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Preface

The transition from conventional energy generation technologies to renewable energies is

an ambitious plan steered by the threat of human-driven global warming, causing climate

change [1]. At its present state, this global responsibility is formalized under a long-term

deal named as Paris Agreement, which engages 195 participating Countries worldwide. The

primary goal of the agreement is to reduce the amount of carbon dioxide present into the

atmosphere by mitigating the release of greenhouse gases, along with countermeasures for

its capture and storage. To boost the shift to renewable energies were also the first signs of

crisis of conventional energy sources, such as oil, coal and nuclear. Therefore, wind energy,

especially offshore, plays a key role in the transition to low-carbon economies.

As a result of considerable efforts by the scientific community and supportive political

decisions, significant steps ahead have been made during the latest years to lower the cost of

energy from wind resources. However, several issues still need to be addressed to keep pace

with a fast growing market and adapt to strategic business decisions. Nowadays, the scenario

around industrial development of the wind energy market portrays European Countries in

a leading position. This burden motivates active research to achieve cost-effective solutions

without drastically harming the economy.

Wind farms are strategic facilities designed to meet the global energy demand and let

future generations benefit from a sustainable world. For such large scale projects, it is of

primary importance to ascertain adequate safety levels in balance with economical aspects

throughout the entire lifetime of the assets. Maintenance is a fundamental practice from

this standpoint. Successful maintenance reduces the risk of unforeseen failures, thus avoiding

potential negative impact on the economical viability of the project as well as on society.

This work is a small contribution towards the development of intelligent maintenance

practice of wind farms. It embraces different aspects concerning the whole turbine as a system

and as a cluster of systems, leaving a realistic impression of the scale of the problem. My

intention is to provide the backbone for future advanced studies in this area, and serve as

inspiration for future researchers. This dissertation has been carried out between July 1st,

2015 and August 15th, 2018 at the Technical University of Denmark, under the financial

support of the Marie Curie Action, H2020 European Research framework, which funding

is greatly appreciated. Furthermore, the project is part of a consortium of academic and

industrial bodies named as AWESOME (Advanced Wind Energy Systems Operation and

Maintenance Expertise). The collaboration with Vattenfall Vindkraft A/S and the Technical

University of Munich has been fundamental for the final delivery of this dissertation.

L. Colone

Copenhagen, June 2018



Summary (Danish)

Væsentlige teknologiske fremskridt har, I årtiet forud for denne udgivelse, pavet vejen for

stor fremgang I antallet af større offshore vindkraft farme. Problemstillingen I fokus er p.t.

ved at skifte væk fra at optimere designet og øge effektiviteten, og over til hvordan disse instal-

lationer kan drives og vedligeholdes p̊a økonomisk mest hensigtsmæssig vis. Denne forskning

fokuserer primært p̊a udvikling af emner relateret til vindmølleparkers drift og vedligeholdelse

(Eng: Operations & Maintenance, forkortet O&M). Dette omr̊ade er p̊a nuværende tidspunkt

allerede inkluderende af de seneste teknologiske udviklinger inden for sikkerhedsteori og

Big-data, hvilke under tiden tranformerer m̊aderne hvorp̊a tekniske installationer bør drives, I

konteksten af den nye industrielle revulotion. I vindenergisektoren findes en stærk motivation

for at reducere omkosting af vindenergi, herunder med særlig fokus p̊a innovationer inden

for drift og vedligehold, hvilke betragtes til at være blandt de mest relevante mhp. At n̊a

målet. Indeværende afhandling adresserer relevante problemstillinger relateret til drift og

vedligehold af vindmølleparker, herunder specifikke m̊alsætninger 1) evaluering af egnetheden

af modeller for de naturlige omgivelser mhp. Evaluering af belastningseffekter I offshore

konstruktioner 2) evaluering af den økonomiske levedygtighed af moniteringssystemer baseret

p̊a eksisterende machine learning metoder 3) kombinationsbelastninger med observerede

nedbrud (eller strukturelle svigt) p̊a en vindmøllepark-skala. Med hensyn til lastanalyse,

er design lasttilfælde (DLC) svarende til operationelle tilstande samt tilstande I driftstop

betragtet I dette studie, sammen med normale turbulensmodeller og normale bølgetilfælde.

Til udviklingen af forudsigende vedligeholdelsesteknikker, er ikke-operationelle tilstande fjernet

fra datasættet. De originale bidrag I denne afhandling er opgivet herunder. Listen er ikke

inddelt I kategorier, med hensyn til de forskellige emner som behandles.

• Undersøgelse af egnetheden af den udmattelsestilsvarende turbulens percentil for monopæle,

som defineret I IEC61400-1 [2], ved brug af Monte Carlo (MC) simuleringer af den fælles

sandsynlighedsfordeling for miljøets variable, herunder middel vindhastighed, turbu-

lens, betydende bølgehøjde og periode for maksimalbølge. Bidrag fra vindmølleparkers

turbulensslipstrøm betragted ligeledes, baseret p̊a modellen udviklet af Frandsen [3].

• Udledelse af den analytiske fejl I Wheeler Stretching p̊a begrænsede vanddybder, brugt

som korrektionsfaktor I det oprindelige udtryk for at tilfredstille Laplace ligningen som

beskriver den todimensionale bølgebevægelse.

• Kvantificering af usikkerheden af den kinematiske model for bølger, med hensyn til

udmattelsesskade I driftstop- og operationelle tilstande. Ikke-liniære bølger og Wheeler

Stretching korrektion medtages I betragtningerne. Denne usikkerhed defineres som

forholdet imellem damage equivalent loads (DELs). I de to tilfælde, divideret med den
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DEL som fremkommer ved brug af den liniære bølgemodel og Wheeler Stretching.

• En p̊alidelighedsanalyse baseret p̊a udmattelsesgrænsetilstanden af det mest udmat-

telsesbelastede snit af en monopæl, med hensyn til variabiliteten af modeller af miljøet

for lastansættelse, herunder turbulens og bølger. Svigtgrænsefunktionen inkludere skade

I stoptilstandende samt I operationelle tilstande, med deres respektive usikkerheder med-

taget. Usikkerhed betragtes b̊ade I last- og I modstandsdelen af svigtgrænsefunktionen.

Analysen udføres over hele møllens levetid, ved at beregne det akkumulerede samt det

årlige p̊alidelighedsindeks udfra overlevelsessandsynligheden for det forrige år.

• En kvantificerende analyse om mulig korrelation imellem vinge-rods DEL’er og registr-

erede nødstop forsaget af funktionsfejl I pictch mekanismen p̊a en offshore vindmøllepark.

Dette opn̊as ved at genskabe udmattelseslasthistorikken for bøjningsmoment ved vinge-

rod for en vindmøllepark, og herefter sammenligne denne med registrede nødstop, som

følge af funktionsfejl.

• En metode som benytter “least absolute shrinkage and selection operator (LASSO)”-

regularisering til at finde det mindst mulige sæt af signaler som muliggør prædiktion af

skade forklarende variable i regressionsmodeller. Modellen er baseret p̊a opbygning af

normalbilledet af udsving i temperaturen i hovedlejet.

• Klassifikation af SCADA alarmer med henblik p̊a tidlig erkendelse af fejl. Metoden

baserer sig p̊a at undg̊a hændelser med kritiske fejl ved at prædiktere mindre alvorlige

SCADA alarmer, der potentielt set kunne forbedre driften af vindmølleparken. Neurale

netværk og Näıve Bayes modeller er implementeret og Receiver Operator Characteristics

(ROC) kurver er bygget p̊a baggrund af output. En multi-test tilgang blev brugt til at

generere flere ROC kurver med henblik p̊a at kunne kvantificere prædiktionsusikkerheden.

• En metodik til vurdering af den økonomiske levedygtighed af klassificeringsbaserede

forudsigelsesmodeller ved at kombinere Machine Learning og begivenhedstræ analyse,

medtagende risikoen for svigt og falske alarmer. En effektivitetsparameter introduceres

for at modellere den reducerede sandsynlighed for svigt af mekaniske komponenter givet

vedligeholdelseshandlinger udført følgelig til en alarm. P̊a denne m̊ade er kvantificeringen

af dens virkning p̊a det samlede udbytte medtaget. Effektiviteten virker p̊a sandsyn-

ligheden for fiasko givet en vedligeholdelseshandlin fra operatøren, og øges lineært fra 0

til 1. Den samme fremgangsm̊ade benyttes til regressionsbaserede forudsigelsesmodeller.

I forbindelse med den tidligere liste over udviklinger, kan de vigtigste resultater og

konsekvenser af dette arbejde s̊aledes angives som følger:

• Den udmattelsestilsvarende turbulens percentil for monopæle, som defineret I IEC

standarden, er egnet til mekaniske komponenter, som f.eks. vinger, men er for konservativ

for monopæle

• Den probabilistiske analyse af de hydrodynamiske koefficienter viser, at DEL fordelin-

generne ikke er følsomme over for variabilitet af inerti og drag-koefficienterne, hvilket er

en relevant information i p̊alidelighedsanalyser.
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• Monopælens usikkerhedsanalyse af bølgemodellen viste, at der var en væsentlig forskel

mellem stoppede- og driftsbelastninger. Disse stiger dramatisk ved stilstand p̊a grund af

fraværet af aerodynamisk dæmpning.

• De vigtighedsfaktorer, der beregnes ved hjælp af første ordens p̊alidelighedsmetoden,

viste, at p̊a trods af at bølgemodellens usikkerheder ikke er de vigtigste drivkræfter for

udmattelsessikkerhed, er de signifikante forskelle i levetid og årlig sandsynlighed for svigt,

n̊ar forskellige modeller kombineres. Dette har indflydelse p̊a designbelastningsanalyser

samt levetidsfolængelse gennem aeroelastiske simuleringer.

• Den kvalitative vurdering mellem vingerodens bøjningsmoment DEL og sandsynlighed-

splottet over funktionsfejl i pitch systemet viser, at pitch-hændelserne er mere tilbøjelige

til at forekomme i et konturomr̊ade større end 0,95 for normaliseret flapvis DEL. Da

vurderingen ikke er kvantitativ, kan disse resultater ikke bekræfte en direkte korrelation

mellem belastninger og svigt, men snarere et potentiale for at bruge belastningsplots til

opn̊aelse af en forbedret park-konfiguration, der reducerer kritiske svigt.

• En analyse af skadesfølsomme egenskaber ved svigt af hovedlejet viser, at t̊arntoppens ac-

celeration i for-akter retning og hovedlejets lodrette acceleration viser samtidig variation,

der angiver progressive fejl. Disse oplysninger kan bruges til at opbygge multivariate

outputlag for at dedektere fejl ved hjælp af regressionsmodeller.

• LASSO-reguleringen muliggør en stor reduktion af datasætets dimensioner og giver en

fysisk fortolkning af svigtprocessen. Beslutningsanalysen udført p̊a dette problem viste,

at en reparationspolitik er omkostningseffektiv i forhold til udskiftningspolitik, samt at

den førstnævnte varierer som funktion af reperationshandlingernes effektivitet. Metoden

hjælper s̊aledes med at beslutte om tekniske systemers økonomiske levedygtighed før

deres implementering.

• Koblingen mellem Machine Learning med hændelses-træer for at kvantificere p̊alidelighe-

den af datadrevne moniteringssystemer giver kriterier for at vælge en risikobaseret tærskel

for online-forudsigelsesmodeller. Tilgangen kan føre til forbedret drift af vindmølleparker

og gode driftsvilk̊ar.

• Træning af klassificeringsalgoritmerne flere gange med en tilfældige testbatch for hver

hold/out muliggør en kvantificering af forudsigelsesusikkerheden p̊a ROC-kurven. Disse

oplysninger er nyttige for at fastsl̊a p̊alideligheden af den benyttede algoritme. Mod-

ellering af den reducerede sandsynlighed for fejl, antaget brugerens indgriben, gør det

muligt at evaluere effektiviteten ved forskellige lede tider, hvilket vil bidrage til at træffe

beslutninger om typen af system, der skal implementeres. Endelig afslørede analysen af

SCADA-data forud for en nedlukningshendelse, at vindhastighedsstatistik højere end

gennemsnittet, kombineret med unormal drift, kan øge risikoen for svigt.

