towards accurate modelling and robust control
of a cryogenic air separation plant. In the future, we aim to improve the model and to
include the additional units of an CAS plant. We believe that real time implementation of
a smart control strategy will lead to significant operational cost savings.
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a  b  s  t r  a  c  t

This  paper  presents  a novel  single-shooting  algorithm  for  gradient-based  solution  of  optimal  control
problems  with  vapor–liquid  equilibrium  constraints.  Such  optimal  control  problems  are  important  in
several  engineering  applications,  for instance  in  control  of  distillation  columns,  in certain  two-phase
flow  problems,  and  in operation  of oil reservoirs.  The  single-shooting  algorithm  uses  an  adjoint  method
for  the computation  of gradients.  Furthermore,  the  algorithm  uses  either  a simultaneous  or  a  nested
approach  for  the  numerical  solution  of  the  dynamic  vapor–liquid  equilibrium  model  equations.  Two
numerical  examples  illustrate  that the  simultaneous  approach  is  faster  than  the  nested  approach  and  that
the  efficiency  of the  underlying  thermodynamic  computations  is important  for  the  overall  performance
of  the single-shooting  algorithm.  We  compare  the performance  of  different  optimization  software  as  well
as the  performance  of  different  compilers  in a Linux operating  system.  These  tests  indicate  that  real-time
nonlinear  model  predictive  control  of UV flash  processes  is  computationally  feasible.

©  2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Dynamic optimization, also called optimal control, is concerned
with computing an open-loop control strategy that manipulates
a dynamical system in such a way that it optimizes some per-
formance measure, e.g. expected profit or deviation of a product
quality from a target (Binder et al., 2001; Betts, 2001; Zavala and
Biegler, 2009; Diehl et al., 2009; Bryson, 1999). Systems modeled by
mass and energy balances and subject to vapor–liquid equilibrium
constraints occur in a number of important process engineering
applications, e.g. distillation (Bisgaard et al., 2017, 2015; Diehl et al.,
2002; Biegler, 2010; Luyben, 1992; Stichlmair and Fair, 1998), cryo-
genic distillation (Laiglecia et al., 2012), and two-phase flow in
pipelines (Hammer and Morin, 2014; Qiu et al., 2014). Vapor–liquid
equilibrium constrained mass and energy conservation models also
occur for a number of subsurface flow processes related to CO2
sequestration (Stauffer et al., 2009), magmatic hydrothermal flow
(Ingebritsen et al., 2010), and production of oil from an oil reservoir
(Li and Johns, 2006; Lucia et al., 2012; Zaydullin et al., 2014). The UV
flash is a single stage vapor–liquid equilibrium process and is thus

∗ Corresponding author.
E-mail addresses: tobk@dtu.dk (T.K.S. Ritschel), acap@dtu.dk (A. Capolei),

joca@dtu.dk (J. Gaspar), jbjo@dtu.dk (J.B. Jørgensen).

a key component in rigorous modeling of fluid vessels and flash
drums (Castier, 2010; Lima et al., 2008; Arendsen and Versteeg,
2009), distillation columns (Flatby et al., 1994), two-phase compu-
tational fluid dynamical problems (Qiu et al., 2014), and thermal
and compositional oil reservoir flow (Zaydullin et al., 2014). While
advanced algorithms for robust simulation of the UV flash prob-
lem exist (Saha and Carroll, 1997; Castier, 2009), no algorithm for
dynamic optimization of UV flash processes seems to exist in the
open literature. Dynamic optimization of UV flash processes was
first explained by Ritschel et al. (2017a,b). The UV flash problem is
also known as the isoenergetic-isochoric flash problem or the UVn
flash problem. UVn refers to specification of the internal energy,
U, the total volume, V, and the total material amount (moles), n.
The second law of thermodynamics, i.e. the entropy of a closed sys-
tem is maximal, is used to determine the equilibrium composition
with U, V, and n specified (Michelsen, 1999). The UV flash problem
is different from the more common PT flash problem that occurs
in steady-state optimization problems. However, it can be demon-
strated that the PT flash problem with additional constraints on the
internal energy, U, and the volume, V, is equivalent to the UV flash
problem. Algorithmic oriented approaches to dynamic optimiza-
tion of vapor–liquid equilibrium processes use a nested method in
which PT flash problems are solved in the inner loop, and outer
loops converge the internal energy, U, and volume, V, to their spec-
ified values.

https://doi.org/10.1016/j.compchemeng.2017.10.007
0098-1354/© 2017 Elsevier Ltd. All rights reserved.
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In this paper, we develop a single-shooting algorithm for
solution of dynamic optimization problems with vapor–liquid
equilibrium constraints, i.e. an algorithm for dynamic optimiza-
tion of the UV flash problem. The key novelties of our algorithm
are that an adjoint method is used for the computation of gra-
dients (Jørgensen, 2007) and that the problem is formulated as
a bilevel optimization problem. The numerical integration of the
semi-explicit index-1 differential algebraic (DAE) system is the
key computational operation in the single-shooting method. The
DAE systems can be solved numerically with either a simultaneous
approach or with a nested approach. The discretized differential
equations and the equilibrium conditions are solved simultane-
ously in the simultaneous approach. In the nested approach, the
equilibrium conditions are solved in an inner loop for each eval-
uation of the discretized differential equations. The key potential
advantage of a nested approch is that well established algorithms
for the PT-flash may  be used in the inner loop. We  report numerical
results as well as the computational performance for implemen-
tations in C and Matlab using different optimization software,
different linear algebra software, and different compilers. The
computations confirm previous results in which the simultane-
ous approach is faster than a nested approach (Wilhelmsen et al.,
2013). Hence, the performance of the single-shooting algorithm
depends on the efficiency of the thermodynamic function eval-
uations and the numerical linear algebra, but also on whether
the equilibrium equations are solved simultaneously with the
differential equations or in a loop nested to the differential equa-
tions.

Previously, Kourounis et al. (2014) developed an adjoint method
for gradient-based optimization of compositional reservoir flow.
Their model included isothermal and isobaric (constant tem-
perature and pressure) vapor–liquid equilibrium processes, but
not the isoenergetic–isochoric situation considered in this paper.
Alternatives to the single-shooting method exist. They are the
multiple-shooting method (Bock and Plitt, 1984; Capolei and
Jørgensen, 2012) and the simultaneous method (Biegler, 2007).
Both methods have been applied to optimal control problems
with vapor–liquid equilibrium constraints (Schäfer et al., 2007;
Raghunathan et al., 2004). The key insight in our formulation
of the vapor–liquid equilibrium is that it may  be formulated as
an equality constrained optimization problem (Michelsen, 1999),
which in the UV-flash case is a natural and intuitive represen-
tation of the second law of thermodynamics; i.e. the entropy is
maximal of a closed system with fixed energy, volume and mass.
Accordingly, optimal control problems with vapor–liquid equilib-
rium constraints belong to a class of bilevel optimization problems
(Colson et al., 2007) and also to the closely related class of mathe-
matical programs with equilibrium constraints (Luo et al., 1996;
Outrata et al., 2013). This structure is exploited in the efficient
computation of the resulting index-1 differential-algebraic system
and its adjoints. However, it should be noted that we only con-
sider the situation with both phases (vapor and liquid) present, but
not the more complicated situation in which phases can appear
and disappear (Biegler, 2010; Sahlodin et al., 2016; Watson et al.,
2017).

This paper is organized as follows. Section 2 presents the optimal
control problem in consideration. Section 3 presents the single-
shooting algorithm based on both the simultaneous approach and
the nested approach. Section 4 describes a dynamical UV flash
model, and Section 5 demonstrates the equivalence between the
UV flash problem and a PT flash problem with additional con-
straints on the internal energy and the volume. Section 6 discusses
the implementation of the single-shooting algorithm. Section 7
presents numerical solutions to a tracking-type control problem
and an economical control problem. Section 8 presents a numerical
performance study. Conclusions are given in Section 9.

Fig. 1. Sketch of the principle in the single-shooting method. The controls, u(t), are
discretized in time and the continuous states, x(t), are considered functions of the
controls. The objective function is evaluated by solving the dynamic equations for a
given set of controls.

2. Optimal control problem

We  consider the following optimal control problem (OCP)

min
[x(t);y(t);z(t)]tft0

,{uk}k ∈  N
� = �

(
[y(t); u(t); d(t)]tft0

)
(1a)

subject to

x(t0) = x̂0, (1b)

G(x(t), y(t), z(t)) = 0, t ∈ T,  (1c)

ẋ(t) = F(y(t), u(t), d(t)), t ∈ T,  (1d)

u(t) = uk, t ∈ [tk, tk+1[, k ∈ N, (1e)

d(t) = d̂k, t ∈ [tk, tk+1[, k ∈ N, (1f)

{uk}k ∈ N ∈ U, (1g)

where the objective function, �, is in Lagrange form

� =
∫ tf

t0

�(y(t), u(t), d(t))dt. (2)

x(t) is the state vector, y(t) is a vector of algebraic variables, and z(t)
is a vector of adjoint algebraic variables. The estimated initial state,
x̂0, and the predicted disturbances, {d̂k}k ∈ N, are parameters in the
optimization problem. [x(t); y(t); z(t)]tft0 is a vector of dependent
decision variables, and {uk}k ∈ N are independent decision variables.
The time horizon is T = [t0, tf ], and the indices of the control inter-
vals are N  = {0, 1, . . .,  N − 1}.

The OCP (1) includes algebraic constraints (1c) and differen-
tial equations (1d). The equilibrium conditions for an equilibrium
process can be formulated as the Karush–Kuhn–Tucker (KKT) con-
ditions of an optimization problem. The algebraic constraints (1c)
are formulated such that they can represent such KKT conditions.
The differential equations (1d) are obtained from conservation
principles, and the states, x(t), represent the conserved quantities.
The right-hand side in (1d) depends on the algebraic variables,
y(t), which are implicit functions of the states through the alge-
braic constraints (1c), i.e. y(t) = y(x(t)). We  assume that it is possible
to solve G(x(t), y(t), z(t)) = 0 for y(t) = y(x(t)) and z(t) = z(x(t)) when
x(t) is given. This is true for the vapor–liquid equilibrium processes
considered in this work. We  define the objective function,  , as

  =  
({
uk
}
keN

; x̂0,
{
d̂k
}
keN

)
=
{
� : (1b) − (1f)

}
. (3)

Given {uk}k ∈ N, x̂0, and {d̂k}k ∈ N this defines   as the objective
function, �, obtained from (2) using the solution of (1c) and (1d)
with x(t0) = x̂0, u(t) = uk for t ∈ [tk, tk+1[and k ∈ N, and d(t) = d̂k
for t ∈ [tk, tk+1[and k ∈ N, i.e. (1b) and (1e)–(1f). Fig. 1 illustrates
the discretization of the inputs and the numerical computation of
the continuous states. This is the principle that is used to com-
pute   in the single-shooting algorithm. With   defined by (3),
the OCP (1) with the objective function (2) can be expressed as the
finite-dimensional constrained optimization problem

min
{uk}k ∈  N

  =  
(
{uk}k ∈ N; x̂0, {d̂k}k ∈ N

)
(4a)
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s.t. {uk}k ∈ N ∈ U.  (4b)

The set U is often a polyhedron such that the constraints
(4b) can be expressed as umin ≤ u ≤ umax and bl ≤ A u ≤ bu where
u = [u0;u1;. . .;uN−1]. Gradient-based optimization algorithms for
solving the nonlinear program (4), and thus the optimal control
problem (1), require evaluation of the objective function,  , and the
gradients, {∇uk }k ∈ N. This involves the numerical solution of the
differential-algebraic equations (1c) and (1d) and the computation
of the integral (2).

2.1. Equilibrium constraints

The equilibrium processes that we consider can be described as
the solution to the following parametric optimization problem

min
y
f (y) (5a)

s.t. g(y) = x, (5b)

h(y) = 0. (5c)

The Langrange function associated with the equilibrium optimiza-
tion problem (5) is

L(y, �, �; x) = f (y) − �T (g(y) − x) − �Th(y), (6)

where � and � are Lagrange multipliers associated with (5b) and
(5c), respectively. The KKT conditions (first order optimality condi-
tions) for a minimizer (y = y(x), � = �(x), � = �(x)) are

∇yL(y, �, �; x) = ∇f (y) − ∇g(y)� − ∇h(y)� = 0, (7a)

∇�L(y, �, �; x) = −(g(y) − x) = 0, (7b)

∇�L(y, �, �; x) = −h(y) = 0. (7c)

By introducing the vector z = [�;�], we can rewrite the system (7)
as

G(x, y, z) = 0, (8)

which is equivalent to the algebraic constraints (1c).

3. Numerical solution

This section describes the numerical algorithms for the com-
putation of the objective function,  , defined in (3) as well as the
gradients with respect to the controls, {∇uk }k ∈ N. The evaluation
of   requires the solution of the semi-explicit differential-algebraic
initial value problem

x(t0) = x̂0, (9a)

G(x(t), y(t), z(t)) = 0, t ∈ T,  (9b)

ẋ(t) = F(y(t), u(t), d(t)), t ∈ T. (9c)

When [y(t); u(t); d(t)]tft0 is given,   = � is computed by quadra-
ture. An implicit method must be used for efficient numerical
solution of the system (9) because it is stiff. There exists several
implicit methods such as ESDIRK methods (Kristensen et al., 2004;
Völcker et al., 2010) and BDF based methods (Tolsma and Barton,
2000; Barton and Lee, 2002). In this work, we use Euler’s implicit
method. Furthermore, we describe the computation of the gradi-
ents, {∇uk }k ∈ N, by an adjoint method (Jørgensen, 2007; Völcker
et al., 2011; Capolei et al., 2012; Capolei and Jørgensen, 2012). These
gradients (or sensitivities) may  also be computed by a forward
method (Kristensen et al., 2004, 2005).

As described in Section 2, the time horizon, [t0, tf], is divided
into N control intervals. There can be several time steps in each
control interval, but for ease of notation, we assume that there is
only one time step for each control interval. We  consider both a

simultaneous approach and a nested approach for the numerical
solution of the differential-algebraic system (9). In the simultane-
ous approach the discretized differential equations, Dk+1 = 0, and
the algebraic equations, G(xk+1, yk+1, zk+1) = 0, are solved simulta-
neously for the state variables, xk+1, the algebraic variables, yk+1,
and the adjoint algebraic variables, zk+1. In the nested approach,
the discretized differential equations, Dk+1 = 0, are solved by iterat-
ing on the state variables, xk+1, in an outer loop. For each iterate of
xk+1 the algebraic variables, yk+1 = y(xk+1), and the adjoint algebraic
variables, zk+1 = z(xk+1), are computed by solving the algebraic equa-
tions, G(xk+1, yk+1, zk+1) = 0, in an inner loop. The two  approaches are
briefly described in the following subsections.

3.1. The simultaneous approach

Define w = [x; y; z] and the residual function

Rk+1 = Rk+1(wk+1) = Rk+1(wk+1; xk, uk, d̂k)

= Rk+1(xk+1, yk+1, zk+1; xk, uk, d̂k)

=
[
Dk+1(xk+1, xk, yk+1, uk, d̂k)

G(xk+1, yk+1, zk+1)

]
, k ∈ N,

(10)

where the function Dk+1 = Dk+1(xk+1, xk, yk+1, uk, d̂k) is

Dk+1 = xk+1 − xk − �tkF(yk+1, uk, d̂k). (11)

Euler’s implicit method for the system (9) corresponds to solving
the residual equations

Rk+1 = Rk+1(wk+1) = 0, k ∈ N, (12)

for {wk+1}k ∈ N by sequentially marching forward when x0 = x̂0,

{uk}k ∈ N, and {d̂k}k ∈ N are given. We solve the residual equations
(12) with an inexact Newton method, i.e. by solving the following
sequence of linear systems

wm+1
k+1 = wmk+1 −

(
MmR

)−1
Rk+1(wmk+1). (13)

The initial guess for the Newton iterations, w0
k+1, is the states, the

algebraic variables, and the adjoint algebraic variables in the previ-
ous time step, i.e. wk = [xk; yk; zk]. The initial iteration matrix, M0

R ,
is the Jacobian of the residual function evaluated at the initial guess

M0
R = ∂Rk+1

∂wk+1
(w0
k+1). (14)

We update the iteration matrix:

Mm+1
R = ∂Rk+1

∂wk+1
(wm+1
k+1 ), (15)

if the estimate, wm+1
k+1 , does not sufficiently reduce the norm of the

residual function as compared to the previous estimate, wm
k+1:

‖Rk+1(wm+1
k+1 )‖ > �R‖Rk+1(wmk+1)‖, (16)

where �R ∈ [0, 1]. The iteration matrix is not updated (and Mm+1
R =

MmR ) if (16) is not satisfied. The Newton iterations (13) are termi-
nated when the norm of the residual function is smaller than the
specified tolerance, 	R, i.e.

‖Rk+1(wm+1
k+1 )‖ < 	R. (17)

The Jacobian of the residual function is

∂Rk+1

∂wk+1
=

⎡
⎢⎣
I −�tk

∂F
∂y

0

∂G
∂x

∂G
∂y

∂G
∂z

⎤
⎥⎦ , (18)
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where the Jacobians of the algebraic function, G, are

∂G
∂x

= ∂G
∂x

(wk+1) = [ 0; I; 0 ], (19a)

[
∂G
∂y

∂G
∂z

]
=
[
∂G
∂y

(wk+1)
∂G
∂z

(wk+1)

]
= K(wk+1). (19b)

The matrix K is the KKT matrix for the equilibrium optimiza-
tion problem (5). With the adjoint algebraic variables defined as
zk+1 = [�k+1;�k+1], the KKT matrix may  be expressed as K(wk+1) =
K(xk+1, yk+1, zk+1) = K(yk+1, �k+1, �k+1; xk+1), where

K(y, �, �; x) =

⎡
⎢⎣

∇2
yyL(y, �, �; x) −∇g(y) −∇h(y)

−∇g(y)T 0 0

−∇h(y)T 0 0

⎤
⎥⎦ . (20)

The Hessian of the Lagrangian with respect to the algebraic vari-
ables, y, is

∇2
yyL = ∇2

yyL(y, �, �;  x)

= ∇2f (y) −
∑

i

�i∇2gi(y) −
∑

i

�i∇2hi(y).
(21)

The two sums in (21) span over each component of the functions g
and h.

3.1.1. The adjoint method for the simultaneous approach
We substitute the residual equations (12) into the objective

function,  ,  in (3):

  =  ({uk}k ∈ N; x̂0, {d̂k}k ∈ N) (22a)

=
{
� =

∑

k ∈ N

�k(yk+1, uk, d̂k) : (22b)

x0 = x̂0, (22c)

Rk+1(wk+1; xk, uk, d̂k) = 0, k ∈ N, (22d)

[xk+1; yk+1; zk+1] = wk+1, k ∈ N
}
. (22e)

The sum in (22b) approximates the integral in (2). �k approximates
the integral of � over [tk, tk+1] using the rectangle rule with yk+1
(instead of yk):

�k = �k(yk+1, uk, d̂k) = �tk�(yk+1, uk, d̂k). (23)

The integral may  be approximated more accurately with other
quadrature methods. However, the rectangle rule is used because
of its simplicity and because it is consistent with the implicit Euler
method used for integration of the differential equations. The gra-
dients of   with respect to the inputs, {∇uk }k ∈ N, are computed by
solving the following equation for the adjoints, 
N,
(
∂RN
∂wN

)T

N = −∇wN�N−1, (24)

and inserting into the following expression for the gradients

∇uk  = ∇uk�k +
(
∂Rk+1

∂uk

)T

k+1, k ∈ N. (25)

Each subsequent set of adjoints, 
k, is computed by marching back-
wards in the equations
(
∂Rk
∂wk

)T

k = −

(
∂Rk+1

∂wk

)T

k+1 − ∇wk�k−1, k = N − 1, . . .,  1.

(26)

The Jacobian of the residual function, ∂Rk
∂wk

, is given in (18) and the

Jacobian of the residual function with respect to the state variables,
the algebraic variables, and the adjoint algebraic variables in the
previous time step is

∂Rk+1

∂wk
(wk+1; xk, uk, d̂k) =

[
−I 0 0

0 0 0

]
, (27)

for k = 1, . . .,  N − 1. The gradient of �k is

∇wk+1�k = [0; �tk∇y�(yk+1, uk, d̂k); 0],  k ∈ N. (28)

3.2. The nested approach

We  solve the algebraic equations (9b) for the algebraic variables,
ym
k+1, and the adjoint algebraic variables, zm

k+1, for each estimate of
the states, xm

k+1. The algebraic equations are solved with an inexact
Newton method:
[
yl+1
k+1; zl+1

k+1

]
=
[
yl
k+1; zl

k+1

]
− (MlG)

−1
G(xmk+1, ylk+1, zlk+1).

(29)

If m = 0, the initial guess for the Newton iterations, [y0
k+1; z0

k+1], is
the algebraic variables and the adjoint algebraic variables in the
previous time step, [yk;zk]. Otherwise, the initial guess is the vari-
ables from the previous outer Newton iteration, [ym−1

k+1 ; zm−1
k+1 ]. The

initial iteration matrix, M0
G , is the KKT matrix (20) evaluated at the

initial guess

M0
G = K(xmk+1, y0

k+1, z0
k+1). (30)

The iteration matrix,

Ml+1
G = K(xmk+1, yl+1

k+1, zl+1
k+1), (31)

is updated if the estimates, yl+1
k+1 and zl+1

k+1, do not sufficiently reduce
the norm of the algebraic function, G, as compared to the previous
estimates, yl

k+1 and zl
k+1. This condition can be expressed as

‖G(xmk+1, yl+1
k+1, zl+1

k+1)‖ > �G‖G(xmk+1, ylk+1, zlk+1)‖, (32)

where �G ∈ [0, 1]. The iteration matrix is not updated (and Ml+1
G =

MlG) if (32) is not satisfied. The Newton iterations (29) are termi-
nated when the norm of the algebraic function, G, is smaller than a
specified tolerance, 	G:

‖G(xmk+1, yl+1
k+1, zl+1

k+1)‖ < 	G. (33)

ym
k+1 and zm

k+1 denote the estimates that satisfy the stopping criteria
(33). The outer Newton iterations are terminated if xm

k+1 and ym
k+1

furthermore satisfies the discretized differential equations within
a tolerance of 	D:

‖Dk+1(xmk+1, xk, ymk+1, uk, d̂k)‖ < 	D. (34)

If the stopping criteria (34) is not satisfied, the next estimate of the
states, xm+1

k+1 , is computed:

xm+1
k+1 = xmk+1 −

(
MmD

)−1
Dk+1(xmk+1, xk, ymk+1, uk, d̂k). (35)

The initial guess for the outer Newton iterations, x0
k+1, is the states

in the previous time step, xk. The initial iteration matrix, M0
D, is the

Jacobian of Dk+1 evaluated at the initial guess

M0
D = ∂Dk+1

∂xk+1
(x0
k+1, xk, y0

k+1, uk, d̂k). (36)

y0
k+1 is the solution to the algebraic equations, with x0

k+1 as param-
eter, which is found with the inner Newton iterations (29). Once
the outer Newton step (35) has been computed, the inner Newton
iterations (29) are repeated in order to update the estimate for the
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algebraic variables, ym+1
k+1 , and the adjoint algebraic variables, zm+1

k+1 .
The iteration matrix,

Mm+1
D = ∂Dk+1

∂xk+1
(xm+1
k+1 , xk, ym+1

k+1 , uk, d̂k), (37)

is updated if the estimates, xm+1
k+1 and ym+1

k+1 , do not sufficiently reduce
the norm of the function Dk+1 as compared to the previous esti-
mates, xm

k+1 and ym
k+1. This is expressed as the condition

‖Dk+1(xm+1
k+1 , xk, ym+1

k+1 , uk, d̂k)‖ > �D‖Dk+1(xmk+1, xk, ymk+1, uk, d̂k)‖,
(38)

where �D ∈ [0, 1]. The iteration matrix is not updated (and Mm+1
D =

MmD ) if (38) is not satisfied. The inner and outer Newton iterations
are terminated when an estimate has been reached that satis-
fies both the discretized differential equations and the algebraic
equations, i.e. that satisfies both (33) and (34). The Jacobian of the
function Dk+1 is

∂Dk+1

∂xk+1
= I − �tk

∂F
∂y

(yk+1, uk, d̂k)
∂yk+1

∂xk+1
. (39)

The sensitivities of the algebraic variables and the adjoint algebraic
variables are[
∂yk+1

∂xk+1
;
∂zk+1

∂xk+1

]
= −K(wk+1)−1 ∂G

∂x
(wk+1). (40)

3.2.1. The adjoint method for the nested approach
The discretized differential equations, Dk+1 = 0, are substituted

into the objective function,  , in (3):

  =  ({uk}k ∈ N; x̂0, {d̂k}k ∈ N) (41a)

=
{
� =

∑

k ∈ N

�k(yk+1, uk, d̂k) : (41b)

x0 = x̂0, (41c)

Dk+1(xk+1, xk, yk+1, uk, d̂k) = 0, k ∈ N, (41d)

G(xk+1, yk+1, zk+1) = 0, k ∈ N
}
, (41e)

where �k is defined in (23). The gradients of   in (41) with respect
to the inputs, {∇uk }k ∈ N, are computed by solving for the adjoints,

N,
(
∂DN
∂xN

)T

N = −

(
∂yN
∂xN

)T
∇yN�N−1. (42)

and inserting into the following expression for the gradients

∇uk  = ∇uk�k +
(
∂Dk+1

∂uk

)T

k+1, k ∈ N. (43)

Each subsequent set of adjoints, 
k, satisfies
(
∂Dk
∂xk

)T

k = −

(
∂Dk+1

∂xk

)T

k+1 −

(
∂yk
∂xk

)T
∇yk�k−1 (44)

for k = N − 1, . . .,  1. The Jacobian of the function Dk, ∂Dk
∂xk

, is defined

in (39), and the Jacobian with respect to the states in the previous
time step is

∂Dk+1

∂xk
(xk+1, xk, yk+1, uk, d̂k) = −I, k = 1, . . .,  N − 1. (45)

This concludes the description of the numerical methods for the
computation of the objective function,  ,  defined in (3) as well as
the gradients with respect to the inputs, {∇uk }k ∈ N.

Fig. 2. Sketch of a flash unit. The unit is supplied by a vapor–liquid feed stream. A
vapor stream and a liquid stream extract mass from the vapor phase and the liquid
phase of the mixture in the unit. The mixture is furthermore subject to external
heating or cooling.

4. The dynamic UV flash model

This section describes the dynamic UV  flash model, i.e. the
differential-algebraic constraints (1c) and (1d) in the optimal con-
trol problem (1). Fig. 2 illustrates the flash unit. The mixture in the
unit contains NC components. We  assume that two  phases (vapor
and liquid) always exist and that they are in chemical, thermal and
mechanical equilibrium. The flash unit is continuously supplied by a
feed stream at a given temperature, pressure, and composition. The
mixture in the flash unit is extracted continuously through a vapor
stream and a liquid stream. The total flow rate of the vapor stream,
FV, and the total flow rate of the liquid stream, FL, are manipulated.
The mixture in the unit is subject to either heating or cooling with
heat flux, Q. The heat flux is also manipulated.

The following subsections describe the properties of the mix-
ture in the unit, the feed stream, the vapor stream, and the liquid
stream. We  furthermore formulate the conservation equations and
the equilibrium conditions. We  illustrate how all needed thermo-
dynamic properties can be computed by evaluation of the enthalpy,
H = H(T, P, n), the entropy, S = S(T, P, n), and the volume, V = V(T, P, n),
as function of temperature, T, pressure, P, and composition (mole
numbers), n.

4.1. The mixture in the flash unit

The flash unit contains a mixture in thermal, mechanical,
and chemical vapor–liquid equilibrium. The thermal equilibrium
implies that the temperature of the vapor phase, Tv, and the liquid
phase, Tl, are identical, i.e. T = Tv = Tl . The mechanical equilibrium
implies that the pressure in the vapor phase, Pv, is identical to the
pressure in the liquid phase, Pl, i.e. P = Pv = Pl . The vapor holdup is
nv and the liquid holdup is nl. The total composition (in moles) of
the mixture is ni = nv

i
+ nl

i
for i = 1, 2, . . .,  NC. The properties of the

mixture in the flash unit are

Nv =
NC∑

i=1

nv
i , Nl =

NC∑

i=1

nli, N =
NC∑

i=1

ni,

yi =
nv
i

Nv , xi =
nl
i

Nl
, zi =

ni
N
.
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The vapor fraction is  ̌ = Nv/N.  The specification of (T, P, nv) and
(T, P, nl) also allows for the computation of the enthalpy, entropy,
and volume:

Hv = Hv(T, P, nv), Hl = Hl(T, P, nl), H = Hv + Hl,

Sv = Sv(T, P, nv), Sl = Sl(T, P, nl), S = Sv + Sl,

V v = V v(T, P, nv), Vl = Vl(T, P, nl), V = V v + Vl.

Given (H, S, V) all other thermodynamic state functions may  be
computed: the internal energy is U = H − PV,  Gibbs free energy is
G = H − TS,  and Helmholtz free energy is A = U − TS.

4.2. The feed

The feed is a vapor–liquid mixture at temperature TF and pres-
sure PF. f v

F,i
and f l

F,i
denote the molar vapor and liquid feed flow

rates of component i. The total feed flow rate of the i’th compo-
nent is fF,i = f v

F,i
+ f l

F,i
for i = 1, 2, . . .,  NC, and the total flow rate is

FF = Fv
F + FlF . Fv

F and FlF are the total flow rates of the vapor and liquid
phases of the feed. The properties of the feed stream are

Fv
F =

NC∑

i=1

f vF,i, FlF =
NC∑

i=1

f lF,i, FF =
NC∑

i=1

fF,i,

yF,i =
f v
F,i

Fv
F

, xF,i =
f l
F,i

F lF
, zF,i =

fF,i
FF
.

The fraction of vapor in the feed is ˇF = Fv
F /FF . The specification

of (TF , PF , f vF , f lF ) also allows for the computation of the enthalpy,
entropy, and volume of the feed stream:

Hv
F = Hv(TF , PF , f vF ), HlF = Hl(TF , PF , f lF ), HF = Hv

F + HlF ,

Sv
F = Sv(TF , PF , f vF ), SlF = Sl(TF , PF , f lF ), SF = Sv

F + SlF ,

V v
F = V v(TF , PF , f vF ), VlF = Vl(TF , PF , f lF ), VF = V v

F + VlF .

The feed is completely specified by (TF , PF , f v, f l) as other ther-
modynamic functions concerned with the feed may  be computed
using (HF, SF, VF).

4.3. The vapor stream

The vapor outlet stream has the same temperature, T, the same
pressure, P, and the same composition, y, as the vapor phase in the
unit. The total flow rate of the vapor stream is FV. This implies that
the compositional flow rates are vi = yiFV for i = 1, 2, . . .,  NC. Let
hv denote the molar enthalpy, sv denote the molar entropy, and vv

denote the molar volume of the vapor phase in the flash unit. Then
the total properties of the vapor stream are HV = FVhv, SV = FV sv,
and VV = FV vv.

4.4. The liquid stream

The liquid outlet stream has the same temperature, T, the same
pressure, P, and the same composition, x, as the liquid phase in
the flash unit. FL denotes the total flow rate of the liquid stream,
and the compositional flow rates are li = xiFL for i = 1, 2, . . .,  NC. Let
hl denote the molar enthalpy, sl denote the molar entropy, and vl

denote the molar volume of the liquid phase in the flash unit. The
total properties of the liquid stream are then given by HL = FLhl,
SL = FLsl, and VL = FLvl .

4.5. The thermodynamic model and database

The total thermodynamic properties of the mixture, the feed,
the vapor stream, and the liquid stream are computed from molar

thermodynamic properties. The molar thermodynamic proper-
ties (hv, sv, vv) of a vapor phase mixture are the functions hv =
hv(T, P, y), sv = sv(T, P, y), and vv = vv(T, P, y). The corresponding
total properties of the vapor phase are Hv = Nvhv, Sv = Nvsv,
and V v = Nvvv. Similarly, the molar thermodynamic properties
(hl, sl, vl) of a liquid phase mixture are the functions hl = hl(T, P, x),
sl = sl(T, P, x), and vl = vl(T, P, x). The corresponding total properties
of the liquid phase are Hl = Nlhl, Sl = Nlsl, and Vl = Nlvl . We  compute
the molar vapor–liquid properties (hv, sv, vv) and (hl, sl, vl) with a
recently developed thermodynamic library, ThermoLib (Ritschel
et al., 2016, 2017c). ThermoLib uses data and correlations from
the DIPPR database (Thomson, 1996) together with either the SRK
EOS or the PR EOS. It is implemented in both Matlab and C, and
it is distributed as open-source software at www.psetools.org. It
provides routines for evaluation of enthalpy, entropy, and volume.
The routines furthermore provide first and second order derivatives
with respect to temperature, pressure, and composition (in moles).

4.6. The equilibrium constraint – vapor–liquid equilibrium

Vapor–liquid equilibrium processes may  be formulated as opti-
mization problems (Michelsen, 1999). When the internal energy, U,
and the volume, V, are specified, the optimization problem deter-
mining the equilibrium temperature, pressure, and vapor–liquid
compositions is called the UV flash problem. The UV flash opti-
mization problem is

max
T,P,nv,nl

S = Sv(T, P, nv) + Sl(T, P, nl) (48a)

s.t. Uv(T, P, nv) + Ul(T, P, nl) = U, (48b)

V v(T, P, nv) + Vl(T, P, nl) = V, (48c)

nv
i + nli = ni, i = 1, . . .,  NC. (48d)

U is the specified internal energy, and V is the total fixed volume
of the flash unit. ni is the specified total amount (in moles) of
component i in the flash unit. The optimization problem (48) is
a mathematical statement of the second law of thermodynamics
which states that the entropy of a closed system at equilibrium is
maximal. The UV flash optimization problem (48) is in the form of
the optimization problem (5) where

f (y) = f (T, P, nv, nl)

= −
(
Sv(T, P, nv) + Sl(T, P, nl)

)
,

(49a)

g(y) = g(T, P, nv, nl)

=
[
Uv(T, P, nv) + Ul(T, P, nl)

nv + nl

]
,

(49b)

h(y) = h(T, P, nv, nl)

= V v(T, P, nv) + Vl(T, P, nl) − V.
(49c)

The state variables, x, the algebraic variables, y, and the adjoint
algebraic variables, z, are

x = [U; n] ∈ R
1+NC , (50a)

y =
[
T; P; nv; nl

]
∈ R

2+2NC , (50b)

z = [�; �] ∈ R
2+NC . (50c)

The UV flash problem is sometimes referred to as the UVn flash
problem to indicate that U, V, and n are specified. It is also known
as the isoenergetic–isochoric flash (constant energy–constant vol-
ume).
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4.7. The differential equations – conservation equations

The mass and energy conservation equations that describe the
temporal evolution of the internal energy and the total holdup are

U̇(t) = Hv
F (t) + HlF (t) − HV (t) − HL(t) + Q (t), (51a)

ṅi(t) = f vF,i(t) + f lF,i(t) − vi(t) − li(t), i = 1, .., NC. (51b)

U is the internal energy, and ni is the total holdup of component
i. HV and HL are the enthalpies of the vapor and liquid streams,
respectively. Hv

F and HlF are the vapor and liquid enthalpies of the
feed. f v

F,i
and f l

F,i
are the molar vapor and liquid feed flow rates. vi and

li are the molar vapor and liquid stream flow rates. The conservation
equations (51) are in the form of the differential equations (1d)
where

F(y(t), u(t), d(t)) =
[
Hv
F (t) + HlF (t) − HV (t) − HL(t) + Q (t)

f vF (t) + f lF (t) − v(t) − l(t)

]
. (52)

The algebraic variables, y, are defined in (50), and the controls
(manipulated variables), u, and the disturbance variables, d, are

u = [Q ; FV ; FL] ∈ R
3, (53a)

d = [TF ; PF ; f vF ; f lF ] ∈ R
2+2NC . (53b)

5. The relation between the UV flash and the PT flash

In this section, we demonstrate that the solution of the UV flash
is identical to the solution of a PT flash with constraints on the
internal energy, U, and the volume, V. The solution to the PT flash
problem is the vapor–liquid composition that minimizes Gibbs
energy at a given temperature and pressure while satisfying a mass
balance constraint. The PT flash is the most common type of flash
because it can be formulated as an unconstrained minimization
problem and therefore solved efficiently.

5.1. The UV flash

The UV flash maximization problem (48) is equivalent to the
following minimization problem

min
T,P,nv,nl

− S = −
(
Sv(T, P, nv) + Sl(T, P, nl)

)
, (54a)

s.t. Uv(T, P, nv) + Ul(T, P, nl) = U, (54b)

V v(T, P, nv) + Vl(T, P, nl) = V, (54c)

nv
i + nli = ni, i = 1, . . .,  NC. (54d)

The solution to the UV flash problem is the temperature, pressure,
and vapor–liquid composition of a closed system at equilibrium,
(T, P, nv, nl), with a given internal energy, volume, and total com-
position. The Lagrange function of the UV flash problem (54) is

L = −
(
Sv(T, P, nv) + Sl(T, P, nl)

)

− �
(
Uv(T, P, nv) + Ul(T, P, nl) − U

)

− 

(
V v(T, P, nv) + Vl(T, P, nl) − V

)

−
NC∑

i=1

�̄i(n
v
i + nli − ni).

(55)

� is the Lagrange multiplier associated with the internal energy
constraint (54b), 
 is the Lagrange multiplier associated with the
volume constraint (54c), and { �̄i}NCi=1 are the Lagrange multipliers
associated with the mole balances (54d). In this section, we  use
the notation Svl = Sv + Sl , Uvl = Uv + Ul , and Vvl = V v + Vl to distin-
guish these properties from the specified values U and V. The first

order optimality conditions for the UV flash minimization problem
(54) are

∂L
∂T

= −∂S
vl

∂T
− �
∂Uvl

∂T
− 

∂Vvl

∂T
= 0, (56a)

∂L
∂P

= −∂S
vl

∂P
− �
∂Uvl

∂P
− 

∂Vvl

∂P
= 0, (56b)

∂L
∂nv
i

= −∂S
v

∂nv
i

− �
∂Uv

∂nv
i

− 

∂V v

∂nv
i

− �̄i = 0, i = 1, . . .,  NC, (56c)

∂L
∂nl
i

= −∂S
l

∂nl
i

− �
∂Ul

∂nl
i

− 

∂Vl

∂nl
i

− �̄i = 0, i = 1, . . .,  NC, (56d)

Uvl(T, P, nv, nl) = Uv(T, P, nv) + Ul(T, P, nl) = U, (56e)

Vvl(T, P, nv, nl) = V v(T, P, nv) + Vl(T, P, nl) = V, (56f)

nv
i + nli = ni, i = 1, . . .,  NC. (56g)

(56a) and (56b) are the stationarity conditions associated with
the temperature and pressure gradients. (56c) and (56d) are the
stationarity conditions associated with the component derivatives,
and (56e)–(56g) are the feasibility conditions. The first order opti-
mality conditions (56) of the equality constrained optimization
problem (54) are necessary conditions for a minimizer of (54).

5.2. The UV constrained PT flash

The solution to the PT flash problem, (nv, nl), minimizes Gibbs
free energy, G, subject to a mass balance constraint

min
nv,nl

G = Gv(T, P, nv) + Gl(T, P, nl) (57a)

s.t. nv
i + nli = ni, i = 1, . . .,  NC. (57b)

The Lagrange function of the PT flash problem (57) is

L =
(
Gv(T, P, nv) + Gl(T, P, nl)

)
−

NC∑

i=1

�i(n
v
i + nli − ni), (58)

where {�i}NCi=1 denote the Lagrange multipliers associated with the
mole balances (57b). The first order optimality conditions for the
PT flash are

∂L
∂nv
i

= ∂G
v

∂nv
i

− �i = 0, i = 1, . . .,  NC, (59a)

∂L
∂nl
i

= ∂G
l

∂nl
i

− �i = 0, i = 1, . . .,  NC, (59b)

nv
i + nli = ni, i = 1, . . .,  NC. (59c)

(59a) and (59b) are the stationarity conditions, and (59c) are the
feasibility conditions. The first order optimality conditions (59) are
necessary conditions for a minimizer of the PT flash (57). The PT
flash provides the equilibrium composition of the vapor phase, nv,
and the liquid phase, nl, at given temperature, T, and pressure, P. We
combine the PT flash problem (57) with the following constraints
on the internal energy, U, and the volume, V,

Uvl(T, P, nv, nl) = Uv(T, P, nv) + Ul(T, P, nl) = U, (60a)

Vvl(T, P, nv, nl) = V v(T, P, nv) + Vl(T, P, nl) = V. (60b)

The constraints (60) are identical to the constraints (54b) and (54c)
in the UV optimization problem. A point (T, P, nv, nl) satisfying the
PT flash (57) and the UV constraints (60) must satisfy the conditions
(59) and (60).
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5.3. Equivalence of the UV flash and the UV-constrained PT flash

We  show that the first order optimality conditions (56) of the
UV flash (54) are equivalent to the first order optimality conditions
(59) of the PT flash (57) in combination with the UV constraints (60).
This shows that the solution of the UV flash problem (54) is equiv-
alent to the solution of the PT flash problem (57) combined with
the specification of internal energy, U, and volume, V, in (60). The
feasibility conditions (56e)–(56g) for the UV flash (54) are equiva-
lent to the feasibility conditions (59c) for the PT flash (57) and the
UV constraints (60). The thermodynamic relations G = H − T S and
H = U + P V imply that G = U + P V − T S such that

∂Gv

∂nv
i

= ∂U
v

∂nv
i

+ P
∂V v

∂nv
i

− T
∂Sv

∂nv
i

, i = 1, . . .,  NC, (61a)

∂Gl

∂nl
i

= ∂U
l

∂nl
i

+ P
∂Vl

∂nl
i

− T
∂Sl

∂nl
i

, i = 1, . . .,  NC. (61b)

Therefore, the stationarity conditions (59a) and (59b) of the PT flash
(57) may  be reformulated using (61):

�i
T

= −∂S
v

∂nv
i

−
(

− 1
T

) ∂Uv

∂nv
i

−
(

−P
T

) ∂V v

∂nv
i

, i = 1, . . .,  NC, (62a)

�i
T

= −∂S
l

∂nl
i

−
(

− 1
T

) ∂Ul
∂nl
i

−
(

−P
T

) ∂Vl
∂nl
i

, i = 1, . . .,  NC. (62b)

The stationarity conditions (62) for the PT flash (57) are equivalent
to the stationarity conditions (56c) and (56d) for the UV flash (54)
provided that the Lagrange multipliers (�, 
, { �̄i}NCi=1) are

� = −1
T
, (63a)


 = −P
T
, (63b)

�̄i =
�i
T
, i = 1, . . .,  NC. (63c)

The fundamental thermodynamic relations (Smith et al., 2005,
Chap. 6)

∂S
∂T

= CP
T
, (64a)

∂U
∂T

= CP − P
∂V
∂T
, (64b)

may  be used to demonstrate that (56a) is satisfied when � =−1/T
and 
 =− P/T. Similarly, the fundamental thermodynamic relations
(Smith et al., 2005, Chap. 6)

∂S
∂P

= −∂V
∂T
, (65a)

∂U
∂P

= −T ∂V
∂T

− P
∂V
∂P
, (65b)

may  be used to demonstrate that (56b) is satisfied when � =−1/T
and 
 =− P/T. Alternatively, the relations (64)–(65) may  be substi-
tuted into (56a) and (56b) and the resulting 2 × 2 linear system of
equations may  be solved for � and 
 to obtain � =−1/T and 
 =− P/T.

5.4. Significance

We  have demonstrated that the solution of the PT flash (57) in
combination with the UV constraints (60) is identical to the solution
of the UV flash (54). This implies that existing efficient algorithms
for the PT flash may  be combined with the UV constraints to obtain
a solution that is identical to the solution of the UV flash problem
(54). Similarly, the Lagrange multipliers of the UV flash problem
may  be computed from the UV constraints and the PT flash using

(63). The KKT matrix (20) of the UV flash problem (54) can thus be
obtained without directly solving the UV flash problem.

6. Implementation

This section briefly describes the transformations that are made
to the vapor–liquid equilibrium constraints in the implementa-
tion of the single-shooting algorithm. We  furthermore discuss the
details of the different software libraries and compilers that are
used in the implementation.

6.1. Transformation of the UV flash

In the implementation, the optimality conditions (56) for the UV
flash are replaced by the optimality conditions (59) for the PT flash
combined with the UV constraints (60). We  furthermore eliminate
variables and scale equations. The resulting algebraic equations are
similar to the equations that are solved in the Newton approach by
(Michelsen and Mollerup, 2007, Chap. 14). We  subtract (59b) from
(59a) in order to eliminate the Lagrange multipliers, {�i}NCi=1, from
the first order optimality conditions (59) for the PT flash. Further-
more, we  eliminate the vapor mole numbers, nv, from the linear
mass balance constraints (57b):

nv
i = nv

i (ni, nli) = ni − nli, i = 1, . . .,  NC. (66)

The first order optimality conditions (59) are thus transformed to

∂Gl

∂nl
i

(T, P, nl) − ∂G
v

∂nv
i

(T, P, nv) = 0, i = 1, . . .,  NC, (67)

which can be solved for the liquid mole numbers nl. We rewrite the
internal energy constraint (60a) using the thermodynamic relations
Uv = Hv − PV v and Ul = Hl − PVl:

U −Hv(T, P, nv) + PV v(T, P, nv)

−Hl(T, P, nl) + PVl(T, P, nl) = 0.
(68)

We furthermore substitute the volume constraint (60b):

U + PV − Hv(T, P, nv) − Hl(T, P, nl) = 0. (69)

The optimality conditions (67) and the internal energy constraint
(69) are scaled with 1/(RT).  The volume constraint (60b) is scaled
with P/(RT):

1
RT

(
∂Gl

∂nl
i

(T, P, nl) − ∂G
v

∂nv
i

(T, P, nv)

)
= 0, (70a)

1
RT

(
U + PV − Hl(T, P, nl) − Hv(T, P, nv)

)
= 0, (70b)

P

RT

(
Vl(T, P, nl) + V v(T, P, nv) − V

)
= 0. (70c)

The internal energy, U, and the volume, V, are specified, and the
algebraic equations (70) can be solved for the temperature, T, the
pressure, P, and the liquid mole numbers, nl. The temperature and
pressure are, however, large in magnitude as compared to the mole
numbers. The implementation therefore uses logarithmic values of
the temperature and pressure as algebraic variables:

y =
[
ln T; ln P; nl

]
∈ R

2+NC . (71)

The algebraic equations (70) are written compactly

G(x, y) = 0, (72)

where x is defined in (50a).
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6.2. Units of variables and scaling

Large differences in the elements of Jacobian matrices can lead
to ill-conditioned linear systems of equations in the numerical
solution schemes. Such ill-conditioning can furthermore lead to
imprecise results. Several quantities are therefore not in SI-units
in the implementation. The unit of time, t, is h, and the flow rates,
FF, FV, and FL, are given in kmol/h. The compositional flow rates, f v

F,i
,

f l
F,i

, vi, and li for i = 1, . . .,  NC, are also in kmol/h. Mole numbers, i.e.

ni, nv
i
, and nl

i
for i = 1, . . .,  NC, are given in kmol. The internal energy,

U, and the enthalpies are in MJ,  and the heat input, Q, is in MJ/h.

6.3. Software libraries, compilers, and hardware

The single-shooting algorithm is implemented in Matlab. The
algorithm is implemented with both a simultaneous approach and
a nested approach for the solution of the dynamic UV flash model
equations. The Matlab implementation uses Matlab routines from
ThermoLib as well as Matlab’s function for constrained nonlin-
ear optimization, fmincon. The single-shooting algorithm, with a
simultaneous approach, is also implemented in C. The C imple-
mentation uses C routines from ThermoLib as well as either of
four solvers for nonlinear constrained optimization: Matlab’s fmin-
con, the open-source IPOPT 3.12.4 (Wächter and Biegler, 2006),
the commercial NPSOL 5.0, or the commercial KNITRO 10.2. We
use fmincon’s and KNITRO’s interior point (IP) barrier methods.
IPOPT also uses an IP barrier method, and NPSOL uses an active
set sequential quadratic programming (SQP) method. We  compare
the performance obtained with GCC compilers and with Intel com-
pilers. We use Netlib’s linear algebra libraries (BLAS and LAPACK)
together with the GCC compilers, and we use Intel’s linear alge-
bra library (Intel MKL) with the Intel compilers. ThermoLib and
IPOPT are compiled with a C compiler, and NPSOL is compiled with
a Fortran compiler. KNITRO is compiled prior to purchase. The per-
formance study in Section 8 is carried out on a 64-bit workstation
with 15.6 GB memory and four Intel Core i7 3.60 GHz cores. Each
core has 64 kB of level 1 cache and 256 kB of level 2 cache. The
workstation has a shared level 3 cache of 8192 kB.

7. Optimal control examples

This section presents two optimal control problems. The first
is a tracking-type control problem where an ideal thermodynamic
model is used. This problem has 144 decision variables. The second
is an economical optimal control problem where a nonideal ther-
modynamic model is used. This problem has 864 decision variables.

7.1. Optimal tracking example

In this example, we consider a flash unit with a volume of 10 m3.
The unit processes a mixture of benzene, toluene, and diphenyl.
We use an ideal thermodynamic model for the computation of
thermodynamic properties. This is reasonable because these three
components are very similar and because we consider high ranges
of temperature and low ranges of pressure. The time horizon is
[t0, tf] = [0 h, 4 h]. The initial condition is a steady state which is
described in Appendix A. The feed rate, FF, increases by 50% at time
t = 2 h. The length of the control intervals is �tk = 5 min  for k ∈ N.
That is a total of 48 control intervals during the 4 h time horizon. The
controls are: the heat input, Q, the total vapor flow rate, FV, and the
total liquid flow rate, FL. The objective is to keep the temperature,
pressure, and liquid volume at desired setpoints.

7.1.1. Objective function
The objective function, �, is the integral of the squared differ-

ences between the controlled variables and the setpoints:

� =
∫ tf

t0

[
˛T
(

ln T − ln Tset
)2

+˛P
(

ln P − ln Pset
)2 + ˛Vl

(
Vl − Vl,set

)2
]
dt.

(73)

The controlled variables include logarithmic temperature and pres-
sure because of the choice of algebraic variables described in
Section 6. The weights (˛T, ˛P, ˛Vl ) determine the relative impor-
tance of following each setpoint. The objective function (73) is
supplemented with a regularization term that penalizes: (a) the
temporal change in the controls and (b) the difference between the
controls in the first control interval and a set of initial reference con-
trols: Q−1 =−1 MJ/h, FL,−1 = 0.6 kmol/h and FV,−1 = 0.4 kmol/h. The
discrete objective is augmented with this regularization term:

�̂k = �k +
[
˛Q (Qk − Qk−1)2 + ˛FV

(
FV,k − FV,k−1

)2

+˛FL
(
FL,k − FL,k−1

)2
]
�tk, k ∈ N.

(74)

The weights (˛Q , ˛FV , ˛FL ) determine the size of the penalty of
temporal changes in the controls. The weights are (˛T, ˛P, ˛Vl ) =
(2000, 20, 2000) and (˛Q , ˛FV , ˛FL ) = (0.05,  10,  10). The deriva-
tives of the additional regularization terms are derived analytically
and added to the derivatives that are computed with the adjoint
algorithm.

7.1.2. Constraints
The sum of the vapor and liquid stream flow rates is bounded

from above by a factor times the feed flow rate:

FV,k + FL,k ≤ ˛FFF,k, k ∈ N. (75)

The factor is ˛F = 1.2. Furthermore, the controls are subject to the
following bound constraints

Qk ∈ [−60 MJ/h, 10 MJ/h], (76a)

FL,k ∈ [0.1 kmol/h, 1.5 kmol/h], (76b)

FV,k ∈ [0.1 kmol/h, 1.5 kmol/h], (76c)

for k ∈ N. The derivatives of the linear constraints (75) and the
bound constraints (76) are derived analytically.

7.1.3. Optimal control strategy
Fig. 3(a) shows the controlled variables and the vapor frac-

tion obtained with the optimal strategy (blue solid) and with a
reference strategy (green dashed). A step occurs in the setpoints
(black dashed) at time t = 2 h. The controlled variables success-
fully follow the setpoints both before and after the step. The large
variations in the temperature and pressure significantly affect the
vapor–liquid equilibrium. This is evident from the large variations
in the vapor fraction and in the vapor–liquid composition shown
in Fig. 4. Fig. 3(b) shows the optimal strategy, the reference strat-
egy, and the bound constraints (red dashed). The reference strategy
is constructed such that the controlled variables eventually reach
the setpoints after the step. However, the transition is significantly
faster with the optimal strategy. This is because the optimal strat-
egy uses the information about the step in the setpoints to initiate
the transition already around t = 1 h.

7.2. Minimal cooling example

In this example, we consider a flash unit with a volume of
1 m3. The unit processes a mixture of methane, ethane, propane,
n-heptane, and hydrogen sulfide (H2S). We  use a nonideal thermo-
dynamic model based on the PR EOS to compute thermodynamic
properties. The time horizon is [t0, tf] = [0 h, 24 h]. The initial con-
dition is a steady state which is described in Appendix A. The feed
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Fig. 3. The optimal tracking of temperature, pressure, and liquid volume setpoints for a ternary mixture containing benzene, toluene, and diphenyl. Blue solid: optimal
strategy.  Green dashed: reference strategy. Red dash-dotted: bounds. Black solid: feed. Black dashed: setpoints. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of the article.)

Fig. 4. The mixture mole fractions and the total feed mole fractions obtained with the optimal tracking strategy. Blue solid: benzene. Red dashed: toluene. Green dash-dotted:
diphenyl. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

composition changes at time t = 12 h such that the total feed mole
fraction of H2S increases from 2.0% to 6.0%. The length of the control
intervals is �tk = 5 min  for k ∈ N, which gives a total of 288 control
intervals during the 24 h time horizon. The objective is to minimize
the energy consumption (in terms of cooling). Meanwhile, an upper
bound on the H2S vapor mole fraction should be satisfied.

7.2.1. Objective function
Since the heat input is negative (non-positive), Q ≤ 0, in the case

of cooling, the objective function is

� = −
∫ tf

t0

Q dt. (77)

We incorporate bound constraints on the H2S vapor mole frac-
tion, yH2S, and on the overall vapor fraction, ˇ, into the objective

function using logarithmic barrier functions. The H2S vapor mole
fraction is bounded from above: yH2S,k ≤ ymax

H2S,k for k = 1, . . .,  N.
The overall vapor fraction is bounded from above and below:
	ˇ ≤ ˇk ≤ 1 − 	ˇ for k = 1, . . .,  N. The discrete objective function is
augmented with the logarithmic barrier functions in the adjoint
algorithm:

�k = −Qk�tk − ˛H2S ln
(
ymax

H2S,k+1 − yH2S,k+1

)

−˛ˇ
[
ln
(
ˇk+1 − 	ˇ

)
+ ln

(
(1 − 	ˇ) − ˇk+1

)]
,

(78)

for k ∈ N. The first term is a term in the discrete approxima-
tion of the objective function (77). The second term represents
the upper bound on the H2S vapor mole fraction, and the third
term represents the bounds on the vapor fraction. The weights are
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Fig. 5. Optimal flash separation of a mixture of four hydrocarbons and hydrogen-sulfide with minimal energy consumption (in terms of cooling). Blue solid: optimal strategy.
Green  dashed: reference strategy. Red dash-dotted: bounds. Black solid: feed. (For interpretation of the references to color in this figure legend, the reader is referred to the
web  version of the article.)

(˛H2S, ˛ˇ) = (1.0, 0.6), and the vapor fraction threshold is 	ˇ = 0.05.
The upper bound on the H2S vapor mole fraction is

ymax
H2S,k =

{
0.02, k = 1, . . .,  N/2,

0.04, k = N/2  + 1, . . .,  N,
(79)

i.e. the upper bound is 2% during the first 12 h and 4% during the last
12 h. The objective function (78) is furthermore augmented with
a regularization term that penalizes the temporal change in the
controls:

�̂k = �k +
[
˛Q (Qk − Qk−1)2 + ˛FV

(
FV,k − FV,k−1

)2

+ ˛FL
(
FL,k − FL,k−1

)2
]
�tk, k = 1, . . .,  N − 1.

(80)

The weights (˛Q , ˛FV , ˛FL ) determine the size of the penalty of
the temporal change in each control variable. The weights are
(˛Q , ˛FV , ˛FL ) = (0.1, 10,  10). The derivatives of this additional reg-
ularization term are derived analytically. In this problem, there is

no set of initial reference controls as was the case in the optimal
tracking problem in Section 7.1.

7.2.2. Constraints
The total mass supplied by the feed should be equal to the total

mass extracted by the vapor and liquid streams:

FV,k + FL,k = FF,k, k ∈ N. (81)

Furthermore, the controls are subject to the following bound con-
straints

Qk ∈ [−150 MJ/h, 0 MJ/h], (82a)

FL,k ∈ [4 kmol/h, 6 kmol/h], (82b)

FV,k ∈ [6 kmol/h, 8 kmol/h], (82c)

for k ∈ N. The derivatives of the linear constraints (81) and the
bound constraints (82) are derived analytically.

7.2.3. The optimal strategy
Fig. 5(a) shows the energy consumption and the H2S vapor mole

fraction obtained with the optimal strategy (blue solid) and with a
reference strategy (green dashed). The optimal strategy reduces the
total energy consumption from 2400 MJ  to around 1700 MJ.  This is
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Table 1
Performance indicators for the solution of the two optimal control problems using the single-shooting algorithm with the simultaneous approach (Sim.) and the nested
approach (Nest.). The implementations use either an exact or an inexact Newton method. Sim. time and Adj. time are the relative computation times of the simulation and
the  adjoint gradient computations. There is no relation between the relative computation times in the two examples. NLP Iter. and NLP Func. are the number of iterations
and  function evaluations performed by Matlab’s fmincon, respectively. Fact. is the number of factorizations and Back. sub. is the number of back substitutions. Furthermore,
the  number of evaluations of thermodynamic properties for evaluating residual equations and for evaluating Jacobians are shown.

Optimal tracking problem

Sim. time Adj. time NLP Iter. NLP Func. Fact. Back. sub. Thermo. for residual eq. Thermo. for Jacobian

Sim. (inexact) 0.271 0.118 202 203 20,881 42,946 33,202 20,881
Sim.  (exact) 0.264 0.118 202 203 32,632 32,632 0 42,376
Nest.  (inexact) 1.000 0.145 202 203 138,358 179,585 105,328 118,853
Nest.  (exact) 0.680 0.140 202 203 142,507 142,507 0 113,792

Minimal cooling problem

Sim. time Adj. time NLP Iter. NLP Func. Fact. Back. sub. Thermo. for residual eq. Thermo. for Jacobian

Sim. (inexact) 0.184 0.094 156 173 103,763 159,501 109,677 103,763
Sim.  (exact) 0.300 0.116 147 213 166,462 166,462 0 227,806
Nest.  (inexact) 1.000 0.129 150 230 738,140 889,473 475,960 605,349
Nest.  (exact) 0.792 0.123 146 205 654,674 654,674 0 507,831

Fig. 6. The mixture mole fractions and the total feed mole fractions for the minimal cooling strategy. Blue dotted: methane. Green dash-dotted: ethane. Red dashed: propane.
Black  solid: heptane. Blue solid: hydrogen sulfide. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

a reduction of 26%. The upper bound on the H2S vapor mole frac-
tion is satisfied at all times. Fig. 5(b) shows the temperature, the
pressure, the liquid volume, and the vapor fraction. The large vari-
ations in the temperature and pressure cause large variations in
the vapor fraction. However, the vapor–liquid composition is not
affected significantly as can be seen from Fig. 6. The vapor consists
primarily of methane, and the liquid phase is primarily heptane and
methane. Fig. 5(c) shows the optimal strategy and the reference
strategy. The optimal strategy uses the vapor flow rate and the liq-
uid flow rate to compensate for the increase in the heat input during
the first 12 h. However, the optimal strategy does not increase the
heat input during the last 12 h. This is because the upper constraint
on the H2S vapor mole fraction is incorporated into the objective
function. This undesired behavior can be avoided by adjusting the
parameter ˛H2S in the barrier function during the iterations of the
optimization algorithm.

8. Performance study

This section presents a performance study of several implemen-
tations of the single-shooting algorithm. The algorithm is used to
solve the optimal tracking problem described in Section 7.1 and the
minimal cooling problem described in Section 7.2. We  compare the
efficiency of: (a) the simultaneous and the nested approach, (b) the
exact and the inexact Newton method, (c) Matlab and C imple-
mentations, (d) different NLP solvers, and (e) different compilers
and linear algebra libraries.

8.1. The simultaneous and the nested approaches

Table 1 shows several performance measures for a Matlab
implementation of the single-shooting algorithm. The simultane-
ous approach is faster than the nested approach for both problems
and regardless of whether an exact or an inexact Newton method
is used. This is due to fewer factorizations, back substitutions,
and evaluations of thermodynamic properties. Table 2 shows the
computation times of thermodynamic function evaluations, factor-
izations, and back substitutions. The evaluation of thermodynamic
functions and their derivatives is more time consuming than
solving linear systems for both the Matlab and the C implementa-
tions. However, the difference is significantly larger for the Matlab
implementations. There is little or no computational overhead in
evaluating thermodynamic functions for the Jacobian instead of
for the residual equations when an ideal thermodynamic model
is used. This is the case for the optimal tracking problem. The over-
head is significantly larger when equations of state are used in
the thermodynamic computations, as is the case for the minimal
cooling problem.

8.2. Exact and inexact Newton methods

For both problems, it is more efficient to use an exact New-
ton method in the nested approach. This is likely due to frequent
updating of the Jacobian in the inner Newton iterations. For the
simultaneous approach, there is no advantage in using an inex-
act Newton method when solving the optimal tracking problem.
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Table  2
Absolute computation time (in microseconds) of evaluating thermodynamical properties and solving a linear system Ax = b for x where A is a dense matrix. The sizes of A are
chosen  according to the sizes of the matrices that occur in the Newton iterations in the simultaneous approach (Sim.) and in the inner and outer Newton iterations in the
nested approach (Nest. inner and Nest. outer, respectively). We  distinguish between evaluating thermodynamic properties to be used in residual equations and to be used
in  Jacobians. The linear systems are solved with an LU factorization (Fact.) and a back substitution (Back. sub.). The C factorizations and back substitutions are obtained with
Netlib’s  LAPACK routines dgetrf and dgetrs.

Optimal tracking problem

Thermo. eval. Sim. (A ∈ R
9×9) Nest. inner (A ∈ R

5×5) Nest. outer (A ∈ R
4×4)

For residual eq. For Jacobian Fact. Back. sub. Fact. Back. sub. Fact. Back. sub.

Matlab 34.588 39.829 3.514 2.271 2.844 2.117 2.634 1.887
C  1.435 1.428 0.575 0.188 0.205 0.112 0.145 0.092

Minimal cooling problem

Thermo. eval. Sim. (A ∈ R
31×31) Nest. inner (A ∈ R

16×16) Nest. outer (A ∈ R
15×15)

For residual eq. For Jacobian Fact. Back. sub. Fact. Back. sub. Fact. Back. sub.

Matlab 211.319 464.254 5.121 2.516 3.169 2.213 3.032 2.151
C  4.305 6.431 1.165 0.290 0.359 0.150 0.288 0.129

Table 3
Absolute computation time (in seconds) and relative computation time of solving the two  optimal control problems using the single-shooting algorithm with the simultaneous
approach. Average over ten solutions to the optimal control problem.

Optimal tracking problem

GCC compilers and Netlib’s BLAS/LAPACK Intel compilers and Intel MKL

NLP solver fmincon fmincon IPOPT KNITRO NPSOL fmincon IPOPT KNITRO NPSOL

Prog. Lang. Matlab C C C C C C C C
Iterations 202 202 486 186 152 202 486 186 152
Func.  Eval. 203 203 1517 190 153 203 1517 190 153
Absolute 8.503 0.851 1.319 0.291 0.223 0.843 0.911 0.245 0.102
Relative 1.000 0.100 0.155 0.034 0.026 0.099 0.107 0.029 0.012
Speedup 1.0 10.0 6.4 29.2 38.1 10.1 9.3 34.7 83.4

Minimal cooling problem

GCC compilers and Netlib’s BLAS/LAPACK Intel compilers and Intel MKL

NLP solver fmincon fmincon IPOPT KNITRO NPSOL fmincon IPOPT KNITRO NPSOL

Prog. Lang. Matlab C C C C C C C C
Iterations 156 156 328 117 150 156 328 117 150
Func.  Eval. 173 173 1364 121 152 173 1364 121 152
Absolute 137.803 37.525 6.868 6.654 7.002 37.929 6.437 8.149 2.481
Relative 1.000 0.272 0.050 0.048 0.051 0.275 0.047 0.059 0.018
Speedup 1.0 3.7 20.1 20.7 19.7 3.6 21.4 16.9 55.5

This is because the overhead associated with evaluating thermo-
dynamic properties for the Jacobians is very small. This is not true
when equations of state are used. For the minimal cooling problem,
where equations of state are used, the performance of the simul-
taneous approach thus improves by roughly 35% when an inexact
Newton method is used. This improvement is also, in part, due to
the fewer function evaluations in the NLP algorithm.

8.3. Programming language, NLP solvers, and compilers

Table 3 shows performance measures for several implemen-
tations of the single-shooting algorithm using the simultaneous
approach with an inexact Newton method. The implementations
use different optimization libraries (NLP solvers), compilers, and
linear algebra libraries. The least efficient is a pure Matlab imple-
mentation using fmincon. This implementation solves the optimal
tracking problem in 8.5 s and the minimal cooling problem in
137.8 s. A mixed implementation, which uses fmincon and C rou-
tines for the simulation and the gradient computations, improves
over the pure Matlab implementation. It attains a speedup of
10 for the optimal tracking problem and 3.7 for the minimal
cooling problem, as compared to the pure Matlab implementa-
tion.

The C implementation using IPOPT is not efficient for the
optimal tracking problem. This is because IPOPT is used with
a limited-memory BFGS approximation. This implementation is
more efficient for the larger minimal cooling problem where it per-
forms as well as the implementations using KNITRO and NPSOL
when GCC compilers are used. The implementation that uses NPSOL
is in general the fastest. Its performance improves significantly
when Intel compilers are used. It thus attains a speedup of 83 for the
optimal tracking problem and 55 for the minimal cooling problem.
The Intel compilers do not improve the performance of the other
implementations significantly.

9. Conclusions

We have presented a single-shooting algorithm for gradient-
based dynamic optimization of vapor–liquid equilibrium processes.
It uses the adjoint method for the computation of gradients. We
have described a dynamic UV flash model and demonstrated that
the UV flash is equivalent to a UV-constrained PT flash, i.e. a PT flash
combined with specifications of the internal energy and volume.
We have presented a numerical performance study with two  opti-
mal  control problems. The first problem is a small tracking-type
control problem. The second is a medium-size economical con-
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trol problem. We  have compared the efficiency of a simultaneous
approach and a nested approach for the numerical solution of the
differential-algebraic constraints in the optimal control problem.
The simultaneous approach is faster because it uses fewer factoriza-
tions, back substitutions, and thermodynamic function evaluations.
Not surprisingly, the performance study also shows that the C
implementations are significantly faster than a pure Matlab imple-
mentation. Furthermore, we have compared the performance of
four nonlinear constrained optimization solvers: Matlab’s fmincon,
IPOPT, KNITRO, and NPSOL. NPSOL is generally the fastest solver for
this problem formulation, and the performance of NPSOL is signifi-
cantly improved when Intel compilers are used. The Intel compilers
do not improve the efficiency of the implementations using fmin-
con, IPOPT, and KNITRO significantly. The implementation using
NPSOL is able to solve the tracking problem in 0.1 s which is 83.4
times faster than the pure Matlab implementation. Furthermore, it
solves the economical control problem in 2.5 s which is 55.5 times
faster than the Matlab implementation.
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Appendix A. Parameter values for the optimal control
examples

Table A.4 contains values of quantities related to the optimal
tracking problem described in Section 7.1. It contains the control
variables and the disturbance variables necessary for computing
the initial and final steady states that are used to generate the set-
points in the objective function (73). This initial steady state is also
used as the initial condition. Furthermore, it contains the feed vari-
ables as well as the reference strategy. Table A.5 contains values

Table A.5
Parameter values used in the minimal cooling problem in Section 7.2. Certain param-
eters have different values on the first and the second half of the time interval [t0,
tf] = [0 h, 24 h].

t ∈ [0 h, 24 h] Unit

Initial steady state
TF 335.15 K
PF 1.0 MPa
zF [0.60; 0.10; 0.05; 0.23; 0.02]
FF 12.0 kmol/h
Q  −150.0 MJ/h
FL 4.5 kmol/h
FV 7.5 kmol/h

t  ∈ [0 h, 12 h] t ∈ [12 h, 24 h] Unit

Feed
TF 335.15 335.15 K
PF 1.0 1.0 MPa
zF [0.60; 0.10; 0.05; 0.23; 0.02] [0.59; 0.09; 0.04; 0.22; 0.06]
FF 12.0 12.0 kmol/h
Reference control strategy
Q −90.0 −110.0 MJ/h
FL 4.5 5.5 kmol/h
FV 7.5 6.5 kmol/h

of quantities related to the minimal cooling problem described in
Section 7.2. It contains the control variables and the disturbance
variables used to compute the initial steady state that is used as
initial condition in the minimal cooling problem. Furthermore, the
table contains the feed variables and the reference strategy.
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Abstract: In this paper, we discuss mathematical models and computational methods for
computation of vapor-liquid equilibrium in systems relevant to reservoir simulation and
optimization. We formulate the phase equilibrium problem as an optimization problem and
discuss the UV-flash, the TV-flash, and the PT-flash. The UV-flash occurs for thermal and
compositional dynamical simulation problems, the TV-flash occurs for compositional dynamical
simulation problems, and the PT-flash occurs for steady-state problems.

Keywords: Thermodynamics, Vapor-Liquid Equilibrium, Oil & Gas, Simulation, Optimization

1. INTRODUCTION

The operation of off-shore oil and gas fields in terms of
e.g. controlling and optimizing the flow in the reservoir,
the flow of oil and gas from the well to the well-head, the
flow from the well-head to the riser, and the flow from
the riser to the topside and separation plant all involve
operation of two- or multi-phase systems. Consequently,
reservoir simulation and optimization for digitalization
and automation of off-shore oil and gas operations require
efficient and reliable computation of phase equilibrium
in vapor-liquid systems. Vapor-liquid phase equilibrium
computations are also important for construction of the
digital twin (a simulator) for oil and gas systems.

In this paper, we combine the second law of thermodynam-
ics, optimization theory, and the implicit function theorem
to discuss the computation of phase equilibrium and their
sensitivities in vapor-liquid equilibrium systems relevant
for the oil and gas industry. The sensitivities are needed
when the phase equilibrium computation is embedded as
part of a gradient-based method, i.e. typically a Newton-
based method, for optimization, dynamic simulation, or
steady-state simulation. We present and discuss the UV-
flash, the TV-flash, and the PT-flash problems as well as
numerically efficient ways of computing their solutions.

1.1 Literature

Several authors describe the simulation and optimization
of models, related to the oil and gas industry, that incor-
porate phase equilibrium constraints. Li and Johns (2006)
describe a method for improving the efficiency of flash
calculations in compositional reservoir simulations, and
Zaydullin et al. (2014) describe a fully thermal and com-
positional reservoir flow model. Hammer and Morin (2014)
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In dynamic simulation, the initial value problem (IVP),

x(t0) = x0, (3a)

ẋ(t) = F (y(x(t))), (3b)

may be solved numerically using the implicit Euler
method. In the implicit Euler method, the states, xk+1,
are computed by solving the residual equations

R(xk+1) = xk+1 − ∆tF (y(xk+1)) − xk = 0, (4)

using a variant of Newton’s method. Newton’s method
requires computation of the derivative

∂

∂xk+1
R(xk+1) = I − ∆t

∂F

∂y
(y(xk+1))

∂y

∂x
(xk+1). (5)

Consequently, it is obvious that simulation by the implicit
Euler method requires evaluation of y = y(x) and yx =
yx(x). Similarly, computation of the steady-state, xs, by
solution of

ẋ(t) = F (y(xs)) = 0, (6)
using Newton’s method,

F (y(x[k]
s )) +

[
∂F

∂y
(y(x[k]

s ))
∂y

∂x
(x[k]

s )

]
∆x[k]

s = 0, (7a)

x[k+1]
s = x[k]

s + ∆x[k]
s , (7b)

requires evaluation of y = y(x) and yx = yx(x).

1.3 Mathematics for the simultaneous formulation

In the simultaneous formulation, the phase equilibrium
problem,

min
y

f(y;x), (8a)

s.t. g(y;x) = 0, (8b)

is represented by its first order optimality conditions
denoted as the algebraic equations

G(x, y, λ) = 0, (9)

where λ denotes Lagrange multipliers associated with (8).
Dynamic simulation using the simultaneous formulation is
conducted by numerical solution of the initial value index-
1 differential algebraic equation system

x(t0) = x0, (10a)

ẋ(t) = F (y(t)), (10b)

G(x(t), y(t), λ(t)) = 0. (10c)

Solution of this system using the implicit Euler method
involves solution of

Rk+1 =

[
Dk+1

Gk+1

]
=

[
xk+1 − ∆tF (yk+1) − xk

G(xk+1, yk+1, λk+1)

]
= 0, (11)

by a Newton method. Let w = [x; y;λ]. The Newton
method requires computation of the derivative

∂Rk+1

∂wk+1
=




I −∆t
∂F

∂y
0

∂G

∂x

∂G

∂y

∂G

∂λ


 . (12)

Similarly, the steady state, (xs, ys, λs), is computed by
solution of

R =

[
ẋ(t)
G

]
=

[
F (ys)

G(xs, ys, λs)

]
= 0, (13)

using a variant of Newton’s method. Newton’s method
requires computation of the derivatives

∂R

∂w
=




0
∂F

∂y
0

∂G

∂x

∂G

∂y

∂G

∂λ


 . (14)

Consequently, the simultaneous method requires evalua-
tion of the function, G = G(x, y, λ), in the algebraic equa-
tions and computation of the derivatives, ∂G/∂x, ∂G/∂y,
and ∂G/∂λ.

1.4 Perspective

The formulations that we present in this paper are valid
when all phases are nonempty at the solution. It is not al-
ways possible to determine the exact number of nonempty
phases before solving the flash problem. This is particu-
larly true for complex models that may require the solution
of several flash problems. Consequently, the solutions to
the flash problems that we describe in this paper will be
incorrect if the number of specified phases is incorrect.
It is difficult to incorporate the disappearance of phases
because it makes the problem non-smooth. There are two
approaches which can extend the formulations that we
present in this paper such that the solution is correct
even when some phases are empty. The first approach
recasts the flash problem using non-smooth equations and
solves them with non-smooth methods (Stechlinski and
Barton, 2017; Watson et al., 2017; Sahlodin et al., 2016;
Barton and Lee, 2002). The second approach requires the
solution of a mathematical program with complementarity
constraints (MPCC) (Biegler, 2010; Baumrucker et al.,
2008; Raghunathan et al., 2004). Such a mathematical
program belongs to the class of mathematical programs
with equilibrium constraints (Outrata et al., 2013; Luo
et al., 1996). Both approaches combine equations that are
valid in single-phase regions with the equations that are
valid in the two-phase region. Both approaches therefore
extend the formulations that we present in this paper.

1.5 Paper organization

The remaining part of the paper is organized as fol-
lows. Section 2 presents methods for computation of
the minimizer and its sensitivities for the unconstrained
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2. UNCONSTRAINED OPTIMIZATION
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min
y

f(y;x) (15)

has the solution denoted as

y = y(x) = arg min
y

f(y;x). (16)

In this section, we discuss the solution of this problem
when f(y;x) is smooth.

2.1 Optimality conditions

The first-order optimality condition for a minimizer of (15)
are

∇yf(y;x) = 0. (17)
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1. INTRODUCTION

The operation of off-shore oil and gas fields in terms of
e.g. controlling and optimizing the flow in the reservoir,
the flow of oil and gas from the well to the well-head, the
flow from the well-head to the riser, and the flow from
the riser to the topside and separation plant all involve
operation of two- or multi-phase systems. Consequently,
reservoir simulation and optimization for digitalization
and automation of off-shore oil and gas operations require
efficient and reliable computation of phase equilibrium
in vapor-liquid systems. Vapor-liquid phase equilibrium
computations are also important for construction of the
digital twin (a simulator) for oil and gas systems.

In this paper, we combine the second law of thermodynam-
ics, optimization theory, and the implicit function theorem
to discuss the computation of phase equilibrium and their
sensitivities in vapor-liquid equilibrium systems relevant
for the oil and gas industry. The sensitivities are needed
when the phase equilibrium computation is embedded as
part of a gradient-based method, i.e. typically a Newton-
based method, for optimization, dynamic simulation, or
steady-state simulation. We present and discuss the UV-
flash, the TV-flash, and the PT-flash problems as well as
numerically efficient ways of computing their solutions.

1.1 Literature

Several authors describe the simulation and optimization
of models, related to the oil and gas industry, that incor-
porate phase equilibrium constraints. Li and Johns (2006)
describe a method for improving the efficiency of flash
calculations in compositional reservoir simulations, and
Zaydullin et al. (2014) describe a fully thermal and com-
positional reservoir flow model. Hammer and Morin (2014)
and Qiu et al. (2014) simulate two-phase pipe flow systems,

� This project is funded by Innovation Fund Denmark in the
OPTION project (63-2013-3) and by EUDP in the IEA project
”Energy Efficient Process Control”.

and Laiglecia et al. (2012) solve a dynamic optimization
problem for a natural gas separation process. It is com-
mon to solve dynamic optimization problems with single-
shooting algorithms. Such algorithms combine numerical
simulation with numerical optimization algorithms. Ef-
ficient optimization algorithms require gradients of the
objective function. Such gradients can be computed with
adjoint methods (Jørgensen, 2007). Kourounis et al. (2014)
use an adjoint method for solving production optimization
problems for compositional reservoir models. Støren and
Hertzberg (1997) describe an alternative method for effi-
cient estimation of gradients based on approximate local
thermodynamic models. Dynamic models that incorporate
phase equilibrium constraints consist of 1) conservation
equations (differential equations) and 2) phase equilibrium
conditions (algebraic equations). Numerical algorithms for
solving such differential-algebraic equations either solve
the algebraic equations simultaneously with the conserva-
tion equations, or in a nested inner loop. Lima et al. (2008)
use a simultaneous approach to simulate a dynamic UV-
flash process, and Ritschel et al. (2017a,c,d) conclude that
a simultaneous approach is faster than a nested approach
for dynamic optimization of a UV-flash process. Wilhelm-
sen et al. (2013) find that a simultaneous approach is faster
for dynamic simulation of a UV-flash process, but not for
a steady-state PH-flash process.

1.2 Mathematics for the nested formulation

In the nested formulation for dynamic simulation, steady-
state simulation, and optimization, the phase equilibrium
is represented and solved as the optimization problem

y = y(x) = arg min
y

{f(y;x) : g(y;x) = 0}. (1)

In this formulation, x denotes the states, while y are
variables related to the solution of the vapor-liquid equi-
librium. It is important to notice that y = y(x) is regarded
as a function of x.

yx = yx(x) =
∂y

∂x
(x) (2)
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In dynamic simulation, the initial value problem (IVP),

x(t0) = x0, (3a)

ẋ(t) = F (y(x(t))), (3b)

may be solved numerically using the implicit Euler
method. In the implicit Euler method, the states, xk+1,
are computed by solving the residual equations

R(xk+1) = xk+1 − ∆tF (y(xk+1)) − xk = 0, (4)

using a variant of Newton’s method. Newton’s method
requires computation of the derivative

∂

∂xk+1
R(xk+1) = I − ∆t

∂F

∂y
(y(xk+1))

∂y

∂x
(xk+1). (5)

Consequently, it is obvious that simulation by the implicit
Euler method requires evaluation of y = y(x) and yx =
yx(x). Similarly, computation of the steady-state, xs, by
solution of

ẋ(t) = F (y(xs)) = 0, (6)
using Newton’s method,

F (y(x[k]
s )) +

[
∂F

∂y
(y(x[k]

s ))
∂y

∂x
(x[k]

s )

]
∆x[k]

s = 0, (7a)

x[k+1]
s = x[k]

s + ∆x[k]
s , (7b)

requires evaluation of y = y(x) and yx = yx(x).

1.3 Mathematics for the simultaneous formulation

In the simultaneous formulation, the phase equilibrium
problem,

min
y

f(y;x), (8a)

s.t. g(y;x) = 0, (8b)

is represented by its first order optimality conditions
denoted as the algebraic equations

G(x, y, λ) = 0, (9)

where λ denotes Lagrange multipliers associated with (8).
Dynamic simulation using the simultaneous formulation is
conducted by numerical solution of the initial value index-
1 differential algebraic equation system

x(t0) = x0, (10a)

ẋ(t) = F (y(t)), (10b)

G(x(t), y(t), λ(t)) = 0. (10c)

Solution of this system using the implicit Euler method
involves solution of

Rk+1 =

[
Dk+1

Gk+1

]
=

[
xk+1 − ∆tF (yk+1) − xk

G(xk+1, yk+1, λk+1)

]
= 0, (11)

by a Newton method. Let w = [x; y;λ]. The Newton
method requires computation of the derivative

∂Rk+1

∂wk+1
=




I −∆t
∂F

∂y
0

∂G

∂x

∂G

∂y

∂G

∂λ


 . (12)

Similarly, the steady state, (xs, ys, λs), is computed by
solution of

R =

[
ẋ(t)
G

]
=

[
F (ys)

G(xs, ys, λs)

]
= 0, (13)

using a variant of Newton’s method. Newton’s method
requires computation of the derivatives

∂R

∂w
=




0
∂F

∂y
0

∂G

∂x

∂G

∂y

∂G

∂λ


 . (14)

Consequently, the simultaneous method requires evalua-
tion of the function, G = G(x, y, λ), in the algebraic equa-
tions and computation of the derivatives, ∂G/∂x, ∂G/∂y,
and ∂G/∂λ.

1.4 Perspective

The formulations that we present in this paper are valid
when all phases are nonempty at the solution. It is not al-
ways possible to determine the exact number of nonempty
phases before solving the flash problem. This is particu-
larly true for complex models that may require the solution
of several flash problems. Consequently, the solutions to
the flash problems that we describe in this paper will be
incorrect if the number of specified phases is incorrect.
It is difficult to incorporate the disappearance of phases
because it makes the problem non-smooth. There are two
approaches which can extend the formulations that we
present in this paper such that the solution is correct
even when some phases are empty. The first approach
recasts the flash problem using non-smooth equations and
solves them with non-smooth methods (Stechlinski and
Barton, 2017; Watson et al., 2017; Sahlodin et al., 2016;
Barton and Lee, 2002). The second approach requires the
solution of a mathematical program with complementarity
constraints (MPCC) (Biegler, 2010; Baumrucker et al.,
2008; Raghunathan et al., 2004). Such a mathematical
program belongs to the class of mathematical programs
with equilibrium constraints (Outrata et al., 2013; Luo
et al., 1996). Both approaches combine equations that are
valid in single-phase regions with the equations that are
valid in the two-phase region. Both approaches therefore
extend the formulations that we present in this paper.

1.5 Paper organization

The remaining part of the paper is organized as fol-
lows. Section 2 presents methods for computation of
the minimizer and its sensitivities for the unconstrained
optimization problem, while Section 3 presents similar
methods for the equality-constrained optimization prob-
lem. Section 4 presents the evaluation of the required
thermodynamic functions using an open-source library,
www.psetools.org. We discuss different flash problems,
their use, and their equivalence in Section 5. Section 6
discusses the Rachford-Rice method for solution of the PT-
flash. Section 7 presents numerical examples, and Section
8 contains the conclusions.

2. UNCONSTRAINED OPTIMIZATION

The unconstrained optimization problem

min
y

f(y;x) (15)

has the solution denoted as

y = y(x) = arg min
y

f(y;x). (16)

In this section, we discuss the solution of this problem
when f(y;x) is smooth.

2.1 Optimality conditions

The first-order optimality condition for a minimizer of (15)
are

∇yf(y;x) = 0. (17)
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2.2 Newton’s method and the Hessian matrix

The first-order optimality conditions (17) are solved using
Newton’s method. Each iteration in Newton’s method
involves solution of the linear system of equations

∇2
yyf(y;x)∆y = −∇yf(x; y), (18)

using a Cholesky factorization of the Hessian matrix,
LL′ = H = ∇2

yyf(y;x). This factorization also reveals
if the Hessian matrix is positive definite.

2.3 Sensitivity

Application of the implicit function theorem to (17) pro-
vides the following equation

∇2
yyf(y;x)yx = − [∇yxf(y;x)]

′
, (19)

for computation of the sensitivities

yx = yx(x) =
∂y

∂x
(x) = [∇xy(x)]

′
. (20)

It is important to notice that the existing Cholesky fac-
torization, LL′ = H = ∇2

yyf(y;x), can be re-used in this
computation.

2.4 Summary

The solution

y = y(x) = arg min
y

f(y;x), (21)

to the unconstrained optimization problem is a solution
of the nonlinear first-order optimality conditions (17). Its
sensitivities are

yx = yx(x) = −
[
∇2

yyf(y;x)
]−1

[∇yxf(y;x)]
′
. (22)

3. EQUALITY CONSTRAINED OPTIMIZATION

We denote the solution to the equality constrained opti-
mization problem

min
y

f(y;x), (23a)

s.t. g(y;x) = 0, (23b)

as

y = y(x) = arg min
y

{f(y;x) : g(y;x) = 0} . (24)

3.1 Optimality conditions

The Lagrangian function is

L(y, λ;x) = f(y;x) − λ′g(y;x), (25)

where λ are Lagrange multipliers. The Karush-Kuhn-
Tucker (KKT) conditions (first-order optimality condi-
tions) for a minimizer of (23) require that the gradients
of the Lagrangian with respect to y are zero and that the
equality constraints are satisfied:

∇yL(y, λ;x) = ∇yf(y;x) −∇yg(y;x)λ = 0, (26a)

g(y;x) = 0. (26b)

3.2 Newton’s method and the KKT-matrix

We solve the KKT conditions (26) for both the minimizer,
y, and the Lagrange multipliers, λ. We use Newton’s

method. Each Newton iteration requires the solution of
the linear system of equations[

∇2
yyL(y, λ;x) −∇yg(y;x)

−∇yg(y;x)′ 0

] [
∆y
∆λ

]
= −

[
∇yL(y, λ;x)

g(y;x)

]
,

(27)
where the Hessian of the Lagrangian is

∇2
yyL(y, λ;x) = ∇2

yyf(y;x) −
∑

i

λi∇2
yygi(y;x). (28)

The Newton update is

ȳ = y + ∆y, (29a)

λ̄ = λ + ∆λ. (29b)

It is possible to reformulate the linear system (27) such
that its solution contains λ̄ instead of ∆λ:[

∇2
yyL(y, λ;x) −∇yg(y;x)

−∇yg(y;x)′ 0

] [
∆y
λ̄

]
= −

[
∇yf(y;x)
g(y;x)

]
.

(30)
The system matrix in (27) and (30) is called the KKT
matrix,

K =

[
∇2

yyL(y, λ;x) −∇yg(y;x)
−∇yg(y;x)′ 0

]
. (31)

The KKT matrix is indefinite. We therefore use an LDL
factorization, LDL′ = K, when solving (30).

3.3 Sensitivity equations

The sensitivity equations result from the application of the
implicit function theorem to (26):
[
∇2

yyL(y, λ;x) −∇yg(y;x)
−∇yg(y;x)′ 0

] [
yx
λx

]
= −

[[
∇2

yxf(y;x)
]′

[
∇2

yxg(y;x)
]′
]
.

(32)
The solution of (32) gives the sensitivities of both the
minimizer and the Lagrange multipliers,

yx = yx(x) =
∂y

∂x
(x) = [∇xy(x)]

′
, (33a)

λx = λx(x) =
∂λ

∂x
(x) = [∇xλ(x)]

′
. (33b)

We reuse the LDL factorization of the KKT matrix from
the solution of (30).

Special case: In the case where f(y;x) = f(y) and
g(y;x) = g(y) − h(x), the sensitivity equations become[

∇2
yyL(y, λ;x) −∇g(y)
−∇g(y)′ 0

] [
yx
λx

]
=

[
0

hx(x)

]
. (34)

3.4 Summary

The solution to the equality constrained optimization
problem,

y = y(x) = arg min
y

{f(y;x) : g(y;x) = 0} , (35)

is a solution to the nonlinear KKT conditions (26). The
sensitivities of the solution, y, and the associated Lagrange
multipliers, λ, are
[
yx
λx

]
=

[
∇2

yyL(y, λ;x) −∇yg(y;x)
−∇yg(y;x)′ 0

]−1
[[
∇2

yxf(y;x)
]′

[
∇2

yxg(y;x)
]′
]
.

(36)
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4. THERMODYNAMIC FUNCTIONS

The evaluation of thermodynamic functions is central to
phase equilibrium computations. In this section, we discuss
the relations between thermodynamic state functions, and
we describe the relation between the fugacity coefficients
and Gibbs energy. The methods described in Section 2 and
Section 3 require the first and second order derivatives of
thermodynamic functions. For that reason, Ritschel et al.
(2017b, 2016) developed an open-source thermodynamic
library, ThermoLib, which provides routines for evaluating
the enthalpy, entropy, and volume as well as their first
and second order derivatives with respect to temperature,
pressure, and the composition vector. We use ThermoLib
in this work. For more information on thermodynamic
functions, we refer the reader to introductory texts on
chemical engineering thermodynamics by Smith et al.
(2005), Gmehling et al. (2012), Koretsky (2014), and
Walas (1985).

4.1 Gibbs energy and thermodynamic functions

The temperature, T , pressure, P , and phase composition
vector, n, completely specify a phase. The thermodynamic
model in ThermoLib provides expressions for enthalpy,
entropy, and volume:

H = H(T, P, n), (37a)

S = S(T, P, n), (37b)

V = V (T, P, n). (37c)

We compute the remaining thermodynamic functions,
internal energy, Gibbs energy, and Helmholtz energy, from
the fundamental thermodynamic relations,

U = U(T, P, n) = H(T, P, n) − PV (T, P, n), (38a)

G = G(T, P, n) = H(T, P, n) − TS(T, P, n), (38b)

A = A(T, P, n) = U(T, P, n) − TS(T, P, n). (38c)

When Gibbs energy is expressed as a function of its
canonical variables, (T, P, n), it plays the role of a gener-
ating function, i.e. all other thermodynamic functions can
be computed from it by simple mathematical operations
such as differentiation and elementary algebra. Therefore,
Gibbs energy implicitly represents complete property in-
formation:

H = H(T, P, n) = G(T, P, n) − T
∂G

∂T
(T, P, n), (39a)

S = S(T, P, n) = −∂G

∂T
(T, P, n), (39b)

V = V (T, P, n) =
∂G

∂P
(T, P, n). (39c)

4.2 Chemical potential

We introduce the chemical potential in order to define
the fugacity. The chemical potential of component i in a
mixture is the partial derivative of the Gibbs energy of
that mixture with respect to the i’th mole number:

µi(T, P, n) =
∂G

∂ni
(T, P, n). (40)

The definition of the fugacity of component i involves
1) the i’th chemical potential of an ideal gas mixture,

µig
i (T, P, n) = ∂Gig/∂ni(T, P, n), and 2) the chemi-

cal potential of a pure component ideal gas that only

contains ni moles of component i, µpc,ig
i (T, P, ni) =

∂Gpc,ig
i /∂ni(T, P, ni). The latter is independent of the

mole number, i.e. µpc,ig
i (T, P, ni) = µpc,ig

i (T, P ). The i’th
chemical potential of an ideal gas mixture is

µig
i (T, P, n) =

∂Gig

∂ni
(T, P, n) = µpc,ig

i (T, P0) + RT ln
ziP

P0
,

(41)
where P0 is a reference pressure, and zi = ni/

∑
i ni is the

mole fraction of component i.

4.3 Fugacity

The fugacity is implicitly defined such that the chemical
potential of nonideal mixtures, µi(T, P, n), is given by
the right-hand side of (41) where the fugacity, fi(T, P, n),
replaces ziP :

µi(T, P, n) =
∂G

∂ni
(T, P, n)

= µpc,ig
i (T, P0) + RT ln

fi(T, P, n)

P0
. (42)

We subtract (41) from (42):

RT ln
fi(T, P, n)

ziP
=

∂

∂ni

(
G(T, P, n) −Gig(T, P, n)

)
.

(43)
The difference between the actual Gibbs energy of a mix-
ture and the Gibbs energy of that mixture if it was an ideal
gas is defined as the residual Gibbs energy, GR(T, P, n) =
G(T, P, n) − Gig(T, P, n). We also introduce the fugacity
coefficients, φi(T, P, n) = fi(T, P, n)/(ziP ). With these
two definitions, we obtain the following expression for the
logarithm of the fugacity coefficients:

lnφi(T, P, n) =
1

RT

∂GR

∂ni
(T, P, n). (44)

The fugacity coefficients play an important role in isother-
mal and isobaric (constant temperature and pressure)
vapor-liquid equilibrium problems as we discuss in Section
6. The logarithm of the fugacity coefficients of ideal gas
mixtures are by definition zero, i.e. lnφig

i (T, P, nv) = 0.
For ideal liquid mixtures, the logarithm of the fugacity
coefficients are (Ritschel and Jørgensen, 2017)

lnφid
i (T, P, nl) =

P sat
i (T )

P
exp

(
vli(T )(P − P sat

i (T ))

RT

)
.

(45)

vli(T ) is the liquid volume, and P sat
i (T ) is the saturation

pressure. We see that the ideal liquid fugacity coefficients
are independent of composition, i.e. lnφid

i (T, P, nl) =
lnφid

i (T, P ). ThermoLib uses cubic equations of state for
nonideal mixtures. It is outside the scope of this work to
describe the corresponding fugacity coefficients. However,
both Ritschel et al. (2016) and Ritschel and Jørgensen
(2017) provide expressions for them.

5. FLASH PROBLEMS

Table 1 shows the specified variables, the state function
that is minimal at equilibrium, and relevant types of
models for different flash problems (Paterson, 2017). We
demonstrate that the UV-, the TV-, and the PT-flash
problems can be formulated as unconstrained (15) and
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The evaluation of thermodynamic functions is central to
phase equilibrium computations. In this section, we discuss
the relations between thermodynamic state functions, and
we describe the relation between the fugacity coefficients
and Gibbs energy. The methods described in Section 2 and
Section 3 require the first and second order derivatives of
thermodynamic functions. For that reason, Ritschel et al.
(2017b, 2016) developed an open-source thermodynamic
library, ThermoLib, which provides routines for evaluating
the enthalpy, entropy, and volume as well as their first
and second order derivatives with respect to temperature,
pressure, and the composition vector. We use ThermoLib
in this work. For more information on thermodynamic
functions, we refer the reader to introductory texts on
chemical engineering thermodynamics by Smith et al.
(2005), Gmehling et al. (2012), Koretsky (2014), and
Walas (1985).

4.1 Gibbs energy and thermodynamic functions

The temperature, T , pressure, P , and phase composition
vector, n, completely specify a phase. The thermodynamic
model in ThermoLib provides expressions for enthalpy,
entropy, and volume:

H = H(T, P, n), (37a)

S = S(T, P, n), (37b)

V = V (T, P, n). (37c)

We compute the remaining thermodynamic functions,
internal energy, Gibbs energy, and Helmholtz energy, from
the fundamental thermodynamic relations,

U = U(T, P, n) = H(T, P, n) − PV (T, P, n), (38a)

G = G(T, P, n) = H(T, P, n) − TS(T, P, n), (38b)

A = A(T, P, n) = U(T, P, n) − TS(T, P, n). (38c)

When Gibbs energy is expressed as a function of its
canonical variables, (T, P, n), it plays the role of a gener-
ating function, i.e. all other thermodynamic functions can
be computed from it by simple mathematical operations
such as differentiation and elementary algebra. Therefore,
Gibbs energy implicitly represents complete property in-
formation:

H = H(T, P, n) = G(T, P, n) − T
∂G

∂T
(T, P, n), (39a)

S = S(T, P, n) = −∂G

∂T
(T, P, n), (39b)

V = V (T, P, n) =
∂G

∂P
(T, P, n). (39c)

4.2 Chemical potential

We introduce the chemical potential in order to define
the fugacity. The chemical potential of component i in a
mixture is the partial derivative of the Gibbs energy of
that mixture with respect to the i’th mole number:

µi(T, P, n) =
∂G

∂ni
(T, P, n). (40)

The definition of the fugacity of component i involves
1) the i’th chemical potential of an ideal gas mixture,

µig
i (T, P, n) = ∂Gig/∂ni(T, P, n), and 2) the chemi-

cal potential of a pure component ideal gas that only

contains ni moles of component i, µpc,ig
i (T, P, ni) =

∂Gpc,ig
i /∂ni(T, P, ni). The latter is independent of the

mole number, i.e. µpc,ig
i (T, P, ni) = µpc,ig

i (T, P ). The i’th
chemical potential of an ideal gas mixture is

µig
i (T, P, n) =

∂Gig

∂ni
(T, P, n) = µpc,ig

i (T, P0) + RT ln
ziP

P0
,

(41)
where P0 is a reference pressure, and zi = ni/

∑
i ni is the

mole fraction of component i.

4.3 Fugacity

The fugacity is implicitly defined such that the chemical
potential of nonideal mixtures, µi(T, P, n), is given by
the right-hand side of (41) where the fugacity, fi(T, P, n),
replaces ziP :

µi(T, P, n) =
∂G

∂ni
(T, P, n)

= µpc,ig
i (T, P0) + RT ln

fi(T, P, n)

P0
. (42)

We subtract (41) from (42):

RT ln
fi(T, P, n)

ziP
=

∂

∂ni

(
G(T, P, n) −Gig(T, P, n)

)
.

(43)
The difference between the actual Gibbs energy of a mix-
ture and the Gibbs energy of that mixture if it was an ideal
gas is defined as the residual Gibbs energy, GR(T, P, n) =
G(T, P, n) − Gig(T, P, n). We also introduce the fugacity
coefficients, φi(T, P, n) = fi(T, P, n)/(ziP ). With these
two definitions, we obtain the following expression for the
logarithm of the fugacity coefficients:

lnφi(T, P, n) =
1

RT

∂GR

∂ni
(T, P, n). (44)

The fugacity coefficients play an important role in isother-
mal and isobaric (constant temperature and pressure)
vapor-liquid equilibrium problems as we discuss in Section
6. The logarithm of the fugacity coefficients of ideal gas
mixtures are by definition zero, i.e. lnφig

i (T, P, nv) = 0.
For ideal liquid mixtures, the logarithm of the fugacity
coefficients are (Ritschel and Jørgensen, 2017)

lnφid
i (T, P, nl) =

P sat
i (T )

P
exp

(
vli(T )(P − P sat

i (T ))

RT

)
.

(45)

vli(T ) is the liquid volume, and P sat
i (T ) is the saturation

pressure. We see that the ideal liquid fugacity coefficients
are independent of composition, i.e. lnφid

i (T, P, nl) =
lnφid

i (T, P ). ThermoLib uses cubic equations of state for
nonideal mixtures. It is outside the scope of this work to
describe the corresponding fugacity coefficients. However,
both Ritschel et al. (2016) and Ritschel and Jørgensen
(2017) provide expressions for them.

5. FLASH PROBLEMS

Table 1 shows the specified variables, the state function
that is minimal at equilibrium, and relevant types of
models for different flash problems (Paterson, 2017). We
demonstrate that the UV-, the TV-, and the PT-flash
problems can be formulated as unconstrained (15) and
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Table 1. Examples of flash problems

Spec. State function Example of relevant model

(P, T ) G Isothermal-isobaric steady-state flow
(T, V ) A Isothermal unsteady-state flow
(P,H) −S Thermal steady-state flow
(U, V ) −S Thermal unsteady-state flow
(P, S) H Reversible expansion/compression

constrained (23) optimization problems (Michelsen, 1999;
Michelsen and Mollerup, 2007). We use a single-stage
dynamic model to illustrate the use of the flash problems
in dynamic models. Typically, more complex models can
be formulated as interconnected single-stage models. The
PT-flash is of particular interest because 1) it can be
formulated as unconstrained optimization, and 2) other
types of flash problems are equivalent to a combination
of algebraic constraints and the PT-flash. The PT-flash is
therefore often used in unsteady-state computations using
a nested approach. We discuss both of these aspects.

5.1 UV-flash problem

The UV-flash problem is considered difficult to solve (Saha
and Carroll, 1997; Castier, 2009). However, it is a key
component in rigorous models of vapor-liquid equilibrium
processes such as fluid vessels (Castier, 2010), distillation
columns (Flatby et al., 1994), and thermal- and composi-
tional oil recovery. We consider a single-stage model, essen-
tially a fluid vessel, that contains a vapor-liquid mixture.
A feed stream (f) supplies mass, and therefore energy, to
the mixture. A vapor stream (v) and a liquid stream (l)
extract mass and energy from the mixture. Furthermore,
a heat input, Q, supplies energy to the mixture. The mass
and energy conservation equations are

ṅi = fi − li − vi, (46a)

U̇ = Hf −Hl −Hv + Q, (46b)

where ni is the moles of component i, and U is the
internal energy of the mixture. The mixture temperature,
T , pressure, P , and vapor-liquid composition, nv and nl,
completely specify the vapor-liquid streams, i.e.

li = li(T, P, n
l), (47a)

vi = vi(T, P, n
v), (47b)

and

Hl = Hl(T, P, n
l), (48a)

Hv = Hv(T, P, n
v). (48b)

We assume that the vapor phase and the liquid phase are in
equilibrium at all times. The conservation equations (46)
specify the internal energy, U , and the total moles of each
chemical component, n. The volume of the tank, V , is
fixed. U , V , and n completely specify the temperature, T ,
pressure, P , and phase compositions of the vapor-liquid
mixture, nv and nl. That is because the second law of
thermodynamics states that the entropy, S, of a closed
system is maximal at equilibrium, or equivalently that −S
is minimal:

min
T,P,nv,nl

− S = −
(
Sv(T, P, nv) + Sl(T, P, nl)

)
, (49a)

s.t. Uv(T, P, nv) + U l(T, P, nl) = U, (49b)

V v(T, P, nv) + V l(T, P, nl) = V, (49c)

nv
i + nl

i = ni, i = 1, . . . , NC . (49d)

We use the linear mass balance constraint (49d) to elimi-
nate the liquid mole numbers, nl = n− nv:

min
T,P,nv

− S = −
(
Sv(T, P, nv) + Sl(T, P, n− nv)

)
,

(50a)

s.t. Uv(T, P, nv) + U l(T, P, n− nv) = U, (50b)

V v(T, P, nv) + V l(T, P, n− nv) = V. (50c)

5.2 TV-flash problem

We again consider the single-stage model (46). We assume
that the internal energy is constant:

ṅi = fi − li − vi, (51a)

U̇ = Hf −Hl −Hv + Q = 0. (51b)

The dynamic equations therefore only consist of the mass
conservation equations:

ṅi = fi − li − vi. (52)

The condition of constant internal energy requires that
the heat input precisely matches the difference between
the enthalpies of the feed and the vapor-liquid streams:

Q = Hl + Hv −Hf = ∆H. (53)

When the temperature is constant, the condition of max-
imal entropy is equivalent to a condition of minimal
Helmholtz energy, A:

min
P,nv,nl

A = Av(T, P, nv) + Al(T, P, nl), (54a)

s.t. V v(T, P, nv) + V l(T, P, nl) = V, (54b)

nv
i + nl

i = ni, i = 1, . . . , NC . (54c)

T , V , and n therefore completely specify P , nv, and nl.
Again, we eliminate the liquid mole numbers:

min
P,nv

A = Av(T, P, nv) + Al(T, P, n− nv), (55a)

s.t. V v(T, P, nv) + V l(T, P, n− nv) = V. (55b)

5.3 PT-flash problem

We consider the single-stage model (46) again. Isothermal
and isobaric processes (constant temperature and pres-
sure) are relevant to steady state processes:

ṅi = fi − li − vi = 0, (56a)

U̇ = Hf −Hl −Hv + Q = 0. (56b)

The heat input exactly matches the difference in enthalpy
of the feed and the vapor-liquid streams,

Q = Hl + Hv −Hf = ∆H, (57)

and the molar flow rates of the vapor-liquid streams
exactly match those of the feed stream:

li + vi = fi. (58)

The condition of maximal entropy is equivalent to a
condition of minimal Gibbs energy when both temperature
and pressure are constant:

min
nv,nl

G = Gv(T, P, nv) + Gl(T, P, nl), (59a)

s.t. nv
i + nl

i = ni, i = 1, . . . , NC . (59b)

T , P , and n thus completely specify nv and nl. We elimi-
nate the liquid mole numbers and obtain an unconstrained
minimization problem:

min
nv

G = Gv(T, P, nv) + Gl(T, P, n− nv). (60)
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5.4 Equivalence of different flash problems

The UV-flash problem (50) is equivalent to a combination
of the PT-flash (60) and constraints on U and V as in
(50b)-(50c). The UV constraints are thereby effectively
moved outside of the optimization problem at the cost
of changing the objective function. The VT flash problem
(55) is also equivalent to the PT-flash (60) combined with a
constraint on V as in (55b). That means that it is possible
to solve UV- and TV-flash problems with unconstrained
optimization methods. It also means that existing software
for PT-flash problems can be reused when solving the more
complex flash problems.

6. THE RACHFORD-RICE EQUATIONS

The Rachford-Rice equations are often used to solve PT-
flash problems. We outline the associated computation and
the computations of the needed sensitivities.

6.1 Vapor-liquid equilibrium constant

The PT-flash problem can be formulated as the uncon-
strained optimization problem

min
nv

G = Gv(T, P, nv) + Gl(T, P, n− nv), (61)

for which the first-order optimality conditions are

∂G

∂nv
i

=
∂Gv

∂nv
i

(T, P, nv) − ∂Gl

∂nl
i

(T, P, nl) = 0, (62)

for all i and with the liquid phase mole numbers being
nl = n − nv. The chemical potentials of the vapor and
liquid phases are defined as

µv
i (T, P, n

v) =
∂Gv

∂nv
i

(T, P, nv), (63a)

µl
i(T, P, n

l) =
∂Gl

∂nl
i

(T, P, nl). (63b)

The equilibrium conditions (62) are therefore

µv
i (T, P, n

v) = µl
i(T, P, n

l). (64)

Because of the definition of the fugacities (42), the condi-
tion of equal chemical potentials (64) is equivalent to

fv
i (T, P, nv) = f l

i (T, P, n
l). (65)

Let xi = nl
i/
∑

i n
l
i and yi = nv

i /
∑

i n
v
i be the mole frac-

tions of the liquid and vapor phase, respectively. Because
of the definition of the fugacity coefficients, the equal-
ity of fugacities (65) is equivalent to φv

i (T, P, n
v)yiP =

φl
i(T, P, n

l)xiP or equivalently

φv
i (T, P, n

v)yi = φl
i(T, P, n

l)xi. (66)

The equilibrium constants (sometimes referred to as equi-
librium ratios) are defined as Ki = yi/xi. We use (66) to
derive an expression for the equilibrium constants:

Ki(T, P, n
v, nl) =

yi
xi

=
φl
i(T, P, n

l)

φv
i (T, P, n

v)
. (67)

6.2 The Rachford-Rice method - Ideal vapor-liquid mixture

For mixtures of an ideal gas and an ideal liquid, the vapor
liquid equilibrium constant defined by (67) is

Ki = Ki(T, P ) =
P sat
i (T )

P
exp

(
vli(T )(P − P sat

i (T ))

RT

)
.

(68)

In that case, the vapor-liquid equilibrium constant is inde-
pendent of composition and depends only on temperature,
T , and pressure, P , but not on the compositions of the
liquid and vapor mixture. Define zi = ni/

∑
i ni such that

nl
i + nv

i = ni can be expressed as

(1 − β)xi + βyi = zi, (69)

where β is the vapor fraction defined as

β =

∑
i n

v
i∑

i ni
. (70)

The relation (69) and Ki = yi/xi imply that

zi = (1 − β)xi + βyi
= (1 − β)xi + βKixi = (1 + β(Ki − 1))xi,

(71)

such that

xi =
1

1 + β(Ki − 1)
zi, (72a)

yi = Kixi =
Ki

1 + β(Ki − 1)
zi. (72b)

This implies that

nl
i = xi(1 − β)

∑

i

ni =
1 − β

1 + β(Ki − 1)
ni, (73a)

nv
i = yiβ

∑

i

ni =
βKi

1 + β(Ki − 1)
ni. (73b)

The relations
∑

i xi =
∑

i yi = 1 imply that
∑

i(yi −
xi) = 0. By combination of this observation and (72), we
obtain the following relation

f(β) =
∑

i

(yi − xi) =
∑

i

(Ki − 1)xi

=
∑

i

Ki − 1

1 + β(Ki − 1)
zi = 0,

(74)

for computation of β. The derivative of this function is

f ′(β) = −
∑

i

[
Ki − 1

1 + β(Ki − 1)

]2
zi ≤ 0. (75)

Newton’s method for determination of β is

βk+1 = βk − f(βk)

f ′(βk)
. (76)

When β has been computed, we compute the vapor com-
position, nv

i , from (73b) and the liquid composition from
nl
i = ni − nv

i .

Sensitivity: The vapor fraction is a function of temper-
ature, pressure, and total composition, i.e. β = β(K,n) =
β(K(T, P ), n) = β(T, P, n). The sensitivities of β are

∂β

∂T
=

∑

i

∂β

∂Ki

∂Ki

∂T
, (77a)

∂β

∂P
=

∑

i

∂β

∂Ki

∂Ki

∂P
, (77b)

∂β

∂nj
=

∑

i

∂β

∂zi

∂zi
∂nj

, (77c)

where

∂β

∂Ki
= −

∂f
∂Ki

f ′(β)
,

∂β

∂zi
= −

∂f
∂zi

f ′(β)
. (78)

Similarly, the vapor-liquid mole numbers, nv
i and nl

i, are
functions of temperature, pressure, and total composition,
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Table 1. Examples of flash problems

Spec. State function Example of relevant model

(P, T ) G Isothermal-isobaric steady-state flow
(T, V ) A Isothermal unsteady-state flow
(P,H) −S Thermal steady-state flow
(U, V ) −S Thermal unsteady-state flow
(P, S) H Reversible expansion/compression

constrained (23) optimization problems (Michelsen, 1999;
Michelsen and Mollerup, 2007). We use a single-stage
dynamic model to illustrate the use of the flash problems
in dynamic models. Typically, more complex models can
be formulated as interconnected single-stage models. The
PT-flash is of particular interest because 1) it can be
formulated as unconstrained optimization, and 2) other
types of flash problems are equivalent to a combination
of algebraic constraints and the PT-flash. The PT-flash is
therefore often used in unsteady-state computations using
a nested approach. We discuss both of these aspects.

5.1 UV-flash problem

The UV-flash problem is considered difficult to solve (Saha
and Carroll, 1997; Castier, 2009). However, it is a key
component in rigorous models of vapor-liquid equilibrium
processes such as fluid vessels (Castier, 2010), distillation
columns (Flatby et al., 1994), and thermal- and composi-
tional oil recovery. We consider a single-stage model, essen-
tially a fluid vessel, that contains a vapor-liquid mixture.
A feed stream (f) supplies mass, and therefore energy, to
the mixture. A vapor stream (v) and a liquid stream (l)
extract mass and energy from the mixture. Furthermore,
a heat input, Q, supplies energy to the mixture. The mass
and energy conservation equations are

ṅi = fi − li − vi, (46a)

U̇ = Hf −Hl −Hv + Q, (46b)

where ni is the moles of component i, and U is the
internal energy of the mixture. The mixture temperature,
T , pressure, P , and vapor-liquid composition, nv and nl,
completely specify the vapor-liquid streams, i.e.

li = li(T, P, n
l), (47a)

vi = vi(T, P, n
v), (47b)

and

Hl = Hl(T, P, n
l), (48a)

Hv = Hv(T, P, n
v). (48b)

We assume that the vapor phase and the liquid phase are in
equilibrium at all times. The conservation equations (46)
specify the internal energy, U , and the total moles of each
chemical component, n. The volume of the tank, V , is
fixed. U , V , and n completely specify the temperature, T ,
pressure, P , and phase compositions of the vapor-liquid
mixture, nv and nl. That is because the second law of
thermodynamics states that the entropy, S, of a closed
system is maximal at equilibrium, or equivalently that −S
is minimal:

min
T,P,nv,nl

− S = −
(
Sv(T, P, nv) + Sl(T, P, nl)

)
, (49a)

s.t. Uv(T, P, nv) + U l(T, P, nl) = U, (49b)

V v(T, P, nv) + V l(T, P, nl) = V, (49c)

nv
i + nl

i = ni, i = 1, . . . , NC . (49d)

We use the linear mass balance constraint (49d) to elimi-
nate the liquid mole numbers, nl = n− nv:

min
T,P,nv

− S = −
(
Sv(T, P, nv) + Sl(T, P, n− nv)

)
,

(50a)

s.t. Uv(T, P, nv) + U l(T, P, n− nv) = U, (50b)

V v(T, P, nv) + V l(T, P, n− nv) = V. (50c)

5.2 TV-flash problem

We again consider the single-stage model (46). We assume
that the internal energy is constant:

ṅi = fi − li − vi, (51a)

U̇ = Hf −Hl −Hv + Q = 0. (51b)

The dynamic equations therefore only consist of the mass
conservation equations:

ṅi = fi − li − vi. (52)

The condition of constant internal energy requires that
the heat input precisely matches the difference between
the enthalpies of the feed and the vapor-liquid streams:

Q = Hl + Hv −Hf = ∆H. (53)

When the temperature is constant, the condition of max-
imal entropy is equivalent to a condition of minimal
Helmholtz energy, A:

min
P,nv,nl

A = Av(T, P, nv) + Al(T, P, nl), (54a)

s.t. V v(T, P, nv) + V l(T, P, nl) = V, (54b)

nv
i + nl

i = ni, i = 1, . . . , NC . (54c)

T , V , and n therefore completely specify P , nv, and nl.
Again, we eliminate the liquid mole numbers:

min
P,nv

A = Av(T, P, nv) + Al(T, P, n− nv), (55a)

s.t. V v(T, P, nv) + V l(T, P, n− nv) = V. (55b)

5.3 PT-flash problem

We consider the single-stage model (46) again. Isothermal
and isobaric processes (constant temperature and pres-
sure) are relevant to steady state processes:

ṅi = fi − li − vi = 0, (56a)

U̇ = Hf −Hl −Hv + Q = 0. (56b)

The heat input exactly matches the difference in enthalpy
of the feed and the vapor-liquid streams,

Q = Hl + Hv −Hf = ∆H, (57)

and the molar flow rates of the vapor-liquid streams
exactly match those of the feed stream:

li + vi = fi. (58)

The condition of maximal entropy is equivalent to a
condition of minimal Gibbs energy when both temperature
and pressure are constant:

min
nv,nl

G = Gv(T, P, nv) + Gl(T, P, nl), (59a)

s.t. nv
i + nl

i = ni, i = 1, . . . , NC . (59b)

T , P , and n thus completely specify nv and nl. We elimi-
nate the liquid mole numbers and obtain an unconstrained
minimization problem:

min
nv

G = Gv(T, P, nv) + Gl(T, P, n− nv). (60)
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5.4 Equivalence of different flash problems

The UV-flash problem (50) is equivalent to a combination
of the PT-flash (60) and constraints on U and V as in
(50b)-(50c). The UV constraints are thereby effectively
moved outside of the optimization problem at the cost
of changing the objective function. The VT flash problem
(55) is also equivalent to the PT-flash (60) combined with a
constraint on V as in (55b). That means that it is possible
to solve UV- and TV-flash problems with unconstrained
optimization methods. It also means that existing software
for PT-flash problems can be reused when solving the more
complex flash problems.

6. THE RACHFORD-RICE EQUATIONS

The Rachford-Rice equations are often used to solve PT-
flash problems. We outline the associated computation and
the computations of the needed sensitivities.

6.1 Vapor-liquid equilibrium constant

The PT-flash problem can be formulated as the uncon-
strained optimization problem

min
nv

G = Gv(T, P, nv) + Gl(T, P, n− nv), (61)

for which the first-order optimality conditions are

∂G

∂nv
i

=
∂Gv

∂nv
i

(T, P, nv) − ∂Gl

∂nl
i

(T, P, nl) = 0, (62)

for all i and with the liquid phase mole numbers being
nl = n − nv. The chemical potentials of the vapor and
liquid phases are defined as

µv
i (T, P, n

v) =
∂Gv

∂nv
i

(T, P, nv), (63a)

µl
i(T, P, n

l) =
∂Gl

∂nl
i

(T, P, nl). (63b)

The equilibrium conditions (62) are therefore

µv
i (T, P, n

v) = µl
i(T, P, n

l). (64)

Because of the definition of the fugacities (42), the condi-
tion of equal chemical potentials (64) is equivalent to

fv
i (T, P, nv) = f l

i (T, P, n
l). (65)

Let xi = nl
i/
∑

i n
l
i and yi = nv

i /
∑

i n
v
i be the mole frac-

tions of the liquid and vapor phase, respectively. Because
of the definition of the fugacity coefficients, the equal-
ity of fugacities (65) is equivalent to φv

i (T, P, n
v)yiP =

φl
i(T, P, n

l)xiP or equivalently

φv
i (T, P, n

v)yi = φl
i(T, P, n

l)xi. (66)

The equilibrium constants (sometimes referred to as equi-
librium ratios) are defined as Ki = yi/xi. We use (66) to
derive an expression for the equilibrium constants:

Ki(T, P, n
v, nl) =

yi
xi

=
φl
i(T, P, n

l)

φv
i (T, P, n

v)
. (67)

6.2 The Rachford-Rice method - Ideal vapor-liquid mixture

For mixtures of an ideal gas and an ideal liquid, the vapor
liquid equilibrium constant defined by (67) is

Ki = Ki(T, P ) =
P sat
i (T )

P
exp

(
vli(T )(P − P sat

i (T ))

RT

)
.

(68)

In that case, the vapor-liquid equilibrium constant is inde-
pendent of composition and depends only on temperature,
T , and pressure, P , but not on the compositions of the
liquid and vapor mixture. Define zi = ni/

∑
i ni such that

nl
i + nv

i = ni can be expressed as

(1 − β)xi + βyi = zi, (69)

where β is the vapor fraction defined as

β =

∑
i n

v
i∑

i ni
. (70)

The relation (69) and Ki = yi/xi imply that

zi = (1 − β)xi + βyi
= (1 − β)xi + βKixi = (1 + β(Ki − 1))xi,

(71)

such that

xi =
1

1 + β(Ki − 1)
zi, (72a)

yi = Kixi =
Ki

1 + β(Ki − 1)
zi. (72b)

This implies that

nl
i = xi(1 − β)

∑

i

ni =
1 − β

1 + β(Ki − 1)
ni, (73a)

nv
i = yiβ

∑

i

ni =
βKi

1 + β(Ki − 1)
ni. (73b)

The relations
∑

i xi =
∑

i yi = 1 imply that
∑

i(yi −
xi) = 0. By combination of this observation and (72), we
obtain the following relation

f(β) =
∑

i

(yi − xi) =
∑

i

(Ki − 1)xi

=
∑

i

Ki − 1

1 + β(Ki − 1)
zi = 0,

(74)

for computation of β. The derivative of this function is

f ′(β) = −
∑

i

[
Ki − 1

1 + β(Ki − 1)

]2
zi ≤ 0. (75)

Newton’s method for determination of β is

βk+1 = βk − f(βk)

f ′(βk)
. (76)

When β has been computed, we compute the vapor com-
position, nv

i , from (73b) and the liquid composition from
nl
i = ni − nv

i .

Sensitivity: The vapor fraction is a function of temper-
ature, pressure, and total composition, i.e. β = β(K,n) =
β(K(T, P ), n) = β(T, P, n). The sensitivities of β are

∂β

∂T
=

∑

i

∂β

∂Ki

∂Ki

∂T
, (77a)

∂β

∂P
=

∑

i

∂β

∂Ki

∂Ki

∂P
, (77b)

∂β

∂nj
=

∑

i

∂β

∂zi

∂zi
∂nj

, (77c)

where

∂β

∂Ki
= −

∂f
∂Ki

f ′(β)
,

∂β

∂zi
= −

∂f
∂zi

f ′(β)
. (78)

Similarly, the vapor-liquid mole numbers, nv
i and nl

i, are
functions of temperature, pressure, and total composition,
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i.e. nv = nv(β,K, n) = nv(β(T, P, n),K(T, P ), n) =
nv(T, P, n) and nl = nl(nv, n) = nl(nv(T, P, n), n) =
nl(T, P, n). In order to describe the sensitivities of nl and
nv, we introduce the auxiliary variables

τi =
1

1 + β(Ki − 1)
, (79a)

γi = Kini − (Ki − 1)nv
i . (79b)

The sensitivities of the vapor mole numbers are

∂nv
i

∂T
= τi

(
∂β

∂T
γi + β

∂Ki

∂T
(ni − nv

i )

)
, (80a)

∂nv
i

∂P
= τi

(
∂β

∂P
γi + β

∂Ki

∂P
(ni − nv

i )

)
, (80b)

∂nv
i

∂nj
= τi

(
∂β

∂nj
γi + βKiδij

)
, (80c)

and the sensitivities of the liquid mole numbers are

∂nl
i

∂T
= −∂nv

i

∂T
, (81a)

∂nl
i

∂P
= −∂nv

i

∂P
(81b)

∂nl
i

∂nj
= δij −

∂nv
i

∂nj
. (81c)

δij is Kronecker’s delta, i.e. δij = 1 if i = j and 0 if i �= j.

7. NUMERICAL EXAMPLE

In this section, we solve the UV-, TV-, and PT-flash
problems for different values of the specified variables. We
consider a mixture of 60% C1, 8% C2, 5% C3, 25% n-C7,
and 2% CO2. Figure 1 shows the solutions to the flash
problems (in blue and red) in a phase diagram and as
functions of the specified variables. The vapor fraction is
constant along the black and gray curves. The curves meet
at the critical point which is located around 425 K and
16.3 MPa. The upper and the lower black curves are the
bubble-point (β = 0) and the dew-point (β = 1) curves,
which together constitute the phase envelope. Ritschel
and Jørgensen (2017) describe the computation of the
isoparametric (constant vapor fraction) curves. The vapor
fraction of the curves increases in steps of 0.1 starting from
the bubble-point curve and ending in the dew-point curve.
The vapor fraction depends nonlinearly on the specified
variables. The pressure exhibits an inverse relationship
with volume. The remaining variables are close to linear
in the specified variables for this example.

8. CONCLUSION

We describe how the solution to the phase equilibrium
problem enters into dynamic and steady-state simulations
for both nested and simultaneous formulations. We for-
mulate the phase equilibrium problems as optimization
problems and present methods for their solution and
computation of the needed sensitivities. In particular, we
describe the UV-, and the TV-flash problems which are
relevant to thermal and isothermal compositional reservoir
flow models, respectively. We also describe the commonly
used PT-flash and its relation to the other types of flash
problems. Finally, using a numerical example, we illustrate
how the solutions to the UV-, TV-, and PT-flash problems
depend on the specified variables.
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(a) UV-flash.
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(b) TV-flash.
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Abstract: We model thermal and compositional reservoir production as mass and energy
balances combined with a phase equilibrium constraint. The phase equilibrium constraint
is modeled as a thermodynamically rigorous UV flash process. The UV flash problem is a
mathematical statement of the second law of thermodynamics, and it replaces the condition of
equality of fugacities that is often used. We demonstrate that such a thermal and compositional
reservoir model is in a semi-explicit index-1 differential-algebraic form, and we briefly describe a
gradient-based single-shooting algorithm for the solution of production optimization problems.
We implement the algorithm in C/C++ using the software DUNE, the thermodynamic software
ThermoLib, and the optimization software KNITRO. We present an example of optimal water
flooding where the injected water has a higher temperature than the reservoir fluid.