Fremtidig forskning bør komplementere de væsenligste aspekter af denne afhandling, fra

at undersøge virkningen af at forbedrede statistiske analyser for at give en mere generel

konklusion om p̊alideligheden af vindmøllefundamenter under forskellige miljømodeller til

belastningsvurdering, herunder følgende, inddragelse af detaljeret analyse af vibrationsdata

i forudsigelsesmodeller og kvantificering af dennes økonomiske gevinst, standardisering af
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moniteringssystem ved sammenlægning af SCADA- og vibrationsdata, opskalere moniter-

ingssystemerne til vindmølleparkniveau og tillade fleksibel læring af disse, udvidelse af beslut-

ningsmodeller til at omfatte længere lede tider, mere robuste forudsigelser og mere nøjagtige

omkostningsmodeller; belastningsplots bør udvides med reelle komponentfejl kombineret med

m̊alte vibrationsdata og SCADA-data.



Summary (English)

Over the decade preceding this writing, important technological advancements in wind

turbine design have enabled a massive deployment of large scale offshore wind farm projects.

The main question is now shifting from enhancing turbine and farm design characteristics to

optimize the energy capture, to operating and maintaining these facilities in an economically

convenient manner. This research primarily concentrates on the development of aspects related

to wind farm Operation and Maintenance (O&M). This field is by now an established discipline

embracing the latest developments in reliability and Big-data, which are transforming the way

to operate in the context of the new industrial revolution. There is a considerable drive in

decreasing wind energy costs, where innovations in O&M are targeted among the most relevant

to achieve the goal. This thesis addresses relevant issues related to wind farm O&M, which

specific targets are 1) evaluation of the suitability of environmental models for load assessment

of offshore substructure 2) assessment the economic viability of monitoring systems based on

current machine learning techniques and 3) correlating loads with experienced failures on a

wind farm scale. With regards to load analyses, design load cases (DLC) corresponding to

operational states and standstill conditions are considered throughout this work along with

normal turbulence models and normal sea states. For development of predictive maintenance

techniques, non-operational states are taken out from the dataset. The original contributions

of this thesis are readily listed below. The list is uncategorized with respect to the different

topics treated.

• Investigation of the suitability of the fatigue equivalent turbulence percentile for

monopiles as defined by IEC61400-1 [2] through Monte Carlo (MC) simulations of

the joint probability distribution of the environmental variables, such as mean wind

speed, turbulence, significant wave height and wave peak period. Contribution from

wind farm wakes is also considered based on the model developed by Frandsen [3].

• Derivation of the analytical error of Wheeler stretching at finite water depths, used as

corrective factor in the original formulation to satisfy the Laplace equation describing

the two dimensional wave motion.

• Quantification of the wave kinematic model uncertainty with respect to fatigue damage in

standstill and operational conditions. Nonlinear waves and Wheeler stretching correction

are considered. This uncertainty is defined as the ratio between DELs in the two cases

divided by the DEL resulting from using the linear wave model and Wheeler stretching.

• A reliability analysis based on fatigue damage limit state of the most fatigue-loaded

section of the monopile is performed, with respect to the variability of environmental

models for load assessment, namely turbulence and waves. The limit state function
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includes standstill and operational damage, where their respective uncertainties are

adopted in both the load and resistance term of the limit state function. The analysis is

performed over the turbine lifetime.

• A qualitative analysis about possible correlation between blade root DELs and experi-

enced shut-down events due to malfunctions in the pitch mechanism on an offshore wind

farm. This is achieved by recreating the fatigue load map of the blade root bending

moments of a wind farm, and compare it with recorded shut-downs due to malfunctions.

• A methodology based on least absolute shrinkage and selection operator (LASSO)

regularization to select the minimum necessary number of signals to predict damage-

sensitive features for regression-based prediction models. The model is based on tracking

the normal behaviour fluctuations of main bearing temperatures.

• Classification of SCADA alarms for early fault detection. The method is based on

avoiding the occurrence of critical failures by predicting low-severity SCADA alarms,

which could potentially lead to improved wind farm operations. Neural network and

Näıve Bayes classifiers are implemented and their probabilistic output is used to build

Receiver Operator Characteristic (ROC) curves. A multi-testing approach is used to

generate several ROC curves, in order to quantify the prediction uncertainty.

• A methodology to assess the economic viability of classification-based prediction models

by coupling machine learning and event tree analysis, considering risk of failures and false

alarms. An efficiency parameter is introduced to model the reduced probability of failure

of mechanical components given maintenance interventions performed consequently to

an alarm. Thus, the quantification of its effect on the total utility is addressed. The

efficiency acts on the probability of failure given an intervention from the operator and

increases linearly from 0 to 1. The same approach is used for regression-based prediction

models.

Thus, in connection to the previous list of developments, the main findings and implications

of this work can be listed as follows:

• The fatigue equivalent percentile defined by IEC standards is suitable for mechanical

components like blades but too conservative for monopiles.

• The probabilistic analysis on the hydrodynamic coefficients shows that the DEL distri-

butions are not sensitive to the variability of inertia and drag coefficients, which is an

relevant information in reliability analyses.

• The wave model uncertainty analysis of the monopile revealed that a substantial difference

between standstill and operational loads. These increases dramatically in standstill, due

to absence of aerodynamic damping.

• The importance factors computed through the first order reliability method revealed

that despite the wave model uncertainties are not the major drivers for fatigue reliability,

the analysis shows significant differences in terms of lifetime and annual probability of

failure when different models are combined. This has impact on design load analyses as

well as lifetime reassessment through aeroelastic simulations.
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• The qualitative assessment between blade root flapwise DEL normalized with respect to

its maximum value and probability map of pitch system malfunctions, reveal that the in

this case it is not possible to predict these malfunctions through a load map. However,

since the assessment is not quantitative, these study cannot confirm a direct correlation

between loads and failures, but rather a potential for using the load maps for achieving

an improved farm configuration to mitigate the occurrence of critical failures.

• The analysis of damage-sensitive features in case of main bearing failures shows that the

tower-top acceleration in the fore-aft direction and main bearing vertical acceleration

show variation when a failure is present. This information can be used for building

multivariate output models based on regression.

• The LASSO regularization enables a significant reduction of the dimensionality of the

dataset as well as providing a physical interpretation of the failure process. The decision

analysis carried out on this problem, revealed that a repair policy is cost-effective

compared to replacement, and the first varies as function of the efficiency of intervention.

The method thus helps decide on the economic viability of intelligent systems before

their implementation.

• Coupling machine learning based predictive models with event-trees to quantify the

reliability of data-driven monitoring systems provides a criteria to select a risk-based

threshold for online classifiers. The approach could lead to improved wind farm operations

and smooth running conditions.

• Training the classifiers multiple times with a random testing batch for each hold/out

enables a quantification of the prediction uncertainty on the ROC curve. This information

is useful to ascertain the reliability of the algorithm adopted. Thus, modeling of the

reduced probability of failure given intervention by the user, allows to evaluate the

efficiency at different lead times, which will help making decisions about the type of

system to implement. At last, the analysis of the SCADA data prior a shut-down event

revealed that wind speed statistics higher than those normal conditions and abnormal

operation may increase the risk of failures.

Future research should complement key-aspects of this dissertation, from investigating the

effect of improved statistical analyses to provide a more general conclusion about the reliability

of wind turbine foundations under different environmental models for load assessment; inclusion

of detailed analysis of vibration data into prediction models and quantification of their benefit;

standardization of monitoring system by merging SCADA and vibration data; scale-up the

monitoring systems to a wind farm level and allow flexible learning; extension of decision

models to comprise longer lead times, more robust predictions and more accurate cost models;

the load maps should be extended with real component failures coupled with measured

vibration features and SCADA data.
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Chapter 1

Introduction

An investment in knowledge pays the
best interest.

B. Franklin

1.1 Background

1.1.1 Reliability and Big-data

According to the World Economic Forum [7], it is by now acknowledged that the modern

period of history and development of human kind signs the dawn of the 4th industrial revolution.

As every other revolution in history, also the contemporary brings systemic changes. These

changes are featured by a myriad of electronic devices, machines and equipment in general,

becoming increasingly ”smart”, thanks to their ability to adapt to external inputs through

advanced control systems and provide real-time information through sensor networks, under

the form of data. In addition, digital connectivity has further enabled immediate access

to this information in a way never seen before. To certain extents, connectivity positively

affects communities and interaction among people, supports societal and scientific progress

and improves the quality of life. Consequently, this implies that data is a far valuable and

ubiquitous resource. From an economic standpoint, data is currently valued as the oil of the

digital era [8], and the advent of the new millennium has somehow warmly welcomed a new

form of ”oil-rush”.

In fact, it is sufficient to think of how many digital enterprises employ data to support their

business. Today’s tech giants as for instance Amazon, Facebook and Google among the most

popular, are striking examples of this trend. Their dominant presence in the market is allowed

by continuous development of up-to-date methodologies and applications for increasing the

value of customers’ data. Or aviation engineers working with data records, who some decades

ago would consider the job done by merely filling in a one-page document of flight information.

Strict business requirements on aircraft reliability made it necessary to enable an efficient and

fast interpretation of data. This made exclusive reliance on manual human capabilities soon

outdated, leaving space to automated data processing techniques capable of giving answers in

a profitable time span. Today, the amount of data coming from daily flights easily fills up
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several gigabytes of memory, which is indicative of the significant steps ahead made over time

in this area.

However, to make data a valuable resource it is necessary to process, interpret and turn

them into actionable information. This is where engineering practice and analytical skills come

into play. In the recent years, this concept is becoming prominent also within medium-small

enterprises, thanks to open-source availability of statical tools that are making data analysis

the bottom line of the new industrial revolution.

In general terms, the scientific community refers to as Big-data to indicate the extensive

use of data as source of information. This use comprise all actions and challenges related to

their capture, generation, processing, graphical visualization, storage and transfer. There is a

growing interest in combining data with reliability engineering, which has by now become a

new established discipline [9].

1.1.2 Maintenance engineering

The flow of technological changes achieved in the last decades has indubitably had a

resonant impact on the mechanical industry too, especially in those area where a correct

interpretation of data could potentially make a difference. One of those applications is

Operation and Maintenance (O&M). Maintenance can be defined as the set of actions

necessary to guarantee the required safety level of high-value assets, and fulfill the scope for

which they were originally designed, throughout their lifetime. It is clear to notice the direct

relation of maintenance to reliability of mechanical and electrical sub-assemblies constituting

the asset. Nevertheless, determining the reliability level of operating assets is far from trivial,

mostly because of multiple factors involved among which machine models, quality of design

and manufacturing, operating environments, inaccessibility and so forth. Relevant literature

for industrial applications broadly categorizes maintenance into three main types, as listed

below [10, 11, 12].

• Run to failure This is historically the first maintenance approach, based on running

the machine until a failure, often catastrophic, would occur. The low-frequent failure

event implies long downtimes with significant production losses in this case. This method

is still employed in cases of large fleets consisting of small machines, where the loss of

one machine does not sensibly compromise the safety of other machines and personnel,

and production losses are negligible.

• Preventive This strategy is based on performing maintenance regularly according to

certain time intervals, typically smaller than the mean time before failure (MTBF). Thus,

this approach relies on knowledge of the lifetime distribution of specific components.

If this was true, preventive maintenance would have great advantages thanks to the

possibility to plan maintenance largely in advance. Thus, it finds large applications in

cases of steady operational conditions and known statistics of component lifetime.

• Predictive As a result of the daily variation of the operational regime, a predictive

policy allows to perform maintenance when required, by constant monitoring specific

damage-sensitive parameters. This is also known as condition based maintenance (CBM)

Presently, there exist a substantial amount of literature proving that CBM has led to

significant benefits in several industrial sectors [13]. This maintenance type requires reliable
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monitoring systems providing the information necessary to assess the health of operating

machines. In broad terms, a maintenance program should incorporate fault diagnosis and

intervention with repair or replacement to reduce the risk of future failures. However, regardless

how efficiently an intervention can be performed, the risk of developing unforeseen failure

modes is always present.

Historically, maintenance has developed under different names to indicate the same common

scope. In some engineering fields such as aerospace and precision manufacturing industries, this

discipline was originally established and still known as Prognostic Health Management (PHM)

[14, 15]. PHM is a wide maintenance concept encompassing multiple levels of support actions,

such as fault diagnosis and estimation remaining life of the asset’s critical components. Besides,

it extends this process to electrical and mechanical components, storage units, hydraulic

circuits, pipes and so on. Another popular maintenance concept developed at the beginning

of the ’60s was Reliability Centered Maintenance (RCM), ordinarily adopted by airlines

starting from the ’70s and by the nuclear power industry [16]. This type of maintenance

approach is based on the implementation of different strategies to optimize the productivity

of the asset. Furthermore, it answers key questions such the identification of critical failure

modes, analysis of their consequences and prediction. A more recent approach well suited for

offshore structures, especially foundations, is risk-based maintenance based on inspections

(RBI). Major work is given by Straub [17], Nielsen [18], Hovegaard [19]. This methodology

combines information from inspections and any other kinds of evidence on the real state of

the system, to update a model-based inference of the real structural degradation. Typically

Bayesian networks (BNs) are used to achieve this goal. BNs are acyclic graphs that describe

the conditional dependency between stochastic variables [20]. In particular they model causal

relationship, that is why they are often refereed to as causal networks. Fatigue damage for

instance, is a stochastic process that cannot be directly measured, but rather calculated

through mechanical models. Thus, uncertainty on the estimated model parameters can be

reduced by exploiting new evidence, such as measurements from monitoring systems, expert

opinions or subjective judgment [12]. RBI is a good candidate for fatigue-driven failures of

substructures and became popular within the offshore industry. However, a main concern for

wind turbines (WTs) are mechanical components, which often lack of physical models and

deep knowledge of operational parameters to describe their degradation leading to failures.

At present, maintenance is a continuously developing field ready to embrace new tech-

nological trends such as artificial intelligence (AI) and the Internet of Things. Maintenance

is concerned with prediction, identification of anomalies in a timely manner, intervention

based on dedicated schedules and decisions by taking into account uncertain environmental

conditions. In particular, these latter are of main concern for offshore wind farms, because

wind speed is an uncontrollable and unsteady input. A dynamic environment determines the

level of mechanical stress that components need to withstand [21]. These in turn become

more prone to failure than expected.

Wind energy poses unique challenges compared to other industries that will be discussed

throughout this dissertation, from which the necessity of further research in this area. This

thesis covers some technical aspects related to wind farm O&M, which are briefly summarized

and discussed in the next sections of this chapter. Challenges associated with monitoring,

reliability and load assessment are discussed and treated in the perspective of reducing costs

by improving current methodologies and models proposed by current design standards and

guidelines.
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1.1.3 Wind power economics

As a consequence of strong restrictions and large-scale limitations such as lack of exploitable

land space, environmental impact, public opposition and noise emission, especially when it

comes to large multi-megawatt machines and favorable wind resources the future of wind

power generation shows an incresing trend towards offshore, as opposed to onshore. Recent

annual statistics based on European wind energy generation [4] clearly show this trend, Fig.1.1.

Top advantages of the offshore market are less turbulent wind speed thanks to the absence of

rough terrains, which offers better exploitation of the wind resources and less fatigue loads.

In [22] a throughout discussion on technical and societal challenges related to the transition

to renewable energies is provided.
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Figure 1.1: Annual power installation in GW in EU, onshore and offshore [4].

However, the elevated costs per megawatt (MW) installed capacity is still a clear dis-

advantage compared to onshore. It is not trivial to find in literature updated numbers,

although some statistics from are available from the US offshore wind industry provided by

the National Renewable Energy Laboratory (NREL) dating back to 2016 [23] (approximately

42 e/MWh onshore vs. 145 e/MWh bottom-fixed offshore and 174 e/MWh floating offshore).

The levelised cost of energy (LCOE) is a measure of the economic assessment of an asset

generating revenues from producing electricity. The LCOE is defined as the total lifetime

costs to construct and operate the production facility at year Ny divided by the total energy

produced throughout its lifetimes [24], as

LCOE =
∑Ny

i=1(CapEx + OpEx)/(1 + r)i∑Ny

i=1
AEP
1000 /(1 + r)i

(1.1)

where the capital expenditures (CapEx) [e/kW] comprise design, construction and installation

costs of the asset. The operational expenditures (OpEx) [e/kW/yr] sum up the costs of

running the business throughout the asset’s lifetime, which in case of wind farms include

fixed and variable O&M costs. The latter in turn depend on the number of maintenance

interventions performed, which is directly related to the failure rate of mechanical and electrical

components of the turbines as well as auxiliary facilities such as array cables, substations and
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so on. The LCOE can be regarded as an average cost of energy that would be delivered steadily

by an equivalent plant during its lifetime. In case of offshore wind farms, the variable costs

also depend on the site availability for maintenance, costs of hiring vessels and overall power

losses due to downtime. In Eq.1.1, AEP is the annual energy production [MWh/MW/yr] and

r the discount rate for the capitalised costs [23].

O&M is identified as a major cost-driver, landing somewhere between 20% and 40% LCOE,

and the significant variation depends on a number of factors such as turbine technology,

distance from shore, capacity factor and so forth. An extreme example documented by

Besnard [25], shows that the O&M costs of the Horns Rev I offshore wind farm, in Denmark,

reached 40% of the LCOE. These costs were broken down into categories such as corrective

maintenance (43%), serial failures (25%), retrofits and refurbishment, preventive maintenance,

vessels and helicopter overheads.

Cost reductions are achievable by improving the turbine reliability and thus increasing

availability, or minimizing unscheduled maintenance. Since increasing reliability also increases

CapEx, this increase should be lower than the reduction of OpEx. However, decreasing

the LCOE requires acting from different sides, such as improving load predictions and

design, enhanced knowledge of the failure process and development of tools for predicting

critical failures. However, predicting failures becomes more challenging when failure rates

are not constant, and their modelling must be based on condition of both environmental and

operational variables. Tavner et al. [26] demonstrated that some failures are predictable

based on the assumptions of constant failure rates, or failure rates following the bathtub curve.

However, more recent studies by Reder et al. [27] have shown that the buthtub curve is not

suitable for describing WT component failures over time, which justifies the usefulness of

predictive strategies for monitoring turbines.

It is estimated that in the near future, lowering-cost technologies will enable an increasing

installed capacity worldwide and less reliance on government subsidies [28].

1.2 State-of-art and problem statement

This section provides a throughout review of previous work carried out within the specialised

topics of this dissertation, and highlights the research gap which is addressed as novel

contribution.

1.2.1 Load assessment models

One major problem the offshore industry is facing is how to make cheaper foundations.

Despite the enormous cost reduction compared to few years ago, foundation design, manu-

facturing, transport and construction of offshore WTs still account for a percentage of the

overall costs in the range 25-34% [29]. Although new concepts such as floating turbines will

enable the deployment of wind farms located at high water depths, bottom-fixed substructures

are still a prominent solution in shallow and moderate waters [30]. This kind of foundation

will remain attractive especially for large scale project in the north sea, thanks to their ease

of installation and established technology and experience inherited from previous offshore

industries.

Besides design, manufacture and installation, in the recent years, older wind farms reaching

their end-of-life have led practitioners to consider actions such as lifetime extension, repowering
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or decommissioning of WTs [31]. These actions require a throughout assessment of structural

integrity through load reassessment, inspections and SCADA history. SCADA (supervisory

control and data acquisition) system is a DNV-GL [32] provide guidelines for extending lifetime

all load transferring components and structures. The primary focus of the guidelines is towards

fatigue reassessment, including an analytical as well as a practical approach. Since foundations

have a drastic economic impact in this perspective, their extension of life has been under

strong focus in the recent years. For example, let us imagine we were able to establish that

the monopiles a 20-year old wind farm are still able to support the support the turbine above.

If yes, for how long? How much fatigue life is left? It is clear that taking decisions according

to well defined criteria and with a certain degree of confidence would imply large economic

benefits for the business. The state of the art in this area is documented in [31, 33, 34]. Their

research highlights methodologies to approach the problem of estimating remaining lifetime

of critical WT components. Depending of the type of information or data available, this

assessment can be performed by using single sources of data available or a combination of

them, such as on-site inspections, analytical models and data driven models derived from

condition monitoring data. From a technical standpoint, estimating lifetime is bounded to a

physical description of the fatigue damage accumulated over time. Therefore, it important

to establish a good knowledge of the loads and mechanical stress concentrated in particular

hot-spots. On this regard, a load monitoring approach seems an appealing solutions. This is

performed through sensors conveniently placed on the structures to allow direct accessibility

in case of maintenance. Interesting work on monitoring vibrations of offshore WT foundations

is provided by Weijtjens et al. [35, 36], along with an sensitivity study of the environmental

effects such as turbulence and wakes on vibration. The authors in [37] proposed a hybrid

approach based on strain measurements on the tower bottom and a simple physical model of

the turbine structure to predict loads of neighboring turbines.

The assessment of remaining life of substructures however, in the majority of cases relies

on numerical simulations based on aeroelastic load analyses. Mathematical formulations to

reproduce the environmental forces acting on the turbine throughout its lifetime are typically

implemented in the solver. Assumptions and simplification are made in order to make it

possible to carry out a number of simulations which is indicative for the entire lifetime, which

will be explained in detail throughout this thesis. Some of the environmental models and

techniques were originally developed by the oil and gas industry [38], as for example wave

kinematic models and soil, because offshore WTs are located at relatively shallow waters

compared to offshore oil platforms. Accurate prediction of cycling loads on offshore WTs

foundations becomes of primary importance for two main reasons: a) bottom-fixed foundations

are moment resisting and b) fatigue is a design driver due to their high sensitivity to dynamic

loading [29]. Thus, one issue addressed in this work is to investigate the suitability of wave

kinematic models currently available for WT monopiles, typically located at shallow water sites.

Moreover, the fatigue equivalent turbulence level set by current standards [2] is investigated

for WT monopiles.

As per the DNV-GL guidelines [32], the load reassessment for lifetime extension and in

design, should be best performed according to fully probabilistic approaches. These analyses

require multiple steps, among which the identification of critical failure modes, derivation of

limit state functions, specification of model and statistical uncertainties and target a reliability

level. In most cases, a sensitivity study on the model parameters shall also be of interest.

Fatigue and extreme load reassessment are of main interest for extending the turbine lifetime
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[37].

1.2.2 Failure-load correlation

Previous work on WT reliability has confirmed that a correlation between reliability and

wind speed characteristics exists, as the study conducted in [39] based 10 years of whether

data. Lately, more advanced models have conditioned WT reliability to both weather and

operational parameters [40]. However, a direct correlation may further exist between failures

and loads, fatigue or extreme, within the wind farm. Literature provides some examples of this

connection. Some experimental work has observed patterns between specific running conditions

and gearbox failures [41]. The study suggested that planetary bearings are susceptible to

physical damage during under-loading, which may eventually lead to failure due non-torque

loads. In general, high fatigue loads or higher accumulated damage, is an indication of higher

probability of failure [42]. Also overloading, resulting for instance from extreme events, may

be responsible for increasing the probability of initiating a crack, as it is the case for gear

teeth.

Therefore, this study attempts to compare load maps, as originally developed by Galinos

et al. [43], with real experienced malfunctions in order to find possible patterns between them.

These malfunctions can be retrieved by the SCADA alarm history and typically stored in

an alarm-log of the wind farm. However, it should be remarked that this type of analysis

makes sense only after several years of operation. Since the numerical case treated in this

thesis has an operational life is of 5 years, the investigation the wind farm fatigue loads is

only intended to be used as indication of possible increased probability of failure, and not as

a direct correlation to failures. This latter in fact, if any, would imply a inadequate initial

design after such a short operational time. In any case, a description of the load variation

within a wind farm can indicate critical components and provide a criteria for deciding which

turbine should be inspected [43], e.g. based on fatigue damage.