Keywords: Thermal and compositional model, Phase equilibrium, Optimal control

1. INTRODUCTION

Production optimization is concerned with maximizing a
financial measure over the expected lifetime of an oil reser-
voir. It combines numerical simulation of the subsurface
reservoir flow with numerical optimization. Production
optimization is applicable to both traditional recovery
methods, such as waterflooding, and to enhanced oil re-
covery methods such as chemical, biological, and thermal
methods. The simulation and optimization of enhanced
oil recovery processes often require compositional flow
models. In particular, thermal recovery processes require
thermal and compositional models.

Thermal and compositional reservoir flow models combine
two main principles; 1) conservation of mass and energy,
and 2) phase equilibrium. The phase equilibrium condition
is based on a thermodynamic state function being minimal
or maximal (Michelsen, 1999). The phase equilibrium con-
dition is therefore formulated as a mathematical optimiza-
tion problem, i.e. it is an optimization problem within the
production optimization problem. The optimization prob-
lem that is relevant to thermal and compositional models is
called the UVn flash problem because the internal energy,
U , the volume, V , and the total amount of moles of each
chemical species, n, are specified as parameters in the
problem. The UVn flash is a mathematical formulation of
the second law of thermodynamics which states that the
entropy, S, of a closed system in equilibrium is maximal.
This problem is often just called the UV flash because the
total amount of moles are specified in all flash problems. It
is also called the isochoric-isoenergetic flash. The solution
to the UV flash problem is the equilibrium temperature,
� This project is funded by Innovation Fund Denmark in the
OPTION project (63-2013-3).

pressure, and the phase compositions (in moles). The most
commonly known flash problem is the PT flash problem
where both temperature and pressure are specified and
Gibbs energy is minimized. This is the problem that is
most often encountered in the reservoir simulation and
optimization literature. However, there it is formulated
as the equality of fugacities and not as an optimization
problem (Zaydullin et al., 2014; Kourounis et al., 2014).
The condition of equal fugacities can be derived from the
first-order optimality conditions of the PT flash problem.
The PT flash is common because it can be solved efficiently
with unconstrained optimization methods and because it
is equivalent to other types of flash problems when it is
combined with algebraic constraints on the specified quan-
tities, e.g. the UV flash is equivalent to the combination
of constraints on the internal energy, U , and the volume,
V , and the PT flash. The UV flash is a key component
in rigorous modeling of several vapor-liquid equilibrium
processes such as fluid vessels and flash drums (Arendsen
and Versteeg, 2009; Castier, 2010; Lima et al., 2008),
distillation columns (Flatby et al., 1994), and two-phase
computational fluid dynamical problems (Qiu et al., 2014;
Hammer and Morin, 2014). Recently, a gradient-based
single-shooting algorithm for the dynamic optimization
of UV flash processes was developed by Ritschel et al.
(2017a). The algorithm uses an adjoint method to compute
gradients.

Most research in production optimization algorithms con-
siders simple two-phase flow models that contain a water
component and an oil pseudo-component. Some authors
have solved production optimization problems involving
polymer flooding (Lei et al., 2012). Such problems do
not involve phase equilibrium conditions. More recently
Kourounis et al. (2014) applied a gradient-based single-
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voir. It combines numerical simulation of the subsurface
reservoir flow with numerical optimization. Production
optimization is applicable to both traditional recovery
methods, such as waterflooding, and to enhanced oil re-
covery methods such as chemical, biological, and thermal
methods. The simulation and optimization of enhanced
oil recovery processes often require compositional flow
models. In particular, thermal recovery processes require
thermal and compositional models.

Thermal and compositional reservoir flow models combine
two main principles; 1) conservation of mass and energy,
and 2) phase equilibrium. The phase equilibrium condition
is based on a thermodynamic state function being minimal
or maximal (Michelsen, 1999). The phase equilibrium con-
dition is therefore formulated as a mathematical optimiza-
tion problem, i.e. it is an optimization problem within the
production optimization problem. The optimization prob-
lem that is relevant to thermal and compositional models is
called the UVn flash problem because the internal energy,
U , the volume, V , and the total amount of moles of each
chemical species, n, are specified as parameters in the
problem. The UVn flash is a mathematical formulation of
the second law of thermodynamics which states that the
entropy, S, of a closed system in equilibrium is maximal.
This problem is often just called the UV flash because the
total amount of moles are specified in all flash problems. It
is also called the isochoric-isoenergetic flash. The solution
to the UV flash problem is the equilibrium temperature,
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pressure, and the phase compositions (in moles). The most
commonly known flash problem is the PT flash problem
where both temperature and pressure are specified and
Gibbs energy is minimized. This is the problem that is
most often encountered in the reservoir simulation and
optimization literature. However, there it is formulated
as the equality of fugacities and not as an optimization
problem (Zaydullin et al., 2014; Kourounis et al., 2014).
The condition of equal fugacities can be derived from the
first-order optimality conditions of the PT flash problem.
The PT flash is common because it can be solved efficiently
with unconstrained optimization methods and because it
is equivalent to other types of flash problems when it is
combined with algebraic constraints on the specified quan-
tities, e.g. the UV flash is equivalent to the combination
of constraints on the internal energy, U , and the volume,
V , and the PT flash. The UV flash is a key component
in rigorous modeling of several vapor-liquid equilibrium
processes such as fluid vessels and flash drums (Arendsen
and Versteeg, 2009; Castier, 2010; Lima et al., 2008),
distillation columns (Flatby et al., 1994), and two-phase
computational fluid dynamical problems (Qiu et al., 2014;
Hammer and Morin, 2014). Recently, a gradient-based
single-shooting algorithm for the dynamic optimization
of UV flash processes was developed by Ritschel et al.
(2017a). The algorithm uses an adjoint method to compute
gradients.

Most research in production optimization algorithms con-
siders simple two-phase flow models that contain a water
component and an oil pseudo-component. Some authors
have solved production optimization problems involving
polymer flooding (Lei et al., 2012). Such problems do
not involve phase equilibrium conditions. More recently
Kourounis et al. (2014) applied a gradient-based single-
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shooting algorithm to a compositional model. Further-
more, Zaydullin et al. (2014) described a framework for
fully thermal and compositional reservoir simulation. It is
common to use single-shooting algorithms to solve pro-
duction optimization problems (Bukshtynov et al., 2015;
Kourounis et al., 2014; Forouzanfar et al., 2013; Capolei
et al., 2012). Some authors have also used multiple-
shooting (Codas et al., 2017; Capolei and Jørgensen, 2012)
and simultaneous collocation (Heirung et al., 2011). These
three methods belong to the class of gradient-based meth-
ods. There are two other classes of algorithms that au-
thors use to solve production optimization problems; 1)
gradient-free methods (Zhao et al., 2016) and 2) artifi-
cial intelligence methods (Onwunalu and Durlofsky, 2010;
Saputelli et al., 2002). The advantage of gradient-based
methods is that they are computationally efficient. The
disadvantages of gradient-based methods are 1) that they
require the computation of gradients which can be cum-
bersome for complex models, and 2) that they converge to
local minima.

The novelty of this work is the rigorous modeling of
thermal and compositional production optimization as a
UV flash process. We describe the UV flash problem and
the mass and energy conservation equations of the model.
We implement the single-shooting algorithm described by
Ritschel et al. (2017a) in C/C++ and provide an example
of an optimal water injection strategy where the injected
water has a higher temperature than the reservoir fluid.

Section 2 describes the thermal and compositional model,
and Section 3 briefly describes the single-shooting algo-
rithm. Section 4 provides a few details on the implemen-
tation, and Section 5 presents the numerical example.
Section 6 presents conclusions.

2. RESERVOIR FLOW MODEL

In this section, we describe the thermal and compositional
reservoir flow model and demonstrate that it is in the
semi-explicit index-1 differential-algebraic form that is
considered by Ritschel et al. (2017a). The model consists of
a set of phase equilibrium conditions based on the second
law of thermodynamics, a set of mass balance equations,
and one energy balance equation. The phase equilibrium is
reached at a much faster timescale than the flow processes
and we therefore assume that the phases are in equilibrium
at all times. The mass and energy conservation equations
are based on models of advective fluid flow and thermal
conduction in the rock.

2.1 Phase equilibrium

The fluid consists of water (w), oil (o), and gas (g). The
oil and gas phases contain NC chemical components. We
assume that all fluid phases are in thermal, mechanical
and chemical equilibrium with each other. We further-
more assume that the fluid is in thermal and mechanical
equilibrium with the rock (r), i.e. T = Tα = T r and
P = Pα = P r for α ∈ {w, o, g}. We comment further on
the thermal equilibrium between the fluid and the rock in
Section 2.3. The phase equilibrium is governed by the UV
flash in which the internal energy, U , the volume V , and
the total amount of moles of each chemical species, nw

and n = [n1; . . . ;nNC
], are specified as parameters. The

solution to the UV flash problem is the temperature, T ,
pressure, P , and phase composition vectors, nw, no, and
ng, that maximize entropy under the above constraints:

max
T,P,nw,no,ng

Sw + So + Sg + Sr, (1a)

subject to Uw + Uo + Ug + Ur = U, (1b)

V w + V o + V g + V r = V, (1c)

nw = nw, (1d)

no
k + ng

k = nk, k = 1, . . . , NC . (1e)

The above optimization problem only contains equality
constraints. The necessary first-order optimality condi-
tions are therefore algebraic equations which are solved
for each grid cell, simultaneously with the conservation
equations, during simulation.

2.2 Mass conservation equations

The fluid flow process is advective. Each conservation
equation contains a molar flux term and an injec-
tion/production source term:

∂tCw = −∇ ·Nw + Qw, (2a)

∂tCk = −∇ ·Nk + Qk, k = 1, . . . , NC . (2b)

The molar component flux, Nk, is

Nk = xkN
o + ykN

g. (3)

Nα is the molar flux of phase α ∈ {w, o, g}. xk and yk are
oil and gas mole fractions. The molar injection/production
terms are

Qw = Qw,inj −Qw,prod, (4a)

Qk = −
(
xkQ

o,prod + ykQ
g,prod

)
. (4b)

Water is injected at a molar rate of Qw,inj while all fluid
phases are produced at molar rates of Qα,prod.

2.3 Energy conservation equations

We first describe the energy conservation equations with-
out assuming that the fluid and the rock are in thermal
equilibrium. Then we describe how this assumption affects
the model equations and present the model that assumes
thermal equilibrium. The fluid (f) and rock (r) energy
conservation equations are

∂tu
f = −∇ ·Nf

u + Qf
u, (5a)

∂tu
r = −∇ ·Nr

u + Qr
u. (5b)

uf and ur are internal energies per unit volume. The fluid
heat flux is caused by advection of the phases:

Nf
u = hwNw + hoNo + hgNg. (6)

hα is the molar enthalpy of phase α. We model the
conductive rock heat flux with Fourier’s law of thermal
conduction (Holman, 2010, Chap. 1):

Nr
u = −krT∇T r. (7)

krT is the thermal conductivity of the rock. Both the wells
and the conduction at the rock-fluid interface affect the
fluid energy balance:

Qf
u = hw,injQw,inj −

∑

α∈{w,o,g}
hαQα,prod + Qrf . (8)

We model the thermal conduction at the rock-fluid inter-
face with Newton’s law of cooling (Holman, 2010, Chap. 1):

Qrf = −krfT (T f − T r). (9)
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1. INTRODUCTION

Production optimization is concerned with maximizing a
financial measure over the expected lifetime of an oil reser-
voir. It combines numerical simulation of the subsurface
reservoir flow with numerical optimization. Production
optimization is applicable to both traditional recovery
methods, such as waterflooding, and to enhanced oil re-
covery methods such as chemical, biological, and thermal
methods. The simulation and optimization of enhanced
oil recovery processes often require compositional flow
models. In particular, thermal recovery processes require
thermal and compositional models.

Thermal and compositional reservoir flow models combine
two main principles; 1) conservation of mass and energy,
and 2) phase equilibrium. The phase equilibrium condition
is based on a thermodynamic state function being minimal
or maximal (Michelsen, 1999). The phase equilibrium con-
dition is therefore formulated as a mathematical optimiza-
tion problem, i.e. it is an optimization problem within the
production optimization problem. The optimization prob-
lem that is relevant to thermal and compositional models is
called the UVn flash problem because the internal energy,
U , the volume, V , and the total amount of moles of each
chemical species, n, are specified as parameters in the
problem. The UVn flash is a mathematical formulation of
the second law of thermodynamics which states that the
entropy, S, of a closed system in equilibrium is maximal.
This problem is often just called the UV flash because the
total amount of moles are specified in all flash problems. It
is also called the isochoric-isoenergetic flash. The solution
to the UV flash problem is the equilibrium temperature,
� This project is funded by Innovation Fund Denmark in the
OPTION project (63-2013-3).

pressure, and the phase compositions (in moles). The most
commonly known flash problem is the PT flash problem
where both temperature and pressure are specified and
Gibbs energy is minimized. This is the problem that is
most often encountered in the reservoir simulation and
optimization literature. However, there it is formulated
as the equality of fugacities and not as an optimization
problem (Zaydullin et al., 2014; Kourounis et al., 2014).
The condition of equal fugacities can be derived from the
first-order optimality conditions of the PT flash problem.
The PT flash is common because it can be solved efficiently
with unconstrained optimization methods and because it
is equivalent to other types of flash problems when it is
combined with algebraic constraints on the specified quan-
tities, e.g. the UV flash is equivalent to the combination
of constraints on the internal energy, U , and the volume,
V , and the PT flash. The UV flash is a key component
in rigorous modeling of several vapor-liquid equilibrium
processes such as fluid vessels and flash drums (Arendsen
and Versteeg, 2009; Castier, 2010; Lima et al., 2008),
distillation columns (Flatby et al., 1994), and two-phase
computational fluid dynamical problems (Qiu et al., 2014;
Hammer and Morin, 2014). Recently, a gradient-based
single-shooting algorithm for the dynamic optimization
of UV flash processes was developed by Ritschel et al.
(2017a). The algorithm uses an adjoint method to compute
gradients.

Most research in production optimization algorithms con-
siders simple two-phase flow models that contain a water
component and an oil pseudo-component. Some authors
have solved production optimization problems involving
polymer flooding (Lei et al., 2012). Such problems do
not involve phase equilibrium conditions. More recently
Kourounis et al. (2014) applied a gradient-based single-
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covery methods such as chemical, biological, and thermal
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models. In particular, thermal recovery processes require
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two main principles; 1) conservation of mass and energy,
and 2) phase equilibrium. The phase equilibrium condition
is based on a thermodynamic state function being minimal
or maximal (Michelsen, 1999). The phase equilibrium con-
dition is therefore formulated as a mathematical optimiza-
tion problem, i.e. it is an optimization problem within the
production optimization problem. The optimization prob-
lem that is relevant to thermal and compositional models is
called the UVn flash problem because the internal energy,
U , the volume, V , and the total amount of moles of each
chemical species, n, are specified as parameters in the
problem. The UVn flash is a mathematical formulation of
the second law of thermodynamics which states that the
entropy, S, of a closed system in equilibrium is maximal.
This problem is often just called the UV flash because the
total amount of moles are specified in all flash problems. It
is also called the isochoric-isoenergetic flash. The solution
to the UV flash problem is the equilibrium temperature,
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pressure, and the phase compositions (in moles). The most
commonly known flash problem is the PT flash problem
where both temperature and pressure are specified and
Gibbs energy is minimized. This is the problem that is
most often encountered in the reservoir simulation and
optimization literature. However, there it is formulated
as the equality of fugacities and not as an optimization
problem (Zaydullin et al., 2014; Kourounis et al., 2014).
The condition of equal fugacities can be derived from the
first-order optimality conditions of the PT flash problem.
The PT flash is common because it can be solved efficiently
with unconstrained optimization methods and because it
is equivalent to other types of flash problems when it is
combined with algebraic constraints on the specified quan-
tities, e.g. the UV flash is equivalent to the combination
of constraints on the internal energy, U , and the volume,
V , and the PT flash. The UV flash is a key component
in rigorous modeling of several vapor-liquid equilibrium
processes such as fluid vessels and flash drums (Arendsen
and Versteeg, 2009; Castier, 2010; Lima et al., 2008),
distillation columns (Flatby et al., 1994), and two-phase
computational fluid dynamical problems (Qiu et al., 2014;
Hammer and Morin, 2014). Recently, a gradient-based
single-shooting algorithm for the dynamic optimization
of UV flash processes was developed by Ritschel et al.
(2017a). The algorithm uses an adjoint method to compute
gradients.

Most research in production optimization algorithms con-
siders simple two-phase flow models that contain a water
component and an oil pseudo-component. Some authors
have solved production optimization problems involving
polymer flooding (Lei et al., 2012). Such problems do
not involve phase equilibrium conditions. More recently
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optimization is applicable to both traditional recovery
methods, such as waterflooding, and to enhanced oil re-
covery methods such as chemical, biological, and thermal
methods. The simulation and optimization of enhanced
oil recovery processes often require compositional flow
models. In particular, thermal recovery processes require
thermal and compositional models.

Thermal and compositional reservoir flow models combine
two main principles; 1) conservation of mass and energy,
and 2) phase equilibrium. The phase equilibrium condition
is based on a thermodynamic state function being minimal
or maximal (Michelsen, 1999). The phase equilibrium con-
dition is therefore formulated as a mathematical optimiza-
tion problem, i.e. it is an optimization problem within the
production optimization problem. The optimization prob-
lem that is relevant to thermal and compositional models is
called the UVn flash problem because the internal energy,
U , the volume, V , and the total amount of moles of each
chemical species, n, are specified as parameters in the
problem. The UVn flash is a mathematical formulation of
the second law of thermodynamics which states that the
entropy, S, of a closed system in equilibrium is maximal.
This problem is often just called the UV flash because the
total amount of moles are specified in all flash problems. It
is also called the isochoric-isoenergetic flash. The solution
to the UV flash problem is the equilibrium temperature,
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pressure, and the phase compositions (in moles). The most
commonly known flash problem is the PT flash problem
where both temperature and pressure are specified and
Gibbs energy is minimized. This is the problem that is
most often encountered in the reservoir simulation and
optimization literature. However, there it is formulated
as the equality of fugacities and not as an optimization
problem (Zaydullin et al., 2014; Kourounis et al., 2014).
The condition of equal fugacities can be derived from the
first-order optimality conditions of the PT flash problem.
The PT flash is common because it can be solved efficiently
with unconstrained optimization methods and because it
is equivalent to other types of flash problems when it is
combined with algebraic constraints on the specified quan-
tities, e.g. the UV flash is equivalent to the combination
of constraints on the internal energy, U , and the volume,
V , and the PT flash. The UV flash is a key component
in rigorous modeling of several vapor-liquid equilibrium
processes such as fluid vessels and flash drums (Arendsen
and Versteeg, 2009; Castier, 2010; Lima et al., 2008),
distillation columns (Flatby et al., 1994), and two-phase
computational fluid dynamical problems (Qiu et al., 2014;
Hammer and Morin, 2014). Recently, a gradient-based
single-shooting algorithm for the dynamic optimization
of UV flash processes was developed by Ritschel et al.
(2017a). The algorithm uses an adjoint method to compute
gradients.

Most research in production optimization algorithms con-
siders simple two-phase flow models that contain a water
component and an oil pseudo-component. Some authors
have solved production optimization problems involving
polymer flooding (Lei et al., 2012). Such problems do
not involve phase equilibrium conditions. More recently
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is based on a thermodynamic state function being minimal
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lem that is relevant to thermal and compositional models is
called the UVn flash problem because the internal energy,
U , the volume, V , and the total amount of moles of each
chemical species, n, are specified as parameters in the
problem. The UVn flash is a mathematical formulation of
the second law of thermodynamics which states that the
entropy, S, of a closed system in equilibrium is maximal.
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is also called the isochoric-isoenergetic flash. The solution
to the UV flash problem is the equilibrium temperature,
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pressure, and the phase compositions (in moles). The most
commonly known flash problem is the PT flash problem
where both temperature and pressure are specified and
Gibbs energy is minimized. This is the problem that is
most often encountered in the reservoir simulation and
optimization literature. However, there it is formulated
as the equality of fugacities and not as an optimization
problem (Zaydullin et al., 2014; Kourounis et al., 2014).
The condition of equal fugacities can be derived from the
first-order optimality conditions of the PT flash problem.
The PT flash is common because it can be solved efficiently
with unconstrained optimization methods and because it
is equivalent to other types of flash problems when it is
combined with algebraic constraints on the specified quan-
tities, e.g. the UV flash is equivalent to the combination
of constraints on the internal energy, U , and the volume,
V , and the PT flash. The UV flash is a key component
in rigorous modeling of several vapor-liquid equilibrium
processes such as fluid vessels and flash drums (Arendsen
and Versteeg, 2009; Castier, 2010; Lima et al., 2008),
distillation columns (Flatby et al., 1994), and two-phase
computational fluid dynamical problems (Qiu et al., 2014;
Hammer and Morin, 2014). Recently, a gradient-based
single-shooting algorithm for the dynamic optimization
of UV flash processes was developed by Ritschel et al.
(2017a). The algorithm uses an adjoint method to compute
gradients.

Most research in production optimization algorithms con-
siders simple two-phase flow models that contain a water
component and an oil pseudo-component. Some authors
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Gibbs energy is minimized. This is the problem that is
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The condition of equal fugacities can be derived from the
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with unconstrained optimization methods and because it
is equivalent to other types of flash problems when it is
combined with algebraic constraints on the specified quan-
tities, e.g. the UV flash is equivalent to the combination
of constraints on the internal energy, U , and the volume,
V , and the PT flash. The UV flash is a key component
in rigorous modeling of several vapor-liquid equilibrium
processes such as fluid vessels and flash drums (Arendsen
and Versteeg, 2009; Castier, 2010; Lima et al., 2008),
distillation columns (Flatby et al., 1994), and two-phase
computational fluid dynamical problems (Qiu et al., 2014;
Hammer and Morin, 2014). Recently, a gradient-based
single-shooting algorithm for the dynamic optimization
of UV flash processes was developed by Ritschel et al.
(2017a). The algorithm uses an adjoint method to compute
gradients.

Most research in production optimization algorithms con-
siders simple two-phase flow models that contain a water
component and an oil pseudo-component. Some authors
have solved production optimization problems involving
polymer flooding (Lei et al., 2012). Such problems do
not involve phase equilibrium conditions. More recently
Kourounis et al. (2014) applied a gradient-based single-
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shooting algorithm to a compositional model. Further-
more, Zaydullin et al. (2014) described a framework for
fully thermal and compositional reservoir simulation. It is
common to use single-shooting algorithms to solve pro-
duction optimization problems (Bukshtynov et al., 2015;
Kourounis et al., 2014; Forouzanfar et al., 2013; Capolei
et al., 2012). Some authors have also used multiple-
shooting (Codas et al., 2017; Capolei and Jørgensen, 2012)
and simultaneous collocation (Heirung et al., 2011). These
three methods belong to the class of gradient-based meth-
ods. There are two other classes of algorithms that au-
thors use to solve production optimization problems; 1)
gradient-free methods (Zhao et al., 2016) and 2) artifi-
cial intelligence methods (Onwunalu and Durlofsky, 2010;
Saputelli et al., 2002). The advantage of gradient-based
methods is that they are computationally efficient. The
disadvantages of gradient-based methods are 1) that they
require the computation of gradients which can be cum-
bersome for complex models, and 2) that they converge to
local minima.

The novelty of this work is the rigorous modeling of
thermal and compositional production optimization as a
UV flash process. We describe the UV flash problem and
the mass and energy conservation equations of the model.
We implement the single-shooting algorithm described by
Ritschel et al. (2017a) in C/C++ and provide an example
of an optimal water injection strategy where the injected
water has a higher temperature than the reservoir fluid.

Section 2 describes the thermal and compositional model,
and Section 3 briefly describes the single-shooting algo-
rithm. Section 4 provides a few details on the implemen-
tation, and Section 5 presents the numerical example.
Section 6 presents conclusions.

2. RESERVOIR FLOW MODEL

In this section, we describe the thermal and compositional
reservoir flow model and demonstrate that it is in the
semi-explicit index-1 differential-algebraic form that is
considered by Ritschel et al. (2017a). The model consists of
a set of phase equilibrium conditions based on the second
law of thermodynamics, a set of mass balance equations,
and one energy balance equation. The phase equilibrium is
reached at a much faster timescale than the flow processes
and we therefore assume that the phases are in equilibrium
at all times. The mass and energy conservation equations
are based on models of advective fluid flow and thermal
conduction in the rock.

2.1 Phase equilibrium

The fluid consists of water (w), oil (o), and gas (g). The
oil and gas phases contain NC chemical components. We
assume that all fluid phases are in thermal, mechanical
and chemical equilibrium with each other. We further-
more assume that the fluid is in thermal and mechanical
equilibrium with the rock (r), i.e. T = Tα = T r and
P = Pα = P r for α ∈ {w, o, g}. We comment further on
the thermal equilibrium between the fluid and the rock in
Section 2.3. The phase equilibrium is governed by the UV
flash in which the internal energy, U , the volume V , and
the total amount of moles of each chemical species, nw

and n = [n1; . . . ;nNC
], are specified as parameters. The

solution to the UV flash problem is the temperature, T ,
pressure, P , and phase composition vectors, nw, no, and
ng, that maximize entropy under the above constraints:

max
T,P,nw,no,ng

Sw + So + Sg + Sr, (1a)

subject to Uw + Uo + Ug + Ur = U, (1b)

V w + V o + V g + V r = V, (1c)

nw = nw, (1d)

no
k + ng

k = nk, k = 1, . . . , NC . (1e)

The above optimization problem only contains equality
constraints. The necessary first-order optimality condi-
tions are therefore algebraic equations which are solved
for each grid cell, simultaneously with the conservation
equations, during simulation.

2.2 Mass conservation equations

The fluid flow process is advective. Each conservation
equation contains a molar flux term and an injec-
tion/production source term:

∂tCw = −∇ ·Nw + Qw, (2a)

∂tCk = −∇ ·Nk + Qk, k = 1, . . . , NC . (2b)

The molar component flux, Nk, is

Nk = xkN
o + ykN

g. (3)

Nα is the molar flux of phase α ∈ {w, o, g}. xk and yk are
oil and gas mole fractions. The molar injection/production
terms are

Qw = Qw,inj −Qw,prod, (4a)

Qk = −
(
xkQ

o,prod + ykQ
g,prod

)
. (4b)

Water is injected at a molar rate of Qw,inj while all fluid
phases are produced at molar rates of Qα,prod.

2.3 Energy conservation equations

We first describe the energy conservation equations with-
out assuming that the fluid and the rock are in thermal
equilibrium. Then we describe how this assumption affects
the model equations and present the model that assumes
thermal equilibrium. The fluid (f) and rock (r) energy
conservation equations are

∂tu
f = −∇ ·Nf

u + Qf
u, (5a)

∂tu
r = −∇ ·Nr

u + Qr
u. (5b)

uf and ur are internal energies per unit volume. The fluid
heat flux is caused by advection of the phases:

Nf
u = hwNw + hoNo + hgNg. (6)

hα is the molar enthalpy of phase α. We model the
conductive rock heat flux with Fourier’s law of thermal
conduction (Holman, 2010, Chap. 1):

Nr
u = −krT∇T r. (7)

krT is the thermal conductivity of the rock. Both the wells
and the conduction at the rock-fluid interface affect the
fluid energy balance:

Qf
u = hw,injQw,inj −

∑

α∈{w,o,g}
hαQα,prod + Qrf . (8)

We model the thermal conduction at the rock-fluid inter-
face with Newton’s law of cooling (Holman, 2010, Chap. 1):

Qrf = −krfT (T f − T r). (9)
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T f is the fluid temperature, and krfT is the thermal
conductivity of the rock-fluid interface. It is only the
conduction at the rock-fluid interface that affects the rock
energy balance:

Qr
u = −Qrf . (10)

We now assume that the rock and the fluid are in thermal
equilibrium. This corresponds to energy being transferred

instantly through the rock-fluid interface, i.e. krfT is infinite
and T = T f = T r. We add (5a) and (5b) to obtain an
energy conservation equation for the internal energy of the
combined fluid-rock system, u = uf + ur:

∂tu = −∇ ·Nu + Qu. (11)

The combined heat flux and source terms are

Nu = hwNw + hoNo + hgNg − krT∇T, (12a)

Qu = hw,injQw,inj −
∑

α∈{w,o,g}
hαQα,prod. (12b)

2.4 Darcy’s law

The molar phase flux is the product of density and the
volumetric phase flux, Nα = ραuα. We describe the
volumetric phase flux with Darcy’s law:

uα = −(kαr /µ
α)K (∇P − ραg∇z) . (13)

kαr is relative permeability, µα is viscosity, K is a perme-
ability tensor, g is the gravity acceleration, and z is depth.

2.5 Well terms

The wells perforate certain grid cells in the discretized
reservoir. The well models for these cells are

Qw,inj = (1/V )WIρw(kwr /µ
w)(P bhp − P ), (14a)

Qα,prod = (1/V )WIρα(kαr /µ
α)(P − P bhp). (14b)

V is the volume of the perforated cell, WI is the well index,
and P bhp is the bottom-hole pressure in the well.

2.6 Relative permeabilities

We model the relative permeabilities with Stone’s model
II as described by Delshad and Pope (1989). The relative
permeabilities are functions of the phase saturations, i.e.
kαr = kαr (Ŝα) where Ŝα = V α/(V w+V o+V g). The relative
permeabilities are therefore functions of the temperature,
pressure, and phase composition vectors:

kαr = kαr (T, P, nw, no, ng). (15)

2.7 Viscosity

We use the phase viscosity model by Lohrenz et al. (1964).
They describe the viscosity as a function of temperature,
pressure, and phase composition, i.e.

µα = µα(T, P, nα). (16)

2.8 Thermodynamics

We use a thermodynamical model by Ritschel et al.
(2017b) to evaluate the enthalpy, entropy, and volumes
of the fluid phases:

Hα = Hα(T, P, nα), (17a)

Sα = Sα(T, P, nα), (17b)

V α = V α(T, P, nα). (17c)

We evaluate other thermodynamic functions with the
fundamental thermodynamical relations U = H − PV ,
G = H − TS, and A = U − TS (we only need U in this
model).

2.9 Finite volume discretization

The conservation equations (2) and (11) are all in the form
∂tC = −∇·N+Q. We integrate the equation over the i’th
grid cell, Ωi:

∂t

∫

Ωi

C dV = −
∫

Ωi

∇ ·N dV +

∫

Ωi

QdV. (18)

We apply Gauss’ divergence theorem to the flux term and
split up the resulting surface integral:∫

Ωi

∇ ·N dV =

∫

∂Ωi

N · n dA =
∑

j∈N (i)

∫

γij

N · n dA.

(19)

∂Ωi is the boundary of Ωi, and γij is the face shared by
grid cell i and j. nij is the outward normal vector, and

N (i) is the set of cells that share a face with grid cell i.
We evaluate the left-hand side integrals in (18) exactly:

Ui =

∫

Ωi

u dV, (20a)

nw,i =

∫

Ωi

Cw dV, (20b)

nk,i =

∫

Ωi

Ck dV. (20c)

We approximate the remaining integrals with quadrature:∫

Ωi

QdV ≈ (QV )i, (21a)

∫

γij

N · n dA ≈ (AN · n)ij . (21b)

The right-hand side in (21b) contains gradients of T and P
when applied to (2) and (11). We approximate these flux
terms with a two-point flux approximation as described by
Lie (2014). The resulting differential equations are

U̇i =
∑

j∈N (i)

( ∑

α∈{w,o,g}
(hαΓĤα∆Φα)ij + (ΓT∆T )ij

)

+ (QuV )i, (22a)

ṅw,i =
∑

j∈N (i)

(ΓĤw∆Φw)ij + (QwV )i, (22b)

ṅk,i =
∑

j∈N (i)

(xkΓĤ
o∆Φo + ykΓĤ

g∆Φg)ij + (QkV )i.

(22c)

The term (ΓĤα∆Φα)ij approximates −(ANα ·n)ij . Γij is
the geometric part of the transmissibilities:

Γij = Aij

(
Γ̂−1
ij + Γ̂−1

ji

)−1

, (23a)

Γ̂ij =

(
Ki

cij − ci
|cij − ci|2

)
· nij . (23b)

Aij is the area of γij , cij is the center of γij , and ci is the

center of Ωi. Γ̂ij is the one-sided transmissibility. We define
ΓT,ij similar to Γij where krT replaces K. The potential
difference and the fluid part of the transmissibilities are
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∆Φα
ij = (∆P − ραg∆z)ij , (24a)

Ĥα
ij =

{
(ραkαr /µ

α)i, ∆Φα
ij < 0,

(ραkαr /µ
α)j , ∆Φα

ij ≥ 0,
(24b)

where ∆Pij = Pj − Pi, ∆zij = zj − zi, and ραij = 0.5(ραi +
ραj ). We have upwinded the fluid part of the transmissibili-

ties, Ĥα, in order to ensure numerical stability. We upwind
xk, yk, and hα in the same way.

2.10 Differential-algebraic model

We introduce the state variables xi = [U ;nw;n]i ∈ R2+NC ,
the algebraic variables yi = [T ;P ;nw;no;ng]i ∈ R3+2NC ,

the manipulated input variables ui = P bhp
i ∈ R, and

the disturbance variables di = T inj
i ∈ R. T inj is the

temperature of the injected water used to evaluate hw,inj

in (8). The UV flash problem (1) is thus in the form

min
yi

f(yi), (25a)

s.t. g(yi) = xi, (25b)

h(yi) = 0. (25c)

The optimality conditions of (25) are in the form
Gi(xi, yi, zi) where zi ∈ R3+NC are Lagrange multipliers
(Ritschel et al., 2017a). We enforce the phase equilibrium
in each grid cell. The left-hand side of the differential
equations (22) contains derivatives of the state variables,
xi, and all quantities on the right-hand side depend on the
algebraic variables, yi, the manipulated inputs, ui, or the
disturbance variables, di. The differential equations (22)
are therefore in the form ẋi(t) = F (yi(t), ui(t), di(t)), and
the discretized reservoir flow model is in the form

G(x(t), y(t), z(t)) = 0, (26a)

ẋ(t) = F (y(t), u(t), d(t)), (26b)

where G is the phase equilibrium conditions for all cells,
and F is the spatially discretized right-hand side of the
flow equations for all cells.

3. PRODUCTION OPTIMIZATION

In this section, we briefly describe the gradient-based
single-shooting algorithm by Ritschel et al. (2017a). The
production optimization problem is in the form

min
[x(t);y(t);z(t)]

tf
t0

,{uk}k∈N

φ =

∫ tf

t0

Φ(y(t), u(t), d(t))dt,

(27a)

subject to

x(t0) = x̂0, (27b)

G(x(t), y(t), z(t)) = 0, t ∈ T , (27c)

ẋ(t) = F (y(t), u(t), d(t)), t ∈ T , (27d)

u(t) = uk, t ∈ [tk, tk+1[, k ∈ N , (27e)

d(t) = d̂k, t ∈ [tk, tk+1[, k ∈ N , (27f)

{uk}k∈N ∈ U . (27g)

The objective function, φ in (27a), is a financial measure,
e.g. total oil production or net present value, (27b) is an
initial condition on the state variables, (27c)-(27d) are
the equilibrium conditions and the spatially discretized
reservoir flow equations, and (27e)-(27f) are zero-order

hold parametrizations of the manipulated inputs and dis-
turbance variables. Finally, (27g) are constraints on the
manipulated inputs, typically linear or bound constraints.
T = [t0, tf ] is the time interval, and N = {0, . . . , N −1} is
the set of timestep indices. N is the number of timesteps.

3.1 Numerical simulation

For simplicity, we describe the algorithm with the assump-
tion that the timesteps coincide with the control intervals.
The actual implementation uses an ESDIRK12 method
with a simplified version of the stepsize controller de-
scribed by Völcker et al. (2010). The differential equations
are discretized with Euler’s implicit method. That results
in the nonlinear residual equations Rk+1 = 0 where

Rk+1 =

[
xk+1 − xk − ∆tkF (yk+1, uk, d̂k)

G(xk+1, yk+1, zk+1)

]
, (28)

for k ∈ N . We introduce w = [x; y; z] and solve the
nonlinear equations with Newton’s method:

wm+1
k+1 = wm

k+1 − (∂Rk+1/∂wk+1)
−1Rk+1(w

m
k+1). (29)

We use an ILU preconditioned GMRES method to solve
the linear system in (29).

3.2 The single-shooting algorithm

In the single-shooting approach, we transcribe the infinite-
dimensional optimal control problem (27) into the follow-
ing finite-dimensional optimization problem

min
{uk}k∈N

ψ = ψ
(
{uk}k∈N ; x̂0, {d̂k}k∈N

)
, (30a)

subject to {uk}k∈N ∈ U , (30b)

where the objective function is

ψ =

{
φ =

∑

k∈N
Φk(yk+1, uk, d̂k) : (31a)

x0 = x̂0, (31b)

Rk+1(wk+1;xk, uk, d̂k) = 0, k ∈ N
}
, (31c)

and Φk(yk+1, uk, d̂k) = ∆tkΦ(yk+1, uk, d̂k). Efficient algo-
rithms for the solution of the optimization problem (30)
require the gradients of ψ, {∇uk

ψ}k∈N . We use a discrete
adjoint method to compute these gradients. We solve the
following adjoint equations for the adjoints, {λk+1}k∈N ,
with an ILU preconditioned GMRES method:

(∂RN/∂wN )
T
λN = −∇wN

ΦN−1, (32a)

(∂Rk/∂wk)
T
λk = − (∂Rk+1/∂wk)

T
λk+1 −∇wk

Φk−1.
(32b)

The adjoint equations are solved in a backwards manner
starting with (32a) and proceeding with (32b) for k = N−
1, N − 2, . . . , 1. The gradients of ψ are computed with

∇uk
ψ = ∇uk

Φk + (∂Rk+1/∂uk)
T
λk+1, k∈ N . (33)

4. IMPLEMENTATION

We implement the single-shooting algorithm in C++.
We use the DUNE software to solve linear systems with
iterative methods (Blatt and Bastian, 2007) and for grid
management (Bastian et al., 2008). We use C routines
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T f is the fluid temperature, and krfT is the thermal
conductivity of the rock-fluid interface. It is only the
conduction at the rock-fluid interface that affects the rock
energy balance:

Qr
u = −Qrf . (10)

We now assume that the rock and the fluid are in thermal
equilibrium. This corresponds to energy being transferred

instantly through the rock-fluid interface, i.e. krfT is infinite
and T = T f = T r. We add (5a) and (5b) to obtain an
energy conservation equation for the internal energy of the
combined fluid-rock system, u = uf + ur:

∂tu = −∇ ·Nu + Qu. (11)

The combined heat flux and source terms are

Nu = hwNw + hoNo + hgNg − krT∇T, (12a)

Qu = hw,injQw,inj −
∑

α∈{w,o,g}
hαQα,prod. (12b)

2.4 Darcy’s law

The molar phase flux is the product of density and the
volumetric phase flux, Nα = ραuα. We describe the
volumetric phase flux with Darcy’s law:

uα = −(kαr /µ
α)K (∇P − ραg∇z) . (13)

kαr is relative permeability, µα is viscosity, K is a perme-
ability tensor, g is the gravity acceleration, and z is depth.

2.5 Well terms

The wells perforate certain grid cells in the discretized
reservoir. The well models for these cells are

Qw,inj = (1/V )WIρw(kwr /µ
w)(P bhp − P ), (14a)

Qα,prod = (1/V )WIρα(kαr /µ
α)(P − P bhp). (14b)

V is the volume of the perforated cell, WI is the well index,
and P bhp is the bottom-hole pressure in the well.

2.6 Relative permeabilities

We model the relative permeabilities with Stone’s model
II as described by Delshad and Pope (1989). The relative
permeabilities are functions of the phase saturations, i.e.
kαr = kαr (Ŝα) where Ŝα = V α/(V w+V o+V g). The relative
permeabilities are therefore functions of the temperature,
pressure, and phase composition vectors:

kαr = kαr (T, P, nw, no, ng). (15)

2.7 Viscosity

We use the phase viscosity model by Lohrenz et al. (1964).
They describe the viscosity as a function of temperature,
pressure, and phase composition, i.e.

µα = µα(T, P, nα). (16)

2.8 Thermodynamics

We use a thermodynamical model by Ritschel et al.
(2017b) to evaluate the enthalpy, entropy, and volumes
of the fluid phases:

Hα = Hα(T, P, nα), (17a)

Sα = Sα(T, P, nα), (17b)

V α = V α(T, P, nα). (17c)

We evaluate other thermodynamic functions with the
fundamental thermodynamical relations U = H − PV ,
G = H − TS, and A = U − TS (we only need U in this
model).

2.9 Finite volume discretization

The conservation equations (2) and (11) are all in the form
∂tC = −∇·N+Q. We integrate the equation over the i’th
grid cell, Ωi:

∂t

∫

Ωi

C dV = −
∫

Ωi

∇ ·N dV +

∫

Ωi

QdV. (18)

We apply Gauss’ divergence theorem to the flux term and
split up the resulting surface integral:∫

Ωi

∇ ·N dV =

∫

∂Ωi

N · n dA =
∑

j∈N (i)

∫

γij

N · n dA.

(19)

∂Ωi is the boundary of Ωi, and γij is the face shared by
grid cell i and j. nij is the outward normal vector, and

N (i) is the set of cells that share a face with grid cell i.
We evaluate the left-hand side integrals in (18) exactly:

Ui =

∫

Ωi

u dV, (20a)

nw,i =

∫

Ωi

Cw dV, (20b)

nk,i =

∫

Ωi

Ck dV. (20c)

We approximate the remaining integrals with quadrature:∫

Ωi

QdV ≈ (QV )i, (21a)

∫

γij

N · n dA ≈ (AN · n)ij . (21b)

The right-hand side in (21b) contains gradients of T and P
when applied to (2) and (11). We approximate these flux
terms with a two-point flux approximation as described by
Lie (2014). The resulting differential equations are

U̇i =
∑

j∈N (i)

( ∑

α∈{w,o,g}
(hαΓĤα∆Φα)ij + (ΓT∆T )ij

)

+ (QuV )i, (22a)

ṅw,i =
∑

j∈N (i)

(ΓĤw∆Φw)ij + (QwV )i, (22b)

ṅk,i =
∑

j∈N (i)

(xkΓĤ
o∆Φo + ykΓĤ

g∆Φg)ij + (QkV )i.

(22c)

The term (ΓĤα∆Φα)ij approximates −(ANα ·n)ij . Γij is
the geometric part of the transmissibilities:

Γij = Aij

(
Γ̂−1
ij + Γ̂−1

ji

)−1

, (23a)

Γ̂ij =

(
Ki

cij − ci
|cij − ci|2

)
· nij . (23b)

Aij is the area of γij , cij is the center of γij , and ci is the

center of Ωi. Γ̂ij is the one-sided transmissibility. We define
ΓT,ij similar to Γij where krT replaces K. The potential
difference and the fluid part of the transmissibilities are
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∆Φα
ij = (∆P − ραg∆z)ij , (24a)

Ĥα
ij =

{
(ραkαr /µ

α)i, ∆Φα
ij < 0,

(ραkαr /µ
α)j , ∆Φα

ij ≥ 0,
(24b)

where ∆Pij = Pj − Pi, ∆zij = zj − zi, and ραij = 0.5(ραi +
ραj ). We have upwinded the fluid part of the transmissibili-

ties, Ĥα, in order to ensure numerical stability. We upwind
xk, yk, and hα in the same way.

2.10 Differential-algebraic model

We introduce the state variables xi = [U ;nw;n]i ∈ R2+NC ,
the algebraic variables yi = [T ;P ;nw;no;ng]i ∈ R3+2NC ,

the manipulated input variables ui = P bhp
i ∈ R, and

the disturbance variables di = T inj
i ∈ R. T inj is the

temperature of the injected water used to evaluate hw,inj

in (8). The UV flash problem (1) is thus in the form

min
yi

f(yi), (25a)

s.t. g(yi) = xi, (25b)

h(yi) = 0. (25c)

The optimality conditions of (25) are in the form
Gi(xi, yi, zi) where zi ∈ R3+NC are Lagrange multipliers
(Ritschel et al., 2017a). We enforce the phase equilibrium
in each grid cell. The left-hand side of the differential
equations (22) contains derivatives of the state variables,
xi, and all quantities on the right-hand side depend on the
algebraic variables, yi, the manipulated inputs, ui, or the
disturbance variables, di. The differential equations (22)
are therefore in the form ẋi(t) = F (yi(t), ui(t), di(t)), and
the discretized reservoir flow model is in the form

G(x(t), y(t), z(t)) = 0, (26a)

ẋ(t) = F (y(t), u(t), d(t)), (26b)

where G is the phase equilibrium conditions for all cells,
and F is the spatially discretized right-hand side of the
flow equations for all cells.

3. PRODUCTION OPTIMIZATION

In this section, we briefly describe the gradient-based
single-shooting algorithm by Ritschel et al. (2017a). The
production optimization problem is in the form

min
[x(t);y(t);z(t)]

tf
t0

,{uk}k∈N

φ =

∫ tf

t0

Φ(y(t), u(t), d(t))dt,

(27a)

subject to

x(t0) = x̂0, (27b)

G(x(t), y(t), z(t)) = 0, t ∈ T , (27c)

ẋ(t) = F (y(t), u(t), d(t)), t ∈ T , (27d)

u(t) = uk, t ∈ [tk, tk+1[, k ∈ N , (27e)

d(t) = d̂k, t ∈ [tk, tk+1[, k ∈ N , (27f)

{uk}k∈N ∈ U . (27g)

The objective function, φ in (27a), is a financial measure,
e.g. total oil production or net present value, (27b) is an
initial condition on the state variables, (27c)-(27d) are
the equilibrium conditions and the spatially discretized
reservoir flow equations, and (27e)-(27f) are zero-order

hold parametrizations of the manipulated inputs and dis-
turbance variables. Finally, (27g) are constraints on the
manipulated inputs, typically linear or bound constraints.
T = [t0, tf ] is the time interval, and N = {0, . . . , N −1} is
the set of timestep indices. N is the number of timesteps.

3.1 Numerical simulation

For simplicity, we describe the algorithm with the assump-
tion that the timesteps coincide with the control intervals.
The actual implementation uses an ESDIRK12 method
with a simplified version of the stepsize controller de-
scribed by Völcker et al. (2010). The differential equations
are discretized with Euler’s implicit method. That results
in the nonlinear residual equations Rk+1 = 0 where

Rk+1 =

[
xk+1 − xk − ∆tkF (yk+1, uk, d̂k)

G(xk+1, yk+1, zk+1)

]
, (28)

for k ∈ N . We introduce w = [x; y; z] and solve the
nonlinear equations with Newton’s method:

wm+1
k+1 = wm

k+1 − (∂Rk+1/∂wk+1)
−1Rk+1(w

m
k+1). (29)

We use an ILU preconditioned GMRES method to solve
the linear system in (29).

3.2 The single-shooting algorithm

In the single-shooting approach, we transcribe the infinite-
dimensional optimal control problem (27) into the follow-
ing finite-dimensional optimization problem

min
{uk}k∈N

ψ = ψ
(
{uk}k∈N ; x̂0, {d̂k}k∈N

)
, (30a)

subject to {uk}k∈N ∈ U , (30b)

where the objective function is

ψ =

{
φ =

∑

k∈N
Φk(yk+1, uk, d̂k) : (31a)

x0 = x̂0, (31b)

Rk+1(wk+1;xk, uk, d̂k) = 0, k ∈ N
}
, (31c)

and Φk(yk+1, uk, d̂k) = ∆tkΦ(yk+1, uk, d̂k). Efficient algo-
rithms for the solution of the optimization problem (30)
require the gradients of ψ, {∇uk

ψ}k∈N . We use a discrete
adjoint method to compute these gradients. We solve the
following adjoint equations for the adjoints, {λk+1}k∈N ,
with an ILU preconditioned GMRES method:

(∂RN/∂wN )
T
λN = −∇wN

ΦN−1, (32a)

(∂Rk/∂wk)
T
λk = − (∂Rk+1/∂wk)

T
λk+1 −∇wk

Φk−1.
(32b)

The adjoint equations are solved in a backwards manner
starting with (32a) and proceeding with (32b) for k = N−
1, N − 2, . . . , 1. The gradients of ψ are computed with

∇uk
ψ = ∇uk

Φk + (∂Rk+1/∂uk)
T
λk+1, k∈ N . (33)

4. IMPLEMENTATION

We implement the single-shooting algorithm in C++.
We use the DUNE software to solve linear systems with
iterative methods (Blatt and Bastian, 2007) and for grid
management (Bastian et al., 2008). We use C routines
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Fig. 1. Permeability field [mD]. A white circle indicates an
injector, and the white X indicates the producer.

from the open-source software ThermoLib (Ritschel et al.,
2017b, 2016) to evaluate thermodynamic functions. We
use the optimization software KNITRO 10.2 to solve the
optimization problem (30).

5. NUMERICAL EXAMPLE

In this section, we present a numerical example where four
injectors inject water at 40◦C into a 110 × 110 × 10 m
reservoir that contains a fluid at 20◦C. The oil and gas
phases consist of methane, ethane, propane, n-heptane,
and hydrogen sulfide. The reservoir is discretized with
11 × 11 × 1 cells. The objective is to maximize the oil
production. The wells are placed in a five spot pattern as
shown in Fig. 1 which also shows the permeability field.
The producer bottom-hole pressure (BHP) must be in the
interval [10 MPa, 11 MPa] and the injector BHPs must
be in [11 MPa, 12 MPa]. The optimal production strategy
is shown in Fig. 2 together with the cumulative oil and
gas production. Fig. 2 also shows (in dashed lines) the oil
and gas production for a maximum injection strategy with
maximum injector BHP and minimum producer BHP.
The optimal oil production is 35% higher than what is
obtained with the maximum injection strategy while the
gas production is lower.

6. CONCLUSIONS

In this work, we present a fully thermal and compositional
reservoir flow model based on a rigorous formulation of the
phase equilibrium using the second law of thermodynam-
ics, i.e. the entropy of a closed system in equilibrium is
maximal. This results in an inner optimization problem
called the UV flash problem. The reservoir flow model is
in the semi-explicit index-1 differential-algebraic form that
Ritschel et al. (2017a) consider, and we implement their
gradient-based single-shooting algorithm for production
optimization. We present a numerical example where the
injected water has a higher temperature than the reservoir
fluid. Future work will involve isothermal compositional
models based on the model presented in this work.
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Fig. 2. Optimal well BHPs and oil and gas production
(solid: optimal strategy, dashed: reference strategy).
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The Extended Kalman Filter for
State Estimation of

Dynamic UV Flash Processes �

Tobias K. S. Ritschel, John Bagterp Jørgensen

Department of Applied Mathematics and Computer Science &
Center for Energy Resources Engineering (CERE),

Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

Abstract: We present an extended Kalman filter for state estimation of semi-explicit index-1
differential-algebraic equations. It is natural to model dynamic UV flash processes with such
differential-algebraic equations. The UV flash is a mathematical statement of the second law
of thermodynamics. It is therefore important to thermodynamically rigorous models of many
phase equilibrium processes. State estimation of UV flash processes has applications in control,
prediction, monitoring, and fault detection of chemical processes in the oil and gas industry,
e.g. separation, distillation, drilling of oil wells, multiphase flow in oil pipes, and oil production.
We present a numerical example of a UV flash separation process. It involves soft sensing of
vapor-liquid compositions based on temperature and pressure measurements.

Keywords: Extended Kalman filter, State estimation, UV flash, Differential-algebraic equations

1. INTRODUCTION

State estimation is concerned with reconstructing the state
of a process based on noisy measurements and a model
of the process. It is central to nonlinear model predictive
control, prediction, monitoring, and fault detection of
several chemical processes in the oil and gas industry.
For instance, authors have considered state estimation
of distillation columns (Pan et al., 2009; Kataria et al.,
2016), oil and gas pipe flow (Binder et al., 2015), oil
well drilling (Nikoofard et al., 2017), and oil reservoir
production (Oliver and Chen, 2011).

Many chemical processes involve phase equilibrium, i.e.
thermodynamic equilibrium between two or more phases.
The condition of phase equilibrium is derived from the sec-
ond law of thermodynamics which states that the entropy
of a closed system in equilibrium is maximal. The UV flash
problem is a mathematical statement of the second law
of thermodynamics. It is therefore a key component in
thermodynamically rigorous models of phase equilibrium
processes, e.g. flash separation (Castier, 2010; Arendsen
and Versteeg, 2009; Lima et al., 2008), distillation columns
(Flatby et al., 1994), and computational fluid dynamical
problems (Hammer and Morin, 2014; Qiu et al., 2014).
The UV flash problem can be formulated as an optimiza-
tion problem (Michelsen, 1999). The solution to the opti-
mization problem is the temperature, pressure, and phase
compositions that maximize entropy. The optimization
problem contains equality constraints on internal energy,
U , volume, V , and total mass of each chemical component,
n. U , V , and n are parameters in the optimization prob-
lem. The phase equilibrium conditions are the optimality

� This project is funded by Innovation Fund Denmark in the
OPTION project (63-2013-3).

conditions of the optimization problem which are algebraic
equations. Dynamical UV flash processes are therefore
modeled with differential-algebraic equations (DAEs). Re-
cently, Ritschel et al. (2017a) developed dynamic optimiza-
tion algorithms for UV flash processes. However, state
estimation of dynamic UV flash processes has not been
treated in the open literature.

The Kalman filter is optimal for linear systems. How-
ever, many chemical processes are inherently nonlinear
such that the Kalman filter cannot be used. There exist
a number of nonlinear filters, e.g. the extended Kalman
filter, the unscented Kalman filter, and particle filters
(Simon, 2006). The extended Kalman filter applies the
Kalman filter equations to a linearization of the nonlinear
model. For highly nonlinear processes, this linearization
can limit the accuracy of the extended Kalman filter. The
unscented Kalman filter and particle filters use samples of
the states to provide better estimates than the extended
Kalman filter for severely nonlinear processes. The un-
scented Kalman filter uses deterministic samples whereas
particle filters use random samples. A particular particle
filter, called the ensemble Kalman filter, has gained much
attention in oceanography and oil reservoir characteriza-
tion (Evensen, 2009a,b; Gillijns et al., 2006). Alternatives
to the above state estimation algorithms include moving-
horizon estimation (Alessandri et al., 2010), which is an
optimization-based algorithm, and neural network-based
algorithms (Talebi et al., 2010). Research on state esti-
mation algorithms was originally focused on systems of
ordinary differential equations (ODEs). However, many
processes are naturally modeled with DAEs. Algebraic
equations often result from the approximation of a fast
process as a quasi-steady-state, e.g. it is common to as-
sume that phase equilibrium occurs instantaneously in dy-
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sume that phase equilibrium occurs instantaneously in dy-
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1. INTRODUCTION

State estimation is concerned with reconstructing the state
of a process based on noisy measurements and a model
of the process. It is central to nonlinear model predictive
control, prediction, monitoring, and fault detection of
several chemical processes in the oil and gas industry.
For instance, authors have considered state estimation
of distillation columns (Pan et al., 2009; Kataria et al.,
2016), oil and gas pipe flow (Binder et al., 2015), oil
well drilling (Nikoofard et al., 2017), and oil reservoir
production (Oliver and Chen, 2011).

Many chemical processes involve phase equilibrium, i.e.
thermodynamic equilibrium between two or more phases.
The condition of phase equilibrium is derived from the sec-
ond law of thermodynamics which states that the entropy
of a closed system in equilibrium is maximal. The UV flash
problem is a mathematical statement of the second law
of thermodynamics. It is therefore a key component in
thermodynamically rigorous models of phase equilibrium
processes, e.g. flash separation (Castier, 2010; Arendsen
and Versteeg, 2009; Lima et al., 2008), distillation columns
(Flatby et al., 1994), and computational fluid dynamical
problems (Hammer and Morin, 2014; Qiu et al., 2014).
The UV flash problem can be formulated as an optimiza-
tion problem (Michelsen, 1999). The solution to the opti-
mization problem is the temperature, pressure, and phase
compositions that maximize entropy. The optimization
problem contains equality constraints on internal energy,
U , volume, V , and total mass of each chemical component,
n. U , V , and n are parameters in the optimization prob-
lem. The phase equilibrium conditions are the optimality
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conditions of the optimization problem which are algebraic
equations. Dynamical UV flash processes are therefore
modeled with differential-algebraic equations (DAEs). Re-
cently, Ritschel et al. (2017a) developed dynamic optimiza-
tion algorithms for UV flash processes. However, state
estimation of dynamic UV flash processes has not been
treated in the open literature.

The Kalman filter is optimal for linear systems. How-
ever, many chemical processes are inherently nonlinear
such that the Kalman filter cannot be used. There exist
a number of nonlinear filters, e.g. the extended Kalman
filter, the unscented Kalman filter, and particle filters
(Simon, 2006). The extended Kalman filter applies the
Kalman filter equations to a linearization of the nonlinear
model. For highly nonlinear processes, this linearization
can limit the accuracy of the extended Kalman filter. The
unscented Kalman filter and particle filters use samples of
the states to provide better estimates than the extended
Kalman filter for severely nonlinear processes. The un-
scented Kalman filter uses deterministic samples whereas
particle filters use random samples. A particular particle
filter, called the ensemble Kalman filter, has gained much
attention in oceanography and oil reservoir characteriza-
tion (Evensen, 2009a,b; Gillijns et al., 2006). Alternatives
to the above state estimation algorithms include moving-
horizon estimation (Alessandri et al., 2010), which is an
optimization-based algorithm, and neural network-based
algorithms (Talebi et al., 2010). Research on state esti-
mation algorithms was originally focused on systems of
ordinary differential equations (ODEs). However, many
processes are naturally modeled with DAEs. Algebraic
equations often result from the approximation of a fast
process as a quasi-steady-state, e.g. it is common to as-
sume that phase equilibrium occurs instantaneously in dy-
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tion algorithms for UV flash processes. However, state
estimation of dynamic UV flash processes has not been
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The Kalman filter is optimal for linear systems. How-
ever, many chemical processes are inherently nonlinear
such that the Kalman filter cannot be used. There exist
a number of nonlinear filters, e.g. the extended Kalman
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(Simon, 2006). The extended Kalman filter applies the
Kalman filter equations to a linearization of the nonlinear
model. For highly nonlinear processes, this linearization
can limit the accuracy of the extended Kalman filter. The
unscented Kalman filter and particle filters use samples of
the states to provide better estimates than the extended
Kalman filter for severely nonlinear processes. The un-
scented Kalman filter uses deterministic samples whereas
particle filters use random samples. A particular particle
filter, called the ensemble Kalman filter, has gained much
attention in oceanography and oil reservoir characteriza-
tion (Evensen, 2009a,b; Gillijns et al., 2006). Alternatives
to the above state estimation algorithms include moving-
horizon estimation (Alessandri et al., 2010), which is an
optimization-based algorithm, and neural network-based
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conditions of the optimization problem which are algebraic
equations. Dynamical UV flash processes are therefore
modeled with differential-algebraic equations (DAEs). Re-
cently, Ritschel et al. (2017a) developed dynamic optimiza-
tion algorithms for UV flash processes. However, state
estimation of dynamic UV flash processes has not been
treated in the open literature.

The Kalman filter is optimal for linear systems. How-
ever, many chemical processes are inherently nonlinear
such that the Kalman filter cannot be used. There exist
a number of nonlinear filters, e.g. the extended Kalman
filter, the unscented Kalman filter, and particle filters
(Simon, 2006). The extended Kalman filter applies the
Kalman filter equations to a linearization of the nonlinear
model. For highly nonlinear processes, this linearization
can limit the accuracy of the extended Kalman filter. The
unscented Kalman filter and particle filters use samples of
the states to provide better estimates than the extended
Kalman filter for severely nonlinear processes. The un-
scented Kalman filter uses deterministic samples whereas
particle filters use random samples. A particular particle
filter, called the ensemble Kalman filter, has gained much
attention in oceanography and oil reservoir characteriza-
tion (Evensen, 2009a,b; Gillijns et al., 2006). Alternatives
to the above state estimation algorithms include moving-
horizon estimation (Alessandri et al., 2010), which is an
optimization-based algorithm, and neural network-based
algorithms (Talebi et al., 2010). Research on state esti-
mation algorithms was originally focused on systems of
ordinary differential equations (ODEs). However, many
processes are naturally modeled with DAEs. Algebraic
equations often result from the approximation of a fast
process as a quasi-steady-state, e.g. it is common to as-
sume that phase equilibrium occurs instantaneously in dy-
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namic processes. Recently, several authors have developed
algorithms for state estimation of DAE models, e.g. the
extended Kalman filter (Mobed et al., 2016; Jørgensen
et al., 2007; Becerra et al., 2001), the unscented Kalman
filter (Purohit et al., 2015, 2013; Pastorino et al., 2013;
Mandela et al., 2010, 2009), particle filters (Haßkerl et al.,
2017, 2016), and the ensemble Kalman filter (Puranik
et al., 2012).

In this work, we present an extended Kalman filter for
state estimation of dynamic UV flash processes. Such pro-
cesses are modeled with DAEs in a semi-explicit index-1
form where the right-hand side of the differential equations
are independent of the differential states. We exploit this
fact in the computations. We present a numerical example
that involves soft sensing of vapor-liquid compositions in
a UV flash separation process based on temperature and
pressure measurements.

The remainder of this paper is structured as follows. In
Section 2, we describe the stochastic semi-explicit index-
1 DAE system that we consider, and in Section 3, we
describe the numerical simulation of such systems. In
Section 4, we describe the extended Kalman filter. We
briefly describe the model of the UV flash separation
process in Section 5, and we present numerical results in
Section 6. In Section 7, we present conclusions.