The importance of this comparison is to understand if failures are connected to not optimal

wind farm configurations. In fact, the layout configuration is currently primarily driven by

power optimization requirements [44], or considering also loads [45], while failures and the

effect of maintenance actions on them are not yet considered. In-service failures increase

O&M costs and thus the LCOE, (see Eq.1.1). Unlike failures though, wind farm loads can be

estimated in the design phase through aeroelastic simulations. This means that if a correlation

between loads and failure exists, additional constraints could be used in the farm layout

optimization problem, which accounts for reduced LCOE by reducing the failure rate. The

LCOE is currently used as objective function for these types of optimization problems [46].

In the case study of a real wind farm, pitch and drive-train components malfunctions

were identified. The pitch system is a mechanisms often subject to failures, due to adverse

environmental conditions and mechanical degradation processes such as friction [47]. Research

in this area may help explain what are the drivers of common pitch malfunctions. Load maps

are then compared respectively with the event maps of the recorded malfunctions.

1.2.3 Predictive maintenance

It was mentioned that in-service failures, excluding events beyond the design envelope of

the turbine, are undesired events which play an important role in wind farm O&M, in that

they decrease the reliability of the power plant resulting in significant economic losses, which
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in turn influence the overall cost of electricity from wind resources. Failures can be predicted

and handled implementing suitable maintenance programs based on health assessment of

mechanical components through active monitoring.

Monitoring is the process that allows understanding the status of a system through direct

observation or inference of its state. In a general context, the value of monitoring resides

in the physical inaccessibility of an object of interest. The analysis of data makes up for

or the inability to interpret its behaviour by human perceptive capabilities only. For this

reason, the term ”remote” often precedes the word monitoring or sensing. To clarify, the reader

should think of different examples ranging from atomic scale operations such as biological

tests, detection of radioactivity and all kinds of medical analyses, to large scale examples

such as operating engines, spacecraft, tunnels, bridges and so on. It is evident that these

examples present practical challenges in terms of direct accessibility for inspection, or direct

experimental testing. In case of wind farms, remote location and frequent adverse weather

are the main factors justifying the use of remote sensing and the massive research in this

area. Owing to a number of factors such as wind farm configuration, wakes, climate, seabed

variation and operational conditions and poor maintenance, some components may experience

higher damage while others would still be running in optimal conditions. Consequently, a

preventive maintenance policy (see Section 1.1.2) does not seem to be the best suitable strategy

for major parts in WTs, except for less important components which can still be checked

opportunistically. It is more straightforward then, to think on maintenance based on condition,

especially for major mechanical parts or sub-assemblies.

Part of this thesis is dedicated to fully data-driven methods for failure prediction. Current

literature in this area primarily focuses at improving the performance of algorithms for typical

failure modes in gear-boxes, main bearings, generators. Regression models are typically used

to track the normal behaviour trend of damage-sensitive features, as for instance used in

[48, 49]. These are continuous variables, like temperatures or vibrations features among the

most employed. Other recent studies have demonstrated that the turbine under-performance

can be detected indicating the presence of failure [50]. These models are based on linear or

nonlinear regression and can be parametric or non-parametric supervised learning techniques.

This approach is known as normal behaviour modelling (NBM). The model is set to issue an

alarm as soon as a threshold is exceeded. This threshold is based on a degradation measure

defined over the set of output variables, as difference between real measurements and the

model output. A constructive review is provided in [51]. An input set is needed, selected to

be sufficiently correlated with the damage-sensitive feature to be tracked. In this approach,

the question of selecting the best performing input set arise. While there is a vast amount

of research dealing with boosting the predictive power of these systems, or even exploring

their capabilities and flexibility on large scales [52], a statistical interpretation of the input

variables and a criteria to select the best predictive input subset is still missing. This will help

practitioners decide on the the number of input variables to be employed in the prediction

model, thus reducing the amount of data processing and manual interpretation. The authors

in [48] for example used an autocorrelation-based approach to achieve this target. Other

techniques may be based on simple Pearson cross-correlation matrix and set a threshold to a

minimum correlation coefficient between the output variable and the input. As learned from

industrial experience in fact, data processing and maintenance of online running predictive

systems are among the major cost-drivers for the organizations.

An alternative approach is prediction of frequent events, as opposed to rare. This distinction
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is primarily made in terms of severity of the event and frequency of occurrence. For instance,

the failure of a gearbox is not as frequent as a daily SCADA alarm, which in turn can be

defined as frequent. These alarms are triggered whenever a certain variable surpasses a defined

operational threshold, typically set by the manufacturer or the operators. Since these shut-

down events can be several, a classifier can be used to train the prediction model. Repeated

small events however, were observed in this work to lead or be related to the occurrence of

rare events. Previous work on this subject was carried out in [53], where a SCADA-based

classifier of labeled classes was set-up. A closer look to this problem from the point of view of

the performance of advanced AI-based classifiers is given by Bach et al. [54], who employed

vibration features to predict different class of bearing failures. As it will be argued later in Ch.

5, the use of vibration data compared to SCADA data only can substantially improve the

lead time, defined as the time lag between the first warning issued by the prediction model

and the failure itself, or any other reference point in time.

As it emerges from the the cases exemplified above, predicting a failure event also implies

dealing with the level of confidence of the prediction system employed. This means the

monitoring system can fail recognising whether an event is true or not. Depending on the

severity of the warning, the operator will perform an action associated with a cost. The

benefit can be for instance avoiding the cost associated with the occurrence of a failure such as

replacement costs, mobilization time required by the crew to prepare the operation while the

turbine is standing still and power losses. Consequences of all the actions triggered by an early

alarm must be considered and decisions are then taken based on the most convenient outcome.

Therefore, the utility has to be evaluated from a risk perspective, which in practice can be

achieved through a cost-benefit analysis. The latter quantifies the benefit of implementing

the system against its running costs. This thesis provides two examples of decision trees

developed for regression and classification types of predictions. Only a financial risk is

considered, following the assumption that only economical losses are associated with WT

failures. However, it is worth noting that risk can be associated to multiple attributes. For

instance, in the example of the airlines, maintenance practice would also involve low customers’

satisfaction and company’s reputation besides financial losses, because of possible delays or

corrective actions [55]. The further research contribution of this work is therefore towards a

utility assessment through decision trees.

This analyses are based on real experienced failure events, and the decision tools developed

have the aim to reveal the primary maintenance cost-drivers making it possible to raise

awareness within the organization. This represent a potential for future cost reductions in

wind farm O&M. The research gap in this area is still significantly large and the wind energy

industry is currently facing a number of obstacles that prevent operators from taking informed

decision. Among the most significant, is a lack of open communication, information sharing

and issue on data ownerships between energy operators and turbine manufactures. Wind

energy operators are fully liable of performing maintenance on their operating machines after

the warranty period, often set to 5 years [56], making it necessary for them to develop in-house

tools for data analysis, hire suitable personnel and schedule maintenance activities. All the

risks associated with lifetime management of an asset must be incorporated in a maintenance

program.
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1.3 Main wind turbine components

It is preliminary to visualize under which conditions WT components are subject to

degradation, wear and thus increased risk of failure. Besides normal aging, external factors

affect their durability. With respect to offshore sites, turbines are located in places dominated

by an abundance of wind resources. These implies the presence of harsh and aggressive site

conditions, such as high and low temperatures, frequent storms, corrosive environments due

to salinity, waves, currents, humidity, turbulence, marine growth, ice, sea-spray and so on.

Mechanical and electrical equipment are indeed sensitive to the variability of those parameters,

or a combination of them. The picture in Fig.1.2 shows a typical example of operating offshore

turbines.

Figure 1.2: Example of an offshore wind farm, Block Island, USA [5]

DNV-GL [57] provide useful design guidelines to account for these physical phenomena

while designing. However, it is far from attainable to believe that all possible real conditions

will likely to be predicted during design, due to the stochastic nature of the mentioned

phenomena and, in general, lack of exhaustive knowledge of the physical parameters into play.

Ideally, if these were deterministic, it would be possible to achieve safe designs at relatively

low costs, thanks to lower uncertainty and more accurate prediction of operational loads.

Fig.1.3 displays a typical nacelle configuration of a geared WT machine. The main

component of a WT rotor nacelle assembly are rotor blades, main bearings (typically 1

or 2), main shaft, gearbox and generator. Some types do not implement a gearbox in a

configuration called direct-drive. The structural parts supporting the rotor nacelle assembly,

the substructures, are the tower, transition piece and foundation. The connections between

different structural members and mechanical components are made of mechanisms and

constraints to allow motion where required. Examples are, pitch and yaw mechanisms,

drive-train couplings, grouted joints etc.

1.4 Scope

In connection to this introduction and review of related literature, a description of the

novel research questions is here summarised. The work is divided into three main area depicted

in Fig.1.4.
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Figure 1.3: Example of drive-train configuration [6]

• Are environmental models for fatigue load analysis of offshore WT monopiles

suitable for all site conditions? Based on fully coupled aeroelastic simulations, the

impact of different environmental models on fatigue lifetime of offshore WT monopiles is

investigated using probabilistic reliability formulations of the fatigue limit state. Three

different wave kinematic models and less conservative level of equivalent turbulence

calibrated for fatigue loads monopiles are taken under consideration. Wake effects are

taken into account too. The advantage of using equivalent turbulence levels is to have a

basis for preliminary designs of WT components, which are are lose as possible to the

final design and strongly reduce the number of simulations to achieve this. However,

equivalent turbulence may often lead to over conservative estimates. The influence of

uncertainty in the hydrodynamic coefficients in the Morrison equation is investigated.

When using linear waves, a correction term to account for the mathematical error of the

Wheeler stretching at finite water depths is derived.

• How does the reliability of offshore WT monopiles vary under different en-

vironmental models? The study discusses the consequences of using the right envi-

ronmental models for load assessment in accordance with real site configurations, with

the scope to reduce the safety margins in the design of foundation as well life reassess-

ment towards the end-of-life. The novel contribution of this study is the assessment

of environmental models from the perspective of fatigue reliability, which translates

theoretical formulations into practical numbers for wind farm designers and operators.

• Can a qualitative assessment of the wind farm load map indicate a possible

correlation with failure? Knowledge of the loading conditions across a wind farm

is part of a maintenance program for assessing lifetime of mechanical components and

structural members. Based on a case study, the fatigue load history within a wind farm

is reconstructed using real environmental conditions and aeroelastic simulations based

on tools already developed. Alarm-logs of the wind farm revealed several issues with

hydraulic pitch system and drive-train components such as bearings, gear-boxes and

generators. The initial idea was to compare pitch errors deriving from the introduction

of the friction torque into the equations of motion (EOM). Unfortunately this modeling

resulted in convergence problems. Instead, results are shown in terms of pitch duty
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Figure 1.4: Main structure of the thesis.

cycle maps, blade root fatigue loads and main shaft torque fatigue loads and frequency

of event maps of the wind farm.

• Are classification-based predictive systems cost-effective, and how can their

utility be analysed? Classification techniques are used to model and predict SCADA

alarms. A decision model based on event tree is developed, which enables the assessment

of the monitoring system in economical terms. CBM is modelled through a parameter

which takes into account the efficiency of intervention performed when the system

predicts a malfunction. The effect of the efficiency is to decrease the probability of

failure of the sub-assembly affected. The model devises the optimal configuration of

the classifier in order to obtain maximum benefit, as a trade-off between false alarms

and correctly classified events. The novel contribution resides in the combination of the

output obtained from prediction systems based on machine learning with decision/event

trees, which will represent an area of open research in the future. The overall aim of the

work is to provide simple practical tools to assess the cost-effectiveness of prediction

models before their implementation based on prior information, as well as modeling the

performance of the maintenance practice.

• Are regression-based predictive systems cost-effective, and how can their

utility be analyzed? Improvements to NBMs with respect to available literature are

developed. The usefulness of prediction models and how they can be effectively employed

for decision making is quantified by constructing an event tree suited for regression-based

NBM to predict the occurrence of rare events. Two maintenance strategies of repair and

replacement are considered and their expected utility is quantified through the decision

tree. In the repair policy, the same approach as in the classification-based technique is

used, namely the effect of a successful repair action is modeled through an efficiency

that decreases the probability of failure.
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• Which variables among SCADA and CMS systems should be included in a

prediction model based on NBM? In the example of the main bearing failures, a

sensitivity analysis based on least absolute shrinkage and selection operator (LASSO) is

proposed, which has the scope to reduce the dimensionality of the input dataset and

eliminate unnecessary covariates.