2. STOCHASTIC SEMI-EXPLICIT INDEX-1 DAE
SYSTEMS

We consider stochastic DAE systems in the form

G(x(t), y(t), z(t)) = 0, (1a)

dx(t) = F (y(t), u(t))dt + σ(y(t), u(t))dω(t). (1b)

x(t) is the state vector, y(t) is a vector of algebraic
variables, and z(t) is a vector of adjoint algebraic vari-
ables. Phase equilibrium conditions can be formulated
as the Karush-Kuhn-Tucker (KKT) conditions of an op-
timization problem. The algebraic equations (1a) repre-
sent such KKT conditions, and z(t) represents the corre-
sponding Lagrange multipliers. The stochastic differential
equations (1b) represent conservation equations, and the
states represent the conserved quantities. The right-hand
side of the stochastic differential equations is indepen-
dent of the states. The initial states are distributed as
x(t0) ∼ N(x0, P0). u(t) are manipulated inputs, and ω(t)
is a standard Wiener process, i.e. it has an incremental
covariance of Idt. For the systems that we consider, the
algebraic equations (1a) can be solved for y(t) and z(t)
when x(t) is given, i.e. the DAE system (1) is of index
1. The system is observed at discrete times, tk, using the
measurement equation,

ym(tk) = H(y(tk)) + v(tk). (2)

ym(tk) are the measurements. The right-hand side of the
measurement equation is independent of the states. The
measurement noise, v(tk), is normally distributed, i.e.
v(tk) = vk ∼ N(0, Tk).

3. NUMERICAL SIMULATION

In this section, we describe the numerical simulation of
the stochastic DAE system (1). We solve the differential
equations and the algebraic equations in a simultaneous

manner. We discretize the deterministic and stochastic
part of the stochastic differential equations (1b) with
Euler’s implicit and explicit method, respectively. That
results in the equation Dk+1 = 0 where

Dk+1 = Dk+1(xk+1, yk+1) = Dk+1(xk+1, yk+1;xk, yk, uk)

= xk+1 − F (yk+1, uk)∆tk − σ(yk, uk)∆ωk − xk.
(3)

We introduce wk+1 = [xk+1; yk+1; zk+1]. For each time
step, we solve the residual equations, Rk+1 = 0, for wk+1.
The residual function is

Rk+1 = Rk+1(wk+1) = Rk+1(xk+1, yk+1, zk+1)

= Rk+1(xk+1, yk+1, zk+1;xk, yk, uk)

=

[
Dk+1(xk+1, yk+1;xk, yk, uk)

G(xk+1, yk+1, zk+1)

]
. (4)

We solve the residual equations with Newton’s method:

wm+1
k+1 = wm

k+1 + ∆wm
k+1. (5)

In each Newton iteration, we solve the linear system

M∆wm
k+1 = −Rk+1(w

m
k+1), (6)

where the iteration matrix, M , is

M ≈ ∂Rk+1

∂wk+1
=




I −∂F

∂y
∆tk 0

∂G

∂x

∂G

∂y

∂G

∂z


 . (7)

3.1 Efficient solution of the linear system

The main computational task in the solution of the linear
system (6) is the factorization of the iteration matrix, M .
Because of the identity matrix in the Jacobian in (7), we
can obtain an explicit expression for ∆xm

k+1 from (6):

∆xm
k+1 =

(
∂F

∂y
∆tk

)
∆ymk+1 −Dk+1. (8)

We use (6) and (8) to obtain a reduced linear system for
∆ymk+1 and ∆zmk+1:

M̄

[
∆ymk+1
∆zmk+1

]
=

∂G

∂x
Dk+1 −G(xm

k+1, y
m
k+1, z

m
k+1). (9)

The reduced iteration matrix, M̄ , is

M̄ ≈
[
∂G

∂y
+

∂G

∂x

∂F

∂y
∆tk

∂G

∂z

]
. (10)

It is cheaper to factorize M̄ than M because M̄ is smaller.

4. THE EXTENDED KALMAN FILTER

The extended Kalman filter consists of a) a measurement-
update that incorporates the current measurement and
b) a time-update that propagates the state mean and its
covariance through time in between measurements. The
initial state estimate and its covariance are the mean and
covariance of the initial states:

x̂0|−1 = x0, (11a)

P0|−1 = P0. (11b)

4.1 Measurement-update

The one-step ahead prediction of the measurement, ŷmk|k−1,

and its approximate covariance matrix, Tk|k−1, are

ŷmk|k−1 = H(ŷk|k−1), (12a)

Tk|k−1 = CkPk|k−1C
′
k + Tk. (12b)
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conditions of the optimization problem which are algebraic
equations. Dynamical UV flash processes are therefore
modeled with differential-algebraic equations (DAEs). Re-
cently, Ritschel et al. (2017a) developed dynamic optimiza-
tion algorithms for UV flash processes. However, state
estimation of dynamic UV flash processes has not been
treated in the open literature.

The Kalman filter is optimal for linear systems. How-
ever, many chemical processes are inherently nonlinear
such that the Kalman filter cannot be used. There exist
a number of nonlinear filters, e.g. the extended Kalman
filter, the unscented Kalman filter, and particle filters
(Simon, 2006). The extended Kalman filter applies the
Kalman filter equations to a linearization of the nonlinear
model. For highly nonlinear processes, this linearization
can limit the accuracy of the extended Kalman filter. The
unscented Kalman filter and particle filters use samples of
the states to provide better estimates than the extended
Kalman filter for severely nonlinear processes. The un-
scented Kalman filter uses deterministic samples whereas
particle filters use random samples. A particular particle
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to the above state estimation algorithms include moving-
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1. INTRODUCTION

State estimation is concerned with reconstructing the state
of a process based on noisy measurements and a model
of the process. It is central to nonlinear model predictive
control, prediction, monitoring, and fault detection of
several chemical processes in the oil and gas industry.
For instance, authors have considered state estimation
of distillation columns (Pan et al., 2009; Kataria et al.,
2016), oil and gas pipe flow (Binder et al., 2015), oil
well drilling (Nikoofard et al., 2017), and oil reservoir
production (Oliver and Chen, 2011).

Many chemical processes involve phase equilibrium, i.e.
thermodynamic equilibrium between two or more phases.
The condition of phase equilibrium is derived from the sec-
ond law of thermodynamics which states that the entropy
of a closed system in equilibrium is maximal. The UV flash
problem is a mathematical statement of the second law
of thermodynamics. It is therefore a key component in
thermodynamically rigorous models of phase equilibrium
processes, e.g. flash separation (Castier, 2010; Arendsen
and Versteeg, 2009; Lima et al., 2008), distillation columns
(Flatby et al., 1994), and computational fluid dynamical
problems (Hammer and Morin, 2014; Qiu et al., 2014).
The UV flash problem can be formulated as an optimiza-
tion problem (Michelsen, 1999). The solution to the opti-
mization problem is the temperature, pressure, and phase
compositions that maximize entropy. The optimization
problem contains equality constraints on internal energy,
U , volume, V , and total mass of each chemical component,
n. U , V , and n are parameters in the optimization prob-
lem. The phase equilibrium conditions are the optimality
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conditions of the optimization problem which are algebraic
equations. Dynamical UV flash processes are therefore
modeled with differential-algebraic equations (DAEs). Re-
cently, Ritschel et al. (2017a) developed dynamic optimiza-
tion algorithms for UV flash processes. However, state
estimation of dynamic UV flash processes has not been
treated in the open literature.

The Kalman filter is optimal for linear systems. How-
ever, many chemical processes are inherently nonlinear
such that the Kalman filter cannot be used. There exist
a number of nonlinear filters, e.g. the extended Kalman
filter, the unscented Kalman filter, and particle filters
(Simon, 2006). The extended Kalman filter applies the
Kalman filter equations to a linearization of the nonlinear
model. For highly nonlinear processes, this linearization
can limit the accuracy of the extended Kalman filter. The
unscented Kalman filter and particle filters use samples of
the states to provide better estimates than the extended
Kalman filter for severely nonlinear processes. The un-
scented Kalman filter uses deterministic samples whereas
particle filters use random samples. A particular particle
filter, called the ensemble Kalman filter, has gained much
attention in oceanography and oil reservoir characteriza-
tion (Evensen, 2009a,b; Gillijns et al., 2006). Alternatives
to the above state estimation algorithms include moving-
horizon estimation (Alessandri et al., 2010), which is an
optimization-based algorithm, and neural network-based
algorithms (Talebi et al., 2010). Research on state esti-
mation algorithms was originally focused on systems of
ordinary differential equations (ODEs). However, many
processes are naturally modeled with DAEs. Algebraic
equations often result from the approximation of a fast
process as a quasi-steady-state, e.g. it is common to as-
sume that phase equilibrium occurs instantaneously in dy-
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(Simon, 2006). The extended Kalman filter applies the
Kalman filter equations to a linearization of the nonlinear
model. For highly nonlinear processes, this linearization
can limit the accuracy of the extended Kalman filter. The
unscented Kalman filter and particle filters use samples of
the states to provide better estimates than the extended
Kalman filter for severely nonlinear processes. The un-
scented Kalman filter uses deterministic samples whereas
particle filters use random samples. A particular particle
filter, called the ensemble Kalman filter, has gained much
attention in oceanography and oil reservoir characteriza-
tion (Evensen, 2009a,b; Gillijns et al., 2006). Alternatives
to the above state estimation algorithms include moving-
horizon estimation (Alessandri et al., 2010), which is an
optimization-based algorithm, and neural network-based
algorithms (Talebi et al., 2010). Research on state esti-
mation algorithms was originally focused on systems of
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equations often result from the approximation of a fast
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namic processes. Recently, several authors have developed
algorithms for state estimation of DAE models, e.g. the
extended Kalman filter (Mobed et al., 2016; Jørgensen
et al., 2007; Becerra et al., 2001), the unscented Kalman
filter (Purohit et al., 2015, 2013; Pastorino et al., 2013;
Mandela et al., 2010, 2009), particle filters (Haßkerl et al.,
2017, 2016), and the ensemble Kalman filter (Puranik
et al., 2012).

In this work, we present an extended Kalman filter for
state estimation of dynamic UV flash processes. Such pro-
cesses are modeled with DAEs in a semi-explicit index-1
form where the right-hand side of the differential equations
are independent of the differential states. We exploit this
fact in the computations. We present a numerical example
that involves soft sensing of vapor-liquid compositions in
a UV flash separation process based on temperature and
pressure measurements.

The remainder of this paper is structured as follows. In
Section 2, we describe the stochastic semi-explicit index-
1 DAE system that we consider, and in Section 3, we
describe the numerical simulation of such systems. In
Section 4, we describe the extended Kalman filter. We
briefly describe the model of the UV flash separation
process in Section 5, and we present numerical results in
Section 6. In Section 7, we present conclusions.

2. STOCHASTIC SEMI-EXPLICIT INDEX-1 DAE
SYSTEMS

We consider stochastic DAE systems in the form

G(x(t), y(t), z(t)) = 0, (1a)

dx(t) = F (y(t), u(t))dt + σ(y(t), u(t))dω(t). (1b)

x(t) is the state vector, y(t) is a vector of algebraic
variables, and z(t) is a vector of adjoint algebraic vari-
ables. Phase equilibrium conditions can be formulated
as the Karush-Kuhn-Tucker (KKT) conditions of an op-
timization problem. The algebraic equations (1a) repre-
sent such KKT conditions, and z(t) represents the corre-
sponding Lagrange multipliers. The stochastic differential
equations (1b) represent conservation equations, and the
states represent the conserved quantities. The right-hand
side of the stochastic differential equations is indepen-
dent of the states. The initial states are distributed as
x(t0) ∼ N(x0, P0). u(t) are manipulated inputs, and ω(t)
is a standard Wiener process, i.e. it has an incremental
covariance of Idt. For the systems that we consider, the
algebraic equations (1a) can be solved for y(t) and z(t)
when x(t) is given, i.e. the DAE system (1) is of index
1. The system is observed at discrete times, tk, using the
measurement equation,

ym(tk) = H(y(tk)) + v(tk). (2)

ym(tk) are the measurements. The right-hand side of the
measurement equation is independent of the states. The
measurement noise, v(tk), is normally distributed, i.e.
v(tk) = vk ∼ N(0, Tk).

3. NUMERICAL SIMULATION

In this section, we describe the numerical simulation of
the stochastic DAE system (1). We solve the differential
equations and the algebraic equations in a simultaneous

manner. We discretize the deterministic and stochastic
part of the stochastic differential equations (1b) with
Euler’s implicit and explicit method, respectively. That
results in the equation Dk+1 = 0 where

Dk+1 = Dk+1(xk+1, yk+1) = Dk+1(xk+1, yk+1;xk, yk, uk)

= xk+1 − F (yk+1, uk)∆tk − σ(yk, uk)∆ωk − xk.
(3)

We introduce wk+1 = [xk+1; yk+1; zk+1]. For each time
step, we solve the residual equations, Rk+1 = 0, for wk+1.
The residual function is

Rk+1 = Rk+1(wk+1) = Rk+1(xk+1, yk+1, zk+1)

= Rk+1(xk+1, yk+1, zk+1;xk, yk, uk)

=

[
Dk+1(xk+1, yk+1;xk, yk, uk)

G(xk+1, yk+1, zk+1)

]
. (4)

We solve the residual equations with Newton’s method:

wm+1
k+1 = wm

k+1 + ∆wm
k+1. (5)

In each Newton iteration, we solve the linear system

M∆wm
k+1 = −Rk+1(w

m
k+1), (6)

where the iteration matrix, M , is

M ≈ ∂Rk+1

∂wk+1
=




I −∂F

∂y
∆tk 0

∂G

∂x

∂G

∂y

∂G

∂z


 . (7)

3.1 Efficient solution of the linear system

The main computational task in the solution of the linear
system (6) is the factorization of the iteration matrix, M .
Because of the identity matrix in the Jacobian in (7), we
can obtain an explicit expression for ∆xm

k+1 from (6):

∆xm
k+1 =

(
∂F

∂y
∆tk

)
∆ymk+1 −Dk+1. (8)

We use (6) and (8) to obtain a reduced linear system for
∆ymk+1 and ∆zmk+1:

M̄

[
∆ymk+1
∆zmk+1

]
=

∂G

∂x
Dk+1 −G(xm

k+1, y
m
k+1, z

m
k+1). (9)

The reduced iteration matrix, M̄ , is

M̄ ≈
[
∂G

∂y
+

∂G

∂x

∂F

∂y
∆tk

∂G

∂z

]
. (10)

It is cheaper to factorize M̄ than M because M̄ is smaller.

4. THE EXTENDED KALMAN FILTER

The extended Kalman filter consists of a) a measurement-
update that incorporates the current measurement and
b) a time-update that propagates the state mean and its
covariance through time in between measurements. The
initial state estimate and its covariance are the mean and
covariance of the initial states:

x̂0|−1 = x0, (11a)

P0|−1 = P0. (11b)

4.1 Measurement-update

The one-step ahead prediction of the measurement, ŷmk|k−1,

and its approximate covariance matrix, Tk|k−1, are

ŷmk|k−1 = H(ŷk|k−1), (12a)

Tk|k−1 = CkPk|k−1C
′
k + Tk. (12b)
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The one-step ahead estimate of the algebraic variables,
ŷk|k−1, is available from the previous time-update. Tk

is the covariance matrix of the measurement noise. The
matrix Ck is

Ck =
∂H

∂x
(ŷk|k−1)

=
∂H

∂y
(ŷk|k−1)

∂ŷk|k−1

∂x̂k|k−1
. (13)

As we describe later, the one-step ahead estimates satisfy
the algebraic equations, i.e. G(x̂k|k−1, ŷk|k−1, ẑk|k−1) = 0.
We apply the implicit function theorem to the algebraic

equations in order to compute
∂ŷk|k−1

∂x̂k|k−1
and

∂ẑk|k−1

∂x̂k|k−1
:

[
∂G

∂y

∂G

∂z

]



∂ŷk|k−1

∂x̂k|k−1
∂ẑk|k−1

∂x̂k|k−1


 = −∂G

∂x
. (14)

The partial derivatives of G in (14) are evaluated at
x̂k|k−1, ŷk|k−1, and ẑk|k−1. The innovation error of the
measurement is

ek = ymk − ŷmk|k−1, (15)

where ymk = ym(tk) is the measurement. The Kalman filter
gain matrix is

Kfx,k = Pk|k−1C
′
kT

−1
k|k−1. (16)

The filtered state and its approximate covariance matrix
are updated by

x̂k|k = x̂k|k−1 + Kfx,kek, (17a)

Pk|k = Pk|k−1 −Kfx,kTk|k−1K
′
fx,k. (17b)

The filtered estimates of the algebraic and adjoint alge-
braic variables satisfy the algebraic equations:

G(x̂k|k, ŷk|k, ẑk|k) = 0. (18)

The corresponding approximate covariance matrices are

Py,k|k = Φyx(tk, tk)Pk|kΦyx(tk, tk)
′, (19a)

Pz,k|k = Φzx(tk, tk)Pk|kΦzx(tk, tk)
′. (19b)

We use the implicit function theorem to compute the

sensitivities, Φyx(tk, tk) =
∂ŷk|k
∂x̂k|k

and Φzx(tk, tk) =
∂ẑk|k
∂x̂k|k

:
[
∂G

∂y

∂G

∂z

] [
Φyx(tk, tk)
Φzx(tk, tk)

]
= −∂G

∂x
. (20)

The partial derivatives of G in (20) are evaluated at x̂k|k,
ŷk|k, and ẑk|k.

4.2 Time-update

In the time-update, we propagate the state estimate and
covariance matrix from time tk to time tk+1 where the next
measurement arrives. We obtain the one-step ahead pre-
dictions at time tk+1 by solving the initial value problem

x̂k(tk) = x̂k|k, (21a)

G(x̂k(t), ŷk(t), ẑk(t)) = 0, t ∈]tk; tk+1], (21b)

dx̂k(t)

dt
= F (ŷk(t), u(t)), t ∈]tk; tk+1]. (21c)

The sensitivities, Φxx(t, s) = ∂x̂k(t)
∂x̂k(s)

, Φyx(t, s) = ∂ŷk(t)
∂x̂k(s)

,

and Φzx(t, s) = ∂ẑk(t)
∂x̂k(s)

, satisfy

Φxx(s, s) = I, (22a)

∂G

∂x
Φxx(t, s) +

∂G

∂y
Φyx(t, s) +

∂G

∂z
Φzx(t, s) = 0, (22b)

dΦxx(t, s)

dt
=

∂F

∂y
Φyx(t, s). (22c)

The partial derivatives of F and G in (22) are evaluated at
x̂k(t), ŷk(t), and ẑk(t). We compute the covariance matrix
from the sensitivities (Jørgensen et al., 2007):

Pk(t) = Φxx(t, tk)Pk|kΦxx(t, tk)
′

+

∫ t

tk

Φxx(t, s)σ(ŷk(s), u(s))σ(ŷk(s), u(s))′Φxx(t, s)
′ds.

(23)

4.3 Numerical solution of the time-update equations

We use Euler’s implicit method to solve the initial value
problem (21) for the one-step ahead predictions, x̂k+1|k =
x̂k(tk+1), ŷk+1|k = ŷk(tk+1), and ẑk+1|k = ẑk(tk+1). That
corresponds to solving the nonlinear equations

Rk+1|k = Rk+1|k(x̂k+1|k, ŷk+1|k, ẑk+1|k)

= Rk+1|k(x̂k+1|k, ŷk+1|k, ẑk+1|k; x̂k|k, uk)

=

[
x̂k+1|k − F (ŷk+1|k, uk)∆tk − x̂k|k

G(x̂k+1|k, ŷk+1|k, ẑk+1|k)

]
= 0. (24)

We solve the nonlinear equations (24) with Newton’s
method. The approach is similar to the one described in
Section 3. We also discretize the sensitivity equations (22)
with Euler’s implicit method:




I −∂F

∂y
∆tk 0

∂G

∂x

∂G

∂y

∂G

∂z



[
Φxx(tk+1, tk)
Φyx(tk+1, tk)
Φzx(tk+1, tk)

]
=

[
I
0

]
. (25)

The partial derivatives of F and G in (25) are evaluated
at x̂k+1|k, ŷk+1|k, and ẑk+1|k. We exploit the structure
of the linear system (25) in the same way that we did
in Section 3.1. We discretize the integral in (23) with a
left rectangle quadrature rule to obtain an expression for
Pk+1|k = Pk(tk+1):

Pk+1|k = Φxx(tk+1, tk)ΛkΦxx(tk+1, tk)
′ (26a)

Λk = Pk|k + σ(ŷk|k, uk)σ(ŷk|k, uk)
′∆tk (26b)

5. DYNAMIC UV FLASH SEPARATION PROCESS

In this section, we consider a flash separation process
where a mixture of NC chemical components is separated
into a vapor phase and a liquid phase. The vapor phase
and the liquid phase are in thermodynamic equilibrium.
A feed stream supplies the separator with a vapor-liquid
mixture. The mixture exits the separator from a vapor
stream and a liquid stream, and the separator is subject
to external heating. The two main principles of the model
of the separation process are 1) vapor-liquid equilibrium
and 2) conservation of mass and energy.

5.1 Vapor-liquid equilibrium

The vapor phase (v) and the liquid phase (l) are in thermo-
dynamic equilibrium. The second law of thermodynamics
states that the entropy, S, of a closed system in equilibrium
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is maximal. As we discuss later, the internal energy, U ,
and the total composition of the mixture (in moles), n,
are given by conservation equations. The volume, V , of
the separator is fixed. The above conditions constitute the
UV flash optimization problem,

max
T,P,nv,nl

S = Sv(T, P, nv) + Sl(T, P, nl), (27a)

s.t. Uv(T, P, nv) + U l(T, P, nl) = U, (27b)

V v(T, P, nv) + V l(T, P, nl) = V, (27c)

nv
i + nl

i = ni, i = 1, . . . , NC . (27d)

The solution to the UV flash optimization problem is the
temperature, T , pressure, P , and vapor-liquid composition
(in moles), nv and nl, that maximize entropy while satis-
fying the constraints on the internal energy, U , volume, V ,
and total composition, n. The UV flash is sometimes called
the UVn flash or the isoenergetic-isochoric (constant en-
ergy - constant volume) flash. The UV flash optimization
problem (27) is in the form

min
y

f(y), (28a)

s.t. g(y) = x, (28b)

h(y) = 0, (28c)

where the states are x = [U ;n], and the algebraic variables
are y = [T ;P ;nv;nl]. Because (28) does not contain
inequality constraints, the first-order optimality conditions
are a set of algebraic equations:

G(x, y, z) = 0. (29)

z are Lagrange multipliers.

5.2 Conservation of mass and energy

The internal energy, U , and the total composition (in
moles), n, of the mixture are conserved. The deterministic
conservation equations are

U̇(t) = Hv
F (t) + H l

F (t) −HV (t) −HL(t) + Q(t), (30a)

ṅi(t) = fv
F,i(t) + f l

F,i(t) − vi(t) − li(t), i = 1, . . . , NC .

(30b)

Hv
F and H l

F are the vapor-liquid enthalpies of the feed
stream, and HV and HL are the enthalpies of the vapor
and liquid streams. Similarly, fv

F,i and f l
F,i are the vapor-

liquid flow rates of the feed stream, and vi and li are the
flow rates of the vapor stream and the liquid stream. Q is
the heat flux from the external heating. The deterministic
conservation equations (30) are in the form

ẋ(t) = F (y(t), u(t)), (31)

where u are inputs. Adding process noise to (31) results in
the stochastic differential equations (1b).

5.3 Thermodynamic model

Because the vapor-liquid equilibrium conditions are the
first-order optimality conditions of an optimization prob-
lem, they contain first-order derivatives of thermody-
namic functions. We therefore need to evaluate second-
order derivatives of thermodynamic functions in order to
evaluate the Jacobian matrices of the equilibrium con-
ditions. We use the open-source thermodynamic library,
ThermoLib, developed by Ritschel et al. (2017b, 2016)
for that purpose. It implements a thermodynamic model

based on the DIPPR database (Thomson, 1996) and cu-
bic equations of state. It provides routines that evaluate
enthalpy, H = H(T, P, n), entropy, S = S(T, P, n), and
volume, V = V (T, P, n), as well as first- and second-
order derivatives. Given H, S, and V , the internal energy
is U = H − PV , Gibbs energy is G = H − TS, and
Helmholtz energy is A = U − TS. ThermoLib is available
from www.psetools.org.

6. NUMERICAL EXAMPLE

We use the extended Kalman filter as a soft sensor that
can estimate the vapor-liquid composition of a mixture
based on temperature and pressure measurements. Soft
sensing of compositions is an economical alternative to
physical sensors which can be slow, expensive, and lack
accuracy. We consider the separation of a mixture of 60%
C1, 8% C2, 5% C3, 25% n-C7, and 2% CO2 in a 0.2 m3

separator. We consider a 72 h time interval and a sampling
time of 5 min. We assume that the inputs are known. The
tank is cooled, i.e. Q ≤ 0. Q increases from −9 MJ/h
to −4 MJ/h after 24 h. The feed flow rate is constant
at 1000 mol/h, and the vapor-liquid stream flow rates
are constant at 400 mol/h and 600 mol/h. The standard
deviations of the temperature and pressure measurement
noise are 10 K and 10−1/2 ≈ 0.3 MPa. We consider
a constant diffusion coefficient, i.e. σ(y(t), u(t)) = σ =
diag([σU ;σC1

;σC2
;σC3

;σn-C7
;σCO2

]), where σU = 1 MJ,
σC1

= σC2
= σn-C7

= 1 mol, and σC3
= σCO2

= 0.1 mol.
The mean of the initial states, x0, is a steady-state of the
deterministic system (30), and the covariance of the initial
states is P0 = σσ′.

Fig. 1 shows the filtered estimates of the total composition
(in moles), internal energy, temperature, and pressure.
It also shows the deviation of the estimates from the
corresponding true simulated quantities and the root-
mean-square deviation (RMSD). The RMSD of the i’th
state variable is

RMSDi =

(
1

N + 1

N∑

k=0

(x̂i,k|k − xi,k)
2

)1/2

, (32)

where we compute the simulated states, xk, as described
in Section 3. N + 1 = 865 is the number of measurement
samples. The RMSD of the temperature and pressure
estimates are computed similarly. We see that the devi-
ations of the estimates are small compared to the scales
of the estimates. Fig. 2 shows the filtered estimates of
the total mole fractions, the vapor-liquid mole fractions,
and the vapor fraction. Such estimates are necessary in
model predictive control of processes with constraints on
the purity (i.e. mole fractions) of the output streams, e.g.
separation and distillation processes.

7. CONCLUSIONS

We present an extended Kalman filter for state estimation
of UV flash processes. It is natural to model such processes,
as well as other phase equilibrium processes, with DAEs
that are in a semi-explicit index-1 form. We describe a
model of a UV flash separation process, and demonstrate
that it is in the semi-explicit index-1 DAE form. Finally,
we demonstrate the accuracy of the extended Kalman
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is maximal. As we discuss later, the internal energy, U ,
and the total composition of the mixture (in moles), n,
are given by conservation equations. The volume, V , of
the separator is fixed. The above conditions constitute the
UV flash optimization problem,

max
T,P,nv,nl

S = Sv(T, P, nv) + Sl(T, P, nl), (27a)

s.t. Uv(T, P, nv) + U l(T, P, nl) = U, (27b)

V v(T, P, nv) + V l(T, P, nl) = V, (27c)

nv
i + nl

i = ni, i = 1, . . . , NC . (27d)

The solution to the UV flash optimization problem is the
temperature, T , pressure, P , and vapor-liquid composition
(in moles), nv and nl, that maximize entropy while satis-
fying the constraints on the internal energy, U , volume, V ,
and total composition, n. The UV flash is sometimes called
the UVn flash or the isoenergetic-isochoric (constant en-
ergy - constant volume) flash. The UV flash optimization
problem (27) is in the form

min
y

f(y), (28a)

s.t. g(y) = x, (28b)

h(y) = 0, (28c)

where the states are x = [U ;n], and the algebraic variables
are y = [T ;P ;nv;nl]. Because (28) does not contain
inequality constraints, the first-order optimality conditions
are a set of algebraic equations:

G(x, y, z) = 0. (29)

z are Lagrange multipliers.

5.2 Conservation of mass and energy

The internal energy, U , and the total composition (in
moles), n, of the mixture are conserved. The deterministic
conservation equations are

U̇(t) = Hv
F (t) + H l

F (t) −HV (t) −HL(t) + Q(t), (30a)

ṅi(t) = fv
F,i(t) + f l

F,i(t) − vi(t) − li(t), i = 1, . . . , NC .

(30b)

Hv
F and H l

F are the vapor-liquid enthalpies of the feed
stream, and HV and HL are the enthalpies of the vapor
and liquid streams. Similarly, fv

F,i and f l
F,i are the vapor-

liquid flow rates of the feed stream, and vi and li are the
flow rates of the vapor stream and the liquid stream. Q is
the heat flux from the external heating. The deterministic
conservation equations (30) are in the form

ẋ(t) = F (y(t), u(t)), (31)

where u are inputs. Adding process noise to (31) results in
the stochastic differential equations (1b).

5.3 Thermodynamic model

Because the vapor-liquid equilibrium conditions are the
first-order optimality conditions of an optimization prob-
lem, they contain first-order derivatives of thermody-
namic functions. We therefore need to evaluate second-
order derivatives of thermodynamic functions in order to
evaluate the Jacobian matrices of the equilibrium con-
ditions. We use the open-source thermodynamic library,
ThermoLib, developed by Ritschel et al. (2017b, 2016)
for that purpose. It implements a thermodynamic model

based on the DIPPR database (Thomson, 1996) and cu-
bic equations of state. It provides routines that evaluate
enthalpy, H = H(T, P, n), entropy, S = S(T, P, n), and
volume, V = V (T, P, n), as well as first- and second-
order derivatives. Given H, S, and V , the internal energy
is U = H − PV , Gibbs energy is G = H − TS, and
Helmholtz energy is A = U − TS. ThermoLib is available
from www.psetools.org.

6. NUMERICAL EXAMPLE

We use the extended Kalman filter as a soft sensor that
can estimate the vapor-liquid composition of a mixture
based on temperature and pressure measurements. Soft
sensing of compositions is an economical alternative to
physical sensors which can be slow, expensive, and lack
accuracy. We consider the separation of a mixture of 60%
C1, 8% C2, 5% C3, 25% n-C7, and 2% CO2 in a 0.2 m3

separator. We consider a 72 h time interval and a sampling
time of 5 min. We assume that the inputs are known. The
tank is cooled, i.e. Q ≤ 0. Q increases from −9 MJ/h
to −4 MJ/h after 24 h. The feed flow rate is constant
at 1000 mol/h, and the vapor-liquid stream flow rates
are constant at 400 mol/h and 600 mol/h. The standard
deviations of the temperature and pressure measurement
noise are 10 K and 10−1/2 ≈ 0.3 MPa. We consider
a constant diffusion coefficient, i.e. σ(y(t), u(t)) = σ =
diag([σU ;σC1

;σC2
;σC3

;σn-C7
;σCO2

]), where σU = 1 MJ,
σC1

= σC2
= σn-C7

= 1 mol, and σC3
= σCO2

= 0.1 mol.
The mean of the initial states, x0, is a steady-state of the
deterministic system (30), and the covariance of the initial
states is P0 = σσ′.

Fig. 1 shows the filtered estimates of the total composition
(in moles), internal energy, temperature, and pressure.
It also shows the deviation of the estimates from the
corresponding true simulated quantities and the root-
mean-square deviation (RMSD). The RMSD of the i’th
state variable is

RMSDi =

(
1

N + 1

N∑

k=0

(x̂i,k|k − xi,k)
2

)1/2

, (32)

where we compute the simulated states, xk, as described
in Section 3. N + 1 = 865 is the number of measurement
samples. The RMSD of the temperature and pressure
estimates are computed similarly. We see that the devi-
ations of the estimates are small compared to the scales
of the estimates. Fig. 2 shows the filtered estimates of
the total mole fractions, the vapor-liquid mole fractions,
and the vapor fraction. Such estimates are necessary in
model predictive control of processes with constraints on
the purity (i.e. mole fractions) of the output streams, e.g.
separation and distillation processes.

7. CONCLUSIONS

We present an extended Kalman filter for state estimation
of UV flash processes. It is natural to model such processes,
as well as other phase equilibrium processes, with DAEs
that are in a semi-explicit index-1 form. We describe a
model of a UV flash separation process, and demonstrate
that it is in the semi-explicit index-1 DAE form. Finally,
we demonstrate the accuracy of the extended Kalman
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Fig. 1. Top row: filtered estimates of total composition, internal energy, temperature, and pressure. Middle and bottom
rows: deviation (dev.) of estimates from the simulated (i.e. true) separation process. The black horizontal lines are
+/- two times the RMSD of the estimates.
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Fig. 2. Estimates of the total mole fractions, vapor mole fractions, liquid mole fractions, and the vapor fraction. We do
not show the vapor mole fractions of C3 and n-C7 because they are very small, i.e. below 1%.

filter with a numerical example that involves soft sensing
of vapor-liquid compositions based on temperature and
pressure measurements.
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Nonlinear Filters for State Estimation of UV Flash Processes

Tobias K. S. Ritschel and John Bagterp Jørgensen

Abstract— We describe four algorithms for state estimation
of stochastic differential-algebraic equations. We consider the
extended Kalman filter, the unscented Kalman filter, the particle
filter, and the ensemble Kalman filter. The differential-algebraic
equations that we consider are in a semi-explicit index-1 form.
Models of dynamic UV flash processes are in such a form. The
UV flash is relevant to rigorous models of many chemical phase
equilibrium processes because it is a mathematical representa-
tion of the second law of thermodynamics. State estimation
is relevant to model predictive control, model identification,
fault detection, monitoring, and prediction. State estimation
of UV flash processes is therefore important to safe and
economical operation of processes such as flash separation,
distillation, multiphase flow in pipelines, and oil production.
We compare the accuracy and efficiency of the four filters
using a numerical example that involves a UV flash separation
process. Furthermore, we demonstrate that the filters can be
used as soft sensors that estimate the vapor-liquid composition
of the separation process based on temperature and pressure
measurements.

I. INTRODUCTION

State estimation is concerned with the reconstruction of
state variables based on measurements and a model of the
relevant process. State estimation is important to model pre-
dictive control, model identification, monitoring, prediction,
and fault detection of chemical processes [1]. State estima-
tion has been applied for many chemical processes including
stirred tank reactors [2]–[4], batch reactors [5]–[8], plug-
flow reactors [9], [10], fermentation [11], [12], distillation
columns [13]–[15], oil and gas flow in pipes [16], and oil
production [17]. Many chemical processes involve thermo-
dynamic equilibrium between fluid phases. The phase equi-
librium conditions are derived from the second law of ther-
modynamics, i.e. the entropy of a closed system is maximal
when it is at equilibrium. The UV flash is a key component
in rigorous models of dynamic phase equilibrium processes.
The UV flash has been used to model flash separation [18]–
[20], distillation [21], and computational fluid dynamical
processes [22], [23] . It is possible to formulate the UV flash
problem as an equality-constrained optimization problem
[24]. The optimization variables are temperature, pressure,
and vapor-liquid composition (in moles). The optimization
problem involves constraints on the internal energy, U , the
volume, V , and the total amount of moles of each chemical
component, n. The solution to the optimization problem
maximizes entropy while satisfying the equality constraints.

*This work is funded by Innovation Fund Denmark in the OPTION
project (63-2013-3). Tobias K. S. Ritschel and John Bagterp Jørgensen are
with the Department of Applied Mathematics and Computer Science & the
Center for Energy Resources Engineering (CERE), Technical University of
Denmark, DK-2800 Kgs. Lyngby, Denmark {tobk, jbjo}@dtu.dk

The corresponding phase equilibrium conditions are the first-
order optimality conditions of the optimization problem.
Therefore, the phase equilibrium conditions are a set of
algebraic equations. Consequently, it is natural to model dy-
namic phase equilibrium processes with differential-algebraic
equations (DAEs). Dynamic optimization algorithms for UV
flash processes have recently been developed [25], but state
estimation in such systems has not been addressed yet.

Many processes are nonlinear. There exist a number of
state estimation algorithms (filters) for nonlinear systems,
e.g. the extended Kalman filter (EKF), the unscented Kalman
filter (UKF), the particle filter (PF), and the ensemble
Kalman filter (EnKF) [26]. The EKF linearizes the nonlinear
model and applies the original Kalman filter equations. This
linearization can cause the EKF to be imprecise for highly
nonlinear systems. The UKF uses deterministic samples to
improve the accuracy compared to the EKF. However, the
UKF can also suffer from limited accuracy for severely
nonlinear systems. The PF uses a set of random samples
to approximate the distribution of the states. It can therefore
be more precise than the EKF and the UKF. The number of
samples in the UKF is fixed whereas the number of samples
in the PF is a tuning parameter. The EnKF is a specific parti-
cle filter that uses the Kalman filter equations. It has gained
attention in oceanography and oil reservoir characterization
[27]–[29] where large-scale models are common. There
exist alternatives to the above filters, e.g. moving-horizon
estimation [30], and algorithms based on neural networks
[31]. State estimation algorithms were originally developed
for stochastic difference and stochastic differential equations.
However, it is natural to model many processes with DAEs.
That is because algebraic equations often arise when a
fast process is approximated as a quasi-steady-state process.
For instance, it is common to assume that systems reach
thermodynamic phase equilibrium instantaneously. Recently,
authors have developed the EKF [32]–[34], the UKF [35]–
[39], PFs [40], [41], and the EnKF [42] for DAE models.

In this work, we present the EKF, the UKF, the PF, and the
EnKF for state estimation of dynamic UV flash processes.
We model the UV flash processes with semi-explicit index-
1 stochastic DAEs. We compare the accuracy of the four
filters with a numerical example that involves flash separation
of a hydrocarbon mixture. In the example, the states are
estimated based on temperature and pressure measurements.
Furthermore, we demonstrate that such state estimates can
be used for soft-sensing of the vapor-liquid composition of
the mixture.

This paper is structured as follows. We describe the semi-
explicit index-1 stochastic DAE form that we consider in



Section II. In Section III, we describe the numerical solution
of stochastic DAEs in such a form. In Section IV, we
describe the EKF, and in Section V, we describe the UKF.
We describe the PF in Section VI and the EnKF in Section
VII. In Section VIII we describe the model of the UV
flash separation process, and in Section IX, we present the
numerical example. We present conclusions in Section X.

II. STOCHASTIC SEMI-EXPLICIT INDEX-1 DAE SYSTEMS

In this work, we consider stochastic DAEs in the form

G(x(t),y(t), z(t)) = 0, (1a)
dx(t) = F (y(t), u(t))dt+ σ(y(t), u(t))dω(t). (1b)

x(t) is a vector of state variables, y(t) is a vector of algebraic
variables, and z(t) is a vector of adjoint algebraic variables.
The algebraic equations (1a) are formulated such that they
can represent phase equilibrium conditions. The stochastic
differential equations (1b) are formulated such that they can
represent conservation equations. We assume knowledge of
the manipulated inputs, u(t), and the initial distribution of
the states, x(t0) ∼ N(x0, P0). ω(t) is a standard Wiener
process, i.e. its incremental covariance is Idt. It is possible
to solve the algebraic equations (1a) for y(t) and z(t) when
x(t) is specified. We obtain measurements, ym(tk), of the
outputs, zm(tk), at discrete times, tk:

zm(tk) = H(y(tk)), (2a)
ym(tk) = zm(tk) + v(tk). (2b)

The measurement noise, vk = v(tk), follows a normal
distribution, i.e. vk ∼ N(0, Tk).

III. NUMERICAL SIMULATION

In order to solve the stochastic DAE (1), we discretize
the stochastic differential equations with a semi-implicit
scheme. We discretize the deterministic and stochastic part
with Euler’s implicit and explicit method, respectively. We
split the time interval between the k’th and the k + 1’th
measurement into Nk time steps. For each time step, we
solve the residual equations, Rk,n+1 = 0, for wk,n+1 =[
xk,n+1; yk,n+1; zk,n+1

]
where the residual function is

Rk,n+1 = Rk,n+1(wk,n+1)

= Rk,n+1(xk,n+1, yk,n+1, zk,n+1)

= Rk,n+1(xk,n+1, yk,n+1, zk,n+1;xk,n, yk,n, uk)

=

[
Dk,n+1(xk,n+1, yk,n+1;xk,n, yk,n, uk)

G(xk,n+1, yk,n+1, zk,n+1)

]
, (3)

and

Dk,n+1 = Dk,n+1(xk,n+1, yk,n+1;xk,n, yk,n, uk)

= xk,n+1 − F (yk,n+1, uk)∆tk,n

− σ(yk,n, uk)∆ωk,n − xk,n. (4)

The increments, ∆ωk,n, are sampled from N(0, I∆tk,n). We
use Newton’s method to solve the residual equations:

wl+1
k,n+1 = wl

k,n+1 + ∆wl
k,n+1. (5)

We compute the Newton step by solving

M∆wl
k,n+1 = −Rk,n+1(wl

k,n+1). (6)

The iteration matrix is

M ≈ ∂Rk,n+1

∂wk,n+1
=

[
I −∂F

∂y ∆tk,n 0
∂G
∂x

∂G
∂y

∂G
∂z

]
. (7)

A. Efficient solution of the linear system

We exploit the structure of the Jacobian matrix in (7) to
solve the linear system (6) efficiently. We compute ∆xlk,n+1

directly by

∆xlk,n+1 =

(
∂F

∂y
∆tk,n

)
∆ylk,n+1 −Dk,n+1, (8)

and we compute ∆ylk,n+1 and ∆zlk,n+1 by solving the
reduced linear system,

M̄

[
∆ylk,n+1

∆zlk,n+1

]
=
∂G

∂x
Dk,n+1 −G(xlk,n+1, y

l
k,n+1, z

l
k,n+1).

(9)

The reduced iteration matrix is

M̄ ≈
[
∂G
∂y + ∂G

∂x
∂F
∂y ∆tk,n

∂G
∂z

]
. (10)

M̄ is smaller than M and is therefore cheaper to factorize.

IV. THE EXTENDED KALMAN FILTER

In this section, we describe the extended Kalman filter.
We initialize the filter with the mean and covariance of the
initial states:

x̂0|−1 = x0, (11a)
P0|−1 = P0. (11b)

The initial estimates of the algebraic and adjoint algebraic
variables satisfy the algebraic equations:

G(x̂0|−1, ŷ0|−1, ẑ0|−1) = 0. (12)

A. Measurement-update

The one-step ahead prediction of the outputs, the measure-
ments, and the covariance matrix are

ẑmk|k−1 = H(ŷk|k−1), (13a)

ŷmk|k−1 = ẑmk|k−1, (13b)

Tk|k−1 = CkPk|k−1C
′
k + Tk, (13c)

where Tk is the measurement noise covariance matrix, and

Ck =
∂H

∂x
(ŷk|k−1)

=
∂H

∂y
(ŷk|k−1)

∂ŷk|k−1
∂x̂k|k−1

. (14)

We compute the sensitivities of the algebraic and adjoint
algebraic variables by solving

[
∂G
∂y

∂G
∂z

] [ ∂ŷk|k−1

∂x̂k|k−1
∂ẑk|k−1

∂x̂k|k−1

]
= −∂G

∂x
. (15)



The innovation is

ek = ymk − ŷmk|k−1, (16)

and the Kalman filter gain matrix is

Kfx,k = Pk|k−1C
′
kT
−1
k|k−1. (17)

We compute the filtered state and its approximate covariance
matrix by

x̂k|k = x̂k|k−1 +Kfx,kek, (18a)
Pk|k = Pk|k−1 −Kfx,kTk|k−1K

′
fx,k. (18b)

The corresponding estimates of the algebraic and adjoint
algebraic variables satisfy

G(x̂k|k, ŷk|k, ẑk|k) = 0. (19)

We compute the corresponding covariance matrices by

Py,k|k = Φyx(tk, tk)Pk|kΦyx(tk, tk)′, (20a)
Pz,k|k = Φzx(tk, tk)Pk|kΦzx(tk, tk)′. (20b)

We compute the sensitivities, Φyx(tk, tk) =
∂ŷk|k
∂x̂k|k

and

Φzx(tk, tk) =
∂ẑk|k
∂x̂k|k

, by solving

[
∂G
∂y

∂G
∂z

] [Φyx(tk, tk)
Φzx(tk, tk)

]
= −∂G

∂x
. (21)

B. Time-update

In between measurement k and k + 1, we propagate the
mean by solving the DAE,

x̂k(tk) = x̂k|k, (22a)
G(x̂k(t), ŷk(t), ẑk(t)) = 0, (22b)
dx̂k(t)

dt
= F (ŷk(t), u(t)), (22c)

for t ∈]tk; tk+1]. The sensitivities, Φxx(t, s) = ∂x̂k(t)
∂x̂k(s)

,

Φyx(t, s) = ∂ŷk(t)
∂x̂k(s)

, and Φzx(t, s) = ∂ẑk(t)
∂x̂k(s)

, satisfy

Φxx(s, s) = I, (23a)
∂G

∂x
Φxx(t, s) +

∂G

∂y
Φyx(t, s) +

∂G

∂z
Φzx(t, s) = 0, (23b)

dΦxx(t, s)

dt
=
∂F

∂y
Φyx(t, s). (23c)

The covariance matrix is given in terms of the sensitivities,
[33]:

Pk(t) = Φxx(t, tk)Pk|kΦxx(t, tk)′

+

∫ t

tk

Φxx(t, s)σ(ŷk(s), u(s))σ(ŷk(s), u(s))′Φxx(t, s)′ds.

(24)

C. Numerical solution of the time-update equations

We discretize (22) with Euler’s implicit method. For each
of the Nk time steps, we solve the residual equations,

[
Dk,n+1(x̂k,n+1, ŷk,n+1; x̂k,n, uk)

G(x̂k,n+1, ŷk,n+1, ẑk,n+1)

]
= 0, (25)

where Dk,n+1 = Dk,n+1(x̂k,n+1, ŷk,n+1; x̂k,n, uk) is

Dk,n+1 = x̂k,n+1 − F (ŷk,n+1, uk)∆tk,n − x̂k,n, (26)

and x̂k,0 = x̂k|k. We compute the sensitivities by solving
[

I −∂F
∂y ∆tk,n 0

∂G
∂x

∂G
∂y

∂G
∂z

]


Φxx(tk,n+1, tk,n)
Φyx(tk,n+1, tk,n)
Φzx(tk,n+1, tk,n)


 =

[
I
0

]
.

(27)

We exploit the structure of the system matrix in (27) as we
described in Section III-A. We approximate the integral in
(24) with a left rectangle rule:

Pk,n+1 = Φxx(tk,n+1, tk,n)τk,nΦxx(tk,n+1, tk,n)′, (28a)
τk,n = Pk,n + σ(ŷk,n, uk)σ(ŷk,n, uk)′∆tk,n. (28b)

Pk,0 = Pk|k, and the one-step ahead estimates are x̂k+1|k =
x̂k,Nk

, ŷk+1|k = ŷk,Nk
, and ẑk+1|k = ẑk,Nk

. The covariance
matrix is Pk+1|k = Pk,Nk

.

V. THE UNSCENTED KALMAN FILTER

The initial state estimate and the covariance matrix are

x̂0|−1 = x0, (29a)
P0|−1 = P0. (29b)

A. Measurement-update

We compute 2nx + 1 samples of the states by

x̂
(0)
k|k−1 = x̂k|k−1, (30a)

x̂
(i)
k|k−1 = x̂k|k−1 +

√
c
(√

Pk|k−1
)
i
, (30b)

x̂
(i+nx)
k|k−1 = x̂k|k−1 −

√
c
(√

Pk|k−1
)
i
, (30c)

for i = 1, . . . , nx. nx is the dimension of the states. c =
α2(nx + κ), α ∈]0; 1], and we set κ to zero. We compute√
Pk|k−1 with a cholesky factorization, and

(√
Pk|k−1

)
i

is
the i’th column of

√
Pk|k−1 [43]. We introduce the weights,

W (0)
m =

λ

nx + λ
, (31a)

W (0)
c =

λ

nx + λ
+ (1− α2 + β), (31b)

W (i)
m =

1

2(nx + λ)
, (31c)

W (i)
c =

1

2(nx + λ)
, (31d)

for i = 1, . . . , 2nx, where λ = α2(nx + κ) − nx [44]. We
solve the algebraic equations for each sample,

G(x̂
(i)
k|k−1, ŷ

(i)
k|k−1, ẑ

(i)
k|k−1) = 0, (32)



and evaluate the output:

ẑ
m,(i)
k|k−1 = H(ŷ

(i)
k|k−1). (33)

We compute the mean, covariance, and cross-covariance by

ẑmk|k−1 =

2nx∑

i=0

W (i)
m ẑ

m,(i)
k|k−1, (34a)

Tk|k−1 =

2nx∑

i=0

W (i)
c

(
ẑ
m,(i)
k|k−1 − ẑmk|k−1

)(
ẑ
m,(i)
k|k−1 − ẑmk|k−1

)′

+ Tk, (34b)

Sk|k−1 =

2nx∑

i=0

W (i)
c

(
x̂
(i)
k|k−1 − x̂k|k−1

)(
ẑ
m,(i)
k|k−1 − ẑmk|k−1

)′
.

(34c)

The innovation is

ek = ymk − ŷmk|k−1, (35)

where ŷmk|k−1 = ẑmk|k−1. The Kalman filter gain matrix is

Kfx,k = Sk|k−1T
−1
k|k−1. (36)

The filtered state estimate and the covariance matrix are

x̂k|k = x̂k|k−1 +Kfx,kek, (37a)
Pk|k = Pk|k−1 −Kfx,kTk|k−1K

′
fx,k, (37b)

and we solve the algebraic equations for the estimates of the
algebraic and adjoint algebraic variables:

G(x̂k|k, ŷk|k, ẑk|k) = 0. (38)

B. Time-update

We introduce ñ = nx +nω and the sets N0 = {0}, Nx =
{1, . . . , 2nx}, and Nω = {2nx + 1, . . . , 2nx + 2nω}. nω is
the dimension of the process noise. The process noise in (1)
is non-additive. We therefore compute 2ñ+1 samples of the
states:

x̂
(i)
k|k = x̂k|k, i ∈ N0 ∪Nω, (39a)

x̂
(i)
k|k = x̂k|k +

√
c̃
(√

Pk|k
)
i
, i = 1, . . . , nx, (39b)

x̂
(i+nx)
k|k = x̂k|k −

√
c̃
(√

Pk|k
)
i
, i = 1, . . . , nx. (39c)

c̃ = α2(ñ+ κ), and we introduce the weights,

W̃ (0)
m =

λ̃

ñ+ λ̃
, (40a)

W̃ (0)
c =

λ̃

ñ+ λ̃
+ (1− α2 + β), (40b)

W̃ (i)
m =

1

2(ñ+ λ̃)
, (40c)

W̃ (i)
c =

1

2(ñ+ λ̃)
, (40d)

for i = 1, . . . , 2ñ. λ̃ = α2(ñ+ κ)− ñ. We solve the DAEs,

x̂
(i)
k (tk) = x̂

(i)
k|k, (41a)

G(x̂
(i)
k (t), ŷ

(i)
k (t), ẑ

(i)
k (t)) = 0, (41b)

dx̂
(i)
k (t) = F (ŷ

(i)
k (t), u(t))dt, (41c)

for i ∈ N0 ∪Nx and t ∈]tk; tk+1]. Furthermore, we solve

x̂
(i)
k (tk) = x̂

(i)
k|k, (42a)

G(x̂
(i)
k (t), ŷ

(i)
k (t), ẑ

(i)
k (t)) = 0, (42b)

dx̂
(i)
k (t) = F (ŷ

(i)
k (t), u(t))dt+ σ(ŷ

(i)
k (t), u(t))dω(i)(t),

(42c)

for i ∈ Nω and t ∈]tk; tk+1]. We sample the increments as

dω(i+2nx)(t) =
(√

c̃ dt
)
ei, (43a)

dω(i+2nx+nω)(t) = −
(√

c̃ dt
)
ei, (43b)

for i = 1, . . . , nω . The i’th element of the vector ei is
one and all other elements are zero. We compute the state
estimate and the covariance matrix by

x̂k+1|k =
2ñ∑

i=0

W̃ (i)
m x̂

(i)
k+1|k, (44a)

Pk+1|k =
2ñ∑

i=0

W̃ (i)
c

(
x̂
(i)
k+1|k − x̂k+1|k

)(
x̂
(i)
k+1|k − x̂k+1|k

)′
,

(44b)

where x̂(i)k+1|k = x̂
(i)
k (tk+1).

C. Numerical solution of the time-update equations
We discretize (41) with Euler’s implicit method and (42)

with the semi-implicit scheme described in Section III. For
each of the Nk time steps, we solve

[
D

(i)
k,n+1(x̂

(i)
k,n+1, ŷ

(i)
k,n+1; x̂

(i)
k,n, ŷ

(i)
k,n, uk)

G(x̂
(i)
k,n+1, ŷ

(i)
k,n+1, ẑ

(i)
k,n+1)

]
= 0, (45)

where D(i)
k,n+1 = D

(i)
k,n+1(x̂

(i)
k,n+1, ŷ

(i)
k,n+1; x̂

(i)
k,n, ŷ

(i)
k,n, uk) is

D
(i)
k,n+1 = x̂

(i)
k,n+1 − F (ŷ

(i)
k,n+1, uk)∆tk,n − x̂(i)k,n, (46)

for i ∈ N0 ∪Nx and

D
(i)
k,n+1 = x̂

(i)
k,n+1 − F (ŷ

(i)
k,n+1, uk)∆tk,n

− σ(ŷ
(i)
k,n, uk)∆ω

(i)
k,n − x̂

(i)
k,n, (47)

for i ∈ Nω . The increments are

∆ω
(i+2nx)
k,n =

(√
c̃∆tk,n

)
ei, (48a)

∆ω
(i+2nx+nω)
k,n = −

(√
c̃∆tk,n

)
ei, (48b)

for i = 1, . . . , nω .

VI. THE PARTICLE FILTER

We sample Np particles, x̂(i)0|−1, from the distribution of
the initial states, i.e. from N(x0, P0). Next, we solve the
algebraic equations for each of the particles:

G(x̂
(i)
0|−1, ŷ

(i)
0|−1, ẑ

(i)
0|−1) = 0. (49)



A. Measurement-update

For each particle, we compute the output,

ẑ
m,(i)
k|k−1 = H(ŷ

(i)
k|k−1), (50)

and the difference between the output and the measurement:

e
(i)
k = ymk − ẑm,(i)

k|k−1. (51)

We compute the relative likelihood that ymk is observed if
the particle output, ẑm,(i)

k|k−1, is true:

q̃(i) =
1√

(2π)nm |Tk|
exp

(
−1

2

(
e
(i)
k

)′
T−1k e

(i)
k

)
. (52)

nm is the dimension of the output, and |Tk| is the determinant
of Tk. We normalize the relative likelihoods:

q(i) =
q̃(i)

∑Np

j=1 q̃
(j)
. (53)

We use systematic resampling [45], [46]. We sample a single
(scalar) uniformly distributed number, p̃ ∼ U(]0, 1]). Next
we compute:

p(i) = ((i− 1) + p̃)/Np, i = 1, . . . , Np. (54)

The resampled particles, {x̂(i)k|k}
Np

i=1, contain m(i) copies of

x̂
(i)
k|k−1 where m(i) is the number of indices, l, for which
p(l) is in the interval ]

∑i−1
j=1 q

(j);
∑i

j=1 q
(j)]. We compute

the state estimate and the covariance matrix by

x̂k|k = Wm

Np∑

i=1

x̂
(i)
k|k, (55a)

Pk|k = Wc

Np∑

i=1

(
x̂
(i)
k|k − x̂k|k

)(
x̂
(i)
k|k − x̂k|k

)′
, (55b)

where Wm = 1/Np and Wc = 1/(Np − 1). Next, we solve
the algebraic equations:

G(x̂k|k, ŷk|k, ẑk|k) = 0. (56)

B. Time-update

For each particle, we solve the stochastic DAE,

x̂
(i)
k (tk) = x̂

(i)
k|k, (57a)

G(x̂
(i)
k (t), ŷ

(i)
k (t), ẑ

(i)
k (t)) = 0, (57b)

dx̂
(i)
k (t) = F (ŷ

(i)
k (t), u(t))dt+ σ(ŷ

(i)
k (t), u(t))dω(t),

(57c)

for t ∈]tk; tk+1] as we described in Section III. The one-step
ahead predictions for the i’th particle are x̂(i)k+1|k = x̂

(i)
k,Nk

,

ŷ
(i)
k+1|k = ŷ

(i)
k,Nk

, and ẑ(i)k+1|k = ẑ
(i)
k,Nk

.

VII. THE ENSEMBLE KALMAN FILTER

We sample Np particles, x̂(i)0|−1, from N(x0, P0), and solve
the algebraic equations for each particle:

G(x̂
(i)
0|−1, ŷ

(i)
0|−1, ẑ

(i)
0|−1) = 0. (58)

A. Measurement-update
We compute the output for each particle:

ẑ
m,(i)
k|k−1 = H(ŷ

(i)
k|k−1). (59)

We compute the state and output means, the covariance, and
the cross-covariance:

x̂k|k−1 = Wm

Np∑

i=1

x̂
(i)
k|k−1, (60a)

ẑmk|k−1 = Wm

Np∑

i=1

ẑ
m,(i)
k|k−1, (60b)

Tk|k−1 = Wc

Np∑

i=1

(
ẑ
m,(i)
k|k−1 − ẑmk|k−1

)(
ẑ
m,(i)
k|k−1 − ẑmk|k−1

)′

+ Tk, (60c)

Sk|k−1 = Wc

Np∑

i=1

(
x̂
(i)
k|k−1 − x̂k|k−1

)(
ẑ
m,(i)
k|k−1 − ẑmk|k−1

)′
.

(60d)

Wm = 1/Np and Wc = 1/(Np − 1). We sample measure-
ments for each particle:

ŷ
m,(i)
k|k−1 = ẑ

m,(i)
k|k−1 + v

(i)
k . (61)

Each of the measurement noise samples, v(i)k , is drawn from
N(0, Tk). The innovation for the i’th particle is

e
(i)
k = ymk − ŷm,(i)

k|k−1, (62)

and the Kalman filter gain matrix is

Kfx,k = Sk|k−1T
−1
k|k−1. (63)

For each particle, we update the states:

x̂
(i)
k|k = x̂

(i)
k|k−1 +Kfx,ke

(i)
k . (64)

The state estimate and covariance matrix are

x̂k|k = Wm

Np∑

i=1

x̂
(i)
k|k, (65a)

Pk|k = Wc

Np∑

i=1

(
x̂
(i)
k|k − x̂k|k

)(
x̂
(i)
k|k − x̂k|k

)′
, (65b)

and we compute the estimates of the algebraic and adjoint
algebraic variables by solving the algebraic equations,

G(x̂k|k, ŷk|k, ẑk|k) = 0. (66)

B. Time-update
The time-update in the EnKF is identical to the time-

update in the PF. We solve the stochastic DAEs,

x̂
(i)
k (tk) = x̂

(i)
k|k, (67a)

G(x̂
(i)
k (t), ŷ

(i)
k (t), ẑ

(i)
k (t)) = 0, (67b)

dx̂
(i)
k (t) = F (ŷ

(i)
k (t), u(t))dt+ σ(ŷ

(i)
k (t), u(t))dω(t),

(67c)

for i = 1, . . . , Np and t ∈]tk; tk+1] with the approach
described in Section III. The one-step ahead predictions are
x̂
(i)
k+1|k = x̂

(i)
k,Nk

, ŷ(i)k+1|k = ŷ
(i)
k,Nk

, and ẑ(i)k+1|k = ẑ
(i)
k,Nk

.



VIII. THE DYNAMIC UV FLASH SEPARATION PROCESS

We consider the separation of a mixture of NC compo-
nents. The mixture is separated into a vapor phase (v) and
a liquid phase (l). The two phases are in thermodynamic
equilibrium. The separator is supplied by a feed stream. The
vapor and liquid phases exit the separator from two separate
streams. Furthermore, the unit is either heated or cooled.
We model the process with 1) vapor-liquid equilibrium
conditions and 2) mass and energy conservation equations.
We use an open-source thermodynamic software, ThermoLib
[47], [48], to evaluate thermodynamic functions based on the
Peng-Robinson equation of state.

A. Vapor-liquid equilibrium

The UV flash problem is a mathematical statement of the
second law of thermodynamics, i.e. that the entropy of a
closed system in equilibrium is maximal. The internal energy,
U , the volume, V , and the total composition (in moles), n,
are specified in the UV flash. The equilibrium temperature,
T , pressure, P , and vapor-liquid composition (in moles), nv

and nl, are the solution to the optimization problem,

max
T,P,nv,nl

S = Sv(T, P, nv) + Sl(T, P, nl), (68a)

s.t. Uv(T, P, nv) + U l(T, P, nl) = U, (68b)

V v(T, P, nv) + V l(T, P, nl) = V, (68c)

nvi + nli = ni, i = 1, . . . , NC . (68d)

The UV flash is also called the UVn flash or the isoenergetic-
isochoric (constant energy - constant volume) flash. The
solution to (68) is characterized by the first-order optimality
conditions which the algebraic equations (1a) represent. The
optimization variables are the algebraic variables, and the
Lagrange multipliers associated with (68) are the adjoint
algebraic variables. The state variables are U and n.

B. Conservation of mass and energy

The internal energy, U , and the total mixture composition,
n, are determined by the conservation equations,

U̇(t) = Hv
F (t) +H l

F (t)−HV (t)−HL(t) +Q(t), (69a)

ṅi(t) = fvF,i(t) + f lF,i(t)− vi(t)− li(t), i = 1, . . . , NC .
(69b)

Hv
F and H l

F are the enthalpies, and fvF,i and f lF,i are the
molar flow rates, of the vapor and liquid phases of the
feed stream. Similarly, HV and HL are the enthalpies, and
vi and li are the flow rates, of the vapor stream and the
liquid stream. Q refers to heating if it is positive and to
cooling if it is negative. The inputs to the system, e.g. the
feed stream and the vapor-liquid output streams, can be
uncertain. Similarly, there can be uncertainty related to the
thermodynamic parameters. That is what we model with the
stochastic part of the differential equations (1b) [49].

TABLE I
ACCURACY AND COMPUTATION TIMES FOR A UV FLASH PROCESS WITH

6 DIFFERENTIAL EQUATIONS AND 19 ALGEBRAIC EQUATIONS.

EKF UKF PF EnKF
Avg. NRMSD 0.0216 0.0166 0.0161 0.0199
Avg. meas. upd. CPU (ms) 1.27 12.74 2.13 3.22
Avg. time upd. CPU (ms) 8.44 161.81 773.75 805.78

IX. NUMERICAL EXAMPLE

We consider the separation of a hydrocarbon mixture in
a 0.2 m3 separator. The mixture contains 60% C1, 8% C2,
5% C3, 25% n-C7, and 2% CO2. We estimate the states
over a 72 h period with the EKF, UKF, PF, and EnKF. We
use the parameter values α = 0.1 and β = 2 in the UKF.
We sample 100 particles in both the PF and the EnKF. We
measure temperature and pressure every 30 min. All filters
take Nk = 6 time steps of 5 min between the measurements.
The separator is cooled with Q = −9 MJ/h for t ∈ [0 h; 24 h]
and with Q = −4 MJ/h for the remaining 48 h. The flow
rates of the feed, the vapor stream, and the liquid stream
are 1000 mol/h, 400 mol/h, and 600 mol/h, respectively.
The temperature and pressure measurement noises have
standard deviations of 10 K and 10−1/2 ≈ 0.3 MPa. We
consider a constant diffusion coefficient, i.e. σ(y(t), u(t)) =
σ = diag([σU ;σC1

;σC2
;σC3

;σn-C7
;σCO2

]). The diagonal
elements are σU = 1 MJ, σC1 = σC2 = σn-C7 = 1 mol, and
σC3 = σCO2 = 0.1 mol. x0 is a steady-state of the process
(without process noise), and P0 = σσ′.

Fig. 1 shows the state estimates of the four filters together
with the true states (blue). The estimates of all four filters
are close to the true states. The root-mean-square deviation
(RMSD) of the i’th state variable is

RMSDi =

(
1

N + 1

N∑

k=0

(x̂i,k|k − xi,k)2

)1/2

, (70)

where N = 144 is the number of sampling intervals. The
state variables have different units and orders of magnitude.
We therefore compute the normalized RMSD (NRMSD). It
is NRMSDi = RMSDi/x̄i, where x̄i is the average of the
true states, xi,k, over the index k. Table I shows the average
NRMSD over the state variables for each filter together with
the average computation times for a single measurement-
update and time-update. The EKF is significantly faster than
the other filters while the PF estimates have the lowest
average NRMSD. Fig. 2 illustrates that the state estimation
algorithms can be used for soft sensing of the vapor-liquid
compositions. It shows the PF estimates of the total mole
fractions, the vapor-liquid mole fractions, and the vapor
fraction of the mixture.

X. CONCLUSIONS

We describe four nonlinear filters for state estimation of
UV flash processes, i.e. the EKF, UKF, PF, and EnKF.
We model the UV flash processes with stochastic DAEs
in a semi-explicit index-1 form. We describe a model of a
UV flash separation process and compare the accuracy and
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Fig. 1. Filtered estimates of total composition, internal energy, temperature, and pressure.
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Fig. 2. PF estimates of the total mole fractions, vapor mole fractions, liquid mole fractions, and the vapor fraction. The estimates are based on the model
and measurements of temperature and pressure. We omit the graphs of the C3 and n-C7 vapor mole fractions because they are below 1%.

efficiency of the filters with a numerical example. The PF is
slightly more accurate than the other filters in terms of the
average NRMSD of the estimates. However, all four filters
provide estimates that are very close to the true states of
the process. The EKF is significantly faster than the other
filters. Finally, we demonstrate that the algorithms can be
used for soft sensing of vapor-liquid compositions based on
temperature and pressure measurements.
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Introduction

The objective of production optimization is to maximize a financial measure of the long-term production
from oil and gas reservoirs based on a model of the subsurface reservoir flow. Production optimization
can be applied to both traditional recovery processes, e.g. waterflooding, and to enhanced oil recovery
processes, e.g. chemical, biological, and thermal. Furthermore, production optimization is central to
closed-loop reservoir management (Jansen et al., 2009) where an optimized production strategy is re-
peatedly updated when new data becomes available. An accurate subsurface reservoir flow model is a
key component in production optimization because unmodeled physical phenomena can affect the utility
of the optimized production strategy significantly.

In this work, we consider isothermal and compositional models of the subsurface reservoir flow, i.e.
models of recovery processes where the temperature is constant. Such models combine two main prin-
ciples: 1) conservation of mass and 2) phase equilibrium. The phase equilibrium conditions are derived
from the second law of thermodynamics which states that the entropy of a closed system in equilib-
rium is maximal. However, isothermal systems are not closed because they exchange energy with their
surroundings. In order to derive the phase equilibrium conditions, the condition of maximal entropy is
applied to the combination of the isothermal system and its surroundings which constitutes a closed sys-
tem. That condition is equivalent to a condition of minimal Helmholtz energy of the isothermal system
alone (Callen, 1985) which is the phase equilibrium condition for isothermal systems. We formulate
the phase equilibrium problem as a minimization problem where the objective function is the Helmholtz
energy (Michelsen, 1999). It is called the VT (or VTn) flash optimization problem because volume,
V , temperature, T , and the total amount of moles, n, are specified parameters in the problem. The VT
flash optimization problem is part of the model and is thus an inner optimization problem in the outer
production optimization problem. The solution to the VT flash optimization problem is the equilibrium
pressure and phase compositions that minimize Helmholtz energy while satisfying the constraints on the
volume and the total amount of moles. The specified total amount of moles, n, are given by the conser-
vation of mass. It is common to use the equality of fugacities as a condition for phase equilibrium in the
reservoir simulation and optimization literature (Garipov et al., 2018; Zaydullin et al., 2014; Kourounis
et al., 2014). That condition is derived from the PT flash optimization problem in which Gibbs energy
is minimized, and the temperature, pressure, and total amount of moles are specified parameters. In this
paper, we discuss the relation between the VT flash and the equality of fugacities.

Production optimization is often applied to two-phase flow models or polymer flooding (Lei et al., 2012;
Zhang and Li, 2007). However, Kourounis et al. (2014) use a single-shooting algorithm for produc-
tion optimization of an isothermal and compositional model in which the phase equilibrium condition is
the equality of fugacities. The single-shooting algorithm is often used to solve production optimization
problems (Bukshtynov et al., 2015; Forouzanfar et al., 2013; Capolei et al., 2012) although alternative al-
gorithms such as multiple-shooting (Codas et al., 2017; Capolei and Jørgensen, 2012), simultaneous col-
location (Heirung et al., 2011), gradient-free methods (Zhao et al., 2016), and artificial intelligence meth-
ods (Onwunalu and Durlofsky, 2010; Saputelli et al., 2002) are also used. The VT flash was previously
considered by Polívka and Mikyška (2014) in the context of isothermal and compositional subsurface
reservoir flow, and it has also been used to model several other types of processes (Santori and Luberti,
2016; Kou et al., 2016; Jindrová and Mikyška, 2015b; Castier and Tavares, 2005; Cabral et al., 2005;
Benjelloun-Dabaghi et al., 2002; Espósito et al., 2000). Furthermore, algorithms have been developed
for efficient solution of the VT flash (Jindrová and Mikyška, 2015a, 2013; Mikyška and Firoozabadi,
2011), and for simulation, state estimation, and dynamic optimization of phase equilibrium processes
(Ritschel and Jørgensen, 2018b,c; Ritschel et al., 2017a) including VT flash processes. Ritschel and
Jørgensen (2018d) apply production optimization to a model of thermal and compositional oil recovery.
However, production optimization has not yet been applied to isothermal and compositional models that
are based on the VT flash.

In this work, we use the gradient-based single-shooting algorithm described by Ritschel et al. (2017a)
for production optimization of isothermal and compositional models based on the VT flash. We describe
the isothermal and compositional model in terms of the VT flash optimization problem and the mass
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conservation equations. We use the open-source thermodynamic software ThermoLib to evaluate ther-
modynamic properties based on the Peng-Robinson equation of state. ThermoLib also provides first and
second order derivatives which are necessary in the single-shooting algorithm. We discretize the mass
conservation equations with a finite volume method, and we demonstrate that the resulting model is in
a semi-explicit differential-algebraic form. We implement the single-shooting algorithm in C/C++ and
present a numerical example of optimized isothermal and compositional waterflooding.

Model

In this section, we present a thermodynamically rigorous model of isothermal and compositional oil
reservoir flow during a waterflooding process. The model consists of 1) mass conservation equations
which are partial differential equations and 2) phase equilibrium conditions that are derived from an
optimization problem based on the second law of thermodynamics. We discretize the mass conservation
equations with the finite volume method and enforce the condition of phase equilibrium in each grid
cell of the discretized reservoir. The model is an adaptation of the thermal and compositional model
described by Ritschel and Jørgensen (2018d) to isothermal waterflooding processes. The condition of
constant temperature requires that the surroundings have infinite heat capacity such that their temper-
ature, T , remains fixed. It also requires that all involved thermal conductivities are infinite such that
energy is transferred instantly from any part of the reservoir to the surroundings until they are in thermal
equilibrium.

Phase equilibrium

The fluid consists of a water phase (w), an oil phase (o), and a gas phase (g). The water phase is not
miscible with the oil and the gas phase. The oil phase and the gas phase both contain NC chemical
components. All fluid phases are in thermal and mechanical equilibrium with each other and with
the rock (r), i.e. T α = T and Pα = P for α ∈ {w,o,g,r}, and the oil and gas phase are in chemical
equilibrium. Because the recovery process is isothermal, the system consisting of the fluid and the
rock in the grid cell is not closed. However, the combined system of the fluid and the rock in the grid
cell and their surroundings is closed. The surroundings of the grid cell consist of other grid cells and
the surroundings of the reservoir. The second law of thermodynamics states that the entropy of the
combined system is maximal when it is in equilibrium. That condition is equivalent to a condition of
minimal Helmholtz energy of the fluid and the rock in the grid cell (Callen, 1985), i.e. not including the
surroundings. The phase equilibrium conditions are derived from the VT flash optimization problem:

min
P,nw,no,ng

Aw +Ao +Ag +Ar, (1a)

subject to V w +V o +V g +V r =V, (1b)
nw = nw, (1c)

no
k +ng

k = nk, k = 1, . . . ,NC. (1d)

nw is the moles of water, and no and ng are vectors of mole numbers in the oil and gas phase. Aα =
Aα(T,P,nα) and V α =V α(T,P,nα) are the Helmholtz energy and the volume of phase α ∈ {w,o,g,r},
and V is the volume of the grid cell. nw and n =

[
n1; · · · ;nNC

]
are the total amount of moles of water and

the chemical components. They are given by the mass conservation equations, and they are parameters in
the optimization problem (1). The solution to (1) is the equilibrium pressure, P, and phase compositions,
nα for α ∈ {w,o,g}, that minimize Helmholtz energy while satisfying the volume constraint (1b) and
the mole balance constraints (1c)-(1d). The phase equilibrium conditions are the first-order optimality
conditions which are a set of algebraic equations because (1) does not contain inequality constraints
(Nocedal and Wright, 2006).

Special case (incompressible rock): If the rock is incompressible, it can be considered part of the
surroundings of the fluid in the grid cell in the derivation of the condition of minimal Helmholtz energy.
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In that case, the relevant VT flash optimization problem is

min
P,nw,no,ng

Aw +Ao +Ag, (2a)

subject to V w +V o +V g =V f , (2b)
nw = nw, (2c)

no
k +ng

k = nk, k = 1, . . . ,NC, (2d)

where V f =V −V r is the volume that is available for fluid in the cell.

Mass conservation equations

The fluid flow is advective. The mass conservation equations are

∂tCw =−∇ ·Nw +Qw, (3a)
∂tCk =−∇ ·Nk +Qk, k = 1, . . . ,NC, (3b)

where Cw and Ck are the molar concentrations of water and the k’th component, and Nw is the molar flux
of the water phase. The molar flux of the k’th component is

Nk = xkNo + ykNg, k = 1, . . . ,NC, (4)

where Nα is the molar flux of phase α ∈ {o,g}, xk is the oil mole fraction, and yk is the gas mole fraction.
The source terms are

Qw = Qw,inj−Qw,prod, (5a)

Qk =−
(
xkQo,prod + ykQg,prod) , k = 1, . . . ,NC. (5b)

The injection/production terms are zero in cells that are not perforated by a well. The molar injection
rate of water is Qw,inj and the fluid phases are produced at molar rates of Qα,prod.

Darcy’s law, relative permeability, and viscosity

The molar flux of phase α ∈ {w,o,g} is Nα = ραuα where ρα = ρα(T,P,nα) is the phase density, and
uα is the volumetric phase flux which is given by Darcy’s law:

uα =− kα
r

µα K(∇P−ραg∇z) , α ∈ {w,o,g}. (6)

kα
r is the relative permeability, µα is the viscosity, and K is a permeability tensor. ∇P is the spatial

gradient of P, g is the gravity acceleration, and ∇z is the spatial gradient of the depth, z. We use Stone’s
model II (Delshad and Pope, 1989) to model the relative permeabilities which are functions of the phase
saturations, i.e. kα

r = kα
r (Ŝ

α) where Ŝα = V α/(V w +V o +V g). Consequently, the relative permeability
of phase α ∈ {w,o,g} is a function of temperature, pressure, and all fluid phase compositions:

kα
r = kα

r (T,P,n
w,no,ng), α ∈ {w,o,g}. (7)

We use the model of phase viscosity by Lohrenz et al. (1964) who describe viscosity as a function of the
temperature, pressure, and phase composition:

µα = µα(T,P,nα), α ∈ {w,o,g}. (8)

Well terms

The injection/production wells are perforated in certain cells in the discrete grid. The molar phase
injection/production rates are

Qw,inj =
1
V

WIρw kw
r

µw

(
Pbhp−P

)
, (9a)

Qα,prod =
1
V

WIρα kα
r

µα

(
P−Pbhp) , α ∈ {w,o,g}, (9b)
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where V is the volume of the grid cell, WI is the well index, and Pbhp is the well bottom-hole pressure.

Thermodynamics

We use the thermodynamic software library ThermoLib (Ritschel et al., 2017b, 2016) to evaluate ther-
modynamic functions of the fluid phases. ThermoLib provides routines for evaluating the enthalpy,
entropy, and volume:

Hα = Hα(T,P,nα), α ∈ {w,o,g}, (10a)
Sα = Sα(T,P,nα), α ∈ {w,o,g}, (10b)
V α =V α(T,P,nα), α ∈ {w,o,g}. (10c)

Other thermodynamic functions are given by the fundamental thermodynamic relations, Uα = Hα −
PV α , Gα = Hα −T Sα , and Aα = Uα −T Sα . ThermoLib uses data and correlations from the DIPPR
database (Thomson, 1996) together with cubic equations of state, e.g. the Soave-Redlich-Kwong or
Peng-Robinson equations of state. The phase equilibrium conditions contain first-order derivatives of
thermodynamic functions with respect to pressure, P, and the phase composition, nα . In this work,
we use the gradient-based dynamic optimization algorithm described by Ritschel et al. (2017a) which
requires the Jacobian matrix of the phase equilibrium conditions. That matrix will contain second-
order derivatives of thermodynamic properties with respect to pressure and phase compositions. Such
derivatives are provided by ThermoLib based on analytical expressions described by Ritschel et al.
(2016). We use an equation of state based on (1/V r)(∂V r/∂P) = cr for the rock. We assume that the
compressibility of the rock, cr, is constant.

Discretization

We use the same discretization scheme as Ritschel and Jørgensen (2018d) for the mass conservation
equations. They use the finite volume method and a two-point flux approximation. The mass conserva-
tion equations (3) are in the form ∂tC = −∇ ·N+Q. The discretized reservoir consists of a set of grid
cells, Ωi for i ∈N where N is the set of indices of the grid cells. In the finite volume method, we
integrate the mass conservation equations over each grid cell:

∂t

∫

Ωi

C dV =−
∫

Ωi

∇ ·NdV +
∫

Ωi

QdV, i ∈N . (11)

We apply Gauss’ divergence theorem to the flux term, and split up the resulting surface integral over the
faces of the grid cell:

∫

Ωi

∇ ·NdV =
∫

∂Ωi

N ·ndA = ∑
j∈N (i)

∫

γi j

N ·ndA, i ∈N . (12)

∂Ωi is the boundary of Ωi, and γi j is the shared faced between the i’th and j’th grid cell. n is the outward
normal vector, and N (i) contains the indices of the neighboring cells of the i’th grid cell, i.e. cells that
share a face with the i’th grid cell. The left-hand side integrals in (11) can be evaluated exactly:

nw,i =
∫

Ωi

Cw dV, i ∈N , (13a)

nk,i =
∫

Ωi

Ck dV, i ∈N . (13b)

We use quadrature to approximate the remaining integrals:
∫

γi j

N ·ndA≈ (AN ·n)i j, i ∈N , j ∈N (i), (14a)
∫

Ωi

QdV ≈ (QV )i, i ∈N . (14b)
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The resulting differential equations are

ṅw,i =− ∑
j∈N (i)

(ANw ·n)i j +(QwV )i, i ∈N , (15a)

ṅk,i =− ∑
j∈N (i)

(ANk ·n)i j +(QkV )i, i ∈N . (15b)

We use the two-point flux approximation described by Lie (2014) to approximate the fluxes on the cell
faces in (15).

Differential-algebraic equations

The state variables related to the i’th grid cell are xi =
[
nw;n

]
i ∈ R1+NC , the algebraic variables are yi =[

P;nw;no;ng]
i ∈ R2+2NC , the manipulated input variable is ui = Pbhp

i ∈ R, and there are no disturbance
variables, di, in the model. Consequently, the VT flash optimization problem (1) is in the form

min
yi

f (yi), (16a)

subject to g(yi) = xi, (16b)
h(yi) = 0. (16c)

f (yi) is the Helmholtz energy of the fluid and the rock in (1a), (16b) is the mole balance constraints (1c)-
(1d), and (16c) is the volume balance constraint (1b). The first-order optimality conditions of (16) are
a set of algebraic equations, G(xi,yi,zi) = 0, where zi ∈ R2+NC are Lagrange multipliers. The left-hand
side of the discretized mass conservation equations (15) contains derivatives of the state variables, xi,
while both the fluxes and the well terms on the right-hand side depend only on the manipulated inputs, ui,
and the algebraic variables in the cell itself, yi, and in neighboring cells, {y j} j∈N (i) . Consequently, the
discretized mass conservation equations (15) are in the form ẋi(t) = F(yi(t),{y j(t)} j∈N (i) ,ui(t),di(t)),
and the entire discretized reservoir flow model is in the form

G(x(t),y(t),z(t)) = 0, (17a)
ẋ(t) = F(y(t),u(t),d(t)). (17b)

Relation to equality of fugacities

It is common, in compositional models of oil reservoir flow, to formulate the phase equilibrium condi-
tions as the equality of fugacities:

f o
k = f g

k , k = 1, . . . ,NC. (18)

The fugacity of component k in phase α ∈ {o,g}, f α
k = f α

k (T,P,nα), is derived from the partial deriva-
tives of Gibbs energy, Gα = Gα(T,P,nα), and the ideal gas Gibbs energy, Gig,α = Gig,α(T,P,nα), with
respect to nα

k (Ritschel and Jørgensen, 2018a, 2017). In order to relate the VT flash optimization problem
(1) to the condition of equality of fugacities (18), we first describe the relation between the VT and the
PT flash optimization problems. The VT flash optimization problem is equivalent to the combination of
a PT flash optimization problem and a volume constraint. The PT flash optimization problem is

min
nw,no,ng

Gw +Go +Gg +Gr, (19a)

subject to nw = nw, (19b)

no
k +ng

k = nk, k = 1, . . . ,NC. (19c)

The PT flash (19) is different from the VT flash (1) because 1) Gibbs energy is minimized 2) there is no
volume constraint, and 3) pressure is not a decision variable. The volume constraint is

V w +V o +V g +V r =V. (20)
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The equilibrium pressure, P, and phase compositions, nα for α ∈ {w,o,g}, satisfy the first-order op-
timality conditions of (19) as well as the volume balance constraint (20). We prove that the VT flash
optimization problem (1) is equivalent to the combination of (19) and (20) in the appendix. The volume
constraint (20) is often reformulated as a saturation constraint. The Gibbs energy of the rock, Gr, in
(19a) is independent of the decision variables. Therefore, it does not change the solution to (19) and can
be removed. Furthermore, the constraint (19b) can be eliminated in which case the Gibbs energy of the
water phase, Gw, in (19a) is also independent of the decision variables and can also be removed. The
resulting optimization problem is

min
no,ng

Go +Gg, (21a)

subject to no
k +ng

k = nk, k = 1, . . . ,NC. (21b)

The condition of equal fugacities (18) can be derived from the first-order optimality conditions of (21)
(Ritschel and Jørgensen, 2018a, 2017). In conclusion, the VT flash optimization problem (1) is equiv-
alent to the combination of the condition of equal fugacities (18), the volume constraint (20), and the
eliminated water mole balance constraint, nw = nw.

Production Optimization

The production optimization problem is in the form

min
[x(t);y(t);z(t)]

t f
t0
,{uk}N−1

k=0

φ =
∫ t f

t0
Φ(y(t),u(t),d(t))dt, (22a)

subject to

x(t0) = x̂0, (22b)
G(x(t),y(t),z(t)) = 0, t ∈ [t0, t f ], (22c)
ẋ(t) = F(y(t),u(t),d(t)), t ∈ [t0, t f ], (22d)
u(t) = uk, t ∈ [tk, tk+1[, k = 0, . . . ,N−1, (22e)

d(t) = d̂k, t ∈ [tk, tk+1[, k = 0, . . . ,N−1, (22f)

{uk}N−1
k=0 ∈U . (22g)

The decision variables are the state variables, x(t), the algebraic variables, y(t), and the adjoint algebraic
variables, z(t), as well as the manipulated inputs, {uk}N−1

k=0 , where N is the number of control intervals.
The objective is to optimize a financial measure, e.g. total oil production or net present value, over the
time interval [t0, t f ]. The financial measure is represented by the objective function, φ , in (22a). x(t),
y(t), and z(t) must satisfy the phase equilibrium conditions (22c) and the discretized mass conservation
equations (22d) with the initial condition (22b) where x̂0 is an estimated initial state. (22e)-(22f) are
zero-order hold parametrizations of the manipulated inputs and the disturbance variables, and {d̂k}N−1

k=0
are predictions of the disturbance variables. (22g) represents constraints on the manipulated inputs.
x(t), y(t), and z(t) are dependent decision variables because they are determined by the model equations
(22b)-(22d) when x̂0, {uk}N−1

k=0 , and {d̂k}N−1
k=0 are given.

We solve the production optimization problem (22) with a gradient-based dynamic optimization algo-
rithm described by Ritschel et al. (2017a). The algorithm uses a single-shooting method together with
an adjoint method for computing gradients. The differential equations (22d) are discretized with Euler’s
implicit method, and the discretized differential equations are solved simultaneously with the algebraic
equations (22c) using Newton’s method. The algorithm uses a simplified version of the time step selec-
tion algorithm described by Völcker et al. (2010).

We implement the dynamic optimization algorithm in C++, and we use the open-source software library
DUNE for solving linear systems with iterative methods (Blatt and Bastian, 2007) and for grid manage-
ment (Bastian et al., 2008a,b). We use a GMRES method with a block ILU(1) preconditioner to solve
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Figure 1 Permeability field [mD]. The white circles indicate the locations of the injectors, and the white
X indicates the location of the producer.

the linear systems of equations, and the thermodynamic functions are evaluated with C routines from
ThermoLib (Ritschel et al., 2017b). The single-shooting algorithm requires the solution of a numerical
optimization problem which we solve with an SLQP algorithm (Nocedal and Wright, 2006, Chap. 18)
that is implemented in the commercial optimization software KNITRO 10.2. We use a 64-bit worksta-
tion with 15.6 GB memory and four Intel Core i7 3.60 GHz cores to produce the numerical results in the
following section. Each core has 64 KB of level 1 cache and 256 KB of level 2 cache. The workstation
has a shared level 3 cache of 8192 KB.

Numerical Example

We consider a numerical example of optimized waterflooding of a 110×110×10 m square reservoir at
50◦C. We discretize the reservoir with a rectangular grid consisting of 11×11×1 cells. The objective
of the production optimization problem is to maximize the total oil recovery over a period of three years.
The wells are placed in a five spot pattern which is shown together with the heterogeneous permeability
field in Fig. 1. The porosity is 0.25, i.e. the porosity field is homogeneous. There are 12 control intervals
per year, i.e. 36 control intervals in total. For simplicity, we consider the rock to be incompressible. The
injector bottom-hole pressures (BHPs) are constrained to the interval [11.0 MPa,12.0 MPa], and the
producer BHP is constrained to the interval [8.5 MPa,11.0 MPa].

Fig. 2 shows the optimized injector and producer BHPs together with the corresponding cumulative
recovery of water, oil, and gas. For comparison, it also shows the cumulative oil recovery for a reference
strategy where the injectors are operated at maximal BHP, and the producer is operated at minimal BHP.
Fig. 3 shows the pressure and the oil and gas saturations during the three years of production. The area
between injector 1 and the producer is highly permeable. Therefore, injector 1 is operated at the minimal
BHP for the first two years. There is both a highly permeable area and an area with low permeability
between injector 2 and the producer. Therefore, injector 2 is only operated at the maximal BHP during
part of the production period. Injector 3 and 4 are located in areas with low permeability, and they are
operated at the maximal BHP during the entire production period. The total oil recovery is 682 m3 with
the optimized strategy. For comparison, the total oil recovery is 521 m3 with the reference strategy.

Conclusions

In this work, we consider production optimization of a thermodynamically rigorous isothermal and com-
positional subsurface reservoir flow model that is based on the VT flash. We formulate the VT flash as
a minimization problem where the objective function is the Helmholtz energy. We describe the relation
between the VT flash and the condition of equal fugacities which is often used as the phase equilibrium
condition in models of subsurface reservoir flow. We show that the isothermal and compositional model
is in a semi-explicit index-1 differential-algebraic form, and we use the gradient-based single-shooting
algorithm by Ritschel et al. (2017a) to solve production optimization problems. We implement the al-
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gorithm in C/C++ using the open-source software packages DUNE and ThermoLib, and we present a
numerical example of optimized isothermal waterflooding.
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Appendix: Proof of relation between the VT flash and the PT flash

In this appendix, we show that the VT flash optimization problem (1) is equivalent to the combination
of the PT flash optimization problem (19) and the volume balance (20). First, we present the optimality
conditions for the VT flash. Next, we present the optimality conditions for the PT flash. Finally, we
show the equivalence.

First-order optimality conditions for the VT flash optimization problem

In order to derive the first-order optimality conditions for the VT flash optimization problem (1), we
introduce the Lagrangian (Nocedal and Wright, 2006),

L VT = Aw +Ao +Ag +Ar−λ (V w +V o +V g +V r−V )− µ̄w (nw−nw)−
NC

∑
k=1

µ̄k
(
no

k +ng
k−nk

)
. (23)

λ , µ̄w, and µ̄k are Lagrange multipliers. The first-order optimality conditions are the stationarity condi-
tions,

∂L VT

∂P
=

∂Aw

∂P
+

∂Ao

∂P
+

∂Ag

∂P
+

∂Ar

∂P
−λ

(
∂V w

∂P
+

∂V o

∂P
+

∂V g

∂P
+

∂V r

∂P

)
= 0, (24a)

∂L VT

∂nw =
∂Aw

∂nw −λ
∂V w

∂nw − µ̄w = 0, (24b)

∂L VT

∂no
k

=
∂Ao

∂no
k
−λ

∂V o

∂no
k
− µ̄k = 0, k = 1, . . . ,NC, (24c)

∂L VT

∂ng
k

=
∂Ag

∂ng
k
−λ

∂V g

∂ng
k
− µ̄k = 0, k = 1, . . . ,NC, (24d)

and the feasibility conditions,

V w +V o +V g +V r =V, (24e)
nw = nw, (24f)

no
k +ng

k = nk, k = 1, . . . ,NC. (24g)

First-order optimality conditions for the PT flash optimization problem

We introduce the Lagrangian associated with the PT flash optimization problem (19),

L PT = Gw +Go +Gg +Gr−µw (nw−nw)−
NC

∑
k=1

µk
(
no

k +ng
k−nk

)
. (25)

ECMOR XVI 2018 – 16th European Conference on the Mathematics of Oil Recovery
3–6 September 2018, Barcelona, Spain



µw and µk are Lagrange multipliers. The first-order optimality conditions are the stationarity conditions,

∂L PT

∂nw =
∂Gw

∂nw −µw = 0, (26a)

∂L PT

∂no
k

=
∂Go

∂no
k
−µk = 0, k = 1, . . . ,NC, (26b)

∂L PT

∂ng
k

=
∂Gg

∂ng
k
−µk = 0, k = 1, . . . ,NC, (26c)

and the feasibility conditions,

nw = nw, (26d)

no
k +ng

k = nk, k = 1, . . . ,NC. (26e)

Equivalence

In order to show equivalence between the VT flash optimization problem (1) and the combination of the
PT flash optimization problem (19) and the volume constraint (1), we need to show that (24) is equivalent
to the combination of (26) and the volume balance (20). Clearly, the feasibility conditions (24e)-(24g)
are equivalent to the feasibility conditions (26d)-(26e) combined with the volume balance (20). We use
the fundamental thermodynamic relation Gα = Aα +PV α to rewrite the stationarity conditions (26a)-
(26c):

∂L PT

∂nw =
∂Aw

∂nw +P
∂V w

∂nw −µw = 0, (27a)

∂L PT

∂no
k

=
∂Ao

∂no
k
+P

∂V o

∂no
k
−µk = 0, k = 1, . . . ,NC, (27b)

∂L PT

∂ng
k

=
∂Ag

∂ng
k
+P

∂V g

∂ng
k
−µk = 0, k = 1, . . . ,NC. (27c)

The stationarity conditions (27) are equivalent to (24b)-(24d) provided that

λ =−P, (28a)
µ̄w = µw, (28b)
µ̄k = µk, k = 1, . . . ,NC. (28c)

Finally, the fundamental thermodynamic relation (∂Aα/∂P) =−P(∂V α/∂P) (Michelsen and Mollerup,
2007, Table 3) implies that (24a) is satisfied for λ = −P. In conclusion, we have shown that the first-
order optimality conditions (24) are equivalent to the first-order optimality conditions (26) combined
with the volume constraint (20). This implies that the VT flash optimization problem (1) is equivalent
to the combination of the PT flash optimization problem (19) and the volume balance (20).
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Abstract

In this paper, we consider dynamic optimization of thermal and isothermal oil recovery processes which involve multicomponent
three-phase flow in porous media. We present thermodynamically rigorous models of these processes based on 1) conservation of
mass and energy, and 2) phase equilibrium. The conservation equations are partial differential equations. The phase equilibrium
problems that are relevant to thermal and isothermal models are called the UV and the VT flash, and they are based on the second law
of thermodynamics. We formulate these phase equilibrium problems as optimization problems and the phase equilibrium conditions
as the corresponding first order optimality conditions. We demonstrate that the thermal and isothermal flow models are in a semi-
explicit differential-algebraic form, and we solve the dynamic optimization problems with a previously developed gradient-based
algorithm implemented in C/C++. We present numerical examples of optimized thermal and isothermal oil recovery strategies and
discuss the computational performance of the dynamic optimization algorithm in these examples.

Keywords: Dynamic optimization, Single-shooting, The adjoint method, Thermal and isothermal oil recovery, Multicomponent
multiphase flow, Phase equilibrium, UV flash, VT flash

1. Introduction

Dynamic optimization is concerned with the computation of
an optimal open-loop control strategy for a dynamical process.
The objective of the optimization is either to 1) minimize the
distance to predefined setpoints or 2) optimize the economics
of the process. Dynamic optimization of multiphase flow pro-
cesses in porous media is relevant to numerous engineering ap-
plications, e.g. production of oil from subsurface reservoirs [1–
6], geothermal energy systems [7], groundwater contamination
and remediation [8], trickle bed reactors [9], fuel cells [10, 11],
food processing [12], and several others [13].

In this work, we consider dynamic optimization of thermal
(varying temperature) and isothermal (constant temperature) oil
recovery processes which involve multicomponent multiphase
flow in porous rock. Oil recovery processes are described as
primary, secondary, or tertiary [14, 15]. In primary recovery
processes, the oil is recovered by means of the initial pres-
sure in the reservoir. In secondary recovery processes, water
is injected into the reservoir in order to maintain a high pres-
sure. Tertiary recovery involves chemical, biological, or ther-
mal injection with the purpose of mobilizing and recovering the
oil that remains after the primary and secondary recovery pro-
cesses. We are concerned with dynamic optimization of the sec-
ondary recovery process (also called waterflooding). However,

∗Corresponding author.
Email addresses: tobk@dtu.dk (Tobias K. S. Ritschel), jbjo@dtu.dk

(John Bagterp Jørgensen)

dynamic optimization is equally applicable to the tertiary re-
covery processes (also called enhanced oil recovery processes).
The objective of the dynamic optimization is to compute a field-
wide production strategy that optimizes a long-term financial
measure of the oil production, e.g. the total recovery or the net
present value over the life-time of the oil reservoir.

Models of thermal and isothermal reservoir flow are based on
two main principles: 1) conservation of mass and energy and
2) phase equilibrium. The conservation of energy is related to
the first law of thermodynamics, while the equilibrium between
phases is related to the second law of thermodynamics. The
conservation equations are partial differential equations, and we
formulate the phase equilibrium problems as inner optimization
problems [16]. Consequently, the dynamic optimization prob-
lem that we consider belongs to the class of bilevel optimization
problems [17] as well as the closely related class of mathemat-
ical programs with equilibrium constraints [18, 19]. We use the
method of lines and discretize the conservation equations with
a finite volume method in which the reservoir is represented by
a discrete grid. The result of the discretization is a set of dif-
ferential equations for each cell in the grid. Furthermore, we
enforce the condition of phase equilibrium in each grid cell.
The phase equilibrium conditions in the thermal model are dif-
ferent from the phase equilibrium conditions in the isothermal
model. However, both sets of conditions are derived from the
second law of thermodynamics which states that the entropy of
a closed system in equilibrium is maximal [20–22]. The phase
equilibrium optimization problem in the thermal model is the
UV (or UVn) flash which is a direct statement of the second law
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of thermodynamics. The objective of the UV flash optimization
problem is to maximize entropy subject to constraints on the in-
ternal energy, U, the volume, V , and the total composition, n,
i.e. total amount of moles of each component. The internal
energy and the total composition are determined by the conser-
vation equations while the volume is the size of the grid cell.
The solution to the UV flash is the equilibrium temperature,
pressure, and phase compositions. Isothermal systems are not
closed. Consequently, the condition of maximal entropy does
not apply directly. Instead, the Helmholtz energy is minimal
for isothermal systems in equilibrium [20]. The phase equilib-
rium optimization problem in the isothermal model is the VT
(or VTn) flash which involves minimization of the Helmholtz
energy subject to constraints on the volume, V , the tempera-
ture, T , and the total composition, n. The solution to the VT
flash is the equilibrium pressure and phase compositions. In the
reservoir simulation and optimization literature, it is common
to formulate the phase equilibrium conditions as the isofugac-
ity condition [1, 2, 6, 14, 15] which is derived from the PT
(or PTn) flash [23, 24]. The PT flash is relevant to isothermal
and isobaric (constant pressure) systems. For such systems, the
Gibbs energy is minimal at equilibrium. Consequently, the PT
flash involves minimization of the Gibbs energy subject to con-
straints on the temperature, T , pressure, P, and total composi-
tion, n. The solution to the PT flash is the equilibrium phase
compositions. The UV and the VT flash are related to the PT
flash [5, 25], and the condition of isofugacity in thermal and
isothermal compositional reservoir flow models is derived from
the UV and the VT flash.

Dynamic optimization of reservoir flow models most of-
ten involves models of immiscible two-phase flow [26–29],
partially miscible two-phase flow [30], or polymer flooding
[31, 32]. Garipov et al. [1] and Zaydullin et al. [6] con-
sider the simulation of thermal and compositional reservoir flow
models, and Kourounis et al. [2] present a gradient-based al-
gorithm for dynamic optimization of isothermal and compo-
sitional reservoir flow models. However, none of the above
models involve thermodynamically rigorous phase equilibrium
conditions based on the UV or the VT flash. Polı́vka and
Mikyška [3] consider simulation of an isothermal and compo-
sitional model that involves the VT flash. Dynamic optimiza-
tion of UV flash processes was first addressed by Ritschel et
al. [25, 33, 34]. Furthermore, dynamic optimization of thermal
and isothermal compositional reservoir flow models based on
the UV and the VT flash was first considered by Ritschel and
Jørgensen [4, 5].

There exists a number of algorithms for dynamic optimiza-
tion of nonlinear systems [35]. Single-shooting algorithms in-
volve the solution of numerical optimization problems in which
the number of decision variables is independent of the number
of state variables in the model. Therefore, single-shooting al-
gorithms are often used for dynamic optimization of reservoir
flow models [26, 27, 36] which typically involve a large number
of state variables, i.e. on the order of 104 - 107 state variables.
Alternative algorithms include multiple-shooting and simulta-
neous collocation which both require the solution of numerical
optimization problems in which the number of decision vari-

ables does depend on the number of state variables. For reser-
voir models, the solution of such optimization problems can
be intractable due to both high computation time and exces-
sive memory requirements. However, both multiple-shooting
[28] and simultaneous collocation [29] have been used for dy-
namic optimization of reservoir flow models. Efficient algo-
rithms for the solution of numerical optimization problems re-
quire the gradients of the objective function. For single- and
multiple-shooting algorithms, such gradients can be computed
efficiently with either an adjoint method [27, 37, 38] or a for-
ward method [39]. Alternatives to gradient-based optimization
algorithms include stochastic approximation methods [40] and
metaheuristic methods [41].

In this work, we present thermodynamically rigorous mod-
els of thermal and isothermal waterflooding processes. We
use the method of lines and discretize the conservation equa-
tions with a finite volume method. We demonstrate that the
resulting equations are in a semi-explicit index-1 differential-
algebraic form. Ritschel et al. [25] describe a gradient-based
dynamic optimization algorithm for such systems. The algo-
rithm uses a single-shooting method together with an adjoint
method for the computation of gradients. We implement the
algorithm in C/C++ based on the open-source software DUNE
[42–44], the open-source software ThermoLib [45, 46], and the
commercial software KNITRO (IPOPT [47] is an open-source
alternative to KNITRO). We use the thermodynamic software
ThermoLib to evaluate thermodynamic properties based on the
Peng-Robinson equation of state. The ThermoLib routines also
evaluate the first and second order derivatives of the thermo-
dynamic functions which are necessary in the gradient-based
dynamic optimization algorithm. Finally, we present numeri-
cal examples of optimized thermal and isothermal waterflood-
ing strategies, and we discuss the computational performance
of the C/C++ implementation.

The remainder of this paper is organized as follows. We
present the thermal and compositional model in Section 2, and
we present the isothermal and compositional model in Section
3. We formulate the dynamic optimization problem and dis-
cuss the C/C++ implementation in Section 4. In Section 5, we
present the numerical examples, and we present conclusions in
Section 6.

2. Thermal and compositional reservoir flow model

In this section, we describe the thermal and compositional
model. The waterflooding process is illustrated in Fig. 1 for a
rectangular (and discretized) reservoir. The model consists of
a set of mass conservation equations, one energy balance equa-
tion, and a set of phase equilibrium conditions. The flow of
mass in the reservoir is due to advection while the flow of en-
ergy is due to both advection and conduction. The phase equi-
librium problem is the UV flash, and we assume that the fluid
and the rock reach thermal, mechanical, and chemical equilib-
rium instantaneously, i.e. that they are in equilibrium at all
times. We use a finite volume method to discretize the con-
servation equations, and we enforce the phase equilibrium in
each cell of the discretized reservoir. Finally, we demonstrate
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Figure 1: Illustration of the waterflooding process.

that the thermal and compositional model is in the semi-explicit
index-1 differential-algebraic form.

2.1. Phase equilibrium

Each grid cell in the discretized reservoir contains a water
phase (w), an oil phase (o), a gas phase (g), and a (solid) rock
phase (r) as illustrated in Fig. 2. The water phase is immisci-
ble with the oil and the gas phase. The water phase contains
only water while the oil and the gas phase contain NC chem-
ical components. The fluid phases and the rock are in ther-
mal and mechanical equilibrium, i.e. Tα = T and Pα = P for
α ∈ {w, o, g, r}. Furthermore, the oil and the gas phase are in
chemical equilibrium. The UV flash optimization problem de-
scribing the isoenergetic-isochoric chemical equilibrium is

max
T,P,nw,no,ng

S w + S o + S g + S r, (1a)

subject to Uw + Uo + Ug + Ur = U, (1b)
Vw + Vo + Vg + Vr = V, (1c)
nw = nw, (1d)
no

k + ng
k = nk, k = 1, . . . ,NC . (1e)

S α = S α(T, P, nα), Uα = Uα(T, P, nα), and Vα = Vα(T, P, nα)
are the entropy, internal energy, and volume of phase α ∈
{w, o, g, r}, respectively. U and V are the specified internal en-
ergy and volume. nw and nk are the specified total amount of
moles of water and of component k. nw, nk, and U are deter-
mined by the mass and energy conservation equations, and V is
the size of the grid cell in the discretized reservoir. The solution
to (1) is the equilibrium temperature, T , pressure, P, and phase
compositions, nα for α ∈ {w, o, g}.

2.2. Conservation of mass

Each mass conservation equation contains 1) a flux term re-
lated to the flow in the reservoir and 2) a source term related to
the injection of water and the production of the reservoir fluid:

∂tCw = −∇ · Nw + Qw, (2a)
∂tCk = −∇ · Nk + Qk, k = 1, . . . ,NC . (2b)
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Figure 2: Illustration of the fluid phases and the rock in each grid cell.

Cw and Ck are the molar concentrations of water and component
k. Nw is the molar flux of the water phase, and the molar flux of
the k’th component is

Nk = xkNo + ykNg, k = 1, . . . ,NC . (3)

Nα is the molar flux of phase α ∈ {o, g}. xk and yk are the oil and
gas mole fractions of component k, i.e the moles of component
k in the oil and the gas phase divided by the total amount of
moles in the respective phase. The source terms describe the
molar well flow rates:

Qw = Qw,inj − Qw,prod, (4a)

Qk = −
(
xkQo,prod + ykQg,prod

)
, k = 1, . . . ,NC . (4b)

In Section 2.4, we provide expressions for the molar injection
rate of the water phase, Qw,inj, and the molar production rate of
phase α ∈ {w, o, g}, Qα,prod.

2.3. Conservation of energy
First, we describe the conservation of energy of the fluid ( f )

and the rock (r) separately, i.e. without assuming thermal equi-
librium between the fluid and the rock. Consequently, we dis-
tinguish between the temperature of the fluid phases, T f , and
the temperature of the rock, T r. Next, we incorporate the as-
sumption of thermal equilibrium and present the energy conser-
vation equation for the combined rock-fluid system. The energy
conservation equations for the fluid and the rock are

∂tu f = −∇ · N f
u + Q f

u , (5a)
∂tur = −∇ · Nr

u + Qr
u. (5b)

u f and ur are the internal energies per unit volume of the fluid
and the rock. The heat flux of the fluid is due to the advective
flow of the three fluid phases:

N f
u = hwNw + hoNo + hgNg. (6)

hα = hα(T, P, nα) is the molar enthalpy of phase α ∈ {w, o, g}.
The heat flux of the rock is due to conduction, and we describe
it using Fourier’s law of thermal conduction [48, Chap. 1]:

Nr
u = −kr

T∇T r. (7)

3



kr
T is the thermal conductivity of the rock. The source term in

the fluid energy balance (5a) describes 1) the transfer of energy
through the wells and 2) the transfer of energy through the rock-
fluid interface:

Q f
u = hw,injQw,inj −

∑

α∈{w,o,g}
hαQα,prod + Qr f . (8)

hw,inj is the molar enthalpy of the injected water. We describe
the thermal conduction through the rock-fluid interface using
Newton’s law of cooling [48, Chap. 1]:

Qr f = −kr f
T (T f − T r). (9)

kr f
T is the thermal conductivity of the rock-fluid interface. The

source term in the energy balance for the rock contains terms
describing 1) the transfer of energy through the rock-fluid in-
terface and 2) the transfer of energy to the surroundings (s) of
the reservoir:

Qr
u = −Qr f − Qrs. (10)

We describe the thermal conduction through the interface be-
tween the rock and the surroundings of the reservoir using New-
ton’s law of cooling:

Qrs = −krs
T (T s − T r). (11)

T s is the temperature of the surroundings, and krs
T is the ther-

mal conductivity of the interface between the rock and sur-
roundings. Now, we assume that energy is transferred instan-
taneously between the fluid and the rock, i.e. that the thermal
conductivity of the rock-fluid interface, kr f

T , is infinite. Conse-
quently, the temperature of the fluid and the rock are equal, i.e.
T f = T r = T . In order to obtain a conservation equation for the
internal energy of the combined rock-fluid system, u = u f + ur,
we add (5a) and (5b):

∂tu = −∇ · Nu + Qu. (12)

The heat flux, Nu, and the source term, Qu, are

Nu = hwNw + hoNo + hgNg − kr
T∇T, (13a)

Qu = hw,injQw,inj −
∑

α∈{w,o,g}
hαQα,prod − Qrs. (13b)

2.4. Well equations

The injection and the production wells are perforated in cer-
tain places in the reservoir, i.e. the injection and production
source terms will only be nonzero in a few locations. The model
of the well flow depends on the discretization of the reservoir.
For a given grid cell, the molar injection and production phase
flow rates are

Qw,inj =
1
V

WIρw kw
r

µw

(
Pbhp − P

)
, (14a)

Qα,prod =
1
V

WIρα
kαr
µα

(
P − Pbhp

)
, α ∈ {w, o, g}. (14b)

V is the volume of the perforated grid cell, and WI is the
well index which is a scalar quantity that describes the abil-
ity of the perforation to transmit fluid. ρα = ρα(T, P, nα),
kαr = kαr (T, P, nw, no, ng), and µα = µα(T, P, nα) are the molar
density, the relative permeability, and the viscosity of phase
α ∈ {w, o, g}. Pbhp is the bottom-hole pressure (BHP) in the
well.

2.5. Darcy’s law

The molar phase flux is the product of the molar density and
the volumetric phase flux:

Nα = ραuα, α ∈ {w, o, g}. (15)

We describe the volumetric phase flux with Darcy’s law:

uα = − kαr
µα

K (∇P − ραg∇z) , α ∈ {w, o, g}. (16)

K is a permeability tensor, g is the gravity acceleration, and z is
the depth.

2.6. Relative permeability

We use Stone’s model II to describe the relative permeabili-
ties [49]. The relative permeabilities depend on the phase satu-
rations, Ŝ α = Vα/(Vw+Vo+Vg) for α ∈ {w, o, g}. Consequently,
the relative permeability of phase α ∈ {w, o, g} depends on the
temperature, pressure, and the compositions of all phases:

kαr = kαr (T, P, nw, no, ng), α ∈ {w, o, g}. (17)

In Appendix A, we present the expressions for the relative per-
meabilities in detail.

2.7. Viscosity

We describe the viscosities of the oil and the gas phase with
the model by Lohrenz et al. [50], and we model the water vis-
cosity by (1/µw)(∂µw/∂P) = cw

µ where cw
µ is the viscosibility of

the water phase. Consequently, the viscosities are functions of
temperature, pressure, and the phase compositions:

µα = µα(T, P, nα), α ∈ {w, o, g}. (18)

In Appendix B, we describe the viscosity of the oil and gas
phases in detail.

2.8. Thermodynamics

The phase equilibrium optimization problem (1), the fluid
heat flux (6), and the fluid heat source (8) involve thermody-
namical functions. We use the open-source thermodynamic
software ThermoLib [45, 46] to evaluate the enthalpy, entropy,
and volume of the fluid phases:

Hα = Hα(T, P, nα), α ∈ {w, o, g}, (19a)
S α = S α(T, P, nα), α ∈ {w, o, g}, (19b)
Vα = Vα(T, P, nα), α ∈ {w, o, g}. (19c)
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The thermodynamic model in ThermoLib is based on data and
correlations from the DIPPR database [51] as well as cubic
equations of state [21, 22, 52]. We use the Peng-Robinson
equation of state [53]. The first order optimality conditions
of the phase equilibrium problem (1) are algebraic equations.
The gradient-based dynamic optimization algorithm described
by Ritschel et al. [25] requires the Jacobian matrices of these
algebraic equations. Consequently, the algorithm requires both
the first and second order derivatives of the thermodynamic
functions with respect to temperature, pressure, and mole num-
bers. The ThermoLib routines evaluate such derivatives based
on the analytical expressions described by Ritschel et al. [45].
The thermodynamic properties of the rock, Hr = Hr(T, P),
S r = S r(T, P), and Vr = Vr(T, P) are also computed from an
equation of state. We use a temperature-independent equation
of state, (1/Vr)(∂Vr/∂P) = cr, and we assume that the rock
compressibility, cr, is constant. We compute other thermody-
namic functions with the fundamental thermodynamic relations
Uα = Hα − PVα, Gα = Hα − TS α, and Aα = Uα − TS α for
α ∈ {w, o, g, r}.

2.9. Finite volume discretization
The mass conservation equations (2) and the energy conser-

vation equation (12) are in the form

∂tC = −∇ · N + Q. (20)

In this section, we describe the finite volume discretization of
(20) and use it to discretize the mass and energy conservation
equations. We consider a discretized reservoir that consists of a
set of grid cells, {Ωi}i∈N , where N is a set of grid cell indices.
We assume that each grid cell is a polyhedron and that each face
of the polyhedron is shared by exactly two cells. We integrate
(20) over each of the grid cells and interchange integration and
differentiation on the left-hand side:

∂t

∫

Ωi

C dV = −
∫

Ωi

∇ · N dV +

∫

Ωi

Q dV, i ∈ N . (21)

We apply Gauss’ divergence theorem to the first integral on the
right-hand side:

∫

Ωi

∇ · N dV =

∫

∂Ωi

N · n dA, i ∈ N . (22)

∂Ωi is the boundary of the i’th grid cell, and n is the outward
normal vector. We split up the boundary integral over each of
the faces of the cell:∫

∂Ωi

N · n dA =
∑

j∈N (i)

∫

γi j

N · n dA, i ∈ N . (23)

N (i) is the set of cells that share a face with the i’th grid cell, and
γi j is the face that is shared by the i’th and the j’th grid cell. We
use quadrature to approximate the integral of the source term in
(21) and the integral over γi j in (23):

∫

Ωi

Q dV ≈ (QV)i, i ∈ N , (24a)
∫

γi j

N · n dA ≈ (AN · n)i j, i ∈ N , j ∈ N (i). (24b)

The subscript i indicates that a quantity is related to the i’th grid
cell while the subscript i j indicates that it is related to the face
γi j. Vi is the volume of Ωi, and Ai j is the area of γi j. We now
apply the finite volume discretization to the mass and energy
conservation equations. The integrals of the internal energy per
unit volume and the concentrations are evaluated exactly:

∫

Ωi

u dV = Ui, i ∈ N , (25a)
∫

Ωi

Cw dV = nw,i, i ∈ N , (25b)
∫

Ωi

Ck dV = nk,i, i ∈ N . (25c)

The right-hand side of (24b) involves the flux evaluated at the
center of the face which we approximate with a two-point flux
approximation [54]. The resulting approximation of the right-
hand side of (24b) for the heat and mass fluxes are

(ANu · n)i j ≈ −
∑

α∈{w,o,g}
(hαΓĤα∆Φα)i j + (ΓT ∆T )i j, (26a)

(ANw · n)i j ≈ −(ΓĤw∆Φw)i j, (26b)

(ANk · n)i j ≈ −(xkΓĤo∆Φo + ykΓĤg∆Φg)i j, (26c)

for i ∈ N and j ∈ N (i). The difference in temperature is ∆Ti j =

T j − Ti. Γi j is the geometric part of the transmissibilities:

Γi j = Ai j

(
Γ̂−1

i j + Γ̂−1
ji

)−1
, i ∈ N , j ∈ N (i), (27a)

Γ̂i j =

(
Ki

ci j − ci

|ci j − ci|2
)
· ni j, i ∈ N , j ∈ N (i). (27b)

ci j is the center of γi j, ci is the center of Ωi, and Γ̂i j is the one-
sided transmissibility. The expression for ΓT,i j is analogous to
(27). However, the thermal conductivity of the rock replaces
the permeability tensor:

ΓT,i j = Ai j

(
Γ̂−1

T,i j + Γ̂−1
T, ji

)−1
, i ∈ N , j ∈ N (i), (28a)

Γ̂T,i j =

(
kr

T,i
ci j − ci

|ci j − ci|2
)
· ni j, i ∈ N , j ∈ N (i). (28b)

The difference in potential and the fluid part of the transmissi-
bilities are

∆Φα
i j = (∆P − ραg∆z)i j , i ∈ N , j ∈ N (i), (29a)

Ĥα
i j =


(ραkαr /µ

α)i, ∆Φα
i j < 0,

(ραkαr /µ
α) j, ∆Φα

i j ≥ 0,
i ∈ N , j ∈ N (i). (29b)

The differences in pressure and depth are ∆Pi j = P j − Pi and
∆zi j = z j − zi. We approximate the density on the face center
by ραi j ≈ (ραi + ραj )/2. In (29b), we have upwinded the fluid part
of the transmissibilities to ensure numerical stability. Similarly,
we upwind hα in (26a) as well as xk and yk in (26c). The differ-
ential equations that result from the finite volume discretization
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of the mass and energy conservation equations are

U̇i =
∑

j∈N (i)


∑

α∈{w,o,g}
(hαΓĤα∆Φα)i j + (ΓT ∆T )i j

 + (QuV)i,

(30a)

ṅw,i =
∑

j∈N (i)

(ΓĤw∆Φw)i j + (QwV)i, (30b)

ṅk,i =
∑

j∈N (i)

(xkΓĤo∆Φo + ykΓĤg∆Φg)i j + (QkV)i, (30c)

for i ∈ N . The internal energy and the total amounts of moles
on the left-hand side of (30) appear as specified quantities in
the phase equilibrium problem described in Section 2.1.

2.10. The semi-explicit differential-algebraic form

The phase equilibrium problem described in Section 2.1 is in
the form

min
yi

f (yi), (31a)

subject to g(yi) = xi, (31b)
h(yi) = 0. (31c)

xi =
[
U; nw; n

]
i
∈ R2+NC is the state vector, and yi =[

T ; P; nw; no; ng
]
i
∈ R3+2NC is a vector of algebraic variables.

The phase equilibrium conditions are the first order optimal-
ity conditions (also called Karush-Kuhn-Tucker or KKT con-
ditions) of (31). The first order optimality conditions are a set
of algebraic equations, Gi(xi, yi, zi) = 0, because (31) does not
contain inequality constraints [55]. zi ∈ R3+NC are Lagrange
multipliers.

The left-hand sides of the differential equations (30) are the
time derivatives of the state variables while the quantities on
the right-hand sides depend exclusively on the algebraic vari-
ables in the i’th cell, yi, and in neighbouring cells, {y j} j∈N (i) ,
as well as the manipulated inputs, ui = Pbhp

i ∈ R, and the
disturbance variables, di = T inj

i ∈ R. The temperature of
the injected water, T inj, is used to evaluate the enthalpy of
the injected water, hw,inj. The manipulated inputs and the dis-
turbance variables are only nonempty for cells that are perfo-
rated by a well. The differential equations (30) are thus in the
form ẋi(t) = Fi(yi(t), {y j(t)} j∈N (i) , ui(t), di(t)). Consequently, the
collection of the differential equations and phase equilibrium
conditions for all grid cells is in the semi-explicit differential-
algebraic form,

G(x(t), y(t), z(t)) = 0, (32a)
ẋ(t) = F(y(t), u(t), d(t)). (32b)

Furthermore, the algebraic equations are of index 1, i.e.
Gi(xi, yi, zi) = 0 can be solved for yi and zi when xi is speci-
fied.

3. Isothermal and compositional reservoir flow model

In this section, we adapt the thermal and compositional
model presented in Section 2 to isothermal systems. In isother-
mal systems, all involved thermal conductivities are infinite
such that energy is transferred instantaneously between 1) the
fluid and the rock, and 2) the rock and the surroundings, until
thermal equilibrium is reached. Furthermore, the heat capac-
ity of the surroundings is infinite such that their temperature
is constant despite the supply or removal of energy. The key
difference between the thermal and the isothermal model is the
phase equilibrium problem which, for isothermal systems, is
the VT flash. Furthermore, the isothermal model does not in-
volve an energy conservation equation. However, the mass con-
servation equations in the two models are identical. Therefore,
we only discuss 1) the phase equilibrium problem and 2) the
semi-explicit differential-algebraic form of the model.

3.1. Phase equilibrium

The VT flash optimization problem describing the isochoric-
isothermal chemical equilibrium is

min
P,nw,no,ng

Aw + Ao + Ag + Ar, (33a)

subject to Vw + Vo + Vg + Vr = V, (33b)
nw = nw, (33c)
no

k + ng
k = nk, k = 1, . . . ,NC . (33d)

Aα = Aα(T, P, nα) is the Helmholtz energy of phase α ∈
{w, o, g, r}. The main differences between the VT flash (33)
and the UV flash (1) are that in the VT flash 1) the Helmholtz
energy is minimized, 2) there is no constraint on the internal
energy, and 3) temperature is not an optimization variable.

3.2. The semi-explicit differential-algebraic form

The VT flash optimization problem is in the same form as
the UV flash optimization problem, i.e. (31). The state vari-
ables are xi =

[
nw; n

]
i
∈ R1+NC , and the algebraic variables are

yi =
[
P; nw; no; ng

]
i
∈ R2+2NC . The VT flash contains one less

equality constraint than the UV flash. Consequently, there is
also one less Lagrange multiplier, i.e. zi ∈ R2+NC . The manip-
ulated inputs remain unchanged. However, there are no distur-
bance variables in the isothermal model because the tempera-
ture of the injected water, T inj, is constant. Consequently, the
isothermal and compositional model is also in the semi-explicit
differential-algebraic form (32).

4. Dynamic optimization

We consider the dynamic optimization problem

min
[x(t);y(t);z(t)]

t f
t0
,{uk}N−1

k=0

φ =

∫ t f

t0
Φ(y(t), u(t), d(t))dt, (34a)
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subject to

x(t0) = x̂0, (34b)
G(x(t), y(t), z(t)) = 0, t ∈ [t0, t f ], (34c)
ẋ(t) = F(y(t), u(t), d(t)), t ∈ [t0, t f ], (34d)
u(t) = uk, t ∈ [tk, tk+1[, k = 0, . . . ,N − 1, (34e)

d(t) = d̂k, t ∈ [tk, tk+1[, k = 0, . . . ,N − 1, (34f)

{uk}N−1
k=0 ∈ U. (34g)

[x(t); y(t); z(t)]t f
t0 is a vector of dependent decision variables, and

{uk}N−1
k=0 are independent decision variables. x̂0 is an estimate of

the initial states, and {d̂k}N−1
k=0 are predictions of the disturbance

variables. Both x̂0 and {d̂k}N−1
k=0 are parameters in the optimiza-

tion problem. t0 is the initial time, and tN = t f is the final
time. N is the number of control intervals. (34b) is a set of ini-
tial conditions for the semi-explicit differential-algebraic model
equations (34c)-(34d). (34e)-(34f) are zero-order-hold (ZOH)
parametrizations of the manipulated inputs and the disturbance
variables. The constraints on the manipulated inputs (34g) are
often bounds or linear constraints.

4.1. The dynamic optimization algorithm

We solve the dynamic optimization problem (34) with the
gradient-based algorithm described by Ritschel et al. [25].
The algorithm is based on the single-shooting method which
exploits that the initial value problem (34b)-(34d), subject to
the ZOH parametrizations (34e)-(34f), determines the depen-
dent decision variables, [x(t); y(t); z(t)]t f

t0 , when {uk}N−1
k=0 , x̂0,

and {d̂k}N−1
k=0 are specified. Consequently, the single-shooting

method transcribes the infinite-dimensional dynamic optimiza-
tion problem (34) to a finite-dimensional numerical optimiza-
tion problem in which the objective function requires the so-
lution of the initial value problem (also referred to as a sim-
ulation). Efficient algorithms for solving numerical optimiza-
tion problems require the gradients of the objective function.
The dynamic optimization algorithm computes these gradients
with the adjoint method. Furthermore, it uses Euler’s implicit
method to discretize the differential equations (34d), and it
solves the discretized differential equations and the algebraic
equations in a simultaneous manner. The algorithm implements
a simplified version of the time step selection scheme described
by Völcker et al. [56], and it solves the involved linear systems
with a block ILU(1) preconditioned GMRES method.

4.2. Implementation

We implement the dynamic optimization algorithm in
C/C++. The implementation uses the open-source software
DUNE for 1) grid management [42, 43] and 2) solution of lin-
ear systems with the preconditioned GMRES method [44]. The
involved thermodynamic functions (and their first and second
order derivatives) are computed with C routines from Ther-
moLib. We use an SLQP algorithm [55, Chap. 18], from the
commercial optimization software KNITRO 10.2, to solve the
involved numerical optimization problem. Furthermore, we use

C/C++ compilers from GCC. In Section 5, we present perfor-
mance tests which are carried out on a 64-bit workstation with
15.6 GB memory and four Intel Core i7 3.60 GHz cores. The
workstation uses the Ubuntu 16.04 operating system. Further-
more, it has a shared level 3 cache of 8192 KB, and each core
has a 256 KB level 2 cache and a 64 KB level 1 cache.

5. Numerical examples

In this section, we present numerical examples of optimized
thermal and isothermal waterflooding strategies computed with
the dynamic optimization algorithm described in Section 4.
Furthermore, we discuss the computational performance of
the algorithm in terms of various key performance indicators
(KPIs).

5.1. Optimized waterflooding strategies
We consider a 110 × 110 × 10 m reservoir which is initially

at 50◦C. The oil and the gas phases consist of methane, ethane,
propane, n-heptane, and hydrogen sulfide. We discretize the
reservoir with an 11 × 11 × 1 grid. The objective in the dy-
namic optimization of the thermal and isothermal waterflood-
ing strategies is to maximize the total oil production over a
three-year period. The decision variables are the BHPs of four
injection wells and a single production well. There are 12
control intervals per year which results in a total of 36 con-
trol intervals, i.e. 36 decision variables per well. The loca-
tions of the wells are shown in Fig. 3 together with the het-
erogeneous (and isotropic) permeability field. For simplicity,
we assume that there is no heat loss to the surroundings, that
the rock is incompressible, and that the porosity field is ho-
mogeneous. The porosity is 0.25. The thermal heat capacity
of the rock is 0.92 kJ/(kg · K), and the thermal conductivity
is 2.5 W/(m · K) which resemble the properties of sandstone
[57, Chap. 2]. The BHPs of the injectors are constrained to the
interval [10 MPa, 12 MPa], and the BHP of the producer is con-
strained to the interval [9 MPa, 10 MPa]. The injected water is
at 90◦C in the thermal strategy and at 50◦C in the isothermal
strategy.