1.5 Outline

The remainder of this thesis is organized as follows. Ch.2 introduces the fundamental

concept of structural analysis and multi-body dynamics, with the aim to provide sufficient

knowledge to understand fully coupled aeroelastic models. Then offshore WT are described

along with basic principles of hydrodynamic and aerodynamic, as well as design load cases

(DLC) defined by current standards. The area of structural reliability is introduced along

with numerical models to estimate the probability of failure in case of complex limit state

functions and an explanation of the uncertainties to be considered in a reliability study. Ch.3

is dedicated at describing how to develop load maps of a wind farm starting from assessment

of site conditions and aeroelastic simulations. The mathematical formulation of the second

order pitch system is presented along with friction models for pitch bearings. Ch.4 is entirely

dedicated at introducing the topics of AI, differences between predicting and explaining a

certain phenomena through predictive models, learning algorithms used in this work and other

topics typical of machine learning. The knowledge gained through this chapter is preparatory

to understand Ch.5, where the notions of predictive modeling are applied on CBM and basic

decision models, along with a constructive review of SCADA and vibration data applied for

condition monitor WTs. These two chapters are clearly linked together, but for the sake of

clarity they presented separately, in that more general discussions and considerations are

given in the first.

Each chapter contains a recall of the scientific background preliminary to understand

the overall work-flow as well as analytical details, along with an explanations of how the

information has been used in the related articles, where necessary. If not, specific motivation is

given. Each chapter may refer to scientific notions presented in other chapters when necessary.

The descriptions are as brief as possible, leaving the reader space for deepening into more

advanced details through relevant references. Intentionally, the same information already

contained in the scientific publications are not repeated in the main text, unless deemed

necessary to understand the work-flow. For convenience, nomenclature and definition of

mathematical quantities may be similar across different topics and in general differ from the

one adopted in the scientific articles.

This thesis is built-up around 3 main scientific papers (Articles I,II,III) and further research

summarized in a thesis chapter (Ch.3). The contribution of the coauthors of this work has

been necessary for the final delivery of the thesis. In Article I, nonlinear wave time series were

available from a database created by A. Natarajan, and the reliability analysis was based on

implemented computational tools developed in other Universities freely available for researchers.

In Article III, the computations of the sensitivity analysis were performed by M. Reder. In

Ch.3, the PID controller for the pitch torque has been developed in collaboration with A.

Melchior Hansen. The derivation of free wind speed statistics within and the fitting functions

using the polynomial chaos expansion (PCE) method were obtained using codes developed

by N. Dimitrov. When required, all the coauthors contributed with general enhancement
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of methodologies and interpretation of results to be presented in a scientific manner, as

well as with providing a critical review of the manuscripts. The remaining content, such

as all the conceptual ideas, data collection and processing, computations, technical details,

interpretation of results and writing are direct contributions of the main author of this thesis.

O&M remains a multidisciplinary field, which embraces a wide range of engineering

disciplines. As stated in [58], it is unrealistic to think of going through all the details in a

limited time frame allowed for a doctoral program. Thus, the approaches are either to narrow

to scope of the research or to stay general without digging into many details while contributing

in more areas. This dissertation best fits the second approach.



Chapter 2

Environmental models for load assess-
ment

Uncertainty is that thing that disappears
when you are certain

T. Bedford

This chapter introduces the reader to the basic notions of WT loads, DLCs defined by

IEC standards, concepts design and safety and describes the most common types of offshore

foundations, reliability analyses and related analytical tools.

2.1 Wind turbine loads

2.1.1 Aerodynamic

Some theoretical aspects in this section are retrieved from [59]. WTs are machines designed

for the primary aim of extracting power from wind. The aerodynamic profile of the blades,

the airfoil, allows the balance of lift and drag forces necessary to generate rotational kinetic

energy. Airfoils generate lift as a result of a pressure difference. These forces can be derived by

a the Blade Element Momentum (BEM) theory. This simplified approach combines the linear

momentum theory, which concerns the derivation of forces acting on at the blade based on a

control volume, and the blade element theory, which concern the derivation of 2-dimensional

forces acting on the blade profile. Assuming an annular control volume described by a radial

variable r and thickness dr, the BEM theory expressed the differential aerodynamic thrust

force dT and torque dQ, as

dT = %U24a(1− a)πrdr (2.1)

dQ = 4a′(1− a)%Uπr3Ωdr (2.2)

where a is the induction factor, % the air density, U the wind speed, Ω the blade rotational

speed and a′ = ω/2Ω is the angular induction factor, where ω is the induced angular velocity.

The Betz linear momentum theory originally developed for ship propellers, assumes the fluid

being homogeneous and incompressible, a steady state fluid flow and no friction.
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Such models represent a complex interaction between aerodynamics, structural dynamics

and control systems under the external forcing of the turbulent wind field(including wakes

from other turbines), and possibly other external forces from waves and ice

Commercial aeroelastic codes implement the BEM theory extended to include unsteady

inflow conditions. These solvers are based on fully coupled aero-hydro-servo-elastic simulators,

meaning that the complex interaction between aerodynamics, structural dynamics and power

control is considered simultaneously under the stochastic excitation of the wind and wave, in

case of offshore WTs and wake turbulence from neighbor turbines [60] . The term fully-coupled

means that the acting forces depend on the actual structural response making the problem

nonlinear. In this work, the simulator will be simply referred to as aeroelastic. The WT

dynamic concerns the solution of a differential equations where x is the response vector. In

the commercial aeroelastic code used in this work, HAWC2 [61], the formulation is based

multibody dynamics approach, which included finite element formulations. Other approaches

can be based solely on finite elements or participating modes. A common feature of aeroelastic

codes is their modular formulation [62]. These modules comprise soil conditions, turbine

geometry and constraints, control unit, external loading (wind and waves) and structural

response.

Fig. 2.1 exemplifies the difference between the response below and above rated wind speed

of a variable speed pitch regulated WT. The example refers to Article I. In the first case, the

varying rotational speed Ω modulates the thrust force acting in the fore-aft direction, while in

the second case the turbine operates at constant speed. The fluctuations increase at higher

wind speeds due to larger turbulence.
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Figure 2.1: Example of rotational speed at mean wind speeds 7 m/s and 19 m/s (5MW NREL
reference turbine).

2.1.2 Hydrodynamic

The theoretical background in this section is partly retrieved from [63]. WT hydrodynamic

concerns the description of the dynamic interaction between ocean waves and substructures.

This interaction is played by wave kinematics and wave loads acting on the structure, the latter

estimated through the Morison equation. Regular and irregular waves refer to respectively a

unimodal wave and a composition of modes at different frequencies, amplitudes and phases.
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Most commonly, the linear theory is used to approximate the wave particle kinematics, starting

from the definition of the Laplace equation for the potential flow, as

∇2φ = 0 in Θ

∂φ
∂z = 0 on Γ1

∂φ
∂t + 1

2(u2 + w2) + p
g + gz = C on Γ2

(2.3)

where Θ is the 2-dimensional continuous domain, Γ1 is the sea bottom at a water depth z = −h,

Γ2 is the water surface, u and w the horizontal and vertical particle velocity respectively. The

quantity p is the atmospheric pressure and C is a constant. The solution of Eq.2.3 is the

potential flow for the velocity field at finite water depths which satisfies the free kinematic

boundary conditions, as

φ(x, z, t) = ηa
kω

cosh[k(h+ z)]
sinh(kh) sin(kx− ωt) (2.4)

where ηa ≈ H/2 is the wave amplitude, with H being the linear wave height. Often, the

stretching is used to extend the validity of the linear theory to the water particles above the

mean sea level. From Eq.2.4, the velocity field in the two directions v = (u, v) considered can

be expressed as

v = ∇φ. (2.5)

From the previous considerations, the wave profile of an irregular wave has the following

expression

η(x, z, t) =
N∑
i=1

Ai(ωi) cos(kix− ωit+ εi) (2.6)

where the input parameters are the wave amplitude Ai(ωi), the spectral frequency ωi, the

wave number ki and the random phase εi. Eq.2.7 expresses the horizontal particle velocity

field derived from Eq.2.6 where Wheeler stretching is applied. The second order non linear

wave kinematic model applied here is described [64]. The nonlinear horizontal velocity field

unlin is expressed by Eq.2.8.

ulin(x, z, t) =
N∑
i=1

Ai ωi
cosh

[
kih
(
h+z
h+η

)]
sinh(kih) cos(kix− ωit+ εij) (2.7)

unlin(x, z, t) =cosh[ki(z + h)]
sinh(kih) cos(kix− ωit)+

+
N∑
i=1

N∑
j=1

[B+
ij (z) cos(k+

ijx− ω
+
ijt+ εij) +B−ij (z) cos(k−ijx− ω

−
ijt+ εij)]

(2.8)

The expressions for the linear and nonlinear horizontal accelerations in the vertical direction

can be expressed similarly. The second order transfer functions B+
ij (z), B

−
ij (z), C

+
ij (z), C

−
ij (z)

rearranged in Eq.2.8 are function of wave amplitude, frequency, wave number, water depth
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and vertical coordinate, their explicit formulation is fully documented in [65]. The second

order expansion is evaluated at i 6= j. The superscripts + and − refer to a summation or

difference between frequencies. The nonlinear second order wave model takes into account

higher order frequency contributions to better describe nonlinearities of the natural wave

profile, which is a stochastic process.

To generate wave kinematic times series, spectra information must be known. This define

the significant wave height Hs and the peak period Ts. From these quantities, a spectrum

generates the amplitudes as function of the frequencies. The phases can be assumed as random

variables in the general case. Typical parametric spectra available are Pierson–Moskowitz and

JONSWAP [66]. To predict the wave loads on the substructure, the Morison equation is used

[67],

F (t) = 1
2%CdDm | u(t)− q̇(t) | (u(t)− q̇(t)) + πD2

m

4 %Cmu̇(t)− πD2
m

4 %(Cm − 1)q̈(t) (2.9)

where F (t) is the wave force per unit length, Cm and Cd are respectively inertia and drag

coefficients, Dm the monopile diameter, % the water mass density and q denotes the structural

displacement in the horizontal direction. The hydrodynamic coefficients may vary significantly

according to several physical phenomena, and thus affecting the load distribution in the long

term. Often, the wave directional spreading is employed along with the two dimensional wave

kinematic field [2].

2.1.3 Turbulence

Wind turbines are exposed to ambient turbulence from the free stream, as well as turbulence

generated by wind farm wakes. Wake turbulence is an important design driver both for the

single turbine and for the wind farm layout, since it is the main responsible for fatigue

loading. Therefore, this variable is important not only for design purposes, but also for load

reassessment.

One of the first models to predict wake turbulence within a wind farm was built by Frandsen

[3]. This model is based on the hypothesis that ambient and wake-induced turbulence can

be represented by an equivalent turbulence level. This equivalence is expressed in terms of

fatigue loading. The formulation is formalized in the IEC standards [2], as

σe =
[
(1−Nt pw)σ̂mc + pw

Nt∑
i=1

σ̂miw(di)
]1/m

(2.10)

where Dm and a uniform wind direction distribution f(ϑ | U) are assumed. In Eq.2.10, pw
is the probability of wake condition, Nt is the number neighboring turbines, σ̂c is the free

ambient characteristic turbulence and σ̂w the characteristic value of the maximum center wake

turbulence standard deviation at the hub height, expressed as

σ̂w =
√

U2

(1.5 + 0.8d/
√
CT (U))2 + σ̂2

c (2.11)

where CT (U) is the thrust coefficient known as function of the mean wind speed in case of a

pitch regulated variable speed turbine. Thanks to the definition of an equivalent turbulence

level, the number of aeroelastic simulations can be greatly reduced in some practical cases.

Although this approach of modelling turbulence is simple, it may lead to conservative load
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estimates. Also, it is imporant to mention that this formulation assumes a constant Wöhler

exponent, and it is not in general valid for multiple Wöhler exponents. Therefore, this

represent an approximation.

A more sophisticated method is the Dynamic Wake Meandering (DWM) model [68]. The

DWM model is based on heuristic engineering considerations about the nature of wakes

and how they affect nearby turbines. In DWM, the wake on a downstream turbine aligned

with the wind flow is considered as acting on a circular area with reduced wind speed and

modified turbulence. In this scenario, the load variation associated with the presence of wake

turbulence will depend on the relative position of the turbines and the size of the wake. Based

on the assumptions of the DWM, the wake center position will be affected by transverse wind.

The wake center location is a random variable, and its standard deviation increases with the

distance from the wake source. It is possible to estimate this variance as a function of the

transverse wind speed standard deviation, by taking into account the covariance between

longitudinal and transversal wind speed components. This variance in turn depends on the

type of spectrum employed for generating the wind field. These are the main ingredients to be

able to model the turbulent flow conditions containing contributions from farm wakes that can

be implemented on aeroelastic codes. The topic however, contains domain knowledge, which

goes beyond the scope of this thesis. The reader is therefore adviced to refer to specialised

literature for further details, since this paragraph has the only aim to provide a general

description of the phenomena.

2.1.4 Design load cases

From the previous considerations, the structural response of complex multibody systems

can be described, once the external excitation is known. Apart from gravity loads, the

remaining source of excitation are summarised below

• Aerodynamic, resulting from the wind-rotor interaction.

• Actuation, originated from the turbine control system such as yaw, breaks, pitch, torque

and so forth.

• Hydrodynamic, resulting from wave-substructures interaction.

• Sea ice, in case of ice clusters hitting the substructures.

• Earthquakes and impacts.

• Wakes, resulting from the wind farm configuration and affects downstream turbines.

• Tower passing loading, veer, sheer and yaw error.

The DLCs define a set of loading situations relevant for the operational lifetime of the

turbine, as defined in IEC64100-1 [2]. These conditions are necessary for the evaluation of the

design characteristics of a WT, and are divided into the following categories

• Normal power production

• Power production in combination with grid loss or electric network faults

• Start-up, normal and emergency shut-down
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• Standstill

• Standstill in combination with faults

• Transport, maintenance and repair

• Icing and sea ice loads

Along with these load cases, the input environmental conditions should also cover all the

possible scenarios, with the help of extrapolation of extreme events from site observations at

a given return period. Among the most important sea and wind conditions are

• Normal turbulence and normal wind shear

• Extreme turbulence and extreme wind shear

• Extreme wind speed

• Gusts and sudden wind direction change

• Extreme gusts

• Normal, severe and extreme sea state

• Breaking waves

• Sea currents

Further environmental conditions that are considered extreme and must be assessed in

extreme sites are temperature, earthquakes, lightning and ice.

In this work, DLC 1.1, 1.2 and 6.4 (see [2]) are considered, because they concern the

estimation of fatigue loads during operation and standstill. For an offshore WT, the main

environmental parameters to be considered are mean wind speed U , turbulence σu, significant

wave height Hs and wave peak period Tp. In more specialised analyses, other variables may

be considered as random, such as wind shear, air density, wakes and so forth [69], as it will

be shown in Chap. 3. The probability of occurrence of each combination of environmental

variables has to be taken into account, according its joint probability distribution

f(U, σu, Hs, Tp) = f(U) f(Hs | U) f(Tp | U,Hs) f(σu | U). (2.12)

DLCs should be selected if relevant for the structural integrity of the turbine following specific

site assessments. For instance, a combination of extreme and fault conditions may be found

to be a critical situation. In this cases it is clear that particular combinations of DLCs and

environmental parameters may lead to structural failures. However, to achieve economical

and safe designs, the designer should account for the probability of occurrence of these

critical events within the turbine lifetime, and accept a certain target probability of failure.

Based on these considerations, partial safety factors are introduced in the design equations

to compensate for uncertainty in both loads and resistance, associated with specific failure

modes. DNV [70] provides a categorization into safety classes, namely low, normal and high,

as well as limit states such as ultimate strength, fatigue, serviceability and so forth. For each

safety class, a target probability of failure is associated. The scope of the reliability analysis

is then to ensure e a safe design under uncertain inputs.
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2.1.5 Types of foundations

The aim of this subsection is to describe different types of offshore WT support structures.

As documented in [71], WT support structures can be categorised into 4 classes:

• Piled structures provide easy manufacturing and installation, thanks to several years of

experience in other sectors such as oil and gas. Their stability relies on tangential forces

established between soil and structure due to friction.

• Gravity base structures simply rely on compressive soil strength and dead loads, which

ensure their stability. Thus, gravity based foundations are designed to avoid tensile

forces.

• Suction bucket are based on the principle of removing water from the skirt, thus to

guarantee stability thanks to negative pressure.

• Floating structures can be of different types and their design is currently under strong

research focus. The floating concept could turn out to be a game changer for very high

water depths.

Thus, with respect to their structural configuration, these categories are further divided into

monopiles, tripod, jacket, gravity and floating. In particular monopiles are mostly suitable for

moderate and shallow waters. However, thanks to a series of advantages [72], their adoption

is becoming prominent for larger water depths, as also confirmed by recent research [73].

One major concern associated to pushing monopiles towards deeper waters, is that the first

natural frequency in the fore-aft direction decreases sensibly due to their high flexibility, and

thus shifting the spectral peak towards the wave dominant frequency range, typically around

0.22 Hz for the North Sea. These in turn become detrimental especially for fatigue lifetime.

As argued in [72], if the well established supply chain for manufacturing and installation of

WT monopiles could be transferred at high water depths, there would be great potential for

economic benefits than starting a new supply chain of other types. This concept is well linked

to standardization of WT foundations. Thus, the motivation of treating monopiles as research

objective results from the considerable drive to improve their technology, which also includes

load analysis.

Offshore WT foundations are unmanned structures, and so they belong to a normal safety

class corresponding to a target annual probability of failure of 10−4 [70].

2.2 Uncertainties

In the context of reliability and risk analysis, uncertainties are commonly categorized

according to their type. The discussion in this section is inspired by [74]. Aleatory uncertainties

are those originating from the inherent variability of natural processes, as for example the air

temperature in a specific region, the annual variation of a river water depth, the amount of wind

solar particles into the atmosphere in January etc. They concerns the inherent randomness of

all stochastic processes observable in nature. Model and statistical uncertainties are referred

to as epistemic, originating from mathematical models used to describe an observed natural

process, partial lack of knowledge or unknown values of certain estimated quantities because

of limited observations.
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The example of the weather for [74] makes the concept clear. Even though a model exists

to predict future occurrences of a certain event, its intensity and so on, aleatory uncertainty

makes it rather difficult to obtain reliable prediction far in future. Model uncertainties will

depend by the amount of information that was available at the time of modeling.

In WT load analysis, different sources of uncertainty are present, and in a reliability

context they must be taken into account. These originate from the mathematical description

of the wind-wave interaction through the BEM theory, structural response through mechanical

models, mathematical equations to model external inputs such as wind and waves. The

natural variability is taken into account by stochastic input parameters, whose statistics are

estimated from observations.

2.2.1 Lower-order wind turbine model

For the quantification of the wave model uncertainties, a reduced-order WT model was

used, similarly to the ones developed by Schløer et al. [75]. The reason for this is to eliminate

other sources of uncertainty in the model, such as wind-structure interaction, soil-structure

interaction due to soil flexibility and controller effects. The forcing term in the EOM is the

wave load hitting the structure computed through the Morison equation. The Newmark

method is used to solve the differential equation. Fig.2.2 shows the in-plane mode shapes of

the system, as well as a comparison in terms of dynamic response at a monopile section and

its spectra, Fig.2.3.
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Figure 2.2: Normalised in-plane mode shapes of the lower order WT model.

Fig.2.3b, shows the agreement the agreement in terms of spectral energy content between

the full aerodynamic model and the reduced one. When the turbine is in operation, a large

percentage of the total damping in the first mode is provided by aerodynamic effects. The

damping level substantially affect the fatigue loads [73], especially on tower and foundations

and therefore it needs particular focus. There is a considerable amount of literature dedicated

at estimating operational and standstill damping. In this work, an experimental estimate

was given by computing the logarithmic decrement damping of the tower-top acceleration, by

giving as input a step wind speed, as shown in Fig.2.4.

The homogeneous oscillating solution of an under-damped single DOF (free vibrations),

with ϕ0 the phase angle, ω0 its natural frequency and A(t) the time varying amplitude, can
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Figure 2.4: Wind step excitation to a constant wind speed and corresponding free decay response of
the tower-top acceleration for experimental determination of the aerodynamic damping.

be expressed as

y(t) = A(t) cos(ω0t+ ϕ0). (2.13)

Thus, the amplitude A(t) = A0e
−ζt, where ζ is the damping ratio. The amplitude at two

different times t1 and t2, can be expressed as

A(t1) = A0e
−ζt1 , A(t1) = A0e

−ζt2 (2.14)

thus,

A(t1)
A(t1) = e−ζ(t1−t2) = e−ζNT (2.15)

where N is the number of complete oscillation, and T = (t1 − t2)/N , their period. By taking

the logarithm of both sides of Eq.2.15, it can be verified that the logarithmic decrement
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damping is estimated as

δ = ζT = 1
N

ln A(t1)
A(t1) . (2.16)

2.3 Fatigue reliability

As a result of cycling loading, fatigue is a measure of the cumulative physical damage.

When the cumulative damage reaches a critical value, a physical crack initiates, which leads to

loss of fatigue strength and ultimately a structural collapse. From a mathematical standpoint,

fatigue is a mapping function from mechanical stress onto damage. This function operates

through a cycle counter, the rainflow cycle counting, and an empirical relationship between

the number of cycles to failure and the corresponding amplitude, the SN-curve [70]. The

cumulative damage can be computed as

D =
N∑
i

ni
ai

∆σmi (2.17)

where N is the total number of binned load ranges, m the Wöhler exponent, log(a) the

intercept of the SN-curve, n and ∆σ respectively number of cycles and stress range obtained

by rainflow cycle counting. Similarly to Eq.2.17, the DEL is defined as

DEL =
(

1
neq

N∑
i

∆Lmi ni

)1/m

(2.18)

where ∆L is the load range and neq is the equivalent number of 1-Hz cycles with respect

to the specific time frame of the load. Thus, given Eq.2.18, the DEL can be defined as the

load range at a frequency of 1-Hz, which results in the same fatigue load as the original time

series. The total accumulated damage over a certain period of time can be found through

Palmgren-Miner’s rule, Eq.2.19, which assumes that the stress is a stationary stochastic

process within this time frame the hypothesis of linear cumulative damage holds.

Dt =
N∑
i

∆Di (2.19)

As defined by DNV guidelines [70], a limit state is a condition beyond which a structure or

structural component will no longer satisfy the design requirements. A reliability analysis of

level III [76], requires a full probabilistic approach both in the demand and capacity terms.

The fatigue limit state function can be in this case formulated as

g(X) = ∆−Dt(X) (2.20)

where ∆ is the capacity term corresponding to the upper damage limit, typically modeled as

a Gaussian distribution to account for the statistical uncertainty in the Miner’s rule, due to

the deviations between fatigue tests and real loading conditions. A constructive review on

the work carried out around the quantification of this uncertainty is provided by Straub [17],

mainly based on offshore oil-and-gas structures. There it is reported that the coefficient of

variation (COV) of this parameter has a wide spread, between of 20 to 60%. In Article I this
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was set to be 10% in order to have a better balance with the remaining model uncertainties and

quantify their effect. The vector of stochastic input variables X, representing the uncertainties

in the model. The condition g(X) = 0 represents the failure surface, while g(X) ≤ 0 is the

entire failure domain. Thus, an estimate of the probability of failure is given through the

following integral

Pf = P [g(X) ≤ 0] =
∫

1g(X)≤0fx(X) dX (2.21)

where 1 denotes the zero-one indicator function and fx(X) is the joint PDF of the random

variables. In some cases, the failure surface may be strongly nonlinear depending on the

complexity of the model, and thus the integration of Eq.2.25 is not always straightforward.