Fig. 4 shows the injector and producer BHPs of the opti-
mized thermal and isothermal strategies together with the cu-
mulative volumetric injection of water, production of oil, and
production of gas. Both strategies operate the producer close
to the minimum BHP. Furthermore, they operate injector 3 and
4 close to the maximum BHP because they are located in very
impermeable areas. The most significant differences between
the two strategies are the BHPs of injector 1 and 2 which they
both vary significantly. Compared to the isothermal strategy,
the thermal strategy 1) injects slightly less water, 2) produces
slightly less oil, and 3) produces slightly more gas. Fig. 5 and
6 illustrate the thermal and isothermal waterflooding processes
in terms of the pressure and the oil and gas saturations in the
reservoir. Fig. 5 also shows the temperature in the reservoir.
The two figures suggest that it is challenging for the dynamic
optimization algorithm to compute strategies that completely
deplete the upper half of the reservoir during the three years of
production.
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Figure 3: The permeability field [mD] and the locations of the injection and
production wells. The white circles indicate the locations of the injectors, and
the white X indicates the location of the producer.

In this example, we have considered an optimized thermal
waterflooding strategy. However, thermal oil recovery strate-
gies most often involve the injection of steam, e.g. steam-
assisted gravity drainage (SAGD) is used to produce heavy oil
in Canada and Venezuela [58]. In such cases, the temperature of
the injected steam would be a manipulated input together with
the well BHP, and the objective function should include the cost
of heating the steam.

5.2. Key performance indicators
Table 1 shows a number of key problem characteristics and

KPIs for the dynamic optimization of the thermal and isother-
mal waterflooding strategies. The number of manipulated in-
puts, i.e. independent decision variables, is the same for both
strategies. However, the thermal model contains more differen-
tial equations and algebraic equations. The optimization of the
thermal strategy involves 15 iterations in the SLQP optimiza-
tion algorithm, whereas the optimization of the isothermal strat-
egy only requires 6. However, the computation time per itera-
tion is slightly higher for the isothermal strategy because each
iteration, on average, involves more simulations. The number
of gradient evaluations per iteration is close to 1 for both strate-
gies.

The average number of time steps in the thermal and isother-
mal simulations are close to each other. However, the simu-
lations of the thermal waterflooding strategies require, on av-
erage, close to one more Newton iteration. Consequently, the
number of evaluations of the functions F and G in the semi-
explicit differential-algebraic equations (34c)-(34d), and their
Jacobians, is also approximately one higher. Furthermore, the
GMRES algorithm requires close to 0.8 more iterations, on av-
erage, to solve the linear systems in the simulations of the ther-
mal strategy. In conclusion, it is more computationally demand-
ing to simulate, and therefore also optimize, the thermal water-
flooding strategy than the isothermal strategy.

6. Conclusions

In this work, we consider dynamic optimization of thermal
and isothermal oil recovery processes. Therefore, we present

Table 1: Problem characteristics and KPIs for the dynamic optimization of the
thermal and isothermal waterflooding strategies. The function evaluations re-
fer to the evaluation of the functions F and G in the semi-explicit differential-
algebraic equations (34c)-(34d), and the Jacobian evaluations refer to the eval-
uation of the Jacobians of F and G. The iterations per linear system refer to
the iterations in the GMRES algorithm. The KPIs related to the simulations are
averaged over all the simulations involved in the dynamic optimization.

Thermal Isothermal
Problem
Manipulated inputs 180 180
Differential equations 847 726
Algebraic equations 2541 2299

Optimization
Iterations 15 6
Simulations 27 20
Gradient evaluations 16 7
CPU time (s) 661.16 287.18
CPU time per iteration (s) 44.08 47.86

Simulation
Time steps per simulation 218.37 212.55
Newton iterations per time step 4.04 3.02
Function evaluations per time step 6.07 5.07
Jacobian evaluations per time step 5.67 4.41
Iterations per linear system 9.03 8.21

thermodynamically rigorous models of thermal and isothermal
multicomponent three-phase flow in subsurface oil reservoirs.
The involved phase equilibrium problems, i.e. the UV and the
VT flash, are based on the second law of thermodynamics. Fur-
thermore, we formulate the UV and VT flash problems as op-
timization problems. We demonstrate that the thermal and the
isothermal reservoir flow models are in a semi-explicit index-
1 differential-algebraic form, and we use a gradient-based al-
gorithm to solve the dynamic optimization problems. We im-
plement the algorithm in C/C++ using the software libraries
DUNE, ThermoLib, and KNITRO. Finally, we present numeri-
cal examples of optimized thermal and isothermal oil recovery
strategies, and we discuss the computational performance of the
dynamic optimization algorithm.
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Appendix A. Relative permeability

In this appendix, we use Stone’s model II [49] to describe the
relative permeabilities. The model equations involve the rela-
tive permeabilities of 1) a hypothetical oil-water system and 2)
a hypothetical oil-gas system. We express the relative perme-
abilities for these two hypothetical systems using the modified
Brooks-Corey model [59]. We introduce the normalized satu-
rations, S̄ w = S̄ w(T, P, nw, no, ng) and S̄ g = S̄ g(T, P, nw, no, ng):

S̄ w =
(
Ŝ w − Ŝ w

c
)/(

1 − Ŝ w
c − Ŝ w

max
)
, (A.1a)

S̄ g =
(
Ŝ g − Ŝ g

c
)/(

1 − Ŝ g
c − Ŝ g

max
)
. (A.1b)

Ŝ w = Ŝ w(T, P, nw, no, ng) and Ŝ g = Ŝ g(T, P, nw, no, ng) are
the water and gas saturations, Ŝ w

c and Ŝ g
c are the connate wa-

ter and gas saturations, and Ŝ w
max and Ŝ g

max are the maximum
water and gas saturations. The relative permeabilities of the
hypothetical oil-water system, kw

r = kw
r (T, P, nw, no, ng) and

kow
r = kow

r (T, P, nw, no, ng), are

kw
r = kw

r,0(S̄ w)mw , (A.2a)

kow
r = kow

r,0
(
1 − S̄ w)mow , (A.2b)

and similarly, the relative permeabilities of the hypothet-
ical oil-gas system, kg

r = kg
r (T, P, nw, no, ng) and kog

r =

kog
r (T, P, nw, no, ng), are

kg
r = kg

r,0(S̄ g)mg , (A.2c)

kog
r = kog

r,0
(
1 − S̄ g)mog , (A.2d)

where kw
r,0, kow

r,0 , kg
r,0, and kog

r,0 are the end-point relative perme-
abilities, and mw, mow, mg, and mog are the Corey exponents. If
one of the expressions in (A.2) become negative or larger than
one, the corresponding relative permeability is set to zero or
one, respectively. Finally, the relative permeability of the oil
phase, ko

r = ko
r (T, P, nw, no, ng), is

ko
r = kc

r
(
(kow

r /kc
r + kw

r )(kog
r /kc

r + kg
r ) − (kw

r + kg
r )
)
, (A.3)

11



where kc
r is a parameter. To summarize, the relative permeabili-

ties of the water, oil, and gas phases are given by (A.2a), (A.3),
and (A.2c), respectively.

Appendix B. Viscosity of oil and gas

In this appendix, we describe the model of the viscosity of
reservoir fluids by Lohrenz et al. [50]. We use the expressions
for the liquid phase viscosity to describe the viscosity of both
the oil and the gas phase. The viscosity of phase α ∈ {o, g},
µα = µα(T, P, nα), is a function of temperature, T , pressure, P,
and phase composition (in moles), nα:

µα = µ̄α +
1
τα

(
(aα)4 − 10−4

)
, α ∈ {o, g}. (B.1)

The auxiliary variables τα = τα(nα) and aα = aα(T, P, nα) are

τα =
(
Tα

c
) 1

6
(
Mα

w
)− 1

2
(
Pα

c
)− 2

3 , α ∈ {o, g}, (B.2a)

aα =

4∑

i=0

ai
(
ραr

)i , α ∈ {o, g}. (B.2b)

The coefficients in the polynomial in (B.2b) are a0 = 0.1023,
a1 = 0.023364, a2 = 0.058533, a3 = −0.040758, and a4 =

0.0093324 [60]. The auxiliary variables Tα
c = Tα

c (nα), Pα
c =

Pα
c (nα), Vα

c = Vα
c (nα), and Mα

w = Mα
w(nα) are

Tα
c =

NC∑

k=1

xαk Tc,k, α ∈ {o, g}, (B.3a)

Pα
c =

NC∑

k=1

xαk Pc,k, α ∈ {o, g}, (B.3b)

Vα
c =

NC∑

k=1

xαk Vc,k, α ∈ {o, g}, (B.3c)

Mα
w =

NC∑

k=1

xαk Mw,k, α ∈ {o, g}. (B.3d)

We present the expression for Vα
c here, but we first use it in

(B.6). We use values of the pure component critical temper-
ature, Tc,k, critical pressure, Pc,k, critical volume, Vc,k, and
molecular weight, Mw,k, from the DIPPR database [51]. In or-
der to describe the viscosity of the oil and the gas phases in
a unified manner, we have adopted a different notation for the
mole fractions, xαk = xαk (nα), than in previous sections:

xαk =
nαk
Nα

, k = 1, . . . ,NC , α ∈ {o, g}. (B.4)

The total amount of moles in phase α, Nα = Nα(nα), is

Nα =

NC∑

k=1

nαk , α ∈ {o, g}. (B.5)

The reduced density, ραr = ραr (T, P, nα), is

ραr = ραVα
c , α ∈ {o, g}, (B.6)

where the molar density, ρα = ρα(T, P, nα), is

ρα =
Nα

Vα
, α ∈ {o, g}. (B.7)

The reference viscosity, µ̄α = µ̄α(T, nα), is

µ̄α =
M̄α

wµ

M̄α
w
, α ∈ {o, g}, (B.8)

where the auxiliary variables M̄α
wµ = M̄α

wµ(T, nα) and M̄α
w =

M̄α
w(nα) are

M̄α
wµ =

NC∑

k=1

xαk µ̄k
√

Mw,k, α ∈ {o, g}, (B.9a)

M̄α
w =

NC∑

k=1

xαk
√

Mw,k, α ∈ {o, g}. (B.9b)

The pure component reference viscosity, µ̄k = µ̄k(T ), is

µ̄k =


34 · 10−5 T 0.94

r,k

τk
, Tr,k < 1.5,

17.78 · 10−5 (4.58Tr,k−1.67)
5
8

τk
, Tr,k ≥ 1.5,

(B.10)

for k = 1, . . . ,NC where the reduced temperature, Tr,k =

Tr,k(T ), and the auxiliary variable τk are

Tr,k =
T

Tc,k
, k = 1, . . . ,NC , (B.11a)

τk = T
1
6

c,k M−
1
2

w,kP
− 2

3
c,k , k = 1, . . . ,NC . (B.11b)
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Nonlinear Model Predictive Control for Disturbance Rejection
in UV Flash Processes

Tobias K. S. Ritschel and John Bagterp Jørgensen

Abstract— We present a nonlinear model predictive con-
trol (NMPC) algorithm for semi-explicit index-1 stochastic
differential-algebraic equations. It is natural to model UV
flash processes with such equations. The algorithm uses the
continuous-discrete extended Kalman filter (EKF) for state
estimation, and it uses a single-shooting method to solve the
involved optimal control problems. It computes the gradients
with an adjoint method. The UV flash is important to rig-
orous models of phase equilibrium processes because it is a
mathematical statement of the second law of thermodynamics.
NMPC algorithms for UV flash processes are therefore relevant
to both safe and economical operation of phase equilibrium
processes such as flash separation, distillation, two-phase flow
in pipes, and oil production. We design the NMPC algorithm for
disturbance rejection, and we therefore augment the state vector
with the unknown disturbance variables in the continuous-
discrete EKF. We present a numerical example of economical
NMPC of a UV flash separation process. It involves output
constraints and the estimation of an unknown and unmeasured
disturbance. The computation time of the NMPC algorithm
does not exceed 74 s in any of the 5 min control intervals. This
indicates that real-time NMPC of UV flash separation processes
is computationally feasible.

I. INTRODUCTION

Nonlinear model predictive control (NMPC) algorithms
compute a closed-loop feedback control strategy using the
moving horizon optimization principle, i.e. by solving a
sequence of open-loop optimal control problems (OCPs) [1].
The objective of NMPC algorithms is either to optimize the
economics of the process or to minimize the distance to
predefined setpoints. NMPC algorithms are used to control
a variety of chemical processes [2] including stirred tank
reactors [3], batch reactors [4], fermentors [5], distillation
[6], [7], and production from oil reservoirs [8], [9].

Chemical processes often involve thermodynamic equilib-
rium between vapor and liquid phases. The conditions for
equilibrium between phases are derived from the second
law of thermodynamics. It states that the entropy of a
closed system in equilibrium is maximal. The UV flash
is a mathematical statement of the second law of ther-
modynamics and is therefore key to rigorous modeling of
phase equilibrium processes. The UV flash has been used in
models of flash separation [10]–[12], distillation [13], and
computational fluid dynamical processes [14], [15]. The UV
flash problem can be formulated as an optimization problem

*This work is funded by Innovation Fund Denmark in the OPTION
project (63-2013-3). Tobias K. S. Ritschel and John Bagterp Jørgensen are
with the Department of Applied Mathematics and Computer Science & the
Center for Energy Resources Engineering (CERE), Technical University of
Denmark, DK-2800 Kgs. Lyngby, Denmark {tobk, jbjo}@dtu.dk

with equality constraints [16]. The solution to the opti-
mization problem consists of the temperature, pressure, and
vapor-liquid compositions that maximize the entropy while
satisfying constraints on the internal energy, U , the volume,
V , and the total composition, n. The first-order optimality
conditions of the UV flash optimization problem are a set of
algebraic equations which constitute the phase equilibrium
conditions. It is therefore natural to model dynamic UV
flash processes with differential-algebraic equations (DAEs).
Algorithms for dynamic optimization and state estimation of
UV flash processes have been considered recently [17], [18],
but NMPC of such processes has not yet been addressed.

NMPC algorithms combine state estimation algorithms
with dynamic optimization algorithms. The extended Kalman
filter (EKF) is commonly used for state estimation of nonlin-
ear processes [19], [20]. Alternatives include the unscented
Kalman filter and particle filters [21] as well as the ensemble
Kalman filter [22], [23], moving-horizon estimation [24],
and neural network-based algorithms [25]. Optimal control
problems are often solved with direct methods [1], i.e. single-
shooting, multiple-shooting, or simultaneous collocation.
Computationally efficient implementation of such methods
requires the evaluation of gradients. The gradients can be
computed with an adjoint method [26] or with a forward
method [27] in the single- and multiple-shooting approaches.
NMPC algorithms for disturbance rejection either 1) estimate
the disturbance variables [28]–[30] or 2) represent the uncer-
tainty in the disturbance variables with a scenario-tree [31].

In this work, we present an NMPC algorithm for dis-
turbance rejection in UV flash processes. The algorithm
combines the continuous-discrete EKF with single-shooting
and an adjoint method for computing gradients. We model
the UV flash processes with semi-explicit index-1 stochastic
DAEs. We augment the states with the disturbance variables
and exploit the structure of the augmented DAE system to
improve computational performance. We use the open-source
thermodynamic software ThermoLib [32], [33] to evaluate
thermodynamic functions. It is tailored for computation of
first and second order derivatives which are needed for
efficient implementation of the single-shooting method and
in the adjoint method. We present a numerical example
of output-constrained economical NMPC of a UV flash
separation process that involves an unknown and unmeasured
disturbance.

This paper is structured as follows. We describe the semi-
explicit index-1 stochastic DAE system in Section II, and
we discuss the numerical simulation of such systems in
Section III. In Section IV, we discuss the estimation of the



states and disturbance variables with the continuous-discrete
EKF. We describe the open-loop optimal control problem
and the single-shooting method in Section V. We describe
the flash separation process in Section VI, and we present
the numerical example in Section VII. Conclusions are given
in Section VIII.

II. SEMI-EXPLICIT INDEX-1 STOCHASTIC
DIFFERENTIAL-ALGEBRAIC EQUATIONS

We consider stochastic DAEs that are in the form

G(x(t),y(t), z(t)) = 0, (1a)
dx(t) = F (y(t), u(t), d(t))dt+ σ(y(t), u(t), d(t))dω(t).

(1b)

x(t), y(t), and z(t) are vectors of state variables, algebraic
variables, and adjoint algebraic variables, respectively. The
algebraic equations (1a) represent phase equilibrium condi-
tions, and the stochastic differential equations (1b) represent
conservation equations. u(t) are the manipulated inputs, and
d(t) are the disturbance variables. The initial states are
normally distributed, i.e. x(t0) ∼ N(x0, P0). ω(t) is a
standard Wiener process, i.e. it has an incremental covariance
of Idt. The algebraic equations (1a) are of index 1 for the
processes that we consider. Therefore, they can be solved
for y(t) and z(t) when x(t) is given. The measurements,
ym(tk), of the outputs, zm(tk), are obtained at discrete
times, tk:

zm(tk) = H(y(tk)), (2a)
ym(tk) = zm(tk) + v(tk). (2b)

vk = v(tk) is the measurement noise. It is normally
distributed, i.e. vk ∼ N(0, Tk).

III. NUMERICAL SIMULATION

We discretize the stochastic DAE (1) with a semi-implicit
scheme, i.e. we discretize the drift and the diffusion terms in
(1b) with Euler’s implicit and explicit method, respectively.
Between measurement k and k + 1, we compute Nk time
steps. In each time step, we solve Rk,n+1 = 0 for wk,n+1 =[
xk,n+1; yk,n+1; zk,n+1

]
where

Rk,n+1 = Rk,n+1(wk,n+1;xk,n, yk,n, uk, dk)

= Rk,n+1(xk,n+1, yk,n+1, zk,n+1;xk,n, yk,n, uk, dk)

=

[
Dk,n+1(xk,n+1, yk,n+1;xk,n, yk,n, uk, dk)

G(xk,n+1, yk,n+1, zk,n+1)

]
.

(3)

The discretized stochastic differential equations are

Dk,n+1 = Dk,n+1(xk,n+1, yk,n+1;xk,n, yk,n, uk, dk)

= xk,n+1 − F (yk,n+1, uk, dk)∆tk,n

− σ(yk,n, uk, dk)∆ωk,n − xk,n. (4)

We sample the increments, ∆ωk,n, from N(0, I∆tk,n). We
solve Rk,n+1 = 0 with an inexact Newton method:

wl+1
k,n+1 = wl

k,n+1 + ∆wl
k,n+1. (5)

In each Newton iteration, we solve

M∆wl
k,n+1 = −Rk,n+1(wl

k,n+1), (6)

for the Newton step. The iteration matrix, M , is

M ≈ ∂Rk,n+1

∂wk,n+1
=

[
I −∂F

∂y ∆tk,n 0
∂G
∂x

∂G
∂y

∂G
∂z

]
. (7)

IV. STATE AND DISTURBANCE ESTIMATION

In order to estimate the disturbances, we augment the
stochastic DAE system (1) with a stochastic differential
equation for the disturbance variables:

G(x(t),y(t), z(t)) = 0, (8a)
dx(t) = F (y(t), u(t),d(t))dt+ σ(y(t), u(t),d(t))dω(t),

(8b)
dd(t) = σddωd(t). (8c)

The measurement equations (2) remain unchanged. We use
σd to tune the filter. We initialize the continuous-discrete
EKF with x̂0|−1 = x0, d̂0|−1 = d0, P xx

0|−1 = P xx
0 ,

P dx
0|−1 = 0, and P dd

0|−1 = P dd
0 . d0 is an initial estimate of the

disturbance variables. We use P dd
0 for tuning of the filter.

A. Measurement-update

The one-step ahead prediction of the measurements,
ŷmk|k−1, and its approximate covariance, Tk|k−1, are

ŷmk|k−1 = H(ŷk|k−1), (9a)

Tk|k−1 = CkP
xx
k|k−1C

′
k + Tk, (9b)

where

Ck =
∂H

∂y
(ŷk|k−1)

∂ŷk|k−1
∂x̂k|k−1

. (10)

The sensitivities, ∂ŷk|k−1

∂x̂k|k−1
and ∂ẑk|k−1

∂x̂k|k−1
, satisfy

[
∂G
∂y

∂G
∂z

] [ ∂ŷk|k−1

∂x̂k|k−1
∂ẑk|k−1

∂x̂k|k−1

]
= −∂G

∂x
. (11)

The innovation error is

ek = ymk − ŷmk|k−1, (12)

and the Kalman filter gain matrices are

Kfx,k = P xx
k|k−1C

′
kT
−1
k|k−1, (13a)

Kfd,k = P dx
k|k−1C

′
kT
−1
k|k−1. (13b)

The filtered estimates of the states and disturbance variables
and their covariance matrices are

x̂k|k = x̂k|k−1 +Kfx,kek, (14a)

d̂k|k = d̂k|k−1 +Kfd,kek, (14b)
P xx
k|k = P xx

k|k−1 −Kfx,kTk|k−1K
′
fx,k, (14c)

P dx
k|k = P dx

k|k−1 −Kfd,kTk|k−1K
′
fx,k, (14d)

P dd
k|k = P dd

k|k−1 −Kfd,kTk|k−1K
′
fd,k. (14e)



B. Time-update

We compute the one-step ahead predictions at time tk+1

by solving

x̂k(tk) = x̂k|k, (15a)
G(x̂k(t), ŷk(t), ẑk(t)) = 0, t ∈ [tk; tk+1], (15b)

dx̂k(t) = F (ŷk(t), u(t), d̂k(t))dt, t ∈ [tk; tk+1], (15c)

where u(t) = uk|k and d̂k(t) = d̂k|k. In order to compute
the one-step ahead predictions of the covariance matrices, we
compute the sensitivities, Φxx(t, s) = ∂x̂k(t)

∂x̂k(s)
, Φyx(t, s) =

∂ŷk(t)
∂x̂k(s)

, Φzx(t, s) = ∂ẑk(t)
∂x̂k(s)

, Φxd(t, s) = ∂x̂k(t)

∂d̂k(s)
, Φyd(t, s) =

∂ŷk(t)

∂d̂k(s)
, and Φzd(t, s) = ∂ẑk(t)

∂d̂k(s)
, by solving

∂G

∂x
Φxx(t, s) +

∂G

∂y
Φyx(t, s) +

∂G

∂z
Φzx(t, s) = 0, (16a)

∂G

∂x
Φxd(t, s) +

∂G

∂y
Φyd(t, s) +

∂G

∂z
Φzd(t, s) = 0, (16b)

dΦxx(t, s)

dt
=
∂F

∂y
Φyx(t, s), (16c)

dΦxd(t, s)

dt
=
∂F

∂y
Φyd(t, s) +

∂F

∂d
Φdd(t, s), (16d)

where Φxx(s, s) = I, Φxd(s, s) = 0, and Φdd(t, s) = I. The
covariance matrices are given by [20]

P xx
k (t) = ΦxxP

xx
k|kΦ′xx + ΦxdP

dx
k|kΦ′xx

+ Φxx(P dx
k|k)′Φ′xd + ΦxdP

dd
k|kΦ′xd

+

∫ t

tk

Ωxx(t, s)Ωxx(t, s)′ + Ωxd(t, s)Ωxd(t, s)′ds,

(17a)

P dx
k (t) = ΦddP

dx
k|kΦ′xx + ΦddP

dd
k|kΦ′xd

+

∫ t

tk

Ωdd(t, s)Ωxd(t, s)′ds, (17b)

P dd
k (t) = ΦddP

dd
k|kΦ′dd +

∫ t

tk

Ωdd(t, s)Ωdd(t, s)′ds, (17c)

where the sensitivity matrices are evaluated at t and tk, e.g.
Φxx = Φxx(t, tk), and

Ωxx(t, s) = Φxx(t, s)σ(ŷk(s), u(s), d̂k(s)), (18a)
Ωxd(t, s) = Φxd(t, s)σd, (18b)
Ωdd(t, s) = Φdd(t, s)σd. (18c)

C. Numerical solution of the time-update equations

We solve the time-update equations (15) with Euler’s
implicit method, i.e. we solve the equations

[
Dk,n+1(x̂k,n+1, ŷk,n+1; x̂k,n, uk|k, d̂k|k)

G(x̂k,n+1, ŷk,n+1, ẑk,n+1)

]
= 0, (19)

where the discretized differential equations are

Dk,n+1 = x̂k,n+1 − F (ŷk,n+1, uk|k, d̂k|k)∆tk,n − x̂k,n.
(20)

The sensitivities satisfy

[
I −∂F

∂y ∆tk,n 0
∂G
∂x

∂G
∂y

∂G
∂z

]


Φxx Φxd

Φyx Φyd

Φzx Φzd


 =

[
I ∂F

∂d ∆tk,n
0 0

]
,

(21)

where the sensitivity matrices are evaluated at tk,n+1 and
tk,n, e.g. Φxx = Φxx(tk,n+1, tk,n). We discretize the inte-
grals in (17) with a right rectangle quadrature rule:

P xx
k,n+1 = ΦxxP

xx
k,nΦ′xx + ΦxdP

dx
k,nΦ′xx + Φxx(P dx

k,n)′Φ′xd
+ ΦxdP

dd
k,nΦ′xd + (ΩxxΩ′xx + ΩxdΩ′xd) ∆tk,n,

(22a)

P dx
k,n+1 = P dx

k,nΦ′xx + P dd
k,nΦ′xd + ΩddΩ′xd∆tk,n, (22b)

P dd
k,n+1 = P dd

k,n + ΩddΩ′dd∆tk,n. (22c)

The sensitivities and the matrices Ωxx, Ωxd, and Ωdd, in (22)
are evaluated at tk,n+1 and tk,n. The sensitivity matrices in
(22) are therefore the ones that we solve (21) for. We have
exploited that Φdd(t, s) = I in (21) and (22).

V. DYNAMIC OPTIMIZATION

We assume that there is one control interval in between
measurements. At sample time tk, we solve the OCP

min
[x(t);y(t);z(t)]

tk+Nh
tk

,{uj|k}
k+Nh−1

j=k

φ
(

[y(t);u(t); d(t)]
tk+Nh
tk

)
,

(23a)

subject to

x(tk) = x̂k|k, (23b)
G(x(t), y(t), z(t)) = 0, t ∈ [tk, tk+Nh

], (23c)
ẋ(t) = F (y(t), u(t), d(t)), t ∈ [tk, tk+Nh

], (23d)
u(t) = uj|k, t ∈ [tj , tj+1[, j = k, . . . , k +Nh − 1, (23e)

d(t) = d̂j|k, t ∈ [tj , tj+1[, j = k, . . . , k +Nh − 1, (23f)

{uj|k}k+Nh−1
j=k ∈ U , (23g)

where the objective function, φ, is in Lagrange form:

φ
(

[y(t);u(t); d(t)]
tk+Nh
tk

)
=

∫ tk+Nh

tk

Φ(y(t), u(t), d(t))dt.

(24)
We consider a control and prediction horizon of Nh control
intervals. [x(t); y(t); z(t)]

tk+Nh
tk

is a vector of dependent
optimization variables, and {uj|k}k+Nh−1

j=k are independent
optimization variables. The DAE system (23c)-(23d) is de-
terministic, i.e. there is no process noise. (23e)-(23f) are
zero-order-hold parametrizations of the manipulated inputs
and the disturbance variables, and (23g) are constraints on
the manipulated inputs. We assume that d̂j|k = d̂k|k for
j = k+ 1, . . . , k+Nh− 1. The OCP (23) needs the current
estimates of the states, x̂k|k, and disturbance variables, d̂k|k.
They are computed by the continuous-discrete EKF.



A. Single-shooting

We use the single-shooting algorithm described in [18] to
solve the OCP (23). We define the objective function, ψ, as

ψ = ψ({uj|k}k+Nh−1
j=k ; x̂k|k, {d̂j|k}k+Nh−1

j=k )

=

{
φ : (23b)-(23f)

}
. (25)

That is, ψ is the objective function φ in (24) evaluated using
the solution of the DAE system (23c)-(23d) with the initial
condition (23b) and the zero-order-hold parametrizations of
the manipulated inputs and the disturbance variables (23e)-
(23f). In the single-shooting approach, we solve the finite
dimensional nonlinear program

min
{uj|k}

k+Nh−1

j=k

ψ = ψ({uj|k}k+Nh−1
j=k ; x̂k|k, {d̂j|k}k+Nh−1

j=k ),

(26a)

s.t. {uj|k}k+Nh−1
j=k ∈ U . (26b)

We solve the DAE system (23c)-(23d) with Euler’s implicit
method. For each time step, we solve the residual equations,
Rj,n+1 = 0, for wj,n+1 where

Rj,n+1 = Rj,n+1(wj,n+1;xj,n, uj|k, d̂j|k)

= Rj,n+1(xj,n+1, yj,n+1, zj,n+1;xj,n, uj|k, d̂j|k)

=

[
Dj,n+1(xj,n+1, yj,n+1;xj,n, uj|k, d̂j|k)

G(xj,n+1, yj,n+1, zj,n+1)

]
, (27)

and the discretized differential equations are

Dj,n+1 = Dj,n+1(xj,n+1, yj,n+1;xj,n, uj|k, d̂j|k)

= xj,n+1 − F (yj,n+1, uj|k, d̂j|k)∆tj,n − xj,n.
(28)

Furthermore, wj+1,0 = wj,Nj . We substitute the discretized
DAEs (27) into (25) and approximate the integral in (24)
with a right rectangle quadrature rule:

ψ = ψ({uj|k}k+Nh−1
j=k ; x̂k|k, {d̂j|k}k+Nh−1

j=k ) (29a)

=

{
φ =

k+Nh−1∑

j=k

Nj−1∑

n=0

Φj,n(yj,n+1, uj|k, d̂j|k) : (29b)

xk,0 = x̂k|k, (29c)

Rj,n+1(wj,n+1;xj,n, uj|k, d̂j|k) = 0

}
. (29d)

n = 0, . . . , Nj − 1 and j = k, . . . , k +Nh − 1 in (29d) and

Φj,n(yj,n+1, uj|k, d̂j|k) = Φ(yj,n+1, uj|k, d̂j|k)∆tj,n. (30)

Proposition 1: Consider the function, ψ, defined in (29).
The gradients, ∇uj|kψ, can be computed by

∇uj|kψ =

Nj−1∑

n=0

(
∇uj|kΦj,n +

(
∂Rj,n+1

∂uj|k

)′
λj,n+1

)
,

(31)

where the adjoints satisfy
(
∂Rj,Nj

∂wj,Nj

)′
λj,Nj

= −∇wj,Nj
Φj,Nj−1, (32)

for j = k +Nh − 1,
(
∂Rj,n

∂wj,n

)′
λj,n = −

(
∂Rj,n+1

∂wj,n

)′
λj,n+1 −∇wj,nΦj,n−1,

(33)

for n = Nj − 1, . . . , 1 and j = k +Nh − 1, . . . , k, and
(
∂Rj,Nj

∂wj,Nj

)′
λj,Nj =−

(
∂Rj+1,1

∂wj+1,0

)′
λj+1,1

−∇wj,Nj
Φj,Nj−1, (34)

for j = k +Nh − 2, . . . , k.

VI. DYNAMIC UV FLASH SEPARATION

We consider the flash separation of a mixture of NC

components into a vapor phase (v) and a liquid phase (l). The
two phases are in thermodynamic equilibrium. The vapor and
liquid phases exit the separator from two separate streams.
The separator is supplied with a vapor-liquid mixture through
a feed stream. The separator is cooled, Q(t) ≤ 0. The
internal energy, U , and the total amount of moles of each
component, n, are described by the conservation equations

U̇(t) = Hv
F (t) +H l

F (t)−HV (t)−HL(t) +Q(t), (35a)

ṅi(t) = fvF,i(t) + f lF,i(t)− vi(t)− li(t), i = 1, . . . , NC .
(35b)

Hv
F and H l

F are the vapor-liquid enthalpies of the feed
stream, and HV and HL are the enthalpies of the vapor and
liquid streams. Q is the heat flux from the external cooling.
fvF and f lF are vectors of the molar flow rates of the feed
stream, and v and l are vectors of the molar flow rates of the
vapor and liquid streams. The volume, V , of the separator
is fixed. The equilibrium temperature, T , pressure, P , and
vapor-liquid compositions, nv and nl, are the solution to the
UV flash optimization problem:

max
T,P,nv,nl

S = Sv(T, P, nv) + Sl(T, P, nl), (36a)

s.t. Uv(T, P, nv) + U l(T, P, nl) = U, (36b)

V v(T, P, nv) + V l(T, P, nl) = V, (36c)

nvi + nli = ni, i = 1, . . . , NC . (36d)

The UV flash optimization problem (36) is a mathematical
statement of the second law of thermodynamics, i.e. the
entropy of a closed system in equilibrium is maximal. That
condition can be adapted to isothermal-isobaric (constant
temperature - constant pressure) systems in which case it
states that Gibbs energy, G, is minimal. That is the condition
that determines the molar flow rates of the feed stream, fvF
and f lF , based on the feed temperature, TF , pressure, PF ,
and total molar flow rates, fF :

min
fv
F ,f l

F

G = Gv(TF , PF , f
v
F ) +Gl(TF , PF , f

l
F ), (37a)

fvF,i + f lF,i = fF,i, i = 1, . . . , NC . (37b)



(37) is called the PT flash optimization problem. The first-
order optimality conditions of (36) constitute the algebraic
equations (1a). We solve (35) and (36) simultaneously. How-
ever, we nest the solution of (37) into the evaluation of the
right-hand side of (35). The properties in the right-hand side
of the conservation equations (35) are uncertain, e.g. because
of limited accuracy in the thermodynamic parameters. The
differential equations (35) are therefore stochastic, and the
process noise can be non-additive depending on how the
uncertain parameters enter into the model equations [34].

VII. NUMERICAL EXAMPLE

We consider the flash separation of a hydrocarbon mixture
in a 1 m3 separator. The feed mixture contains 60% C1,
10% C2, 5% C3, 23% n-C7, and 2% H2S. There are
6 states, 12 algebraic variables, and 7 adjoint algebraic
variables. We control the separation process over a time
period of 8 h. The prediction and control horizon in the
NMPC algorithm is 6 h. The manipulated inputs are the
heat flux, Q, and the total flow rates of the vapor and
liquid streams, FV and FL. The total feed flow rate is
FF = 12 kmol/h. The objective of the NMPC algorithm
is to minimize the amount of energy spent on cooling, i.e. to
maximize

∫ 8h
0h Q(t)dt (which is negative). There are upper

bounds on the H2S vapor mole fraction, yH2S ≤ 2%, and the
pressure, P ≤ 7.5 MPa. We incorporate those bounds into
the objective function with logarithmic barrier functions. We
incorporate bounds on the vapor fraction, β ∈ [0%, 100%], in
a similar manner. The feed temperature, TF , is an unknown
disturbance variable that we estimate. The initial estimate of
TF is equal to its true value. However, TF increases with
5 K after 2 h. This increase is not known by the NMPC
algorithm. We use σd = 0.5 K and P dd

0 = 0.252 K2 in
the EKF. We measure the temperature and pressure every
5 min. This is also the length of the control intervals.
The standard deviations of the temperature and pressure
measurement noises are 2.5 K and 0.05 MPa. The diffu-
sion coefficient is constant, i.e. σ(y(t), u(t), d(t)) = σ =
diag([σU ;σC1

;σC2
;σC3

;σn-C7
;σH2S]) where σU = 0.2 MJ,

σC1
= σC2

= σn-C7
= 2 mol, and σC3

= σH2S = 0.2 mol.
x0 is a steady-state of the system (when process noise is
disregarded), and P xx

0 = σσ′.
Fig. 1 shows a closed-loop simulation of NMPC of the

flash separation process. The upper bounds on yH2S and P
are satisfied throughout the entire simulation. Fig. 2 shows
the estimated disturbance variable, TF , together with the
manipulated inputs, Q, FV , and FL. The EKF is able to track
the increase in TF , and the NMPC algorithm is able to reduce
the cooling and thereby lower the energy consumption. The
computation time of the NMPC algorithm is between 9 s
and 74 s in each of the control intervals, and the average
computation time is 29 s.

VIII. CONCLUSIONS

We present an NMPC algorithm for disturbance rejec-
tion in UV flash processes. It estimates the states and the
unknown disturbance variables with the continuous-discrete

EKF and solves the involved OCPs with a single-shooting
method. The gradients are computed with an adjoint method.
It is natural for models of UV flash processes to be in a semi-
explicit index-1 stochastic DAE form. We describe a model
of a UV flash separation process in such a form. We present
a numerical example of economical NMPC of the UV flash
separation process. The example involves constraints on the
H2S vapor mole fraction and the pressure, and the estimation
is based on temperature and pressure measurements. The
NMPC algorithm is able to estimate an unknown increase
in the unmeasured feed temperature while satisfying the
constraints. The computation time is 74 s or less in all of the
5 min control intervals which indicates that real-time NMPC
of UV flash processes is computationally feasible.
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Abstract

This is a technical report which accompanies the article ”An open-source thermodynamic soft-
ware library” which describes an efficient Matlab and C implementation for evaluation of ther-
modynamic properties. In this technical report we present the model equations, that are also
presented in the paper, together with a full set of first and second order derivatives with respect to
temperature and pressure, and in cases where applicable, also with respect to mole numbers. The
library is based on parameters and correlations from the DIPPR database and the Peng-Robinson
and the Soave-Redlich-Kwong equations of state.

Keywords: Thermodynamic functions, Software, Phase equilibrium

1. Introduction

The purpose of this technical report is to document the equations describing vapor-liquid en-
thalpy, entropy and volume of real and ideal mixtures and pure components, together with their
first and second order derivatives with respect to temperature and pressure, and for mixture prop-
erties, also with respect to mole numbers. For completeness, this technical report also describes
logarithmic fugacity coefficients together with first and second order derivatives. The fugacity
coefficients are defined by means of residual properties that are also described in this report.
However, their second order derivatives require third order derivatives of the residual properties,
which are not described in this report2.

Section 2 presents DIPPR correlations together with derived expressions that are necessary
in the ideal gas and liquid models. Section 3 presents ideal gas properties and Section 4 presents
ideal liquid properties. Section 5 presents real mixture properties based on the Peng-Robinson
(PR) and the Soave-Redlich-Kwong (SRK) equations of state.

2. DIPPR correlations for pure components

This section describes the DIPPR correlations (Thomson, 1996) for ideal gas heat capacity,
vapor pressure and liquid volume together with necessary integrals and temperature derivatives.

*This project is funded partly by Innovation Fund Denmark in the CITIES project (1305-00027B) and in the OPTION
project (63-2013-3), and partly by the interreg project Smart Cities Accelerator (10606 SCA).

2The main motivation for including second order derivatives of fugacity coefficients is that they are necessary for
formulating second order algorithms for dynamic optimization of flash processes.



Furthermore, we present all derivatives of these correlations and derived properties, that are
necessary for the first and second order derivatives in the ideal gas and liquid models.

2.1. Ideal gas heat capacity

The ideal gas heat capacity of the i’th component, cig
P,i = cig

P,i(T ), is

cig
P,i = Ai + Bi


Ci
T

sinh
(

Ci
T

)


2

+ Di


Ei
T

cosh
(

Ei
T

)


2

(1)

The parameters (Ai, Bi,Ci,Di, Ei) are specific to each substance and also to the ideal gas heat
capacity correlation. They are provided by the DIPPR database. The unit for the molar ideal
gas heat capacity is J/(kmoles K) and the temperature must be in K. The integral of the ideal gas
heat capacity is used in computation of ideal gas enthalpy and is expressed using the auxiliary
function Γi = Γi(T )

∫ T1

T0

cig
P,idT = Γi(T1) − Γi(T0) (2a)

Γi(T ) = AiT + BiCi coth
(Ci

T

)
− DiEi tanh

(Ei

T

)
(2b)

The integral of the ideal gas heat capacity divided by temperature is used for the ideal gas entropy
and is expressed using the auxiliary function Πi = Πi(T )

∫ T1

T0

cig
P,i

T
dT = Πi(T1) − Πi(T0) (3a)

Πi(T ) = Ai ln(T ) + Bi

(Ci

T
coth

(Ci

T

)
− ln sinh

(Ci

T

))

− Di

(Ei

T
tanh

(Ei

T

)
− ln cosh

(Ei

T

))
(3b)

The only necessary derivative of the ideal gas heat capacity is the first order temperature deriva-
tive

∂cig
P,i

∂T
=

2
T 2


(
Ai − cig

P,i

)
T +

BiCi

tanh
(

Ci
T

)


Ci
T

sinh
(

Ci
T

)


2

+ DiEi tanh
(Ei

T

) 
Ei
T

cosh
(

Ei
T

)


2 (4)

2.2. Vapor pressure

The vapor pressure or saturation pressure of the i’th component, Psat
i = Psat

i (T ), is

Psat
i = exp

(
ln Psat

i

)
(5a)

ln Psat
i = Ai +

Bi

T
+ Ci ln(T ) + DiT Ei (5b)

The substance specific correlation parameters (Ai, Bi,Ci,Di, Ei) are provided by the DIPPR database
and are specific to the vapor pressure correlation. Because both the vapor pressure and its first
order temperature derivative appear in the ideal liquid model, we present first, second and third

2



order derivatives of the above correlation. The derivatives of the vapor pressure are expressed
through the derivatives of the logarithmic vapor pressure

∂Psat
i

∂T
= Psat

i

∂ ln Psat
i

∂T
(6a)

∂2Psat
i

∂T 2 = Psat
i


(
∂ ln Psat

i

∂T

)2

+
∂2 ln Psat

i

∂T 2

 (6b)

∂3Psat
i

∂T 3 = Psat
i


∂3 ln Psat

i

∂T 3 + 3
∂2 ln Psat

i

∂T 2

∂ ln Psat
i

∂T
+

(
∂ ln Psat

i

∂T

)3 (6c)

The derivatives of the logarithmic vapor pressure correlation are

∂ ln Psat
i

∂T
=

1
T

(
Ci − Bi

T
+ DiEiT Ei

)
(7a)

∂2 ln Psat
i

∂T 2 =
1

T 2

(
2

Bi

T
−Ci + DiEi(Ei − 1)T Ei

)
(7b)

∂3 ln Psat
i

∂T 3 =
1

T 3

(
−6

Bi

T
+ 2Ci + DiEi(Ei − 1)(Ei − 2)T Ei

)
(7c)

2.3. Liquid volume
The liquid volume of the i’th component, vl

i = vl
i(T ), is

vl
i =

B
1+

(
1− T

Ci

)Di

i

Ai
(8)

The substance specific correlation parameters (Ai, Bi,Ci,Di) are provided by the DIPPR database
and are specific to this correlation. Because both the liquid volume and its first order derivative
appear in the ideal liquid model, we present first, second and third order temperature derivatives
of the liquid volume correlation. The derivatives are

∂vl
i

∂T
= − ln Bi

Di

Ci

(
1 − T

Ci

)Di−1

vl
i (9a)

∂2vl
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∂T 2 = −
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∂vl

i

∂T
(9b)
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i
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3. Thermodynamic functions for ideal gases

This section presents enthalpy, entropy and volume of ideal gas mixtures and pure compo-
nents. These equations are based on the reference enthalpy and entropy of formation provided
by the DIPPR database, together with the correlation for the ideal gas heat capacity and the ideal
gas law.

3



3.1. Pure component properties
We describe the computation of enthalpy, entropy and volume of a pure component i

3.1.1. Enthalpy
The molar ideal gas enthalpy, hig

i = hig
i (T ), is a function of temperature only

hig
i = hig

i (T0, P0) − Γi(T0)︸                  ︷︷                  ︸
ĥig

f ,i

+Γi(T )
(10)

It is more efficient to store ĥig
f ,i = hig

i (T0, P0) − Γi(T0) rather than storing hig
i (T0, P0) and recom-

puting Γi(T0) at every evaluation of hig
i . The derivatives of the molar enthalpy are

∂hig
i

∂T
= cig

P,i (11a)

∂2hig
i

∂T 2 =
∂cig

P,i

∂T
(11b)

where the ideal gas heat capacity and its temperature derivative are given by (1) and (4).

3.1.2. Entropy
The molar ideal gas entropy, sig

i = sig
i (T, P), is a function of temperature and pressure

sig
i = Πi(T ) − R ln(P)

+ sig
i (T0, P0) − Πi(T0) + R ln(P0)︸                                  ︷︷                                  ︸

ŝig
f ,i

(12)

It is more efficient to store ŝig
f ,i = sig

i (T0, P0) − Πi(T0) + R ln(P0) than recomputing Πi(T0) at

every evaluation of sig
i . The first order temperature and pressure derivatives of the molar ideal

gas entropy are

∂sig
i

∂T
=

cig
P,i

T
(13a)

∂sig
i

∂P
= −R

P
(13b)

The second order derivatives of the molar ideal gas entropy are

∂2sig
i

∂T 2 =
1
T

dcig
P,i

dT
− 1

T 2 cig
P,i (14a)

∂2sig
i

∂P2 =
R
P2 (14b)

∂2sig
i

∂T∂P
= 0 (14c)

where again, the ideal gas heat capacity and its temperature derivative are given by (1) and (4).
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3.1.3. Volume
The molar ideal gas volume, vig

i = vig
i (T, P), is

vig
i =

RT
P

(15)

The first order derivatives of the ideal gas molar volume are

∂vig
i

∂T
=

R
P

(16a)

∂vig
i

∂P
= −RT

P2 (16b)

The second order derivatives are

∂2vig
i

∂T 2 = 0 (17a)

∂2vig
i

∂P2 = 2
RT
P3 (17b)

∂2vig
i

∂T∂P
= − R

P2 (17c)

3.2. Mixture properties
We describe the computation of volume, enthalpy and entropy of an ideal gas mixture of

NC components using the molar properties of each component and the composition of the gas
mixture. The mixture contains n = {ni}NC

i=1 moles of each component.

3.2.1. Enthalpy
The ideal gas mixture enthalpy, Hig = Hig(T, n), is

Hig =

NC∑

i=1

nih
ig
i (18)

The first order derivatives are

∂Hig

∂T
=

NC∑

i=1

nic
ig
P,i (19a)

∂Hig

∂nk
= hig

k (19b)

The second order derivatives are

∂2Hig

∂T 2 =

NC∑

i=1

ni
∂2hig

i

∂T 2 (20a)

∂2Hig

∂T∂nk
= cig

P,k (20b)

∂2Hig

∂nl∂nk
= 0 (20c)
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3.2.2. Entropy
The ideal gas mixture enthalpy, S ig = S ig(T, P, n), is

S ig =

NC∑

i=1

nis
ig
i − R

NC∑

i=1

ni ln(yi) (21)

where the total amount of moles, N, and the vapor mole fraction, yi, are

yi =
ni

N
(22a)

N =

NC∑

i=1

ni (22b)

The derivatives of the mixture entropy are

∂S ig

∂T
=

1
T

NC∑

i=1

nic
ig
P,i (23a)

∂S ig

∂P
= −NR

P
(23b)

∂S ig

∂nk
= sig

k − R ln(yk) (23c)

The second order derivatives are

∂2S ig

∂T 2 =
1
T

NC∑

i=1

ni


∂cig

P,i

∂T
− 1

T
cig

P,i

 (24a)

∂2S ig

∂P2 =
NR
P2 (24b)

∂2S ig

∂T∂P
= 0 (24c)

∂2S ig

∂T∂nk
=
∂sig

k

∂T
=

cig
P,k

T
(24d)

∂2S ig

∂P∂nk
=
∂sig

k

∂P
= −R

P
(24e)

∂2S ig

∂nl∂nk
= −R

(
δkl

nl
− 1

N

)
(24f)

3.2.3. Volume
The ideal gas mixture volume, V ig = V ig(T, P, n), is

V ig =
NRT

P
(25)
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The first order derivatives of the ideal gas mixture volume are

∂V ig

∂T
=

NR
P

(26a)

∂V ig

∂P
=

NRT
P2 (26b)

∂V ig

∂nk
=

RT
P

(26c)

The second order derivatives are

∂2V ig

∂T 2 = 0 (27a)

∂2V ig

∂P2 = 2
NRT

P3 (27b)

∂2V ig

∂T∂P
= −NR

P2 (27c)

∂2V ig

∂T∂nk
=

R
P

(27d)

∂2V ig

∂P∂nk
= −RT

P2 (27e)

∂2V ig

∂nl∂nk
= 0 (27f)

4. Thermodynamic functions for ideal liquids

This section presents enthalpy, entropy and volume of ideal liquid mixtures and pure compo-
nents. These are based on ideal gas properties, vaporization properties and pressure correcting
terms. The latter two are further based on the DIPPR correlations for vapor pressure and liquid
volume, together with their first order temperature derivatives.

4.1. Pure component properties

The properties of pure component liquids are based on ideal gas properties at vaporization
temperature and pressure, T and Psat

i = Psat
i (T ), as well as vaporization properties. The vapor-

ization enthalpy, ∆hvap
i = ∆hvap

i (T ), entropy, ∆svap
i = ∆svap

i (T ), and volume, ∆vvap
i = ∆vvap

i (T ),
are

∆vvap
i =

RT
Psat

i
− vl

i (28a)

∆svap
i =

∂Psat
i

∂T
∆vvap

i (28b)

∆hvap
i = T∆svap

i (28c)

7



where Psat
i = Psat

i (T ) is the vapor pressure (5) and vl
i = vl

i(T ) is the liquid volume (8). The
derivatives of the vaporization volume are

∂∆vvap
i

∂T
=

R
Psat

i

(
1 − T

Psat
i

∂Psat
i

∂T

)
− ∂vl

i

∂T
(29a)

∂2∆vvap
i

∂T 2 = − R
(
Psat

i

)2

(
2
∂Psat

i

∂T

(
1 − T

Psat
i

∂Psat
i

∂T

)
+ T

∂2Psat
i

∂T 2

)
− ∂

2vl
i

∂T 2 (29b)

The derivatives of the vaporization enthalpy are

∂∆hvap
i

∂T
= ∆svap

i + T
∂∆svap

i

∂T
(30a)

∂2∆hvap
i

∂T 2 = 2
∂∆svap

i

∂T
+ T

∂2∆svap
i

∂T 2 (30b)

The derivatives of the vaporization entropy are

∂∆svap
i

∂T
=
∂2Psat

i

∂T 2 ∆vvap
i +

∂Psat
i

∂T
∂∆vvap

i

∂T
(31a)

∂2∆svap
i

∂T 2 =
∂3Psat

i

∂T 3 ∆vvap
i + 2

∂2Psat
i

∂T 2

∂∆vvap
i

∂T
+
∂Psat

i

∂T
∂2∆vvap

i

∂T 2 (31b)

The molar liquid saturation enthalpy, hsat
i = hsat

i (T ), and entropy, ssat
i = ssat

i (T ), are

hsat
i = hv

i (T ) − ∆hvap
i (T ) (32a)

ssat
i = sv

i (T, Psat
i ) − ∆svap

i (T ) (32b)

The derivatives of the molar liquid saturation enthalpy are

∂hsat
i

∂T
= cig

P,i −
∂∆hvap

i

∂T
(33)

∂2hsat
i

∂T 2 =
∂cig

P,i

∂T
− ∂

2∆hvap
i

∂T 2 (34)

The derivatives of the molar liquid saturation entropy

∂ssat
i

∂T
=
∂sv

i

∂T
(T, Psat

i ) +
∂sv

i

∂P
(T, Psat

i )
∂Psat

i

∂T
− ∂∆svap

i

∂T
(35)

∂2ssat
i

∂T 2 =
∂2sv

i

∂T 2 (T, Psat
i ) + 2

∂2sv
i

∂T∂P
(T, Psat

i )
∂Psat

i

∂T
+
∂2sv

i

∂P2 (T, Psat
i )

(
∂Psat

i

∂T

)2

− ∂
2∆svap

i

∂T 2 (36)

The molar liquid enthalpy, hid
i = hid

i (T, P), entropy, sid
i = sid

i (T, P), at arbitrary pressure are

hid
i = hsat

i +

vl
i − T

∂vl
i

∂T


(
P − Psat

i

)
(37a)

sid
i = ssat

i −
∂vl

i

∂T

(
P − Psat

i

)
(37b)
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The molar ideal liquid volume is given by the DIPPR correlation (8). The first order derivatives
of liquid enthalpy are

∂hid
i

∂T
=
∂hsat

i

∂T
− T

∂2vl
i

∂T 2

(
P − Psat

i

)
−

vl
i − T

∂vl
i

∂T


∂Psat

i

∂T
(38a)

∂hid
i

∂P
= vl

i − T
∂vl

i

∂T
(38b)

The second order derivatives are

∂2hid
i

∂T 2 =
∂2hsat

i

∂T 2 −

∂2vl

i

∂T 2 + T
∂3vl

i

∂T 3


(
P − Psat

i

)
+ 2T

∂2vl
i

∂T 2

∂Psat
i

∂T
−

vl
i − T

∂vl
i

∂T


∂2Psat

i

∂T 2 (39a)

∂2hid
i

∂P2 = 0 (39b)

∂2hid
i

∂T∂P
= −T

∂2vl
i

∂T 2 (39c)

The first order derivatives of liquid entropy are

∂sid
i

∂T
=
∂ssat

i

∂T
−

(
∂2vl

i

∂T 2

(
P − Psat

i

)
− ∂vl

i

∂T
∂Psat

i

∂T

)
(40a)

∂sid
i

∂P
= −∂vl

i

∂T
(40b)

The second order derivatives are

∂2sid
i

∂T 2 =
∂2ssat

i

∂T 2 −
(
∂3vl

i

∂T 3

(
P − Psat

i

)
− 2

∂2vl
i

∂T 2

∂Psat
i

∂T
− ∂vl

i

∂T
∂2Psat

i

∂T 2

)
(41a)

∂2sid
i

∂P2 = 0 (41b)

∂2sid
i

∂T∂P
= −∂

2vl
i

∂T 2 (41c)

4.2. Mixture properties

We present volume, enthalpy and entropy of an ideal gas mixture of NC components using
the molar properties of each component and the composition of the gas mixture. The mixture
contains n = {ni}NC

i=1 moles of each component.

4.2.1. Enthalpy
The ideal liquid mixture enthalpy, Hid = Hid(T, P, n), is

Hid =

NC∑

i=1

nihid
i (42)
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The first order derivatives are

∂Hid

∂T
=

NC∑

i=1

ni
∂hid

i

∂T
(43a)

∂Hid

∂P
=

NC∑

i=1

ni

vl
i − T

∂vl
i

∂T

 (43b)

∂Hid

∂nk
= hid

k (43c)

The second order derivatives are

∂2Hid

∂T 2 =

NC∑

i=1

ni
∂2hid

i

∂T 2 (44a)

∂2Hid

∂P2 = 0 (44b)

∂2Hid

∂T∂P
= −T

NC∑

i=1

ni
∂2vl

i

∂T 2 (44c)

∂2Hid

∂T∂nk
=
∂hid

k

∂T
(44d)

∂2Hid

∂P∂nk
= vl

k − T
∂vl

k

∂T
(44e)

∂2Hid

∂nl∂nk
= 0 (44f)

4.2.2. Entropy
The entropy of an ideal liquid mixture is given by

S id(T, P, n) =

NC∑

i=1

nisid
i − R

NC∑

i=1

ni ln xi (45)

where the liquid mole fraction, xi, is

xi =
ni

N
(46)

and the total amount of moles, N, is given by (22b). The first order derivatives are

∂S id

∂T
=

NC∑

i=1

ni
∂sid

i

∂T
(47a)

∂S id

∂P
= −

NC∑

i=1

ni
∂vl

i

∂T
(47b)

∂S id

∂nk
= sid

k − R ln(xk) (47c)
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The second order derivatives are

∂2S id

∂T 2 =

NC∑

i=1

ni
∂2sid

i

∂T 2 (48a)

∂2S id

∂P2 = 0 (48b)

∂2S id

∂T∂P
= −

NC∑

i=1

ni
∂2vl

i

∂T 2 (48c)

∂2S id

∂T∂nk
=
∂sid

k

∂T
(48d)

∂2S id

∂P∂nk
= −∂vl

k

∂T
(48e)

∂2S id

∂nl∂nk
= −R

(
δkl

nl
− 1

N

)
(48f)

4.2.3. Volume
The ideal liquid mixture volume, V id = V id(T, n), is

V id =

NC∑

i=1

nivl
i(T ) (49)

(50)

The first order derivatives are

∂V id

∂T
=

NC∑

i=1

ni
∂vl

i

∂T
(51a)

∂V id

∂nk
= vl

k (51b)

The second order derivatives are

∂2V id

∂T 2 =

NC∑

i=1

ni
∂2vl

i

∂T 2 (52a)

∂2V id

∂T∂nk
=
∂vl

k

∂T
(52b)

∂2V id

∂nl∂nk
= 0 (52c)

5. Thermodynamic functions for real mixtures

This section presents the enthalpy, entropy and volume of a real vapor or liquid mixture.
These are based on ideal gas properties and residual properties. The latter are obtained from
either of the cubic equations of state, Soave-Redlich-Kwong (SRK) or Peng-Robinson (PR)
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5.1. Mixture properties
We consider a vapor or liquid phase containing NC components with mole numbers n =

{ni}NC
i=1. The total amount of moles in the phase, N, and the mole fraction of the i’th component,

zi, are given by

N =

NC∑

i=1

ni (53a)

zi =
ni

N
(53b)

The molar enthalpy, h = h(T, P, n), and entropy, s = s(T, P, n), are

h = hig + hR (54)

s = sig + sR (55)

where hig = hig(T, P, n) and sig = sig(T, P, n) are molar ideal gas enthalpy and entropy, and
hR(T, P, n) and sR = sR(T, P, n) are molar residual enthalpy and entropy. The molar volume,
v = v(T, P, n), is the solution of either the Peng-Robinson or the Soave-Redlich-Kwong equations
of state, both of which are in the cubic form

P =
RT

v − bm
− am

(v + εbm)(v + σbm)
(56)

where the scalars ε and σ are specific to each equation of state but independent of the given
substances. In practice, the equation of state (56) is solved for the compressibility factor Z =

Z(T, P, n) in which case the molar mixture volume is

v =
RTZ

P
(57)

Appendix A presents a direct and an iterative approach for solving the cubic equations of state for
the compressibility factor. The mixture parameters am = am(T, n) and bm = bm(n) are obtained
with van der Waals mixing rules

am =

NC∑

i=1

NC∑

j=1

ziz jai j (58a)

bm =

NC∑

i=1

zibi (58b)

where the mixing parameter ai j = ai j(T ) is

ai j = (1 − ki j)
√

âi j (59)

The parameter âi j = âi j(T ) = ai(T )a j(T ) is introduced for convenience and the substance specific
parameters ai = ai(T ) and bi are determined from the critical temperature, Tc,i, and critical
pressure, Pc,i, of the i’th component

ai = α(Tr,i, ωi)Ψ
R2T 2

c,i

Pc,i
(60a)

bi = Ω
RTc,i

Pc,i
(60b)
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Table 1: Parameters in the Soave-Redlich-Kwong and the Peng-Robinson equations of state.