Furthermore, it is important to notice that the stochastic input variables may be of different

orders of magnitudes and have different distribution. This may lead to inconsistencies in the

reliability model. Thus, is common practice to transform the variables into a standard space

of independent and identically distributed (i.i.d.) through the exact transformation [77]

U = Φ−1(F (X)) (2.22)

where Φ() is the normal cumulative distribution function (CDF) and F (X) the CDF of the

real variable. Eq.2.22 transform the variable into a standardized space with zero mean and

unit variance. The Hasofer-Lind’s reliability index is defined in the standard space as the

minimum distance between the design point u∗ on the failure surface g(U) = 0 and the origin,

simply calculated through the Euclidean distance

β = min
g(U)=0

√√√√ n∑
i=1

u2
i (2.23)

2.3.1 First order reliability method

First order reliability method (FORM) is a gradient based methods for estimating the

reliability index (see e.g. Ditlevsen & Madsen [78]). FORM is usually very fast and is based

on approximating the failure domain around the design point with a hyperplane. Indicating

as U the normalized variable space, the linear parameters of the hyperplane are estimated as

α = − ∇g(U)
‖∇g(U)‖

∣∣∣∣
U=u∗

(2.24)

The elements of the vector α are the normalized derivatives of the failure surface around

the design point, thus they indicate the sensitivity of the surface with respect to the normalized

parameters. For this reason, α is the vector of importance factors. Thus, the probability

confined by the hyperplane can well approximate the failure probability, as

Pf = P [g(U) ≤ 0] ∼ P (β −αTU) = Φ(−β) (2.25)

Given the numerical the analytical expression of Eq.2.24, the importance factors can be

found iteratively. Note that the inverse problem can also be used, namely given a certain

reliability target, to find the configuration of the parameters U that satisfies such constrain.

This is known as IFORM (inverse FORM). This is used for instance to calibrate partial safety
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factors or to analyze the contour surfaces of the environmental parameters given a fixed return

period.

Higher order models approximate the failure domain around the design point with a

polynomial function, also called as SORM, second order reliability models.

2.3.2 Monte Carlo

MC simulations directly computes the integral in Eq.2.25 through realization of the

function g(X) by random sampling from the vector of random variables. Since it is a pure

numerical approach, MCS is an unbiased estimator. The probability of failure is estimated as

P̂f =
N∑
j=1

1g(Xj)≤0 = Nf

N
(2.26)

where N is the total number of samples and Nf is the number of samples in the failed domain.

MCS also provides an estimate of the numerical error in the estimation of Eq.2.26, by noting

that in this case 1g(X) follows a Bernoulli distribution with mean and variance respectively

found as

µ1g(X) = Pf (2.27)

σ2
1g(X)

= Pf (1− Pf ) (2.28)

which, for a large number of trials N , Pf can be approximated by a normal distribution with

parameters

µPf
∼ P̂f (2.29)

σPf
∼
σ1g(X)

N
. (2.30)

Thus, the numerical COV is found as

COVPf
=

√√√√1− P̂f
NP̂f

(2.31)

In this way, the number of samples necessary to reach a certain precision on the estimation

can be found through Eq.2.31, thus representing a convergence criterion. The drawback of

MC simulations is that converge depends on the magnitude of the probability of failure. For

instance, in Paper I, a 2% precision is set. This required a number of MC simulations for a

Pf ∼ 10−4 approximately equal to N ∼ 2 · 106, which is already a very large number of cases.

2.3.3 Importance Sampling

Importance sampling (IS) is a MC based technique, which provides a robust estimate

when dealing with small probability of failures and nonlinear failure surfaces. The probability

of failure is expressed as
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Pf = P [g(U) ≤ 0] =
∫

1g(U)≤0
fu(U)
Ψ(U) Ψ(X) dU (2.32)

where the function Ψ(U) is the importance distribution. Thus, the estimate is found analogously

to Eq.2.26. The importance distribution increases the chances to sample around an arbitrary

region, rather than in the entire domain. Confidence bounds can be found as in the MSC

method. IS can be used in combination to other techniques to increase the robustness of the

estimation of the probability of failure by sampling closer to the design point u∗. For instance,

in Article I, a FORM is first used to obtain an estimate of the design point and thus IS refines

the estimation.
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A B S T R A C T

The cost of offshore wind turbine substructures has a significant impact on competitiveness of the wind energy
market and is affected by conservative safety margins adopted in the design phase. This implies that an accurate
design load prediction, especially of those resulting in fatigue damage accumulation, may help achieve more cost-
effective solutions. In this article, the impact of turbulence and wave loads on fatigue reliability of pile founda-
tions is investigated for a 5-MW offshore wind turbine. Loads obtained by varying turbulence percentiles are
compared with those obtained from the full joint probability distribution of wind speed and turbulence through
Monte Carlo (MC) simulations, and from the equivalent turbulence level currently adopted by IEC standards. The
analyses demonstrate that a lower equivalent turbulence percentile leads to a more realistic and less conservative
estimation of fatigue loads. Subsequently, the research focuses on studying the effects of uncertain marine en-
vironments on the fatigue load distribution, showing that the latter is insensitive to the random variability of the
hydrodynamic coefficients. With respect to the wave kinematic model, a comparison between nonlinear and
linear waves clearly suggests that hydrodynamic forces depend significantly on the kinematic model adopted and
the operational conditions of the turbine. Furthermore, a term is derived to correct the error introduced by
Wheeler stretching at finite water depths. The respective model uncertainties that originate from the nonlinear
irregular wave model and Wheeler correction are quantified and employed in a reliability analysis. In a case
study, the results are finally compared in terms of estimated probability of failure, with the aim to quantify the
influence of environmental models on monopile reliability.

1. Introduction

Wind is an affordable and sustainable source energy which represents
a strong alternative to traditional methods of energy production. Over
the recent years, the offshore wind industry has seen considerable
growth, thanks to a greater exploitation of wind resources located far
from the shore, in addition to other important advantages compared to
onshore sites (L Petersen et al., ). However, offshore wind turbines are
constantly exposed to significant loads, due to highly fluctuating envi-
ronment. The profitability of a wind farm depends substantially on the
cost associated with material, construction and installation of the sub-
structures and, these costs may rise significantly as the industry moves
towards larger turbines (Bhattacharya). Thus, the probability of failure,
typically expressed over a period of one year, provides an indication of
the investment needed to perform the mentioned activities successfully.
This quantity measures the structural safety level ensured by applying
design factors to compensate for uncertainties. Hence, it is evident that

more accurate predictions of operational loads and improved knowledge
of the physical parameters governing the structural reliability are of
paramount importance in balancing the economic aspects against safety
standards, (Hahn, 1999).

The wind turbine international design standards, IEC 61400-1,
describe how to use a simplified equivalent wind conditions for the
assessment of the design loads for each wind turbine components. For
turbulence intensity, a characteristic value corresponding to the 90th
percentile of the lognormal distribution is required. This definition is
based on experimental work by Frandsen (2007) on blade loads, which
describes the effective turbulence as a design quantity resulting in the
same fatigue damage as the random variable. Sørensen et al. (2008)
quantified the model uncertainty that originates by applying this
formulation, and compared the results in terms of reliability in the
presence of wind farm wakes. The study concluded that the model de-
scribes satisfactorily the random wind speed fluctuations. In more recent
work carried out by Toft et al. (2016), it was found that for pile
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foundations in free ambient turbulent flow, a lower characteristic value
may lead to more realistic and less conservative lifetime fatigue loads. In
the same work, it was found that for blade root flapwise bending mo-
ments, results varied significantly from site to site. Thus turbulence being
the main fatigue driver, its equivalent values need careful evaluation
based on site specific load assessment in order to avoid overly conser-
vative estimations.

Besides loads from the rotor, wave loads are significant contributors
to the design of offshore substructures. The current practice recommend
the assessment of wave loads to be performed based on simulated linear
irregular waves generated from conventional spectra, typically Pierson-
Moskovitz (PM) or JONSWAP. The linear wave theory is built on the
hypothesis of small perturbation of the mean sea level (MSL) from which
the potential flow is derived satisfying the normal boundary conditions
(Journ�ee and Massie, 2000). Along with linear waves, stretching
methods are usually employed, among which the most popular is
Wheeler (Wheeleret al, 1969), which is used to extend the validity of the
linear theory to water particles above the MSL. For several decades, the
linear theory has been successfully applied for predicting wave forces
acting on offshore platforms. The latter are often located at very deep
waters, where the wave kinematic are well approximated by the linear
theory (Moan et al., 2007). However, most onshore wind turbines sup-
ported by pile foundations are sited in medium-shallow waters 1 (Ara-
pogianni et al., 2013) where nonlinear effects are commonly encountered
due to high steepness (cf. Veldkamp (Veldkamp and Van Der Tempel,
2005)).

Ocean waves are, by nature, non-Gaussian stochastic processes,
(Natarajan, 2014). DNV-GL design guidelines for offshore wind turbines
(DNV), suggest a fifth-order Stokes wave theory as an alternative to the
linear model, which is only suitable for deep waters. Fully nonlinear
models (cf Schløer et al. (2016),), although accurate, are computationally
very expensive and therefore not desirable for offshore industrial appli-
cations. For this reason, the model that has received the most attention so
far is the one developed by Sharma and Dean (Sharma, 1980), based on a
second order expansion of the potential flow at finite water depths. Using
this model, several studies have provided evidence that nonlinearities
have an influence on loads of the substructure. In a study conducted by
Agarwal and Manuel (2011), it was argued that the load difference is
primarily due to the higher energy content present in the spectrum of
nonlinear waves compared to that of conventional waves, which may
affect the overall dynamic response. Consequently, long term fatigue
damage is also influenced, as demonstrated by Michael et al. (Van Der
Meulen et al., 2012), and Veldkamp et al. (Veldkamp and Van Der
Tempel, 2005). In more practical terms, Marino et al. (2013), argued that
nonlinearities may alter the load significantly when the contribution
from aerodynamic damping is absent. This occurs during standstill and in
the side-to-side (SS) dynamic response of the turbine during normal
power production. In these cases, the main source of excitation for the
substructure is from direct longitudinal waves, wave directional
spreading and wind-wave misalignment, which is also discussed in for
instance in (Kim and Natarajan, 2013). Standstill or idling occur because
of unplanned downtime, normal shut-down due to maintenance, wind
speed outside the operational range (e.g. storm) or no power require-
ment. Some statistics from UK offshore sites (Feng et al., 2010), reported
that the typical availability of an offshore turbine may range between
60% and 95%. Since the assessment of lifetime fatigue damage is strongly
dependent on the turbine availability, as discussed by Ziegler et al.,
(Ziegler and Muskulus, 2016), loads during standstill and idling need
careful evaluation, especially in cases where significant resonance phe-
nomena may occur.

However, from an operational perspective, it is of interest to quantify
what is the impact of different environmental models on reliability and

fatigue lifetime of monopiles, with respect to idling and operational
conditions of the wind turbine. Therefore, the purpose of this research is
to analyse the variation of structural loads by considering modified
equivalent turbulence levels in free ambient flow, wind farm wakes and
the effect of different wave kinematic models. The influence of the latter
is quantified based on a lower-order wind turbine structure with coupled
interaction of Morison forces, rotor forces and structural response. Sub-
sequently, first and second-order statistics of the wave model un-
certainties are used in the fatigue reliability analysis. The damage model
used is based on Palmgren-Miner's cumulative law and bilinear SN-curve,
as recommended in relevant standard practice (DNV). For the reliability
analysis as well as load estimation, time domain aeroelastic simulations
are employed. This work has the aim to evaluate and reduce the uncer-
tainty in wind turbine damage equivalent loads and enhance lifespan
assessment of offshore pile foundations.

The remainder for this article is as follows. The first section analyses
the influence of varying turbulence levels in terms of fatigue loads under
free ambient and wake conditions. Subsequently, Wheeler correction and
the sensitivity of fatigue loads to the random variability of the hydro-
dynamic coefficients are studied. In the next section, a second order wave
model is benchmarked against the linear wave theory combined with
Wheeler stretching to evaluate their model uncertainty. Finally, a reli-
ability analysis is performed combining different turbulence levels and
wave models.