Eq. ε σ Ω Ψ

SRK 1 0 0.08664 0.42748
PR 1 +

√
2 1 − √2 0.07779 0.45724

where α(Tr,i, ωi) is a function of the reduced temperature, Tr,i = T/Tc,i, and the acentric factor,
ωi, given by

α(Tr,i, ωi) =
(
1 + m(ωi)(1 − T 1/2

r,i )
)2

(61)

The scalars Ψ and Ω are related to the equation of state parameters, ε and σ, and their values are
shown in Table 1. The function m(ωi) is a second order polynomium in the acentric factor, ωi,
for the Peng-Robinson and Soave-Redlich-Kwong equations of state and is given by

mSRK(ωi) = 0.480 + 1.574ωi − 0.176ω2
i (62a)

mPR(ωi) = 0.37464 + 1.54226ωi − 0.26992ω2
i (62b)

The cubic equation of state (56) is solved for the compressibility factor Z = Z(T, P, n) and is
therefore rewritten using the third order polynomial q = q(Z)

q = Z3 +

2∑

m=0

dmZm = 0 (63)

where the polynomial coefficients {dm = dm(A, B)}2m=0 are

d2 = B(ε + σ − 1) − 1 (64a)

d1 = A − B(ε + σ) + B2(εσ − ε − σ) (64b)

d0 = −
(
AB +

(
B2 + B3

)
εσ

)
(64c)

The dimensionless quantities A = A(T, P, n) and B = B(T, P, n) are introduced for convenience
and are given by

A =
Pam

R2T 2 (65a)

B =
Pbm

RT
(65b)

5.2. Residual enthalpy and entropy
The molar residual enthalpy and entropy are given in terms of the four auxiliary functions

f = f (Z, B), gh = gh(T, n), gs = gs(T, n) and gz = gz(Z, B)

hR = hR(T, P, n) = RT (Z − 1) +
1

ε − σgh f (66a)

sR = sR(T, P, n) = Rgz +
1

ε − σgs f (66b)

13



The auxiliary functions, f = f (Z, B), gh = gh(T, n), gs = gs(T, n) and gz = gz(Z, B), are

f = ln
( Z + εB
Z + σB

)
(67a)

gh = Tgs − am

bm
(67b)

gs =
1

bm

∂am

∂T
(67c)

gz = ln(Z − B) (67d)

The function f = f (Z, B) depends on the equation of state parameters, ε and σ, whereas gh =

gh(T, n), gs = gs(T, n) and gz = gz(Z, B) do not. The first order derivatives of the residual
enthalpy, hR = hR(T, P, n), are

∂hR

∂T
= R(Z − 1) + RT

∂Z
∂T

+
1

ε − σ
(
∂gh

∂T
f + gh

∂ f
∂T

)
(68a)

∂hR

∂P
= RT

∂Z
∂P

+
1

ε − σgh
∂ f
∂P

(68b)

∂hR

∂nk
= RT

∂Z
∂nk

+
1

ε − σ
(
∂gs

∂nk
f + gh

∂ f
∂nk

)
(68c)

The second order derivatives are

∂2hR

∂T 2 = 2R
∂Z
∂T

+ RT
∂2Z

∂T 2 +
1

ε − σ
(
∂2gh

∂T 2 f + 2
∂gh

∂T
∂ f
∂T

+ gh
∂2 f

∂T 2

)
(69a)

∂2hR

∂P2 = RT
∂2Z

∂P2 +
1

ε − σgh
∂2 f

∂P2 (69b)

∂2hR

∂T∂P
= R

∂Z
∂P

+ RT
∂2Z
∂T∂P

+
1

ε − σ
(
∂gh

∂T
∂ f
∂P

+ gh
∂2 f
∂T∂P

)
(69c)

∂2hR

∂T∂nk
= R

∂Z
∂nk

+ RT
∂2Z
∂T∂nk

+
1

ε − σ
(
∂2gh

∂T∂nk
f +

∂gh

∂T
∂ f
∂nk

+
∂gh

∂nk

∂ f
∂T

+ gh
∂2 f
∂T∂nk

)
(69d)

∂2hR

∂P∂nk
= RT

∂2Z
∂P∂nk

+
1

ε − σ
(
∂gh

∂nk

∂ f
∂P

+ gh
∂2 f
∂P∂nk

)
(69e)

∂2hR

∂nl∂nk
= RT

∂2Z
∂nl∂nk

+
1

ε − σ
(
∂2gh

∂nl∂nk
f +

∂gh

∂nk

∂ f
∂nl

+
∂gh

∂nl

∂ f
∂nk

+ gh
∂2 f
∂nl∂nk

)
(69f)

The first order derivatives of the residual entropy, sR = sR(T, P, n), are

∂sR

∂T
= R

∂gz

∂T
+

1
ε − σ

(
∂gs

∂T
f + gs

∂ f
∂T

)
(70a)

∂sR

∂P
= R

∂gz

∂P
+

1
ε − σgs

∂ f
∂P

(70b)

∂sR

∂nk
= R

∂gz

∂nk
+

1
ε − σ

(
∂gs

∂nk
f + gs

∂ f
∂nk

)
(70c)
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The second order derivatives are

∂2sR

∂T 2 = R
∂2gz

∂T 2 +
1

ε − σ
(
∂2gs

∂T 2 f + 2
∂gs

∂T
∂ f
∂T

+ gs
∂2 f

∂T 2

)
(71a)

∂2sR

∂P2 = R
∂2gz

∂T 2 +
1

ε − σgs
∂2 f

∂P2 (71b)

∂2sR

∂T∂P
= R

∂2gz

∂T∂P
+

1
ε − σ

(
∂gs

∂T
∂ f
∂P

+ gs
∂2 f
∂T∂P

)
(71c)

∂2sR

∂T∂nk
= R

∂2gz

∂T∂nk
+

1
ε − σ

(
∂2gs

∂T∂nk
f +

∂gs

∂T
∂ f
∂nk

+
∂gs

∂nk

∂ f
∂T

+ gs
∂2 f
∂T∂nk

)
(71d)

∂2sR

∂P∂nk
= R

∂2gz

∂P∂nk
+

1
ε − σ

(
∂gs

∂nk

∂ f
∂P

+ gs
∂2 f
∂P∂nk

)
(71e)

∂2sR

∂nl∂nk
= R

∂2gz

∂nl∂nk
+

1
ε − σ

(
∂2gs

∂nl∂nk
f +

∂gs

∂nk

∂ f
∂nl

+
∂gs

∂nl

∂ f
∂nk

+ gs
∂2 f
∂nl∂nk

)
(71f)

5.3. Fugacity coefficients

In this report we also present an explicit expression for the logarithmic fugacity coefficients
{ln φi}NC

i=1 derived from the residual properties (66). The expression for the fugacity coefficients is
obtained using the auxiliary functions f = f (Z, B), gz = gz(Z, B) and gφ,i = gφ,i(T, n)

ln φi = (Z − 1)
bi

bm
− gz − 1

ε − σgφ,i f (72)

where the auxiliary function gφ,i = gφ,i(T, n) is

gφ,i =
1

RTbm

2
NC∑

j=1

z jai j − am
bi

bm

 (73)

The first order derivatives are

∂ ln φi

∂T
=
∂Z
∂T

bi

bm
− ∂gz

∂T
− 1
ε − σ

(
∂gφ,i
∂T

f + gφ,i
∂ f
∂T

)
(74a)

∂ ln φi

∂P
=
∂Z
∂P

bi

bm
− ∂gz

∂P
− 1
ε − σgφ,i

∂ f
∂P

(74b)

∂ ln φi

∂nk
=
∂Z
∂nk

bi

bm
− (Z − 1)

bi

b2
m

∂bm

∂nk
− ∂gz

∂nk
− 1

(ε − σ)

(
∂gφ,i
∂nk

f + gφ,i
d f
dnk

)
(74c)
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The second order derivatives are

∂2 ln φi

∂T 2 =
∂2Z

∂T 2

bi

bm
− ∂

2gz

∂T 2 −
1

ε − σ
(
∂2gφ,i
∂T 2 f + 2

∂gφ,i
∂T

∂ f
∂T

+ gφ,i
∂2 f

∂T 2

)
(75a)

∂2 ln φi

∂P2 =
∂2Z

∂P2

bi

bm
− ∂

2gz

∂P2 −
1

ε − σgφ,i
∂2 f

∂P2 (75b)

∂2 ln φi

∂T∂P
=

∂2Z
∂T∂P

bi

bm
− ∂2gz

∂T∂P
− 1
ε − σ

(
∂gφ,i
∂T

∂ f
∂P

+ gφ,i
∂2 f
∂T∂P

)
(75c)

∂2 ln φi

∂T∂nk
=

∂2Z
∂T∂nk

bi

bm
− ∂Z
∂T

bi

b2
m

∂bm

∂nk
− ∂2gz

∂T∂nk

− 1
(ε − σ)

(
∂2gφ,i
∂T∂nk

f +
∂gφ,i
∂T

d f
dnk

+
∂gφ,i
∂nk

d f
dT

+ gφ,i
∂2 f
∂T∂nk

)
(75d)

∂2 ln φi

∂P∂nk
=

∂2Z
∂P∂nk

bi

bm
− ∂Z
∂P

bi

b2
m

∂bm

∂nk
− ∂2gz

∂P∂nk

− 1
(ε − σ)

(
∂gφ,i
∂nk

d f
dP

+ gφ,i
∂2 f
∂P∂nk

)
(75e)

∂2 ln φi

∂nl∂nk
=

∂2Z
∂nl∂nk

bi

bm
−

(
∂Z
∂nk

∂bm

∂nl
+
∂Z
∂nl

∂Z
∂nk

)
bi

b2
m

+ (Z − 1)
bi

b2
m

(
2

bm

∂bm

∂nk

∂bm

∂nl
− ∂2bm

∂nl∂nk

)

− ∂2gz

∂nl∂nk
− 1

(ε − σ)

(
∂2gφ,i
∂nl∂nk

f +
∂gφ,i
∂nk

d f
dnl

+
∂gφ,i
∂nl

d f
dnk

+ gφ,i
∂2 f
∂nl∂nk

)
(75f)

5.4. Auxiliary functions
Note on nomenclature: In order to keep the derivative information brief we introduce the

auxiliary variables w1 and w2. Each of these variables are a placeholder for either temperature,
T , pressure, P, or a mole number, nk. We will use these auxiliary variables in cases where the
structure of the derivative equations do not depend on the type of variable.

The first order derivatives of f = f (Z, B) with respect to temperature, pressure and mole
numbers are expressed through the derivatives with respect to the compressibility factor Z =

Z(T, P, n) and B = B(T, P, n)

∂ f
∂w1

=
∂ f
∂Z

∂Z
∂w1

+
∂ f
∂B

∂B
∂w1

, w1 ∈ {T, P, nk} (76)

The second order temperature, pressure and composition derivatives are

∂2 f

∂w1
2 =

∂2 f

∂Z2

(
∂Z
∂w1

)2

+
∂ f
∂Z

∂2Z

∂w1
2 + 2

∂2 f
∂Z∂B

∂Z
∂w1

∂B
∂w1

+
∂2 f

∂B2

(
∂B
∂w1

)2

+
∂ f
∂B

∂2B

∂w1
2 (77a)

∂2 f
∂w1∂w2

=
∂2 f

∂Z2

∂Z
∂w1

∂Z
∂w2

+
∂2 f

∂B2

∂B
∂T

∂B
∂w2

+
∂ f
∂Z

∂2Z
∂w1∂w2

+
∂ f
∂B

∂2B
∂w1∂w2

+
∂2 f
∂Z∂B

(
∂Z
∂w1

∂B
∂w2

+
∂Z
∂w2

∂B
∂w1

)
(77b)
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where w1 ∈ {T, P, nk} and w2 ∈ {T, P, nl}. Note: w1 and w2 can represent different mole
numbers, nk and nl, respectively. The first order derivatives of f = f (Z, B) with respect to the
compressibility factor Z and B are

∂ f
∂Z

=
1

Z + εB
− 1

Z + σB
(78a)

∂ f
∂B

=
ε

Z + εB
− σ

Z + σB
(78b)

The second order derivatives are

∂2 f

∂Z2 = − 1
(Z + εB)2 +

1
(Z + σB)2 (79a)

∂2 f

∂B2 = −
(

ε

Z + εB

)2
+

(
σ

Z + σB

)2
(79b)

∂2 f
∂Z∂B

= − ε

(Z + εB)2 +
σ

(Z + σB)2 (79c)

The first order derivatives of gh = gh(T, n) are

∂gh

∂T
= T

∂gs

∂T
(80a)

∂gh

∂nk
= T

∂gs

∂nk
− 1

bm

(
∂am

∂nk
− am

bm

∂bm

∂nk

)
(80b)

The second order derivatives are

∂2gh

∂T 2 =
∂gs

∂T
+ T

∂2gs

∂T 2 (81a)

∂2gh

∂T∂nk
= T

∂2gs

∂T∂nk
(81b)

∂2gh

∂nl∂nk
= T

∂2gs

∂nl∂nk
− 1

bm

∂2am

∂nl∂nk

+
1

b2
m

(
∂am

∂nl

∂bm

∂nk
+
∂am

∂nk

∂bm

∂nl
+ am

(−2
bm

∂bm

∂nl

∂bm

∂nk
+

∂2bm

∂nl∂nk

) )
(81c)

The first order derivatives of gs = gs(T, n) are

∂gs

∂T
=

1
bm

∂2am

∂T 2 (82a)

∂gs

∂nk
=

1
bm

∂2am

∂T∂nk
− 1

b2
m

∂bm

∂nk

∂am

∂T
(82b)
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The second order derivatives are

∂2gs

∂T 2 =
1

bm

∂3am

∂T 3 (83a)

∂2gs

∂T∂nk
=

1
bm

∂3am

∂T 2∂nk
− 1

b2
m

∂bm

∂nk

∂2am

∂T 2 (83b)

∂2gs

∂nl∂nk
=

1
b2

m

[ (
2

bm

∂bm

∂nl

∂bm

∂nk
− ∂2bm

∂nl∂nk

)
∂am

∂T

− ∂bm

∂nk

∂2am

∂T∂nl
− ∂bm

∂nl

∂2am

∂T∂nk
+ bm

∂3am

∂T∂nm∂nk

]
(83c)

The first order derivatives of gz = gz(Z, B) with respect to temperature, pressure and mole num-
bers are expressed through the derivative with respect to the compressibility factor Z = Z(T, P, n)
and B = B(T, P, n)

∂gz

∂w1
=
∂gz

∂Z
∂Z
∂w1

+
∂gz

∂B
∂B
∂w1

, w1 ∈ {T, P, nk} (84)

The second order temperature, pressure and composition derivatives are

∂2gz

∂w1
2 =

∂2gz

∂Z2

(
∂Z
∂w1

)2

+
∂gz

∂Z
∂2Z

∂w1
2 + 2

∂2gz

∂Z∂B
∂Z
∂w1

∂B
∂w1

+
∂2gz

∂B2

(
∂B
∂w1

)2

+
∂gz

∂B
∂2B

∂w1
2 (85a)

∂2gz

∂w1∂w2
=
∂2gz

∂Z2

∂Z
∂w1

∂Z
∂w2

+
∂2gz

∂B2

∂B
∂T

∂B
∂w2

+
∂gz

∂Z
∂2Z

∂w1∂w2

+
∂gz

∂B
∂2B

∂w1∂w2
+

∂2gz

∂Z∂B

(
∂Z
∂w1

∂B
∂w2

+
∂Z
∂w2

∂B
∂w1

)
(85b)

where w1 ∈ {T, P, nk} and w2 ∈ {T, P, nl}. Note: these derivative equations are structurally
identical to the derivatives of f (76)-(77). The first order derivatives of gz = gz(Z, B) with respect
to the compressibility factor Z and B are

∂gz

∂Z
=

1
Z − B

(86a)

∂gz

∂B
= − 1

Z − B
(86b)

The second order derivatives are

∂2gz

∂Z2 = − 1
(Z − B)2 (87a)

∂2gz

∂Z2 =
1

(Z − B)2 (87b)

∂2gz

∂Z∂B
=

1
(Z − B)2 (87c)
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The first order derivatives of the auxiliary function gφ,i = gφ,i(T, n) are

∂gφ,i
∂T

=
1
T


1

Rbm

2
NC∑

j=1

z j
∂ai j

∂T
− ∂am

∂T
bi

bm

 − gφ,i

 (88a)

∂gφ,i
∂nk

=
1

bm




2
N

aik −
NC∑

j=1

x jai j

 −
bi

bm

(
∂am

∂nk
− 1

bm

∂bm

∂nk

) −
∂bm

∂nk
gφ,i +

1
RT

 (88b)

The second order derivatives are

∂2gφ,i
∂T 2 =

1
T


1

Rbm

2
NC∑

j=1

z j
∂2ai j

∂T 2 −
∂2am

∂T 2

bi

bm

 − 2
∂gφ,i
∂T

 (89a)

∂2gφ,i
∂T∂nk

= − 1
T

(
∂gφ,i
∂nk

+
1

bm

∂bm

∂nk
gφ,i

)

+
1

bm

[
− ∂bm

∂nk

∂gφ,i
∂T

+
1

RT

(
2
N


∂aik

∂T
−

NC∑

j=1

x j
∂ai j

∂T

 −
1

bm

(
∂2am

∂T∂nk
− 1

bm

∂bm

∂nk

)
bi

)]
, (89b)

∂2gφ,i
∂nl∂nk

= − 1
bm

(
∂gφ,i
∂nl

∂bm

∂nk
+
∂bm

∂nl

∂gφ,i
∂nk

+
∂2bm

∂nl∂nk

)
+

1
RT

1
bm

[
2

N2

2
NC∑

j=1

x jai j − ail − aik



− 1
bm

{
∂2am

∂nl∂nk
− ∂am

∂nk

1
bm

∂bm

∂nl
− 1

b2
m

[(
∂am

∂nl
− 2am

1
bm

∂bm

∂nl

)
∂bm

∂nk
+ am

∂2bm

∂nl∂nk

] }
bi

]

(89c)

5.5. Compressibility factor
The compressibility factor is implicitly defined by the cubic equation (63) for a given tem-

perature pressure and composition. The first order derivatives of the compressibility factor
Z = Z(T, P, n) are given in terms of the derivatives of the polynomium q = q(Z) given in (63)-
(64).

∂Z
∂w1

= −
(
∂q
∂Z

)−1
∂q
∂w1

, w1 ∈ {T, P, nk} (90a)

The second order derivatives are

∂2Z

∂w1
2 = −

(
∂q
∂Z

)−1 (
∂2q

∂w1
2 +

∂2q

∂Z2

(
∂Z
∂w1

)2

+ 2
∂2q

∂w1∂Z
∂Z
∂w1

)
(91a)

∂2Z
∂w1∂w2

= −
(
∂q
∂Z

)−1 (
∂2q

∂w1∂w2
+
∂2q

∂Z2

∂Z
∂w1

∂Z
∂w2

+
∂2q

∂w1∂Z
∂Z
∂w2

+
∂2q

∂w2∂Z
∂Z
∂w1

)
(91b)

where w1 ∈ {T, P, nk} and w2 ∈ {T, P, nl}. The first order derivatives of the cubic polynomium
q = q(Z) are expressed through the derivatives of the polynomial coefficients {dm = dm(A, B)}2m=0

∂q
∂Z

= 3Z2 +

2∑

m=1

mdmZm−1 (92a)

∂q
∂w1

=

2∑

m=0

∂dm

∂w1
Zm, w1 ∈ {T, P, nk} (92b)
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The second order derivatives are

∂2q

∂Z2 = 6Z + 2d2 (93a)

∂2q
∂Z∂w1

=

2∑

m=1

m
∂dm

∂w1
Zm−1 (93b)

∂2q

∂w1
2 =

2∑

m=0

∂2dm

∂w1
2 Zm (93c)

∂2q
∂w1∂w2

=

2∑

m=0

∂2dm

∂w1∂w2
Zm (93d)

where w1 ∈ {T, P, nk} and w2 ∈ {T, P, nl}.

5.6. Polynomial coefficients

The temperature, pressure and composition derivatives of the polynomial coefficients are
expressed through the derivatives with respect to A = A(T, P, n) and B = B(T, P, n). The first
order derivatives of {dm = dm(A, B)}2k=0 are

∂dm

∂w1
=
∂dm

∂A
∂A
∂w1

+
∂dm

∂B
∂B
∂w1

, w1 ∈ {T, P, nk} (94)

The second order derivatives are

∂2dm

∂w1
2 =

∂2dm

∂A2

(
∂A
∂w1

)2

+
∂dm

∂A
∂2A

∂w1
2 + 2

∂2dm

∂A∂B
∂A
∂w1

∂B
∂w1

+
∂2dm

∂B2

(
∂B
∂w1

)2

+
∂dm

∂B
∂2B

∂w1
2 (95a)

∂2dm

∂w1∂w2
=
∂2dm

∂A2

∂A
∂w1

∂A
∂w2

+
∂2dm

∂B2

∂B
∂w1

∂B
∂w2

+
∂dm

∂A
∂2A

∂w1∂w2

+
∂dm

∂B
∂2B

∂w1∂w2
+
∂2dm

∂A∂B

(
∂A
∂w1

∂B
∂w2

+
∂A
∂w2

∂B
∂w1

)
(95b)

where w1 ∈ {T, P, nk} and w2 ∈ {T, P, nl}. Note: w1 and w2 can represent different mole
numbers, nk and nl, respectively. The first order derivatives of the polynomial coefficient d2 =

d2(A, B) with respect to A and B are

∂d2

∂A
= 0 (96a)

∂d2

∂B
= (ε + σ − 1) (96b)
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The second order derivatives are

∂2d2

∂A2 = 0 (97a)

∂2d2

∂B2 = 0 (97b)

∂2d2

∂A∂B
= 0 (97c)

The first order derivatives of d1 = d1(A, B) are

∂d1

∂A
= 1 (98a)

∂d1

∂B
= −(ε + σ) + 2(εσ − ε − σ)B (98b)

The second order derivatives are

∂2d1

∂A2 = 0 (99a)

∂2d1

∂B2 = 2(εσ − ε − σ) (99b)

∂2d1

∂A∂B
= 0 (99c)

The first order derivatives of d0 = d0(A, B) are

∂d0

∂A
= −B (100a)

∂d0

∂B
= −

(
A + εσ(2B + 3B2)

)
(100b)

The second order derivatives are

∂2d0

∂A2 = 0 (101a)

∂2d0

∂B2 = −εσ(2 + 6B) (101b)

∂2d0

∂A∂B
= −1 (101c)

5.7. The quantities A and B
The first order derivatives of A = A(T, P, n) are given in terms of the derivatives of the mixing

parameter am = am(T, n)

∂A
∂T

=
∂am

∂T
P

R2T 2 −
2
T

A (102a)

∂A
∂P

=
am

R2T 2 (102b)

∂A
∂nk

=
∂am

∂nk

P
R2T 2 (102c)
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The second order derivatives are

∂2A

∂T 2 =
P

R2T 2

(
∂2am

∂T 2 −
1
T
∂am

∂T

)
− 3

T
∂A
∂T

(103a)

∂2A

∂P2 = 0 (103b)

∂2A
∂T∂P

=
∂am

∂T
1

R2T 2 −
2
T
∂A
∂P

(103c)

∂2A
∂T∂nk

=
∂2am

∂T∂nk

P
R2T 2 −

2
T
∂A
∂nk

(103d)

∂2A
∂P∂nk

=
∂am

∂nk

1
R2T 2 (103e)

∂2A
∂nl∂nk

=
∂2am

∂nl∂nk

P
R2T 2 (103f)

The first order derivatives of B = B(T, P, n) are given in terms of the derivatives of the mixing
parameter bm = bm(n)

∂B
∂T

= −bmP
RT 2 (104a)

∂B
∂P

=
bm

RT
(104b)

∂B
∂nk

=
∂bm

∂nk

P
RT

(104c)

The second order derivatives are

∂2B

∂T 2 = 2
bmP
RT 3 (105a)

∂2B

∂P2 = 0 (105b)

∂2B
∂T∂P

= − bm

RT 2 (105c)

∂2B
∂T∂nk

= −∂bm

∂nk

P
RT 2 (105d)

∂2B
∂P∂nk

=
∂bm

∂nk

1
RT

(105e)

∂2B
∂nl∂nk

=
∂2bm

∂nl∂nk

P
RT

(105f)

5.8. Mixing parameters
The derivatives of the mixing parameters am = am(T, n) exploit the symmetry of ai j =

ai j(T ) = a ji(T ). The first order derivatives are

∂am

∂T
=

NC∑

i=1

NC∑

j=1

ziz j
∂ai j

∂T
(106a)
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∂am

∂nk
=

2
N


NC∑

i=1

ziaik − am

 (106b)

The second order derivatives are

∂2am

∂T 2 =

NC∑

i=1

NC∑

j=1

ziz j
∂2ai j

∂T 2 (107a)

∂2am

∂T∂nk
=

2
N


NC∑

i=1

zi
∂aik

∂T
− ∂am

∂T

 (107b)

∂2am

∂nl∂nk
=

1
N

(
akl + am − ∂am

∂nk
− ∂am

∂nk

)
(107c)

The relevant third order derivatives are

∂3am

∂T 3 =

NC∑

i=1

NC∑

j=1

ziz j
∂3ai j

∂T 3 (108a)

∂3am

∂T 2∂nk
=

2
N


NC∑

i=1

zi
∂2aik

∂T 2 −
∂2am

∂T 2

 (108b)

∂3am

∂T∂nl∂nk
=

1
N

(
∂akl

∂T
+
∂am

∂T
− ∂2am

∂T∂nk
− ∂2am

∂T∂nk

)
(108c)

The derivatives of the mixing parameter bm = bm(n) are

∂bm

∂nk
=

bk − bm

N
(109a)

∂2bm

∂nl∂nk
=

2bm − bl − bk

N2 (109b)

The derivatives of ai j = ai j(T ) are given in terms of the derivatives of the auxiliary function
âi j = âi j(T )

∂ai j

∂T
=

1 − ki j

2
√

âi j

∂âi j

∂T
(110a)

∂2ai j

∂T 2 =
1
2

1 − ki j√
âi j


∂2âi j

∂T 2 −
1

2âi j

(
∂âi j

∂T

)2 (110b)

∂3ai j

∂T 3 = −1 − ki j

4
√

âi j

(
1

âi j

∂2âi j

∂T 2 + 2
∂3âi j

∂T 3

)
+

1
2âi j

(
1

âi j

∂âi j

∂T
∂ai j

∂T
− ∂

2ai j

∂T 2

)
(110c)
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The derivatives of the auxiliary function âi j = âi j(T ) are given in terms of derivatives of the pure
component properties ai = ai(T )

∂âi j

∂T
=
∂ai

∂T
a j + ai

∂a j

∂T
(111a)

∂2âi j

∂T 2 =
∂2ai

∂T 2 a j + 2
∂ai

∂T
∂a j

∂T
+ ai

∂2a j

∂T 2 (111b)

∂3âi j

∂T 3 =
∂3ai

∂T 3 a j + 3
∂2ai

∂T 2

∂a j

∂T
+ 3

∂ai

∂T
∂2a j

∂T 2 + ai
∂3a j

∂T 3 (111c)

5.9. Pure component properties
The pure component parameters ai = ai(T ) are directly proportional to α = α(Tr,i, ωi) and as

such their derivatives are

∂ai

∂T
=
∂α

∂T
Ψ

R2T 2
c,i

Pc,i
(112a)

∂2ai

∂T 2 =
∂2α

∂T 2 Ψ
R2T 2

c,i

Pc,i
(112b)

∂3ai

∂T 3 =
∂3α

∂T 3 Ψ
R2T 2

c,i

Pc,i
(112c)

The derivatives of α = α(Tr,i, ωi) are

∂α

∂T
= −α m(ωi)√

αTTc,i
(113a)

∂2α

∂T 2 = −1
2
∂α

∂T

(
1
T
− 1
α

∂α

∂T

)
(113b)

∂3α

∂T 3 = −1
2


∂2α

∂T 2

(
1
T
− 1
α

∂α

∂T

)
+
∂α

∂T


(

1
α

∂α

∂T

)2

− 1
α

∂2α

∂T 2 −
1

T 2


 (113c)

Appendix A. Solution of cubic equations

There exists a number of approaches for solving the cubic equation of state (56) for the roots
when pressure and temperature are given. These approaches are either direct approaches that
use explicit formula for computing the roots, iterative approaches that approximate the roots of
interest or a combination of both where the direct solution is refined by an iterative approach
in order to remove imprecision arising from rounding errors. In this work we use an iterative
approach as described by Smith et al. (2005) and compare to Cardano’s approach which is briefly
described by Monroy-Loperena (2012). The equation of state (56) is rewritten in terms of the
compressibility factor Z = PV/(RT )

Z3 − Z2 (1 − B(ε + σ − 1))

− Z (ε + σ − B(εσ − ε − σ) − A/B) B

− (A + B(1 + B)εσ) B = 0,
(A.1)
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where A and B are given by

A =
am(T, n)P

R2T 2 (A.2)

B =
Pbm(n)

RT
(A.3)

The equation of state (A.1) is written compactly

q(Z) = Z3 + d1Z2 + d2Z + d3 = 0 (A.4)

Cardano’s direct approach
The number of real roots are determined by the two quantities Q and R

Q = (d2
1 − 3d2)/9 (A.5)

R = (2d3
1 − 9d1d2 + 27d3)/54 (A.6)

There are three real roots if R2 ≤ Q3. In that case, the roots are found by the formula

Z1 = −2
√

Q cos(θ/3) − d1/3 (A.7a)

Z2 = −2
√

Q cos((θ + 2π)/3) − d1/3 (A.7b)

Z3 = −2
√

Q cos((θ − 2π)/3) − d1/3 (A.7c)

where θ is computed by

θ = arccos(R/
√

Q3) (A.8)

If R2 > Q3, there is one real root and two complex conjugate roots that are given by

Z1 = (S + T ) − d1/3 (A.9a)

Z2 = −1/2(S + T ) − d1/3 + i
√

3/2(S − T ) (A.9b)

Z3 = −1/2(S + T ) − d1/3 − i
√

3/2(S − T ) (A.9c)

where

S = −sgn(R)
(
|R| +

√
R2 − Q3

)1/3
(A.10)

T =

{
Q/S (S , 0)

0 (S = 0) (A.11)

In the case of multiple roots, the smallest represents the liquid phase compressibility factor,
Zl = min{Z1,Z2,Z3}, and the largest is vapor phase compressibility factor, Zv = max{Z1,Z2,Z3}.

An iterative Newton approach
The approach described here uses Newton iterations to solve the cubic equation (A.1). It is

possible to use higher-order methods as discussed by Olivera-Fuentes (1993), due to the cubic
nature of the equation. In the Newton approach, an initial guess, Z0, is iteratively improved by

Zk+1 = Zk − q(Zk)/q′(Zk) (A.12)

q′(Zk) = 3Z2
k + 2d1Zk + d2 (A.13)
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The iterative sequence is terminated when both of the following criteria are satisfied

|Zk+1 − Zk | < ε (A.14)

|Z3
k+1 + d1z2

k+1 + d2Zk+1 + d3| < ε (A.15)

Once the sequence is terminated, a single root has been found. The following initial estimates
are used, depending on whether the compressibility factor of the vapor phase, Zv, or of the liquid
phase, Zl, is sought

Zv
0 = 1 (A.16)

Zl
0 = B (A.17)
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Computation of Phase Equilibrium and

Phase Envelopes

Abstract

In this technical report, we describe the computation of phase equilibrium and phase en-

velopes based on expressions for the fugacity coefficients. We derive those expressions from the

residual Gibbs energy. We consider 1) ideal gases and liquids modeled with correlations from

the DIPPR database and 2) nonideal gases and liquids modeled with cubic equations of state.

Next, we derive the equilibrium conditions for an isothermal-isobaric (constant temperature,

constant pressure) vapor-liquid equilibrium process (PT flash), and we present a method for the

computation of phase envelopes. We formulate the involved equations in terms of the fugacity

coefficients. We present expressions for the first-order derivatives. Such derivatives are necessary

in computationally efficient gradient-based methods for solving the vapor-liquid equilibrium

equations and for computing phase envelopes. Finally, we describe a Matlab program that

computes the phase envelope of a mixture. We present the source code and discuss practical

details of the implementation.
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1. Introduction

1 Introduction

This technical report is structured in the following way: the purpose of Sections 2-4 is to derive

expressions for the fugacity coefficients which are relevant to the vapor-liquid equilibrium equations

that we present in Section 5 and 7. The vapor-liquid equilibrium equations (and therefore also the

fugacity coefficients) are central in the phase envelope computations that we describe in Section 8.

In the remainder of this section, we give a brief overview of the content of the sections.

We derive expressions for the residual Gibbs energy for ideal gas and liquid mixtures in Section 2

and for nonideal gas and liquid mixtures in Section 3. The residual Gibbs energy of ideal gases is zero

by definition. We obtain the expression for the residual Gibbs energy of ideal liquids directly from

the Gibbs energy of the ideal gas and liquid. We construct expressions for the residual Gibbs energy

of nonideal mixtures from the residual Helmholtz energy. That is because the partial derivative of

Helmholtz energy with respect to volume is negative pressure and because pressure appears explicitly

in cubic equations of state. We do not use the expressions for the residual Gibbs energy in the actual

computations. We only use them to derive expressions for the fugacity coefficients in Section 4.

In Section 4, we first introduce the chemical potential which is the partial derivative of Gibbs

energy with respect to a given mole number. Next, we define the fugacity based on the chemical

potential of the mixture of interest and the chemical potential of a pure component ideal gas. We

then define the fugacity coefficient and derive an expression for the fugacity coefficient based on

the residual Gibbs energy. The fugacity and the chemical potentials are not involved in the actual

computations. They only serve to introduce the relation between the fugacity coefficients and the

residual Gibbs energy.

In Section 5, we derive vapor-liquid equilibrium conditions for an isothermal-isobaric (constant

temperature, constant pressure) vapor-liquid mixture. The second law of thermodynamics states

that the entropy of a closed system is maximal at equilibrium. An isothermal-isobaric system is

not closed, but the combination of the isothermal-isobaric system and its surroundings is. The

condition of maximal entropy of the isothermal-isobaric system and its surroundings is equivalent

to a condition of minimal Gibbs energy for the system alone (Callen, 1985). We therefore formulate

the vapor-liquid equilibrium problem as an optimization problem where the objective function is the

Gibbs energy of the system. The equilibrium conditions are then the first-order optimality conditions

of this optimization problem. We rewrite these first-order optimality conditions in terms of the

fugacity coefficients.

In Section 6, we introduce the equilibrium constants (sometimes called equilibrium ratios) and

use the vapor-liquid equilibrium conditions to derive an expression for the equilibrium constants

based on the fugacity coefficients. In Section 7, we use the fact that the equilibrium constants for an

ideal vapor-liquid mixture are independent of the composition to solve the vapor-liquid equilibrium

problem efficiently.

In section 8, we describe the equations that define what is called the phase envelope. The phase

envelope is a collection of vapor-liquid equilibrium states that have the same vapor fraction, i.e.

the same total moles of vapor as compared to the total moles of both vapor and liquid. The phase

envelope equations are therefore based on the vapor-liquid equilibrium conditions. The method

for phase envelope computations that we present is described by Michelsen and Mollerup (2007,
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2. Residual Gibbs energy of ideal vapor-liquid mixtures

Chap. 12). The method involves a choice of equilibrium constants, temperature, and pressure as

independent variables, i.e. the variables that are solved for. The method constructs the phase

envelope in a sequential manner for a given specified vapor fraction. It solves the equations for a

specified equilibrium constant, temperature, or pressure. Next, it uses the sensitivities of the solution

to create an initial estimate for solving the equations with a slightly different specified equilibrium

constant, temperature or pressure.

We collect the derivatives of the expressions for the fugacity coefficients, the vapor-liquid equilib-

rium equations, and the phase envelope equations in Section 9.

In Section 10, we describe, in more detail, the algorithm by Michelsen and Mollerup (2007) for

computing the phase envelope. We also describe an example of a Matlab program that implements

the algorithm and computes the phase envelope for a hydrocarbon mixture. We present and discuss

the programs Matlab code.

1.1 A note on nomenclature

In Sections 2-4, we describe thermodynamic properties of either a vapor or a liquid mixture. When

we describe properties of vapor mixtures, e.g. the Gibbs energy of an ideal gas, we denote the

composition (in moles) by a vector, nv. In that case, we denote the mole fraction of component i

by yi. For liquid mixtures, we denote the composition vector nl and the mole fraction xi. When we

describe the properties of nonideal mixtures, and when we define fugacity and fugacity coefficients,

the expressions are the same for both vapor mixtures and liquid mixtures. We therefore denote the

composition by n and the mole fraction by zi.

Later, in Section 5 to 8, we consider mixtures that exist in both a vapor phase and a liquid

phase. Again, the vapor phase has composition nv and mole fraction yi, and the liquid phase has

composition nl and mole fraction xi. But in that case, n will denote the composition of the entire

mixture, i.e. ni = nvi + nli, and zi will be the corresponding mole fraction.

2 Residual Gibbs energy of ideal vapor-liquid mixtures

We derive the Gibbs energy of ideal gas and liquid mixtures from the enthalpy and entropy of those

mixtures. We use the pure component molar enthalpy and entropy of each component in the mixture

to derive expressions for the enthalpy and the entropy of the mixtures. The residual Gibbs energy

of a mixture is, by definition, the Gibbs energy of that mixture minus the Gibbs energy of an ideal

gas at the same state, e.g. temperature, pressure, and composition (in moles). The residual Gibbs

energy of an ideal gas mixture is therefore zero by definition. We use the Gibbs energy of an ideal

gas mixture and an ideal liquid mixture to derive an expression for the residual Gibbs energy of a

liquid mixture.
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2. Residual Gibbs energy of ideal vapor-liquid mixtures

2.1 Gibbs energy of ideal gas mixtures

We consider an ideal gas mixture of NC components. The molar enthalpy and entropy of the i’th

component at temperature T and pressure P are

higi (T ) = higi (T0) +

∫ T

T0

cigP,i(T )dT, (1a)

sigi (T, P ) = sigi (T0, P0) +

∫ T

T0

cigP,i(T )

T
dT −R ln

P

P0
. (1b)

The ideal gas enthalpy is independent of pressure. higi (T0) and sigi (T0, P0) are the ideal gas enthalpy

and entropy of formation at reference temperature T0 and P0. cigP,i(T ) is the ideal gas heat capacity

at constant pressure. Values of higi (T0) and sigi (T0, P0) and correlations for cigP,i(T ) are available in

databases such as the DIPPR database1 (Thomson, 1996). However, terms that involve higi (T0),

sigi (T0, P0), and cigP,i(T ) will cancel out in the computations that we describe in this technical report.

The molar gibbs energy of component i is

gigi (T, P ) = higi (T )− Tsigi (T, P )

= higi (T0)− Tsigi (T0, P0)−RT lnP0 +

∫ T

T0

cigP,i(T )dT − T
∫ T

T0

cigP,i(T )

T
dT +RT lnP

= Γi(T ) +RT lnP, (2)

where we have introduced the auxiliary variable

Γi(T ) = higi (T0)− Tsigi (T0, P0)−RT lnP0 +

∫ T

T0

cigP,i(T )dT − T
∫ T

T0

cigP,i(T )

T
dT. (3)

higi (T0), sigi (T0, P0), and cigP,i(T ) appear only in the auxiliary variable Γi(T ) and it is this variable

that will cancel out in the computations in later sections. The enthalpy and entropy of the ideal gas

mixture are

Hig(T, nv) =
∑

i

nvi h
ig
i (T ), (4a)

Sig(T, P, nv) =
∑

i

nvi s
ig
i (T, P )−R

∑

i

nvi ln yi. (4b)

nv is a vector of compositions (in moles). The i’th component, nvi , denotes the number of moles of

component i. yi is the vapor mole fraction of component i: yi = nvi /
(∑

j n
v
j

)
. The sums are over

all components. The second term in the expression for the entropy is a mixing term. The Gibbs

1www.aiche.org/dippr/events-products/801-database
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2. Residual Gibbs energy of ideal vapor-liquid mixtures

energy of the ideal gas mixture is

Gig(T, P, nv) = Hig(T, nv)− TSig(T, P, nv)
=
∑

i

nvi h
ig
i (T )− T

∑

i

nvi s
ig
i (T, P ) +RT

∑

i

nvi ln yi

=
∑

i

nvi g
ig
i (T, P ) +RT

∑

i

nvi ln yi

=
∑

i

nvi (Γi(T ) +RT lnP ) +RT
∑

i

nvi ln yi. (5)

2.2 Gibbs energy of ideal liquid mixtures

The vaporization change in molar enthalpy of component i, ∆hvapi (T ), is related to the vaporization

change in molar entropy, ∆svapi (T ), by

∆hvapi (T ) = T∆svapi (T ). (6)

We do not present an expression for ∆svapi (T ) because it will cancel out in later expressions. The

molar ideal liquid enthalpy at saturation is

hsati (T ) = higi (T )−∆hvapi (T )

= higi (T )− T∆svapi (T ). (7)

It is necessary to know the saturation pressure in order to provide expressions for the molar ideal

liquid entropy at saturation. We use the following correlation from the DIPPR database

P sati (T ) = exp
(
lnP sati (T )

)
, (8a)

lnP sati (T ) = Ai +
Bi
T

+ Ci ln(T ) +DiT
Ei . (8b)

Ai, Bi, Ci, Di, and Ei are component-specific parameters. They are also specific to this particular

correlation. The ideal liquid entropy at saturation is

ssati (T ) = sigi (T, P sati (T ))−∆svapi (T ). (9)

The molar ideal liquid Gibbs energy at saturation is

gsati (T ) = hsati (T )− Tssati (T )

= higi (T )− T∆svapi (T )− Tsigi (T, P sati (T )) + T∆svapi (T )

= higi (T )− Tsigi (T, P sati (T ))

= Γi(T ) +RT lnP sati (T ). (10)

In order to provide expressions for the molar ideal liquid enthalpy and entropy at pressures, P , that

are different from the saturation pressure, P sati (T ), it is necessary to know the liquid volume as

a function of temperature, as well as its first order temperature derivative. We use the following

7



2. Residual Gibbs energy of ideal vapor-liquid mixtures

correlation from the DIPPR database

vli(T ) =
B

1+
(

1− T
Ci

)Di

i

Ai
. (11)

Again, Ai, Bi, Ci, and Di are component-specific parameters. They are also specific for this

correlation, i.e. they are different from the parameters in the correlation for the saturation pressure.

The molar ideal liquid enthalpy and entropy are

hidi (T, P ) = hsati (T ) +

(
vli(T )− T ∂v

l
i

∂T

)
(P − P sati (T )), (12a)

sidi (T, P ) = ssati (T )− ∂vli
∂T

(P − P sati (T )). (12b)

Terms that involve the temperature derivative will cancel out in later expressions. The molar ideal

liquid Gibbs energy is

gidi (T, P ) = hidi (T, P )− Tsidi (T, P )

= hsati (T ) +

(
vli(T )− T ∂v

l
i

∂T

)
(P − P sati (T ))− Tssati (T ) + T

∂vli
∂T

(P − P sati (T ))

= hsati (T )− Tssati (T ) + vli(T )(P − P sati (T ))

= gsati (T ) + vli(T )(P − P sati (T ))

= Γi(T ) +RT lnP sati (T ) + vli(T )(P − P sati (T )). (13)

The ideal liquid mixture enthalpy and entropy are

Hid(T, P, nl) =
∑

i

nlih
id
i (T, P ), (14a)

Sid(T, P, nl) =
∑

i

nlis
id
i (T, P )−R

∑

i

nli lnxi. (14b)

nl is a vector of compositions in moles, i.e. nli is the moles of component i. xi = nli/
(∑

j n
l
j

)
is the

liquid mole fraction of component i. The second term in the expression for entropy is a mixing term.

The ideal liquid mixture Gibbs energy is

Gid(T, P, nl) = Hid(T, P, nl)− TSid(T, P, nl)
=
∑

i

nlih
id
i (T, P )− T

∑

i

nlis
id
i (T, P ) +RT

∑

i

nli lnxi

=
∑

i

nlig
id
i (T, P ) +RT

∑

i

nli lnxi

=
∑

i

nli
(
Γi(T ) +RT lnP sati (T ) + vli(T )(P − P sati (T ))

)
+RT

∑

i

nli lnxi. (15)
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3. Residual Gibbs energy of nonideal mixtures

2.3 Residual Gibbs energy of ideal vapor and liquid mixtures

The residual Gibbs energy is the difference between the Gibbs energy of the mixture and the Gibbs

energy of the mixture if it was considered to be an ideal gas mixture. The residual Gibbs energy of

an ideal gas mixture is therefore zero:

GR,ig(T, P, nv) = 0 (16)

We use the Gibbs energy of ideal gas mixtures to derive the expression for the residual Gibbs energy

of an ideal liquid mixture. It is the difference between the ideal liquid Gibbs energy and the ideal

gas Gibbs energy evaluated at the same temperature, T , pressure, P , and composition, nl:

GR,id(T, P, nl) = Gid(T, P, nl)−Gig(T, P, nl)

=

(∑

i

nli
(
Γi(T ) +RT lnP sati (T ) + vli(T )(P − P sati (T ))

)
+RT

∑

i

nli lnxi

)

−
(∑

i

nli (Γi(T ) +RT lnP ) +RT
∑

i

nli lnxi

)

=
∑

i

nli

(
RT ln

P sati (T )

P
+ vli(T )(P − P sati (T ))

)
(17)

It is important to note that the ideal gas Gibbs energy is evaluated at the liquid composition, nl, and

not nv in the above expression. That is also the reason that xi appears in place of yi which means

that certain terms cancel out. Unlike the ideal gas heat capacity, cigP,i(T ), the saturation pressure,

P sati (T ), and the liquid volume, vli(T ), are necessary in the computations that we present in this

report.

2.4 Summary

The residual Gibbs energy of ideal gas and liquid mixtures are

GR,ig(T, P, nv) = 0, (18a)

GR,id(T, P, nl) =
∑

i

nli

(
RT ln

P sati (T )

P
+ vli(T )(P − P sati (T ))

)
. (18b)

They will be used in expressions for the fugacity coefficients in Section 4.

3 Residual Gibbs energy of nonideal mixtures

In this section, we first present an expression for the residual Gibbs energy of a nonideal mixture

without assuming a specific equation of state. Then we describe cubic equations of state with van der

Waals’ mixing rules. Finally, we present the expression for the residual Gibbs energy of a nonideal

mixture based on a cubic equation of state. The derivation of the expression based on the cubic

equation of state is presented in Appendix B. We will not use the expression for the Gibbs energy
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3. Residual Gibbs energy of nonideal mixtures

of an ideal gas mixture that was derived in Section 2. Instead, we use the ideal gas law for the ideal

gas mixture.

3.1 Residual Gibbs energy with pressure-explicit equations of state

In this section, we consider a nonideal vapor or liquid mixture. We treat both phases in the same

way. We use the residual Helmholtz energy in the derivation. We will consider the Helmholtz energy

a function of temperature, T , volume, V , and composition (in moles), n. This is only for the sake

of the derivation. Eventually, we describe the residual Gibbs energy as function of temperature, T ,

pressure, P , and mole numbers, n. We omit the superscript v or l on the composition vector because

we treat both phases in the same way. The residual Helmholtz energy is

AR(T, V, n) = A(T, V, n)−Aig(T, V, n). (19)

A(T, V, n) is the Helmholtz energy of the mixture and Aig(T, V, n) is the Helmholtz energy of the

mixture if it was an ideal gas. We use the fact that the volume derivative of Helmholtz energy is

pressure with a negative sign:

∂AR

∂V
(T, V, n) =

∂A

∂V
(T, V, n)− ∂Aig

∂V
(T, V, n)

= −
(
P (T, V, n)− P ig(T, V, n)

)
. (20)

P ig(T, V, n) is obtained from the ideal gas law, i.e. P ig(T, V, n) = NRT/V , where N =
∑
j nj is

the total number of moles in the mixture and R is the gas constant. P (T, V, n) is obtained from an

equation of state. The derivation that we present in this section is therefore best suited to equations

of state that are explicit in pressure. That is the case for the cubic equations of state that we describe

later. We obtain an expression for the residual Helmholtz energy of the nonideal mixture:

AR(T, V, n) = −
∫ V

V=∞

(
P (T, V, n)− NRT

V

)
dV. (21)

The choice of integrating from infinite volume is a matter of convenience. We introduce the com-

pressibility factor, Z = PV
NRT . We use relations between residual properties to derive an expression

for the residual Gibbs energy evaluated at T , P , and n (Michelsen and Mollerup, 2007, Table 6):

GR(T, P, n) = GR(T, V, n)−NRT lnZ

= AR(T, V, n) + PV −NRT −NRT lnZ

= −
∫ V

V=∞

(
P (T, V, n)− NRT

V

)
dV +NRTZ −NRT −NRT lnZ

= −
∫ V

V=∞

(
P (T, V, n)− NRT

V

)
dV +NRT (Z − 1)−NRT lnZ. (22)

The above expression only becomes useful when we substitute a specific equation of state for

P (T, V, n).

10



3. Residual Gibbs energy of nonideal mixtures

3.2 Cubic equations of state

In this section, we describe cubic equation equations of state and van der Waals’ mixing rules. The

cubic equations of state are formulated in terms of the molar volume, v = V/N :

P = P (T, V, n) =
RT

v − bm
− am

(v + εbm)(v + σbm)

=
RT

V/N − bm
− am

(V/N + εbm)(V/N + σbm)
. (23)

The parameters ε and σ are specific for each cubic equation of state. Two of the most popular

cubic equations of state were developed by Soave (1972) and by Peng and Robinson (1976). The

parameters that are specific to each equation of state are shown in Table 1. am and bm are mixing

parameters given by van der Waals’ mixing rules:

am = am(T, n) =
∑

i

∑

j

zizjaij (24a)

bm = bm(n) =
∑

i

zibi (24b)

zi = ni/N is the mole fraction of component i. We define the pure component parameter bi shortly.

The binary parameters aij are

aij = aij(T ) = (1− kij)
√
âij . (25)

We assume that the binary interaction parameters, kij , are given constants, i.e. we do not provide

an expression for them. They can either be measured experimentally or predicted with a model. The

parameter âij is the product of the pure component parameters ai and aj :

âij = âij(T ) = aiaj . (26)

The pure component parameters ai and bi are

ai = ai(T ) = α(Tr,i, ωi)Ψ
R2T 2

c,i

Pc,i
, (27a)

bi = Ω
RTc,i
Pc,i

. (27b)

Tr,i = T/Tc,i is the reduced temperature. Tc,i and Pc,i are the critical temperature and pressure of

component i. ωi is the acentricity factor. We use values from the DIPPR database for the critical

temperature, pressure, and for the acentricity factor. Ψ and Ω are parameters that are specific to

the equation of state. Their values are shown in Table 1. The function, α, is

α(Tr,i, ωi) =
(

1 +m(ωi)(1− T 1/2
r,i )

)2

. (28)

m(ωi) is a polynomium that is specific for each equation of state. Its expression is shown in Table 1.

This concludes the description of the cubic equations of state. Next, we describe how to solve the
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3. Residual Gibbs energy of nonideal mixtures

Table 1: Parameters in the Soave-Redlich-Kwong (SRK) and the Peng-Robinson (PR) cubic equations
of state.

ε σ Ω Ψ m(ω)

PR 1 +
√

2 1−
√

2 0.07779 0.45724 m(ω) = 0.37464 + 1.54226ω − 0.26992ω2

SRK 1 0 0.08664 0.42748 m(ω) = 0.480 + 1.574ω − 0.176ω2

cubic equation of state of state for the compressibility factor.

3.2.1 Solution of cubic equations of state

We reformulate the cubic equation of state as a polynomium in the compressibility factor Z:

q(Z) = Z3 +
2∑

m=0

dmZ
m = 0. (29)

The polynomial coefficients are

d2 = d2(A,B) = B(ε+ σ − 1)− 1, (30a)

d1 = d1(A,B) = A−B(ε+ σ) +B2(εσ − ε− σ), (30b)

d0 = d0(A,B) = −
(
AB +

(
B2 +B3

)
εσ
)
, (30c)

where A and B are functions of temperature, T , pressure, P , and composition, n:

A = A(T, P, n) =
Pam
R2T 2

, (31a)

B = B(T, P, n) =
Pbm
RT

. (31b)

The compressibility factors are therefore also functions of temperature, T , pressure, P , and compo-

sition, n, i.e. Z = Z(T, P, n). The polynomium q(Z) = q(Z;T, P, n) will have either one or three

roots depending on the given T , P , and n. When it has three roots, the smallest root is the liquid

phase compressibility and the largest root is the vapor phase compressibility. This is essentially what

distinguishes the residual Gibbs energy of the vapor phase from the residual Gibbs energy of the

liquid phase. For given T , P , and n, we use Newton’s method to solve for the compressibility factor:

Zk+1 = Zk − q(Zk)/q′(Zk), (32a)

q′(Zk) = 3Z2
k + 2d2Zk + d1. (32b)

We use the stopping criterium

|q(Zk+1)| < ε, (33)

12



4. Fugacity and fugacity coefficients

for a given tolerance, ε. The initial guess for the Newton iterations depends on whether we are

searching for a vapor root or a liquid root:

Z0 = 1, (Vapor) (34a)

Z0 = B. (Liquid) (34b)

It is important to note that in vapor-liquid equilibrium computations, the vapor and the liquid

phases will have different compositions, nv and nl. It is therefore necessary to solve the polynomium

q(Z;T, P, nv) for the vapor compressibility and q(Z;T, P, nl) for the liquid compressibility. The

compressibilities are not roots of the same polynomium.

3.3 Residual Gibbs energy with cubic equations of state

We insert the cubic equation of state into the expression for the residual Gibbs energy. The evaluation

of the integral is described in Appendix B. The final expression becomes

GR(T, P, n) = −
∫ V

V=∞

(
RT

V/N − bm
− am

(V/N + εbm)(V/N + σbm)
− NRT

V

)
dV

+NRT (Z − 1)−NRT lnZ

= −NRT ln

(
Z −B
Z

)
− N

ε− σ
am
bm

ln

(
Z + εB

Z + σB

)
+NRT (Z − 1)−NRT lnZ

= NRT (Z − 1)−NRT ln(Z −B)− N

ε− σ
am
bm

ln

(
Z + εB

Z + σB

)
. (35)

We reiterate that the above expression describes the residual Gibbs energy of both the vapor phase,

GR,v(T, P, nv), and of the liquid phase, GR,l(T, P, nl). The cubic equation of state is a third order

polynomium, q(Z;T, P, n), in the compressibility factor. The vapor phase compressibility, Zv =

Zv(T, P, nv), is the largest root of q(Zv;T, P, nv) and the liquid phase compressibility factor, Zl =

Zl(T, P, nl), is the smallest root of q(Zl;T, P, nl).

3.4 Summary

The residual Gibbs energy of a nonideal mixture (either a vapor or a liquid mixture) based on a

cubic equation of state is

GR(T, P, n) = NRT (Z − 1)−NRT ln(Z −B)− N

ε− σ
am
bm

ln

(
Z + εB

Z + σB

)
. (36)

4 Fugacity and fugacity coefficients

In this section, we introduce the chemical potential in order to define the fugacity. Next, we

introduce the fugacity coefficients which are the quantities that we will actually use in the vapor-

liquid equilibrium computations. That is, the chemical potentials and the fugacities only serve the

purpose of introducing expressions for the fugacity coefficients.
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4. Fugacity and fugacity coefficients

4.1 Definition of chemical potential

The chemical potential of component i in a mixture is by definition the partial derivative of the

Gibbs energy of that mixture with respect to mole number i:

µi(T, P, n) =
∂G

∂ni
(T, P, n). (37)

The same definition holds for any mixture, i.e. also for ideal gas and liquid mixtures:

µigi (T, P, n) =
∂Gig

∂nvi
(T, P, nv), (38a)

µidi (T, P, n) =
∂Gid

∂nli
(T, P, nl). (38b)

4.2 Chemical potential of a pure component ideal gas

The definition of the fugacity of component i depends on the chemical potential of a pure component

(pc) ideal gas consisting entirely of component i. The Gibbs energy of such a pure component ideal

gas is

Gpc,igi (T, P, nvi ) = nvi g
ig
i (T, P )

= nvi (Γi(T ) +RT lnP ) . (39)

The chemical potential of that pure component ideal gas is therefore

µpc,igi (T, P, nvi ) =
∂Gpc,igi

∂nvi
(T, P, nvi )

= gigi (T, P )

= Γi(T ) +RT lnP. (40)

We note that the pure component ideal gas chemical potential is independent of the mole number,

i.e. µpc,igi (T, P, nvi ) = µpc,igi (T, P ).

4.3 Definition of fugacity

We define the fugacity of a mixture (vapor or liquid) of composition n. First, we recall that the

Gibbs energy of an ideal gas mixture of composition nv (in moles) is

Gig(T, P, nv) =
∑

i

nvi (Γi(T ) +RT lnP ) +RT
∑

i

nvi ln yi. (41)

Next, we express the ideal gas mixture chemical potential of component i in terms of the chemical

potential of a pure component ideal gas that consists of component i. Because we define fugacity

in the same way for both vapor and liquid mixtures, we use n for the composition instead of nv.

Similarly, we use zi = ni/N , where N =
∑
j nj , for the mole fraction of component i. The i’th

14



4. Fugacity and fugacity coefficients

chemical potential of an ideal gas mixture is

µigi (T, P, n) =
∂Gig

∂nvi
(T, P, n)

= Γi(T ) +RT lnP +RT ln zi

= Γi(T ) +RT lnP0 +RT ln
ziP

P0

= µpc,igi (T, P0) +RT ln
ziP

P0
. (42)

The differentiation of the first sum in the expression (41) for the Gibbs energy of an ideal gas mixture

is straightforward. We describe the differentiation of the second sum in Appendix A. The fugacity of

component i, fi(T, P, n), is defined such that the above expression is valid for the chemical potential

of mixtures that are not ideal gas mixtures. It is therefore implicitly defined by replacing ziP with

fi(T, P, n) in the above:

µi(T, P, n) = µpc,igi (T, P0) +RT ln
fi(T, P, n)

P0
. (43)

Note that it is still the chemical potential of a pure component ideal gas that appears on the right-

hand side of the above expression. Next, we introduce the fugacity coefficients and use the above

expression to relate the fugacity coefficients to the residual Gibbs energy.

4.4 Fugacity coefficients

In this section, we introduce the fugacity coefficients and relate them to the residual Gibbs energy.

First, we isolate the chemical potential of the pure component ideal gas in (42):

µpc,igi (T, P0) = µigi (T, P, n)−RT ln
ziP

P0
. (44)

Then we substitute the chemical potential of the pure component ideal gas into (43):

µi(T, P, n) = µpc,igi (T, P0) +RT ln
fi(T, P, n)

P0

= µigi (T, P, n)−RT ln
ziP

P0
+RT ln

fi(T, P, n)

P0

= µigi (T, P, n) +RT ln
fi(T, P, n)

ziP
. (45)

We define the fugacity coefficient of component i as

φi(T, P, n) =
fi(T, P, n)

ziP
. (46)
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4. Fugacity and fugacity coefficients

We substitute the fugacity coefficient into (45), isolate the term that contains the fugacity coefficient,

and use the definition of the chemical potentials:

RT lnφi(T, P, n) = µi(T, P, n)− µigi (T, P, n)

=
∂G

∂ni
(T, P, n)− ∂Gig

∂ni
(T, P, n)

=
∂

∂ni

(
G(T, P, n)−Gig(T, P, n)

)

=
∂GR

∂ni
(T, P, n) (47)

We thus obtain an expression for the logarithm of the fugacity coefficients:

lnφi(T, P, n) =
1

RT

∂GR

∂ni
(T, P, n). (48)

It is only the logarithms of the fugacity coefficients that we use in the vapor-liquid equilibrium

computations. It is therefore not necessary to isolate the fugacity coefficients in the above. Next,

we derive expressions for the logarithmic fugacity coefficients of ideal and nonideal gas and liquid

mixtures.

4.4.1 Ideal gas mixture

The residual Gibbs energy of ideal gas mixtures is zero. The logarithmic fugacity coefficients are

therefore also zero:

lnφigi (T, P, nv) =
1

RT

∂GR,ig

∂ni
(T, P, n)

= 0. (49)

4.4.2 Ideal liquid mixture

The residual Gibbs energy of ideal liquid mixtures is linear in the mole numbers. The differentiation

is therefore straightforward. The logarithmic fugacity coefficients are

lnφidi (T, P, nl) =
1

RT

∂GR,id

∂nli

=
1

RT

(
RT ln

P sati (T )

P
+ vli(T )(P − P sati (T ))

)

= ln
P sati (T )

P
+
vli(T )(P − P sati (T ))

RT
. (50)

The fugacity coefficients of ideal liquids are therefore independent of the composition, i.e. φidi (T, P, nl) =

φidi (T, P ).
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5. Vapor-liquid equilibrium

4.4.3 Nonideal mixture

We present the derivation of the fugacity coefficients for nonideal mixtures in Appendix C. The final

expression is

lnφi(T, P, n) = (Z − 1)
bi
bm
− ln(Z −B)− 1

ε− σ
1

RTbm


2
∑

j

zjaij − am
bi
bm


 ln

(
Z + εB

Z + σB

)
.

(51)

The above expression applies to both vapor and liquid mixtures. The logarithmic fugacity coefficients

of vapor mixtures, lnφvi (T, P, n
v), use the vapor phase compressibility, Zv = Zv(T, P, nv), which is

the largest root of the cubic equation of state, q(Zv;T, P, nv). The logarithmic fugacity coefficients

of liquid mixtures use the liquid phase compressibility, Zl(T, P, nl), which is the smallest root

of q(Zl;T, P, nl). Furthermore, several of the quantities in the above expression depend on the

composition. It is therefore different values of am(T, n), bm(n), B(T, P, n), and zi that appear in the

expressions for the vapor and liquid logarithmic fugacity coefficients.

4.5 Summary

The expressions for the logarithmic fugacity coefficients are

lnφigi (T, P, nv) = 0, (52a)

lnφidi (T, P, nl) = ln
P sati (T )

P
+
vli(T )(P − P sati (T ))

RT
, (52b)

lnφi(T, P, n) = (Z − 1)
bi
bm
− ln(Z −B)− 1

ε− σ
1

RTbm


2
∑

j

zjaij − am
bi
bm


 ln

(
Z + εB

Z + σB

)
.

(52c)

The latter expression applies to both nonideal vapor and liquid mixtures.

5 Vapor-liquid equilibrium

In this section, we formulate the vapor-liquid equilibrium problem as an optimization problem.

We then derive the vapor-liquid equilibrium conditions as the first-order optimality conditions of

this optimization problem. Next, we reformulate the equilibrium conditions in terms of the fugacity

coefficients that we introduced in Section 4. Finally, we use Newton’s method to solve the equilibrium

conditions.

5.1 Equilibrium conditions

We consider a mixture that exists in both a vapor phase (v) and a liquid phase (l). The mixture

contains NC components. The vapor phase has composition nv, and the liquid phase has composition

nl. Both nv and nl are vectors of mole numbers. Both phases have the same temperature, T , and the

same pressure, P . The mixture is isothermal and isobaric, i.e. the temperature and the pressure are
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5. Vapor-liquid equilibrium

specified constants. The problem is to find the vapor-liquid composition (in moles) at equilibrium.

The condition of equilibrium is that Gibbs energy of the mixture is minimal. We formulate this

condition as the optimization problem

min
nv,nl

Gv(T, P, nv) +Gl(T, P, nl), (53a)

s.t. nvi + nli = ni, i = 1, . . . , NC . (53b)

The total moles of each component, ni, is specified. The constraint ensures that mass is conserved,

i.e. that mass is distributed among the vapor phase and the liquid phase. Because the constraint

is linear, we use it to eliminate the liquid moles, i.e. nl = n − nv. By doing so, we obtain an

unconstrained optimization problem:

min
nv

Gv(T, P, nv) +Gl(T, P, n− nv). (54)

The first-order optimality conditions require that the derivatives of the objective function with respect

to the vapor mole numbers are zero:

∂Gv

∂nvi
(T, P, nv)− ∂Gl

∂nli
(T, P, n− nv) = 0. (55)

We have used that ∂
∂nv

i

(
Gl(T, P, n− nv)

)
= −∂Gl

∂nl
i

(T, P, n− nv). For brevity, we write nl instead of

n− nv in most of the following equations in this section, but it is implicitly understood that nl has

been eliminated. Next, we rewrite the equilibrium conditions in terms of the chemical potentials:

∂Gv

∂nvi
(T, P, nv)− ∂Gl

∂nli
(T, P, nl) = µvi (T, P, n

v)− µli(T, P, nl)

=
(
µvi (T, P, n

v)− µpc,igi (T, P0)
)
−
(
µli(T, P, n

l)− µpc,igi (T, P0)
)
.

(56)

We can obtain an expression for the difference in each parentheses from the definition of the fugacities:

(
µvi (T, P, n

v)− µpc,igi (T, P0)
)
−
(
µli(T, P, n

l)− µpc,igi (T, P0)
)

= RT ln
fvi (T, P, nv)

P0
−RT ln

f li (T, P, n
l)

P0
. (57)

From the definition of the fugacity coefficients, we know that fvi (T, P, nv) = φvi (T, P, n
v)yiP and

f li (T, P, n
l) = φli(T, P, n

l)xiP . We use those expressions to introduce the fugacity coefficients:

RT ln
fvi (T, P, nv)

P0
−RT ln

f li (T, P, n
l)

P0
= RT

(
ln fvi (T, P, nv)− ln f li (T, P, n

l)
)

= RT
(
ln (φvi (T, P, n

v)yiP )− ln
(
φli(T, P, n

l)xiP
))

= RT
(
lnφvi (T, P, n

v) + ln yi − lnφli(T, P, n
l)− lnxi

)
.

(58)
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6. Equilibrium constants

We recall that we have eliminated the liquid mole numbers, i.e. nl = n−nv. We solve the vapor-liquid

equilibrium problem by solving the following nonlinear equations for the vapor mole numbers, nv:

gi(T, P, n
v) = lnφvi (T, P, n

v) + ln yi − lnφli(T, P, n− nv)− lnxi = 0. (59)

The liquid mole numbers are xi = nli/
(∑

j n
l
j

)
= (ni − nvi )/

(∑
j nj − nvj

)
.

5.2 Solution of the equilibrium conditions

We solve the vapor-liquid equilibrium conditions with Newton’s method:

nv,k+1 = nv,k −
(
∂g

∂nv

)−1

g(T, P, nv,k). (60)

5.3 Summary

The vapor-liquid equilibrium conditions for a vapor-liquid mixture at temperature T , pressure P ,

and total composition n are

gi(T, P, n
v) = lnφvi (T, P, n

v) + ln yi − lnφli(T, P, n− nv)− lnxi = 0. (61)

We solve the above equilibrium conditions for the vapor composition, nv. The liquid mole numbers

are xi = (ni − nvi )/
(∑

j ni − nvi
)

. We solve the vapor-liquid equilibrium equations with Newton’s

method:

nv,k+1 = nv,k −
(
∂g

∂nv

)−1

g(T, P, nv,k). (62)

After solution, the liquid mole numbers are computed by nl = n− nv.

6 Equilibrium constants

In this section, we introduce the equilibrium constants and provide an expression for them in terms of

the logarithmic fugacity coefficients. The equilibrium constants are useful when solving vapor-liquid

equilibrium problems for ideal gas and liquid mixtures. We also use them as independent variables

in the phase envelope computations in Section 8.

6.1 Equilibrium constants

The i’th equilibrium constant (sometimes called the equilibrium ratio) is the ratio between the vapor

mole fraction and the liquid mole fraction of component i:

Ki =
yi
xi
. (63)
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7. Vapor-liquid equilibrium of ideal mixtures

We can therefore express the equilibrium conditions,

lnφvi (T, P, n
v) + ln yi − lnφli(T, P, n− nv)− lnxi = 0, (64)

in terms of the equilibrium constants:

lnKi + lnφvi (T, P, n
v)− lnφli(T, P, n

l) = 0. (65)

At equilibrium, we can therefore obtain the following expression for the logarithmic equilibrium

constants:

lnKi(T, P, n
v, nl) = lnφli(T, P, n

l)− lnφvi (T, P, n
v). (66)

6.1.1 Ideal vapor-liquid mixture

For an ideal vapor-liquid mixture, the logarithmic equilibrium constants are equal to the logarithmic

fugacity coefficients of the ideal liquid phase:

lnKid
i (T, P, nv, nl) = lnφidi (T, P, nl)− lnφigi (T, P, nv)

= lnφidi (T, P, nl)

= ln
P sati (T )

P
+
vli(T )(P − P sati (T ))

RT
(67)

The equilibrium constants are therefore independent of the composition vectors, i.e. Kid
i (T, P, nv, nl) =

Kid
i (T, P ). That can be exploited in the ideal vapor-liquid equilibrium computations.

6.2 Summary

The equilibrium constants for ideal and nonideal vapor-liquid mixtures are

lnKid
i (T, P ) = ln

P sati (T )

P
+
vli(T )(P − P sati (T ))

RT
, (68a)

lnKi(T, P, n
v, nl) = lnφli(T, P, n

l)− lnφvi (T, P, n
v). (68b)

7 Vapor-liquid equilibrium of ideal mixtures

In this section, we exploit the fact that the equilibrium constants of ideal vapor-liquid mixtures,

Kid
i (T, P ), are independent of composition. We can therefore solve the vapor-liquid equilibrium by

1) evaluating the equilibrium constants at the specified temperature, T , and pressure, P , 2) solve

for the vapor fraction, and 3) compute the vapor-liquid composition (in moles) from the equilibrium

constants and the vapor fraction. The ideal vapor-liquid equilibrium constants are

Kid
i (T, P ) = exp(lnKid

i (T, P )), (69a)

lnKid
i (T, P ) = ln

P sati (T )

P
+
vli(T )(P − P sati (T ))

RT
. (69b)
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7. Vapor-liquid equilibrium of ideal mixtures

We express the vapor mole fractions, yi, in terms of the equilibrium constants, Kid
i (T, P ), and the

liquid mole fractions, xi:

yi = Kid
i (T, P )xi. (70)

The total moles in the vapor and liquid phases are Nv =
∑
i n

v
i and N l =

∑
i n

l
i. The total moles

in the mixture is N = Nv + N l. The vapor fraction is β = Nv/N and 1 − β = 1 − Nv/N =

(N − Nv)/N = N l/N . The total mole fractions are zi = ni/N . We derive the expressions for xi

from the mass balance:

nvi + nli = ni, (71a)

nvi
N

+
nli
N

=
ni
N
, (71b)

Nv

N

nvi
Nv

+
N l

N

nli
N l

=
ni
N
, (71c)

βyi + (1− β)xi = zi, (71d)

βKid
i (T, P )xi + (1− β)xi = zi, (71e)

(1− β + βKid
i (T, P ))xi = zi. (71f)

The liquid mole fraction, xi, is therefore

xi =
zi

1 + β(Kid
i (T, P )− 1)

. (72)

Because we solve for β, y and x will not sum to one during the solution procedure. We therefore

require that both y and x sum to one. When 0 < β ≤ 1, the condition that

∑

i

xi = 1, (73)

together with
∑
i zi = 1 implies that ∑

i

yi = 1. (74)

We omit the derivation. It is therefore sufficient to only require that
∑
i xi = 1 for 0 < β ≤ 1. β = 0

implies that xi = zi such that
∑
i xi = 1 is satisfied independent of the equilibrium ratios, Kid

i (T, P ).

In that case, we therefore require that ∑

i

yi = 1. (75)

The following condition is equivalent to
∑
i xi = 1 for 0 < β ≤ 1 and to

∑
i yi = 1 for β = 0:

∑

i

(yi − xi) = 0. (76)

That is,
∑
i yi = 1 and

∑
i xi = 1 clearly imply that

∑
i(yi − xi) = 0. Because of the way that we

compute yi and xi,
∑
i(yi−xi) also implies that

∑
i yi = 1 and

∑
i xi = 1. We insert the expressions
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7. Vapor-liquid equilibrium of ideal mixtures

for yi and xi to obtain an equation in β:

∑

i

(yi − xi) =
∑

i

(
Kid
i (T, P )− 1

)
xi

=
∑

i

Kid
i (T, P )− 1

1 + β(Kid
i (T, P )− 1)

zi = 0,
(77)

We therefore solve the ideal vapor-liquid equilibrium problem by solving the scalar nonlinear equation,

f(β) =
∑

i

Kid
i (T, P )− 1

1 + β(Kid
i (T, P )− 1)

zi = 0, (78a)

f ′(β) = −
∑

i

(
Kid
i (T, P )− 1

1 + β(Kid
i (T, P )− 1)

)2

zi. (78b)

f(β) = 0 is called the Rachford-Rice equation. Once we have solved the Rachford-Rice equation for

β, we compute the vapor-liquid composition (in moles) by

nvi =
nvi
Nv

Nv

N
N

= yiβN

=
βKid

i (T, P )

1 + β(Kid
i (T, P )− 1)

ni. (79)

Next, we compute the liquid mole numbers by nl = n− nv.

7.1 Solution of the Rachford-Rice equation

We solve the Rachford-Rice equation with Newton’s method:

βk+1 = βk −
f(βk)

f ′(βk)
. (80)

7.2 Summary

We compute the ideal vapor-liquid equilibrium constants with

Kid
i (T, P ) = exp(lnKid

i (T, P )), (81a)

lnKid
i (T, P ) = ln

P sati (T )

P
+
vli(T )(P − P sati (T ))

RT
. (81b)

Next, we solve the Rachford-Rice equation,

f(β) =
∑

i

Kid
i (T, P )− 1

1 + β(Kid
i (T, P )− 1)

zi = 0, (82)

for β using Newton’s method,

βk+1 = βk −
f(βk)

f ′(βk)
, (83)
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8. Computation of phase envelopes

where the derivative is

f ′(β) = −
∑

i

(
Kid
i (T, P )− 1

1 + β(Kid
i (T, P )− 1)

)2

zi. (84)

We compute the vapor-liquid composition (in moles) by

nvi =
βKid

i (T, P )

1 + β(Kid
i (T, P )− 1)

ni, (85a)

nli = ni − nvi . (85b)

8 Computation of phase envelopes

In this section, we describe the equations that we solve in order to construct the phase envelope,

and we discuss how to solve them. The phase envelope consists of two curves; the bubble-point

curve where β = 0 and the dew-point curve where β = 1. We will consider the more general case

of computing isocurves where β ∈ [0, 1] is constant. In the method that we present in this section,

the logarithmic equilibrium constants, lnKi, the logarithmic temperature, lnT , and the logarithmic

pressure, lnP , are the independent variables, i.e. the variables that we solve for. The vapor mole

fractions, yi, and the liquid mole fractions, xi, are dependent variables that are functions of the

vapor fraction, β, the equilibrium constants, Ki, and the total mole fractions, zi. The vapor fraction,

β, and the vector of total mole fractions, z, are parameters in the problem. We introduce NC + 2

equations that define one point on the isocurve. NC is the number of components in the mixture.

We solve these equations repeatedly in a sequential manner in order to construct the isocurve. The

first NC equations are the vapor-liquid equilibrium conditions formulated in terms of the equilibrium

constants, i.e. (65). We repeat the equilibrium conditions here:

lnKi + lnφvi (T, P, y)− lnφli(T, P, x) = 0. (86)

The mole numbers do not appear explicitly in the expression for the fugacity coefficients. They only ap-

pear implicitly through the mole fractions. We can therefore write lnφvi (T, P, n
v) = lnφvi (T, P, y(nv)) =

lnφvi (T, P, y) where yi = nvi /
(∑

j n
v
j

)
and similarly for the liquid fugacity coefficients. That is why

y and x appear in place of nv and nl in the above equilibrium conditions. However, because y and x

are dependent variables, they will not necessarily sum to one during the solution of the equations.

We therefore treat them as mole numbers when we evaluate the logarithmic fugacity coefficients.

That is, we evaluate the vapor phase logarithmic fugacity coefficients, lnφvi (T, P, y), as lnφvi (T, P, n
v)

where nv = y, and similarly for the liquid fugacity coefficients. Also, because yi and xi are functions

of Ki, we cannot explicitly isolate Ki in the vapor-liquid equilibrium equations above. We compute

yi and xi in the same way that we did for the ideal vapor-liquid equilibrium problem:

xi =
zi

1 + β(Ki − 1)
, (87a)

yi = Kixi. (87b)
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However, here we do not use the ideal vapor-liquid equilibrium constants, and the equilibrium

constants are independent variables. The next equation is the Rachford-Rice equation (78a). However,

we implement it in the form, ∑

i

(yi − xi) = 0, (88)

where we do not substitute the expressions for the vapor-liquid mole fractions. That is because we

need to compute yi and xi anyway, in order to evaluate the logarithmic fugacity coefficients. The

Rachford-Rice equation ensures that
∑
i yi = 1 and

∑
i xi = 1 are both satisfied2. In order to define

the last equation, we collect the independent variables in a vector,

X = [lnK; lnT ; lnP ] ∈ RNC+2, (89)

where lnK = [lnK1; · · · ; lnKNC
]. The last isocurve equation states that one of the independent

variables should be specified, i.e. the s’th component of X should have the value S:

Xs − S = 0. (90)

That means that we specify either temperature, pressure, or one of the equilibrium constants in

order to compute a point on the isocurve. Michelsen and Mollerup (2007, Chap. 12) discuss different

strategies for selecting the specified variable. The isocurve is constructed by solving the isocurve

equations for a sufficient number of values of S. We write the isocurve equations compactly as

F (X;S) = 0, (91)

where

Fi = lnKi + lnφvi (T, P, y)− lnφli(T, P, x), i = 1, . . . , NC , (92a)

FNC+1 =
∑

i

(yi − xi), (92b)

FNC+2 = Xs − S. (92c)

8.1 Solution of the isocurve equations

As mentioned, we construct the isocurve by solving the isocurve equations for a number of specified

values of the s’th variable. For the m’th value of the specified variable, Sm, we solve the isocurve

equations, F (Xm;Sm) = 0, with Newton’s method:

Xm,k+1 = Xm,k −
(
∂F

∂X

)−1

F (Xm,k;Sm). (93)

8.2 Computation of initial guess

When we have solved the isocurve equations for one value of the specified variable, we want to

compute the sensitivities of the solution in order to compute an initial guess for the subsequent

2It is not immediately obvious that this is true. It is because of the way that we compute yi and xi.
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Newton iterations. We differentiate the equation F (X;S) = F (X(S);S) = 0 with respect to S:

∂F

∂X

∂X

∂S
+
∂F

∂S
= 0. (94)

We isolate the sensitivities of X with respect to S:

∂X

∂S
= −

(
∂F

∂X

)−1
∂F

∂S
. (95)

Once we have solved F (Xm;Sm) = 0 for Xm, we can compute an initial guess, Xm+1,0, for the

solution of the isocurve equations for the next value of the specified variable, F (Xm+1;Sm+1) = 0:

Xm+1,0 = Xm +
∂Xm

∂Sm
(Sm+1 − Sm). (96)

8.3 Summary

The isocurve equations (or phase envelope equations if β = 0 or β = 1) are

F (X;S) = 0, (97)

where the independent variables are X = [lnK; lnT ; lnP ]. The equations are

Fi = lnKi + lnφvi (T, P, y)− lnφli(T, P, x), i = 1, . . . , NC , (98a)

FNC+1 =
∑

i

(yi − xi), (98b)

FNC+2 = Xs − S, (98c)

where the vapor-liquid mole fractions are dependent variables:

xi =
zi

1 + β(Ki − 1)
, (99a)

yi = Kixi. (99b)

We solve the equations with Newton’s method:

Xm,k+1 = Xm,k −
(
∂F

∂X

)−1

F (Xm,k;Sm). (100)

We compute initial guesses for the Newton iterations with

Xm+1,0 = Xm +
∂Xm

∂Sm
(Sm+1 − Sm), (101)

where the sensitivities are
∂X

∂S
= −

(
∂F

∂X

)−1
∂F

∂S
. (102)
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9 Derivatives

In this section, we provide the derivatives that are necessary to solve the vapor-liquid equilibrium

problem (for both ideal and nonideal mixtures) and to compute the isocurves (i.e. curves where β is

constant). In order to do so, we also provide the derivatives of the logarithmic fugacity coefficients.

9.1 Logarithmic fugacity coefficients

We provide the derivatives of the logarithmic fugacity coefficients for ideal liquids and nonideal

mixtures. The logarithmic fugacity coefficients of ideal gases are zero, and the derivatives are

therefore also zero.

9.1.1 Ideal liquid mixture

The logarithmic fugacity coefficients of an ideal liquid mixture are

lnφidi (T, P ) = ln
P sati (T )

P
+
vli(T )(P − P sati (T ))

RT
. (103)

The liquid volume is given by the DIPPR correlation,

vli =
B

1+
(

1− T
Ci

)Di

i

Ai
. (104)

The saturation pressure is given by the DIPPR correlation,

P sati = exp
(
lnP sati

)
, (105a)

lnP sati = Ai +
Bi
T

+ Ci ln(T ) +DiT
Ei . (105b)

Note that the parameters, Ai, Bi, Ci, and Di in the DIPPR correlation for the saturation pressure

are not the same as those in the DIPPR correlation for the liquid volume. The derivatives of the

logarithmic fugacity coefficients are

∂ lnφidi
∂T

=
∂ lnP sati

∂T
+

1

RT

((
∂vli
∂T
− vli(T )

T

)
(P − P sati (T ))− vli(T )

∂P sati

∂T

)
, (106a)

∂ lnφidi
∂P

= − 1

P
+
vli(T )

RT
. (106b)

The derivative of the liquid volume is

∂vli
∂T

= − lnBi
Di

Ci

(
1− T

Ci

)Di−1

vli. (107)
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The derivative of the saturation pressure is

∂ lnP sati

∂T
=

1

T

(
Ci −

Bi
T

+DiEiT
Ei

)
, (108a)

∂P sati

∂T
= P sati (T )

∂ lnP sati

∂T
. (108b)

9.1.2 Nonideal mixture

The logarithmic fugacity coefficients of nonideal mixtures have a complicated expression. We therefore

introduce auxiliary functions such that we can write it as

lnφi = (Z − 1)
bi
bm
− gz −

1

ε− σgφ,if. (109)

The auxiliary functions are

f = ln

(
Z + εB

Z + σB

)
, (110a)

gz = ln(Z −B), (110b)

gφ,i =
1

RTbm


2

NC∑

j=1

zjaij − am
bi
bm


 . (110c)

The derivatives of the logarithmic fugacity coefficients are

∂ lnφi
∂T

=
∂Z

∂T

bi
bm
− ∂gz
∂T
− 1

ε− σ

(
∂gφ,i
∂T

f + gφ,i
∂f

∂T

)
, (111a)

∂ lnφi
∂P

=
∂Z

∂P

bi
bm
− ∂gz
∂P
− 1

ε− σgφ,i
∂f

∂P
, (111b)

∂ lnφi
∂nk

=
∂Z

∂nk

bi
bm
− (Z − 1)

bi
b2m

∂bm
∂nk

− ∂gz
∂nk

− 1

(ε− σ)

(
∂gφ,i
∂nk

f + gφ,i
∂f

∂nk

)
. (111c)

The derivatives of the auxiliary function f are

∂f

∂T
=
∂f

∂Z

∂Z

∂T
+
∂f

∂B

∂B

∂T
, (112a)

∂f

∂P
=
∂f

∂Z

∂Z

∂P
+
∂f

∂B

∂B

∂P
, (112b)

∂f

∂nk
=
∂f

∂Z

∂Z

∂nk
+
∂f

∂B

∂B

∂nk
, (112c)

where

∂f

∂Z
=

1

Z + εB
− 1

Z + σB
, (113a)

∂f

∂B
=

ε

Z + εB
− σ

Z + σB
. (113b)
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The derivatives of the auxiliary function gz are

∂gz
∂T

=
∂gz
∂Z

∂Z

∂T
+
∂gz
∂B

∂B

∂T
, (114a)

∂gz
∂P

=
∂gz
∂Z

∂Z

∂P
+
∂gz
∂B

∂B

∂P
, (114b)

∂gz
∂nk

=
∂gz
∂Z

∂Z

∂nk
+
∂gz
∂B

∂B

∂nk
, (114c)

where

∂gz
∂Z

=
1

Z −B , (115a)

∂gz
∂B

= − 1

Z −B . (115b)

The derivatives of the auxiliary function gφ,i are

∂gφ,i
∂T

=
1

T


 1

Rbm


2

NC∑

j=1

zj
∂aij
∂T
− ∂am

∂T

bi
bm


− gφ,i


 , (116a)

∂gφ,i
∂nk

=
1

bm




 2

N


aik −

NC∑

j=1

xjaij


− bi

bm

(
∂am
∂nk

− 1

bm

∂bm
∂nk

)
− ∂bm

∂nk
gφ,i +

1

RT


 . (116b)

The compressibility factor, Z, satisfies the cubic polynomium q(Z;T, P, n) = 0. We obtain the

derivatives of the compressibility factor with the inverse function theorem:

∂Z

∂T
= −

(
∂q

∂Z

)−1
∂q

∂T
, (117a)

∂Z

∂P
= −

(
∂q

∂Z

)−1
∂q

∂P
, (117b)

∂Z

∂nk
= −

(
∂q

∂Z

)−1
∂q

∂nk
. (117c)

The derivatives of the polynomium are

∂q

∂Z
= 3Z2 +

2∑

m=1

mdmZ
m−1 (118a)

∂q

∂T
=

2∑

m=0

∂dm
∂T

Zm, (118b)

∂q

∂P
=

2∑

m=0

∂dm
∂P

Zm, (118c)

∂q

∂nk
=

2∑

m=0

∂dm
∂nk

Zm. (118d)
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The derivatives of the polynomial coefficients are

∂dm
∂T

=
∂dm
∂A

∂A

∂T
+
∂dm
∂B

∂B

∂T
, (119a)

∂dm
∂P

=
∂dm
∂A

∂A

∂P
+
∂dm
∂B

∂B

∂P
, (119b)

∂dm
∂nk

=
∂dm
∂A

∂A

∂nk
+
∂dm
∂B

∂B

∂nk
, (119c)

where

∂d2

∂A
= 0, (120a)

∂d2

∂B
= (ε+ σ − 1), (120b)

∂d1

∂A
= 1, (120c)

∂d1

∂B
= −(ε+ σ) + 2(εσ − ε− σ)B, (120d)

∂d0

∂A
= −B, (120e)

∂d0

∂B
= −

(
A+ εσ(2B + 3B2)

)
. (120f)

The derivatives of A are

∂A

∂T
=
∂am
∂T

P

R2T 2
− 2

T
A, (121a)

∂A

∂P
=

am
R2T 2

, (121b)

∂A

∂nk
=
∂am
∂nk

P

R2T 2
. (121c)

The derivatives of B are

∂B

∂T
= −bmP

RT 2
, (122a)

∂B

∂P
=

bm
RT

, (122b)

∂B

∂nk
=
∂bm
∂nk

P

RT
. (122c)

The derivatives of the van der Waals’ mixing parameter am are

∂am
∂T

=

NC∑

i=1

NC∑

j=1

zizj
∂aij
∂T

, (123a)

∂am
∂nk

=
2

N

(
NC∑

i=1

ziaik − am
)
. (123b)
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The derivative of the van der Waals’ mixing parameter bm is

∂bm
∂nk

=
bk − bm
N

. (124)

The derivative of aij is

∂aij
∂T

=
1− kij
2
√
âij

∂âij
∂T

, (125)

where the derivative of âij are

∂âij
∂T

=
∂ai
∂T

aj + ai
∂aj
∂T

. (126)

The derivative of the pure component parameter ai is

∂ai
∂T

=
∂α

∂T
Ψ
R2T 2

c,i

Pc,i
. (127)

The derivative of the function α is

∂α

∂T
= −α m(ωi)√

αTTc,i
. (128)

9.2 Vapor-liquid equilibrium equations

The vapor-liquid equilibrium conditions are

gi(T, P, n
v) = lnφvi (T, P, n

v) + ln yi − lnφli(T, P, n
l) + lnxi, (129)

where the liquid mole numbers are functions of the vapor mole numbers, i.e. nl = n − nv. The

derivatives of gi(T, P, n
v) are

∂gi
∂nvk

=
∂ lnφvi
∂nvk

+
∂ ln yi
∂nvk

+
∂ lnφli
∂nlk

+
∂ lnxi
∂nlk

. (130)

The derivatives of the logarithmic mole fractions are

∂ ln yi
∂nvk

=
δik
nvk
− 1

Nv
, (131a)

∂ lnxi
∂nlk

=
δik
nlk
− 1

N l
. (131b)

δik is one if i = k and zero if i 6= k.
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9.3 Ideal vapor-liquid equilibrium equations

For ideal vapor-liquid mixtures, we solve the Rachford-Rice equation:

f(β) =
∑

i

Kid
i (T, P )− 1

1 + β(Kid
i (T, P )− 1)

zi = 0. (132)

The derivative of the f(β) with respect to the vapor fraction is

f ′(β) = −
∑

i

(
Kid
i (T, P )− 1

1 + β(Kid
i (T, P )− 1)

)2

zi. (133)

9.4 Phase envelope equations

The independent variables in the phase envelope computations are

X = [lnK; lnT ; lnP ]. (134)

The isocurve equations (or phase envelope equations if β = 0 or β = 1) are

Fi = lnKi + lnφvi (T, P, y)− lnφli(T, P, x), i = 1, . . . , NC , (135a)

FNC+1 =
∑

i

(yi − xi), (135b)

FNC+2 = Xs − S. (135c)

The vapor-liquid mole fractions are dependent variables given by

xi =
zi

1− β + βKi
, (136a)

yi = Kixi. (136b)

The derivatives of the vapor-liquid mole fractions with respect to the equilibrium constants are

∂xi
∂Kk

=





−βx2
i

zi
i = k,

0 i 6= k,
(137a)

∂yi
∂Kk

=




xi +Ki

∂xi

∂Kk
i = k,

0 i 6= k.
(137b)

The derivatives of the vapor-liquid equilibrium conditions are therefore

∂Fi
∂lnKk

= δik +Kk

(
∂ lnφvi
∂nvk

(T, P, y)
∂yk
∂Kk

− ∂ lnφli
∂nlk

(T, P, x)
∂xk
∂Kk

)
, i = 1, . . . , NC , (138a)

∂Fi
∂lnT

= T

(
∂ lnφvi
∂T

(T, P, y)− ∂ lnφli
∂T

(T, P, x)

)
, i = 1, . . . , NC , (138b)

∂Fi
∂lnP

= P

(
∂ lnφvi
∂P

(T, P, y)− ∂ lnφli
∂P

(T, P, x)

)
, i = 1, . . . , NC . (138c)
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The derivative of the equation that corresponds to the Rachford-Rice equation are

∂FNC+1

∂Kk
= Kk

(
∂yk
∂Kk

− ∂xk
∂Kk

)
. (139)

The derivatives of the last equation are

∂FNC+2

∂X
= es, (140)

where element s of es is 1 and all other elements are zero. The derivative of the last equation with

respect to the value of the specified variable is

∂FNC+2

∂S
= −1. (141)

10 An algorithm for computing phase envelopes and an ex-

ample program

In this section, we describe an algorithm for computing isocurves, i.e. curves where the vapor

fraction, β, is constant. The algorithm is described by Michelsen and Mollerup (2007, Chap. 12) and

also by Michelsen (1980). It features automatic selection of the specified variable and the step size,

and it uses cubic interpolation to enhance initial guesses for the Newton iterations. The algorithm

sequentially constructs the isocurve. It begins at a point where the equilibrium constants can be

approximated and sequentially computes points on the isocurve until it reaches the critical point.

10.1 Wilson’s approximation of equilibrium constants

We approximate the equilibrium constants at the first point of the isocurve with the approximation

by Wilson (1969):

Ki(T, P ) =
Pc,i
P

exp

(
5.373(1 + ωi)

(
1− Tc,i

T

))
. (142)

Tc,i, Pc,i, and ωi are the critical temperature, critical pressure, and the acentric factor. We use values

of those parameters from the DIPPR database. We could potentially also use the ideal vapor-liquid

equilibrium constants that we described in Section 6.

10.2 Cubic interpolation

It is essential to have good initial guesses for the Newton iterations. The algorithm therefore uses

cubic interpolation to improve the estimates we described in Section 8. When we have computed

two points on the isocurve and their sensitivities, we can determine a cubic polynomial for each of

the variables that intersects these points. The polynomial is

pi(S) =
∑

j

ajiS
j . (143)
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The superscript j on S is a power, and aji are the polynomial coefficients. Once we have solved for

the m’th point on the isocurve, we interpolate the solution curves. We require that the polynomial

and its derivatives intersect Xm and Xm−1 and their derivatives with respect to Sm and Sm−1:

pi(S
m) = Xm

i , (144a)

p′i(S
m) =

∂Xm
i

∂Sm
, (144b)

pi(S
m−1) = Xm−1

i , (144c)

p′i(S
m−1) =

∂Xm−1
i

∂Sm−1
. (144d)

We write the above equations as a linear system of equations

Ma = b. (145)

The system matrix, M , is a 4× 4 matrix that contains powers of Sm and Sm−1:

M =




1 Sm (Sm)
2

(Sm)
3

0 1 2Sm 3 (Sm)
2

1 Sm−1
(
Sm−1

)2 (
Sm−1

)3

0 1 2Sm−1 3
(
Sm−1

)2




(146)

The matrix a is 4 ×NC + 2 and simply contains the polynomial coefficients aji (row j, column i).

NC + 2 is the number of elements in the vector X. The right-hand side, b, is also a 4×NC + 2 matrix

and each column contains the right-hand sides of (144):

b1i = Xm
i , (147a)

b2i =
∂Xm

i

∂Sm
, (147b)

b3i = Xm−1
i , (147c)

b4i =
∂Xm−1

i

∂Sm−1
. (147d)

Once we have solved the linear system (145) for the polynomial coefficients, we compute the initial

estimate, Xm+1,0, for the subsequent Newton iterations:

Xm+1,0
i = pi(S

m+1). (148)

The matrix M can become ill-conditioned if the difference between Sm and Sm−1 is small, i.e. if the

step is small3. In that case, it can be useful to revert to the linear approximation:

Xm+1,0 = Xm +
∂Xm

∂Sm
(Sm+1 − Sm). (149)

3It is known that the monomial basis can lead to ill-conditioned system matrices in interpolation. It might be
possible to remedy this by choosing another basis, e.g. the Lagrange polynomials.
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We use the above linear approximation when the condition number of M is larger than 106. We also

use the linear approximation when we do not have two points on the isocurve, e.g. when m = 1.

10.3 Automatic selection of specified variable

In each iteration, we choose the specified variable in subsequent iterations to be the variable whose

sensitivity with respect to the value of the specified variable has the largest absolute value, i.e. we

choose

s̄ = arg min
s

∂Xm
s

∂Sm
(150)

In order to avoid rapid switching between variables, we only switch variables (i.e. set s = s̄) if

∂Xm
s̄ /∂S

m > 1.1 ∂Xm
s /∂S

m. That is, we only switch the specified variable if the sensitivity is 1.1

times larger than the sensitivity of the current specified variable.

10.4 Automatic step size selection

We use a number of heuristics to choose the step size. First, we specify a target number of Newton

iterations, usually 3 or 4. If the Newton iterations require more iterations to converge, we half the

step size. If they require less, we double the step size. We also half the step size if the specified

variable has changed. In order to ensure that we move in the right direction when we switch variables,

we multiply the step size with the sign of the difference between the specified variable in the previous

two iterations. That is, if the specified variable is Xs, then we use the sign of Xm
s −Xm−1

s to decide

whether S should increase or decrease.

10.5 Algorithm for computing isocurves

Algorithm 1 provides an overview of the algorithm that we implement in Section 10.6.

10.6 Example program

We now describe a program that implements Algorithm 1. The program consists of a script and a

number of functions. We use Matlab routines from ThermoLib to compute the logarithmic fugacity

coefficients. ThermoLib is an open-source thermodynamic library created by Ritschel et al. (2017,

2016) and Gaspar et al. (2017). It is available at www.psetools.org. It implements the expressions

for the logarithmic fugacity coefficients that we described in Section 4 and 9.1.2. The names of the

example script and the functions are

• CreatePhaseEnvelope.m

Example script

• ComputeWilsonKFactors.m

Evaluates approximate equilibrium constants

• ComputeIsocurve.m

Constructs an isocurve
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Algorithm 1: An algorithm for computing isocurves.

Input: T , P , β, z, s
Output: N , {Xm}Nm=1

1 Set m = 1;
2 Set ∆Sm = ∆Smax;
3 while the critical point has not been reached do
4 Solve the isocurve equations F (Xm;Sm) = 0 for Xm;
5 Check whether Xm is close to the critical point, i.e. if | lnKi| < ε for all i;
6 Compute the sensitivities ∂Xm/∂Sm;
7 Set s̄ = arg min

s
∂Xm

s /∂S
m;

8 if ∂Xm
s̄ /∂S

m > 1.1∂Xm
s /∂S

m and s 6= s̄ then
9 Set ∆Sm = 0.5∆Sm;

10 Set s = s̄;

11 end
12 if the number of Newton iterations exceeds the target number of iterations then
13 Set ∆Sm = 0.5∆Sm;
14 else if the number of Newton iterations is below the target number of iterations then
15 Set ∆Sm = 2∆Sm;
16 end
17 Set ∆Sm = min(∆Sm,∆Smax);

18 Compute the new specified variable, Sm+1 = Xm
s + sgn

(
Xm
s −Xm−1

s

)
∆Sm;

19 if m ≥ 2 and s has not changed in this iteration and cond(M) < 106 then
20 Compute Xm+1,0 with cubic interpolation;
21 else
22 Compute Xm+1,0 with the linear approximation;
23 end
24 Increment m by 1;

25 end
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• IsocurveEquations.m

Evaluates the isorcurve equations (and derivatives) described in Section 8

• CreateFlashOpts.m

Default options for the computations

Listing 1 shows the first part of the example script, CreatePhaseEnvelope.m. First, the script runs

another script, LoadLibrary.m, from ThermoLib. LoadLibrary adds all ThermoLib routines to the

path such that we can run them. Next, we select the Peng-Robinson equation of state, and we

manually specify the binary interaction parameters, kij . We use LoadParams from ThermoLib to

construct a vector of parameters that we need to pass on to other ThermoLib routines. The first

argument to LoadParams is a vector of indices that specifies the components in the mixture. 1, 2, 3,

and 7 refer to methane, ethane, propane, and n-heptane, respectively. 363 is carbon-dioxide (CO2).

We will use the variable NC (number of components) later in the script. Finally, we specify the

composition which is 60% methane, 8% ethane, 5% propane, 25% n-heptane, and 2% CO2.

Listing 1: CreatePhaseEnvelope.m – Initialization

1 %% Create phase diagram

2 clc; clear all; close all;

3

4 % Add ThermoLib

5 run(’C:\ Users\Tobia\Dropbox \3 PhD Nonlinear Model Predictive Control for Oil

↪→ Reservoirs\Projects\ThermodynamicLibrary\ComputeThermoLib\matlab\

↪→ LoadLibrary ’);

6

7 %% Load parameters

8 % Equation of state

9 EoS = ’PR’; % Peng -Robinson

10

11 % Binary interaction parameters

12 kij = [

13 0 0 0 0 0.1200

14 0 0 0 0 0.1500

15 0 0 0 0 0.1500

16 0 0 0 0 0.1500

17 0.1200 0.1500 0.1500 0.1500 0 ];

18

19 % Load DIPPR parameters

20 params = LoadParams ([1:3, 7, 363], EoS , kij);

21

22 % Number of components

23 NC = params (5);

24

25 % Composition

26 z = [60; 8; 5; 25; 2]./100;

Listing 2 shows the remaining part of CreatePhaseEnvelope.m. This remaining part computes the

bubble-point curve (β = 0) and the dew-point curve (β = 1). First, we use CreateFlashOpts.m

to create a struct called opts that contains default settings for the computations. We discuss

CreateFlashOpts.m later. Next, we select that the pressure of the first point on both isocurves is
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specified. Pressure is variable number NC + 2. We set the pressure of the first point on both the

bubble-point and the dew-point curves to be 0.005 MPa. We use ComputeIsocurve to compute both

the bubble-point curve and the dew-point curve. We use an initial guess of 88 K for the temperature

of the first point on the bubble-point curve and 250 K for the dew-point curve. In the remaining

part, we extract the temperature and pressure of the isocurves and plot them. Figure 1 shows the

plot of the phase envelope. The phase envelope separates the two-phase region (inside) from the

single-phase regions (outside). We see that the two-phase region extends up to around 18 MPa

and to around 450 K. We also note that at low pressures, the phase envelope extends to very low

temperatures, i.e. around 90 K. That means that it is necessary to bring the mixture to below 90 K

in order to completely liquefy it. That is because the mixture contains a large amount of light gases.

In particular, it contains 60% methane. The bubble-point and the dew-point curves meet at the

critical point. It is marked with a black dot.

Listing 2: CreatePhaseEnvelope.m – Computation of the phase envelope

28 %% Compute phase envelope

29 % Create options structure

30 opts = CreateFlashOpts ();

31

32 % The first specified variable is pressure

33 Idx = NC+2;

34

35 % Initial pressure

36 P0 = 0.005; % MPa

37

38 % Compute the bubble -point curve

39 T0 = 88;

40 b = 0;

41 BubblePointCurve = ComputeIsocurve(T0 , P0 , b, z, Idx , params , opts);

42

43 % Compute the dew -point curve

44 T0 = 250;

45 b = 1;

46 DewPointCurve = ComputeIsocurve(T0, P0 , b, z, Idx , params , opts);

47

48 % Temperature and pressure

49 T = [exp(BubblePointCurve.X(NC+1, :)), exp(DewPointCurve.X(NC+1, end :-1:1))];

50 P = [exp(BubblePointCurve.X(NC+2, :)), exp(DewPointCurve.X(NC+2, end :-1:1))];

51

52 % Critical temperature and pressure (approximate)

53 Tc = exp(BubblePointCurve.X(NC+1, end));

54 Pc = exp(BubblePointCurve.X(NC+2, end));

55

56 % Create figure

57 figure (1);

58 plot(T, P, ’-k’, ’linewidth ’, 2); hold on;

59 plot(Tc , Pc , ’.k’, ’markersize ’, 20); hold off;

60 set(gca , ’fontsize ’, 14);

61 xlabel(’Temperature [K]’);

62 ylabel(’Pressure [MPa]’);
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Figure 1: Phase envelope created with the example script CreatePhaseEnvelope.m.

Before we describe the ComputeIsocurve function, we show the ComputeWilsonKFactors function in

Listing 3. It simply loads the relevant parameters and evaluates the equilibrium constants from (142).

Note that the critical pressures are converted from Pa to MPa. That is required for the expression

to be correct.

Listing 3: ComputeWilsonKFactors.m

1 function K = ComputeWilsonKFactors(T, P, params)

2

3 % Conversion factor

4 Pa2MPa = 1e-6; % MPa to Pa

5

6 % Extract relevant parameters

7 NoSinglePar = params (1);

8 NC = params (5);

9 omega = params(NoSinglePar +1 + 24*NC + (1:NC) + 1);

10 Tc = params(NoSinglePar +1 + 25*NC + (1:NC) + 1);

11 Pc = params(NoSinglePar +1 + 26*NC + (1:NC) + 1)*Pa2MPa;

12

13 % Compute Wilson K factors

14 K = Pc./P.*exp (5.373*(1 + omega).*(1 - Tc./T));

Next, we describe the ComputeIsocurve function. Listing 4 shows the interface of ComputeIsocurve,

the loading of parameters from the struct created with CreateFlashOpts, and the computation of

initial guesses for the equilibrium constants. The function requires specification of temperature,

T, pressure, P, the specified vapor fraction, b, the total composition, z, the index of the specified

variable at the first point, Idx, the ThermoLib parameters, params, and finally, the options, opts.

Listing 4: ComputeIsocurve.m – Computation of an isocurve with β specified

1 function Env = ComputeIsocurve(T, P, b, z, Idx , params , opts)

2 %% Settings

3 % Target number of iterations

4 TargetIter = opts.TargetIter;

5
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6 % Maximum number of Newton iterations

7 kmax = opts.MaxNewtonIter;

8

9 % Tolerance for the Newton iterations

10 newttol = opts.NewtonTol;

11

12 % Tolerance for the detection of the critical point

13 crittol = opts.CritPointTol;

14

15 % Maximum change in specification

16 maxdS = opts.MaxDeltaSpec;

17

18 % Whether to use polynomial regression or not

19 UseCubicInterpolation = opts.UseCubicInterpolation;

20

21 %% Compute initial guess

22 % Compute approximate equilibrium constants

23 K = ComputeWilsonKFactors(T, P, params);

24

25 % Initial guess for the first point

26 X = log([K; T; P]);

Listing 5 shows the first part of the computations that we carry out for each point on the isocurve.

We solve the isocurve equations that we presented in Section 8 using Newton’s method and we check

whether we are closed to the critical point. The vapor phase and the liquid phase have the same

composition at the critical point. That means that yi = xi such that Ki = yi/xi = 1 and therefore

lnKi = 0. That is how we detect whether we are close to the critical point. We present the function

IsocurveEquations later. It essentially evaluates, F (X;S), ∂F
∂X , and ∂F

∂S .

Listing 5: ComputeIsocurve.m – Solution of isocurve equations

28 %% Compute isocurve

29 % Initial specification

30 S(1) = X(Idx);

31

32 % Initial step

33 dS = maxdS;

34

35 i = 1;

36 CriticalPointReached = false;

37 while(~ CriticalPointReached)

38 % Evaluate function and Jacobian

39 [F, dFdX , dFdS] = IsocurveEquations(X(:, i), b, z, S(i), Idx , params , opts);

40

41 k = 0;

42 Converged = (norm(F) < newttol);

43 Diverged = false;

44 while(~ Converged && ~Diverged)

45 % Increment iteration counter

46 k = k+1;

47

48 % Newton update
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49 X(:, i) = X(:, i) - dFdX\F;

50

51 % Evaluate function and Jacobian

52 [F, dFdX , dFdS] = IsocurveEquations(X(:, i), b, z, S(i), Idx , params ,

↪→ opts);

53

54 % Check for convergence

55 Converged = (norm(F) < newttol);

56 Diverged = (k >= kmax);

57 end

58

59 % Check if the critical point has been reached

60 CriticalPointReached = (norm(X(1:end -2, i)) < crittol);

Listing 6 shows the remaining part of ComputeIsocurve.m. It computes the sensitivities, ∂X
∂S , and

uses them to select the specified variable. If the specified variable is changed, the step size is decreased.

If the number of Newton iterations are above or below the target iterations, we double or half the step

size, respectively. Next, we ensure that the step size is below the maximum step size, and we use Xm
s

and Xm−1
s to determine whether S should increase or decrease. We use either cubic interpolation or

a linear approximation to compute the initial guess for the subsequent Newton iterations.

Listing 6: ComputeIsocurve.m – Selection of specified variable and step size

62 % Compute sensitivities

63 dXdS(:, i) = -dFdX\dFdS;

64

65 % Update selection variable

66 [~, IdxNew] = max(abs(dXdS(:, i)));

67 SpecifiedVariableUpdated = false;

68 if(abs(dXdS(IdxNew , i)) > 1.1* abs(dXdS(Idx , i)))

69 SpecifiedVariableUpdated = true;

70 dS = 0.5*dS;

71 Idx = IdxNew;

72 end

73

74 % Update the step

75 if(k > TargetIter)

76 dS = dS *0.5;

77 elseif(k < TargetIter)

78 dS = dS*2;

79 end

80

81 % Apply upper bound to step size

82 dS = min(dS, maxdS);

83

84 % New specification

85 if(i > 1)

86 fac = sign(X(Idx , i) - X(Idx , i-1));

87 else

88 fac = 1;

89 end

90 S(i+1) = X(Idx , i) + fac*dS;

91
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92 if(i > 1 && ~SpecifiedVariableUpdated && UseCubicInterpolation)

93 X(:, i+1) = PolynomialInitialEstimate ...

94 (S(i+1), X(:, i), S(i), dXdS(:, i), X(:, i-1), S(i-1), dXdS(:, i-1),

↪→ opts);

95 else

96 % % New initial estimate

97 X(:, i+1) = LinearInitialEstimate ...

98 (X(:, i), dS, dXdS(:, i));

99 end

100

101 % Display message

102 if(opts.Verbose > 0)

103 fprintf(’(%3d, %d, %2d), (’, i, Idx , k);

104 fprintf(’%7.2f, ’, exp(X(:, i)));

105 fprintf(’)\n’);

106 end

107

108 % Store data

109 Env.X(:, i) = X(:, i);

110 Env.k(i) = k;

111

112 % Increment counter

113 i = i+1;

114 end

115 end

116

117 function Xip1 = PolynomialInitialEstimate(Sip1 , Xi , Si , dXidS , Xim1 , Sim1 ,

↪→ dXim1dS , opts)

118 % Maximum condition number of system matrix in polynomial regression

119 maxcond = opts.MaxCondInterpol;

120

121 % System matrix

122 M = [

123 1, Si, Si ^2, Si^3;

124 0, 1, 2*Si, 3*Si^2;

125 1, Sim1 , Sim1^2, Sim1 ^3;

126 0, 1, 2*Sim1 , 3*Sim1 ^2];

127

128 if(cond(M) < maxcond)

129 % Right -hand side

130 rhs = [Xi ’; dXidS ’; Xim1 ’; dXim1dS ’];

131

132 % Polynomial coefficients

133 a = M\rhs;

134

135 % Extrapolate new initial estimate

136 Xip1 = [1, Sip1 , Sip1^2, Sip1 ^3]*a;

137 else

138 % Step

139 dSip1 = Sip1 - Si;

140

141 % New initial estimate

142 Xip1 = LinearInitialEstimate(Xi, dSip1 , dXidS);
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143 end

144 end

145

146 function Xip1 = LinearInitialEstimate(Xi, dSip1 , dXidS)

147 % New initial estimate

148 Xip1 = Xi + dXidS*dSip1;

149 end

Listing 7 shows the IsocurveEquations function. It essentially evaluates F (X;S), ∂F
∂X , and ∂F

∂S . We

mostly comment on the usage of the ThermoLib routines. In the phase envelope computations, we

consider pressure in MPa. However, ThermoLib requires pressure to be in Pa. The ThermoLib

routine MixFug computes the logarithmic fugacity coefficients as functions of temperature, pressure,

and composition (in moles). It also computes both first and second order derivatives depending on

the number of requested outputs. In the phase envelope computations, we only require the first

order derivatives so we only request two outputs. Consequently, the second order derivatives are

not computed. As we discussed in Section 4, we need to solve the cubic equation of state in order

to evaluate the logarithmic fugacity coefficients. ThermoLib solves the cubic equation of state with

Newton’s method. We therefore specify both the tolerance (tol) and the maximum number of Newton

iterations (maxit) when we call MixFug. The remainder of IsocurveEquations is a straightforward

implementation of the isocurve equations and their derivatives. It only computes the Jacobian and

the derivatives of F with respect to S if those outputs are requested.

Listing 7: IsocurveEquations.m – Evaluation of the isocurve equations

1 function [F, dFdX , dFdS] = IsocurveEquations(X, b, z, S, Idx , params , opts)

2 % Maximum Newton iterations for the equation of state

3 maxit = opts.MaxEosIter;

4

5 % Tolerance for Newton iterations for the equation of state

6 tol = opts.EosTol;

7

8 % Number of components

9 NC = params (5);

10

11 % Extract variables

12 K = exp(X(1:NC));

13 T = exp(X(NC+1));

14 P = exp(X(NC+2));

15

16 % Mole fractions

17 x = z./(1 - b + b*K);

18 y = K.*x;

19

20 % Conversion factor

21 MPa2Pa = 1e6;

22

23 % Compute fugacities with ThermoLib

24 [lnphiv , dlnphiv] = MixFug(T, P*MPa2Pa , y, 0, params , tol , maxit);

25 [lnphil , dlnphil] = MixFug(T, P*MPa2Pa , x, 1, params , tol , maxit);

26

27 % Temperature derivatives
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28 dlnphivT = dlnphiv(:, 1);

29 dlnphilT = dlnphil(:, 1);

30

31 % Scale pressure derivatives

32 dlnphivP = dlnphiv(:, 2)*MPa2Pa;

33 dlnphilP = dlnphil(:, 2)*MPa2Pa;

34

35 % Scale composition derivatives

36 dlnphivnv = dlnphiv(:, 3:end);

37 dlnphilnl = dlnphil(:, 3:end);

38

39 %% Evaluate isocurve equations

40 F = zeros(NC+2, 1);

41 F(1:NC) = log(K) + lnphiv - lnphil;

42 F(NC+1) = sum(y - x);

43 F(NC+2) = X(Idx) - S;

44

45 if(nargout > 1)

46 %% Evaluate Jacobian

47 % Derivatives of K values wrt. ln K values

48 dlnKdlnK = eye(NC,NC);

49

50 % Derivatives of mole fractions wrt. ln K values

51 dxdK = -b*x.^2./z;

52 dydK = x + K.*dxdK;

53

54 % Derivatives of fugacities wrt. ln K values

55 dlnphivdlnK = repmat(K’, NC, 1).* dlnphivnv*diag(dydK);

56 dlnphildlnK = repmat(K’, NC, 1).* dlnphilnl*diag(dxdK);

57

58 % Jacobian wrt. ln K values

59 dFdX = zeros(NC+2, NC+2);

60 dFdX (1:NC, 1:NC) = dlnKdlnK + dlnphivdlnK - dlnphildlnK;

61

62 % Jacobian wrt. ln T

63 dFdX (1:NC, NC+1) = T*( dlnphivT - dlnphilT);

64

65 % Jacobian wrt. ln P

66 dFdX (1:NC, NC+2) = P*( dlnphivP - dlnphilP);

67

68 % Jacobian wrt. ln K

69 dFdX(NC+1, 1:NC) = K.*( dydK - dxdK);

70

71 % Jacobian wrt. specified variable (ln K, ln T or ln P)

72 dFdX(NC+2, Idx) = 1;

73

74 if(nargout > 2)

75 %% Derivatives wrt. S

76 dFdS = zeros(NC+2, 1);

77 dFdS(NC+2) = -1;

78 end

79 end
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For completeness, we show CreateFlashOpts in Listing 8. In our experience, the computations can

be fairly sensitive to some of the parameters. In particular, large values of MaxDeltaSpec can cause

failure to convergence in the Newton iterations. Furthermore, small values of CritPointTol can cause

the algorithm to come too close to or overstep the critical point, again leading to failure to converge.

Verbose can be set to 1 in order to print out information about each iteration. Large values of EosTol

can also cause problems.

Listing 8: CreateFlashOpts.m – Default settings for the computations

1 function opts = CreateFlashOpts ()

2

3 % Settings for Newton iterations

4 opts.MaxNewtonIter = 2e1;

5 opts.NewtonTol = 1e-6;

6

7 % Settings for the solution of the equation of state

8 opts.MaxEosIter = 2e1;

9 opts.EosTol = 1e-10;

10

11 % Target number of iterations (for selecting step size)

12 opts.TargetIter = 4;

13

14 % Maximum change in specification

15 opts.MaxDeltaSpec = 1e-1;

16

17 % Tolerance for the detection of the critical point

18 opts.CritPointTol = 1e-1;

19

20 % Whether to use polynomial regression to generate initial estimates or not

21 opts.UseCubicInterpolation = true;

22

23 % Maximum condition number of system matrix in polynomial regression

24 opts.MaxCondInterpol = 1e6;

25

26 % Set verbosity

27 opts.Verbose = 0;

10.7 Discussion

In this section, we have described a program that computes isocurves, i.e. curves where the vapor

fraction, β, is constant. In order to create the phase envelope, we therefore compute the bubble-point

curve (β = 0) and the dew-point curve (β = 1) separately. Often, we both want to compute the

isocurve of β and 1− β. An example is the phase envelope. Michelsen and Mollerup (2007) suggest

to combine the computations, e.g. such that we 1) compute the bubble-point curve, 2) ”step over”

the critical point, and 3) continue by computing the dew-point curve until a sufficiently low pressure

is reached.
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A Derivative of mixing term

The expression for the ideal gas mixture entropy (4b) involves a mixing term that contains
∑
i n

v
i ln yi.

We use the derivative of the mixing term when we derive an expression for the chemical potential

of an ideal gas mixture in (42). The derivative of the mixing term can appear to be incorrect at

first sight. Because the derivative of this mixing term is important to the definition of fugacity, we

present the differentiation of
∑
i n

v
i ln yi here such that it is clear that it is correct. The derivative is

∂

∂nvk

(∑

i

nvi ln yi

)
=
∑

i

(
∂nvi
∂nvk

ln yi +
nvi
yi

∂yi
∂nvk

)

=
∑

i


δik ln yi +


∑

j

nvj


 ∂yi
∂nvk




= ln yk +
∑

i




∑

j

nvj


 ∂yi
∂nvk


 . (151)

The derivative of the mole fraction, yi, is

∂yi
∂nvk

=
1∑
j n

v
j

∂nvi
∂nvk

− nvi(∑
j n

v
j

)2

=
1∑
j n

v
j

(δik − yi) . (152)

We insert the above into the double sum in (151):

∑

i




∑

j

nvj


 ∂yi
∂nvk


 =

∑

i

(δik − yi)

= 1−
∑

i

yi

= 0. (153)

The derivative is therefore
∂

∂nvk

(∑

i

nvi ln yi

)
= ln yk, (154)

where it appears as if one has considered ln yi to be independent of all the mole numbers, which is

not the case.
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B Derivation of the residual Gibbs energy for cubic equa-

tions of state

In this section, we evaluate the integral that appears in the expression for the residual Gibbs energy

in (35). First, we split up the integral:

−
∫ V

V=∞

(
RT

V/N − bm
− am

(V/N + εbm)(V/N + σbm)
− NRT

V

)
dV

= −RT
∫ V

V=∞

(
1

V/N − bm
− NRT

V

)
dV + am

∫ V

V=∞

1

(V/N + εbm)(V/N + σbm)
dV. (155)

We compute the antiderivative (or primitive function) of the integrand in the left term:

∫ (
1

V/N − bm
− NRT

V

)
dV = N ln

(
1

N
− bm

V

)
. (156)

Next, we evaluate the integral in the left term using the antiderivative:

∫ V

V=∞

(
1

V/N − bm
− NRT

V

)
dV = N

(
ln

(
1

N
− bm

V

)
− ln

1

N

)

= N ln

(
1− Nbm

V

)
. (157)

The antiderivative of the integrand in the right term is

∫
1

(V/N + εbm)(V/N + σbm)
dV = − N

ε− σ
1

bm
ln

(
V + εNbm
V + σNbm

)
. (158)

The integral in the right term is therefore

∫ V

V=∞

1

(V/N + εbm)(V/N + σbm)
dV = − N

ε− σ
1

bm

(
ln

(
V + εNbm
V + σNbm

)
− ln 1

)

= − N

ε− σ
1

bm
ln

(
V + εNbm
V + σNbm

)
. (159)

We now rewrite the two expressions that contain volume such that they contain the compressibility

factor instead. We use that PV = NRTZ such that V = NRTZ/P . We also recall that B =

Pbm/(RT ). The one expression is

1− Nbm
V

= 1− Nbm
NRTZ/P

= 1− Pbm
RTZ

= 1− B

Z

=
Z −B
Z

. (160)
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The other expression is

V + εNbm
V + σNbm

=
NRTZ/P + εNbm
NRTZ/P + σNbm

=
NRT/P

NRT/P

Z + εPbm/(RT )

Z + σPbm/(RT )

=
Z + εB

Z + σB
. (161)

The original integral is therefore

−
∫ V

V=∞

(
RT

V/N − bm
− am

(V/N + εbm)(V/N + σbm)
− NRT

V

)
dV

= −NRT ln

(
Z −B
Z

)
− N
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ln

(
Z + εB

Z + σB

)
. (162)

We insert the expression for the integral into the expression for the residual Gibbs energy and simplify:

GR(T, P, n) = −
∫ V

V=∞

(
RT

V/N − bm
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(V/N + εbm)(V/N + σbm)
− NRT
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)
dV

+NRT (Z − 1)−NRT lnZ

= −NRT ln

(
Z −B
Z

)
− N

ε− σ
am
bm

ln

(
Z + εB

Z + σB

)
+NRT (Z − 1)−NRT lnZ

= NRT (Z − 1)−NRT ln(Z −B)− N
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ln

(
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)
. (163)

C Derivation of the logarithmic fugacity coefficients for cubic

equations of state

The expression for the i’th logarithmic fugacity coefficient depends on the partial derivative of the

residual Gibbs energy with respect to mole number i:

lnφi(T, P, n) =
1

RT

∂GR

∂ni
. (164)

The residual Gibbs energy (from a cubic equation of state) is

GR(T, P, n) = NRT (Z − 1)−NRT ln(Z −B)− N

ε− σ
am
bm

ln

(
Z + εB

Z + σB

)
. (165)

We consider the molar residual Gibbs energy:

gR(T, P, n) = GR(T, P, n)/N

= RT (Z − 1)−RT ln(Z −B)− 1

ε− σ
am
bm

ln

(
Z + εB

Z + σB

)
. (166)
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Conversely, the residual Gibbs energy is GR(T, P, n) = NgR(T, P, n), and the expression for the

logarithmic fugacity coefficients is therefore

lnφi(T, P, n) =
1

RT

∂GR

∂ni

=
1

RT

∂

∂ni

(
NgR(T, P, n)

)

=
1

RT

(
gR(T, P, n) +N

∂gR

∂ni

)
. (167)

The remainder of this section will be concerned with finding an expression for ∂gR/∂ni and use

it to derive the expression for the logarithmic fugacity coefficients. First, we use straightforward

differentiation:

∂gR

∂ni
= RT

∂Z

∂ni
−RT 1

Z −B

(
∂Z

∂ni
− ∂B

∂ni

)

− 1

ε− σ

[(
∂am
∂ni

1

bm
− am
b2m

∂bm
∂ni

)
ln

(
Z + εB

Z + σB

)
+
am
bm

∂

∂ni

(
ln

(
Z + εB

Z + σB

)))
. (168)

The derivative of the logarithmic coefficient is

∂

∂ni

(
ln

(
Z + εB

Z + σB

))
=

(
Z + εB

Z + σB

)−1 [
1

Z + σB

(
∂Z

∂ni
+ ε

∂B

∂ni

)
− Z + εB

(Z + σB)2

(
∂Z

∂ni
+ σ

∂B

∂ni

)]

=
1

Z + εB

(
∂Z

∂ni
+ ε

∂B

∂ni

)
− 1

Z + σB

(
∂Z

∂ni
+ σ

∂B

∂ni

)

=
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(Z + εB)(Z + σB)

(
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∂B
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)
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(
∂Z

∂ni
+ σ

∂B

∂ni

)

=
(σ − ε)B

(Z + εB)(Z + σB)

∂Z

∂ni
+

(ε− σ)Z

(Z + εB)(Z + σB)

∂B

∂ni

=
ε− σ

(Z + εB)(Z + σB)

(
Z
∂B

∂ni
−B ∂Z

∂ni

)
. (169)

We insert into the expression for ∂gR/∂ni:

∂gR

∂ni
= RT
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∂ni
−RT 1
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− ∂B
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(
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. (170)
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3. Derivation of the logarithmic fugacity coefficients for cubic equations of state

We recall that A = Pam/(R
2T 2) and B = Pbm/(RT ) such that A/B = am/(RTbm). We use that

relation to rewrite the three first terms:

RT
∂Z

∂ni
−RT 1

Z −B

(
∂Z

∂ni
− ∂B

∂ni

)
− am
bm

1

(Z + εB)(Z + σB)

(
Z
∂B

∂ni
−B ∂Z

∂ni

)

=

(
RT − RT

Z −B +
am
bm

B

(Z + εB)(Z + σB)

)
∂Z
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+

(
RT

Z −B −
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Z

(Z + εB)(Z + σB)

)
∂B

∂ni

= RT

(
1− 1

Z −B +
A

B

B

(Z + εB)(Z + σB)

)
∂Z

∂ni
+RT

(
1

Z −B −
A

B

Z

(Z + εB)(Z + σB)

)
∂B

∂ni

= RT

(
1− 1

Z −B +
A

(Z + εB)(Z + σB)

)
∂Z

∂ni
+RT

(
1

Z −B −
Z

B

A

(Z + εB)(Z + σB)

)
∂B

∂ni
.

(171)

We now show that the expression in the left-most parentheses is zero. We modify the three terms

such that they have the same denominator:

1− 1

Z −B +
A

(Z + εB)(Z + σB)

=
B(Z + εB)(Z + σB)(Z −B)−B(Z + εB)(Z + σB) +AZ(Z −B)

B(Z + εB)(Z + σB)(Z −B)
. (172)

Next, we write out the terms in the numerator and express it as cubic polynomium in Z:

(Z + εB)(Z + σB)(Z −B)− (Z + εB)(Z + σB) +A(Z −B)

=
[
Z3 + (ε+ σ)BZ2 + εσB2Z −BZ2 − (ε+ σ)B2Z − εσB3

]

−
[
Z2 + (ε+ σ)BZ + εσB2

]
+ [AZ −AB]

= Z3 + ((ε+ σ)B −B − 1)Z2 + (εσB2 − (ε+ σ)B2 − (ε+ σ)B +A)Z + (−εσB3 − εσB2 −AB)

= Z3 + (B(ε+ σ − 1)− 1)Z2 + (A−B(ε+ σ) +B2(εσ − ε− σ))Z + (−(AB + (B2 +B3)εσ))

(173)

This expression is exactly the polynomium from the cubic equation of state, q(Z). The compressibility

factor, Z, must satisfy the cubic equation of state. The above expression is therefore zero, i.e.

q(Z) = 0, and the first term in (171) is therefore also zero. We use this fact to rewrite the expression

in the right-most parentheses in (171). That is, from

1− 1

Z −B +
A

(Z + εB)(Z + σB)
= 0, (174)

we isolate the term that contains A:

A

(Z + εB)(Z + σB)
=

1

Z −B − 1. (175)
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3. Derivation of the logarithmic fugacity coefficients for cubic equations of state

We insert the above into the expression in the right-most parentheses in (171) and simplify:

1

Z −B −
Z

B

A

(Z + εB)(Z + σB)
=

1
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1
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=
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Z − 1

B
. (176)

The expression for ∂gR/∂ni therefore becomes

∂gR

∂ni
= RT
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. (177)

We write out and simplify the first term:

RT
Z − 1

B
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∂ni
= RT

Z − 1
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P

RT

∂bm
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= RT (Z − 1)
1
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. (178)

The final expression for ∂gR/∂ni is thus
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)
. (179)

We are now ready to consider the expression for gR(T, P, n) +N∂gR/∂ni. We insert the expressions

for gR(T, P, n) and ∂gR/∂ni:

gR(T, P, n) +N
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(180)
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We write out and simplify the second factor in the second term:

am
bm
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 . (181)

The final expression for gR(T, P, n) +N∂gR/∂ni is

gR(T, P, n) +N
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1
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, (182)

and we therefore obtain the following expression for the logarithmic fugacity coefficients:

lnφi(T, P, n) =
1
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. (183)
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