2. Site and model description

2.1. Wind and wave statistics

The 10-min hub height mean wind speed distribution used, corre-
sponds to a IEC wind class 1B, with scale and shape parameters of the
Weibull distribution being respectively A ¼ 11, c ¼ 2. Wave statistical
data are based on site specific measurements from the research platform
FINO (Mittendorf, 2009), located in the North Sea. The significant wave
height Hs and zero-crossing wave period Tz are given at their expected
values conditional on the mean wind speed U. The turbulence σu is taken
at its characteristic value defined as

σu ¼ Iref ð0:75U þ 5:6Þ (1)

where Iref ¼ 0:14 for the wind class selected. Alternatively, the IEC
standards provide a formulation which allows to consider the turbulence
as a log-normal distributed random variable conditional to mean wind
speed f ðσujUÞ. The mean and standard deviation of the turbulence are
defined in Eq. (2)

μσ ¼ Iref ð0:75U þ 3:8Þ; σσ ¼ 1:4Iref (2)

MC simulations are used to sample from the joint probability distri-
bution of the environmental variables

f
�
U;Hs;Tp; σu

� ¼ f ðUÞ f ðHsjUÞ f �Tp

��U;Hs

�
f ðσujUÞ (3)

where f ðUÞ and f ðHsjUÞ are Weibull probability density functions. The
derivation of the expected spectral peak period Tp is found by Eq. (4)
assuming a PM spectrum for the generation of random waves. The zero
crossing period is given as log-normally distributed. The range of vari-
ability of the environmental variables is listed in Table 1.

Table 1
Environmental variable ranges for normal operating conditions.

Variable Min Max Unit

U 3 25 m/s
Hs 0.8 7.3 m
Tp 5 12 s
σu 0.5 3.5 m/s

1 The majority of European offshore sites located between 5 and 30m, 74% of
the total number installed on monopiles with an average water depth of 22m.
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T4
p ¼ 5π

4
T4
z (4)

2.2. Turbine

The NREL-5MW reference turbine described in detail in (Jonkman
et al., 2009), is considered as installed on a monopile located at 20m
water depth in an elastic stiff sand soil. The monopile was configured so
that the natural frequencies would correspond to the ones obtained in the
reference project OC3 phase II (Jonkman and Musial, 2010), in order to
avoid structural resonances. The first natural frequency corresponding to
the fore-aft (FA) mode is f0 ¼ 0:237 Hz. The soil is modelled by nonlinear
springs distributed along the soil portion of the pile. The soil stiffness is
based on p-y-curve as recommended by the American Petroleum Insti-
tute, (RP2A-LRFD).

Numerical simulations are performed using the commercially avail-
able fully coupled aero-hydro-servo-elastic code HAWC2, (Larsen and
Hansen, 2007) (see Table 2). The load cases considered in this work are
summarized in Table 3. DLC 1.2 (b) and 6.4 are used for the reliability
analysis, while DLC 1.2 (a) is used for MC simulations, according to the
DLC definition in the IEC 61400-3. Loads from ocean currents are not
considered. Unless clearly specified, the simulation time assumed is Ts ¼
600 s. Initial simulation transients were removed from the analysis, by
computing time series over 720 s and discarding the initial 120 s. Since
the study aims at fatigue loads and fatigue damage assessments, normal
sea state (NSS) and normal turbulence model (NTM) are used. These
conditions prevail throughout the turbine lifetime.

The estimated 1-Hz damage equivalent load (DEL) is used as measure
quantity throughout the analyses, defined as

LðUÞ ¼
 

1
neq

XN
i¼1

ΔLm
i ni

!1=m

(5)

where L is the DEL defined over 600 s, neq the equivalent number of cy-
cles, ΔLi and ni are respectively load range and associated number of
cycles. N is the total number of Rainflow counted load ranges. Linear SN-
curve is adopted for structural steel with a W€ohler exponent m ¼ 4. The
results from the aeroelastic simulations are expressed in terms of accu-
mulated equivalent load Ll computed by Eq. (6)

Llife ¼
 XNu

j¼1

μ
�
L
�
Uj

��m
P
�
Uj

�!1=m

(6)

where Nu the number of discrete wind speeds, μ
�
L
�
Uj
� �

is the DEL
averaged over a certain number of seeds per mean wind speed Uj and
P
�
Uj
�
its probability of occurrence.

3. Turbulence induced fatigue loads

This section shows a comparative study in terms of fatigue equiva-
lence between different characteristic values of the turbulence intensity.
The scope ot the analysis is to define a turbulence level which results in
the same fatigue load as that obtained from the random turbulence. This
is achieved by first deriving an equivalent turbulence intensity by pure
analytical considerations based on simplified assumptions (see A). The
analytical approach consists of an extension to the monopile of the idea
presented in (Frandsen, 2007), where the wind turbine structure is
reduced to an upright cantilever beam with a lumped mass at the tower
top to model the rotor nacelle assembly mass and loaded by a dynamic
thrust load. The simplified formulation shows that the monopile fatigue
DEL is proportional to the standard deviation of the wind velocity at a
given mean wind speed and W€ohler exponent. Subsequently, the effec-
tive turbulence level predicted by the simplified approach is compared
with the results obtained by numerical simulations, using the aeroelastic
wind turbine model. The probabilistic approach considers the full joint
probability distribution of mean wind speed and turbulence f ðU;σuÞ, as
alternative to an equivalent turbulence. Furthermore, in order to focus on
turbulence loads, the effect of wave loads is neglected for this analysis.

3.1. Free ambient turbulence

Under the approximated hypothesis of linearity between turbulence
intensity and monopile fatigue loads, (Troldborg et al., 2014), the
analytical formulation of the equivalent turbulence intensity Ie can be
adopted, as

Ime ¼ ∫ Imf ðIjUÞ dI (7)

where I indicates the random variable. The integral in Eq. (7) is solved
numerically assuming a log-normal distribution for f ðσujUÞ as per Eq. (2),
for the turbulence class here adopted. Fig. 2a displays a comparison be-
tween effective turbulence intensity, Eq. (7), and different turbulence
percentiles using the formulation defined by IEC, Eq. (2). It is shown that
for steel (m¼ 4), the effective turbulence is closer to the 60th percentile
defined by IEC.

To demonstrate the validity of the values predicted by Eq. (7), a nu-
merical case is set up where 5 sets of aeroelastic simulations are per-
formed adopting a constant turbulence level for each case, varying
between the 90th and the 50th percentile with a step of ten. The turbu-
lence percentiles are defined based on the distribution in Eq. (2). The
DELs obtained are averaged over 6 turbulence seeds for each mean wind
speed in order to reduce the statistical uncertainty, following the rec-
ommendations given by IEC, (IEC, 61400-1). From the definition of the
effective turbulence, these results are compared against 2000MC simu-
lations where random samples are drawn from the joint probability
distribution f ðU; σuÞ. The design load case DLC 1.2 (a) is considered,
Table 3.

In Fig. 1, only loads corresponding to the 60th and 90th percentiles
are displayed. The 60th percentile is the closest to the results provided by
the crude MC approach in terms of fatigue equivalence, as seen from
Table 4. The 90th percentile defined by IEC shows conservative results
for the pile foundation where the accumulated DEL is increased by 13%
in the FA direction and 11% in the SS direction. A lower turbulence level
is also observed for the blade root bending moment, which is an agree-
ment with some of the findings in (Toft et al., 2016), where a significant

Table 2
5MW NREL pitch regulate variable speed reference turbine characteristics.

Variable Value Unit

Rated power 5 MW
Cut-in wind speed 3 m/s
Cut-out wind speed 25 m/s
Rated wind speed 11.4 m/s
Rated rotor speed 12.1 rpm
Hub height, from MSL 90 m
Rotor diameter 126 m

Table 3
Selected design load cases and definition of environmental parameters (IEC 61400-3).

Design case DLC Wind Wave θwind ;θwave Conditions

Power production 1.2 (a) NTM, Uin < Uhub < Uout NSS, f ðU;Hs;Tp ;σuÞ UNI,MUL Fatigue
Power production 1.2 (b) NTM, Uin < Uhub < Uout NSS, Hs ¼ EðHsjUÞ UNI,MUL Fatigue
Idling (standstill) 6.4 NTM, Uin < Uhub < Uout NSS, Hs ¼ EðHsjUÞ UNI,MUL Fatigue
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variability for this response is encountered at different site conditions.
For the blade root, the fatigue load coming from the 90th percentile is
slightly more conservative by 6% in this study. For the monopile, the
lower fatigue equivalent percentile found here is directly used as char-
acteristic value of the free ambient turbulence bσc, where an additional
contribution from wind farm wakes has to be considered.

3.2. Contribution from farm wakes

In order to quantify the effect of wakes, a case study is performed
based on the formulation described in the amendment of IEC standards,

(IEC, 2005). Wake generated turbulence increases the overall turbulence
level. These are taken into account for fatigue calculations as combina-
tion of free ambient and farm wake turbulence in operational conditions,
Eq. (8).

σe ¼
"
ð1� Nt pwÞbσm

c þ pw
XNt

i¼1

bσm
iwðdiÞ

#1=m
(8)

A distance between turbines equal to five times the rotor diameter d ¼
5Dm and a uniform wind direction distribution f ðθjUÞ are assumed. In Eq.
(8), pw ¼ 0:06 is the probability of wake condition, Nt is the number
neighbouring turbines, bσ c is the free ambient characteristic turbulence
and bσw the characteristic value of the maximum center wake turbulence
standard deviation at the hub height (Sørensen et al., 2008), expressed as

bσw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2�
1:5þ 0:8d

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
CTðUÞp �2 þ bσ2

c

s
(9)

where CTðUÞ is the thrust coefficient known as function of the mean wind
speed in case of a pitch regulated variable speed turbine. Table 5 shows

Fig. 1. a) Scatter mean wind speed and turbulence b) DEL for monopile FA and blade root flapwise bending moments at different values of the turbulence percentile.

Fig. 2. a) Comparison between turbulence intensity at different percentiles of the lognormal distribution and effective turbulence at different W€ohler exponents b)
Difference in percentage between 90th and 60th for free ambient turbulence and wake conditions.

Table 4
Normalized accumulated DEL at different turbulence quantiles. Blade root flap-
wise and mudline bending moments.

Sensor Crude MC 60th perc. 90th perc.

Blade Flapwise 1.00 1.01 1.06
Mudline FA 1.00 1.01 1.13
Mudline SS 1.00 1.02 1.11
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the normalized accumulated DEL computed using the 60th percentile
characteristic turbulence with respect to 90th percentile currently used.
The results are averaged over 6 turbulence seeds for each wind speed bin
in the operational range with step of 2m/s. Two cases with Nt ¼ 2 and
case Nt ¼ 6 are analysed.

Using the 60th turbulence percentile leads lower accumulated DELs
by approximately 10% in the FA direction and 5% in the SS direction. As
expected, the FA bending moment is more affected by the reduction
being mainly governed by longitudinal turbulence. Fig. 2b shows that the
difference between the 90th and 60th percentiles decreases as the
number of neighbouring turbines increases. This confirms that in the
presence of strong wakes, the ambient turbulence effect vanishes. Fig. 3
displays examples of monopile FA bending moment from aeroelastic
simulations adopting different turbulence levels, below and above rated
wind speed. The SS bending moment is only slightly affected by the
number of neighbouring turbines.

4. Wheeler correction at finite water depths

According to the linear superposition principle, ocean waves can be
approximated as a sum of regular sinusoidal harmonics and random
phase to form an irregular wave (Journ�ee and Massie, 2000). The
empirical relation introduced by Wheeler to extend the kinematic above
the mean sea level, introduces a mathematical error at finite water depth
which is herein derived. In the equations below, a regular unimodal wave
is considered. Under the hypothesis of small wave amplitudes ηðx; tÞ the
field equation in the two dimensional case is described by Eq. (10), re-
ported here for the sake of clarity

r2ϕ ¼ 0 in Ω

∂ϕ
∂z ¼ 0 on Γ1

∂ϕ
∂t þ

1
2

�
u2 þ w2

�þ p
g
þ gz ¼ C on Γ2

(10)

where Ω is the field domain, Γ1 is the sea bottom at a water depth z ¼ �
h, Γ2 is the wave surface and u and w the horizontal and vertical particle
velocity respectively. The quantity p is the atmospheric pressure and C is
a constant. From Eq. (10) the solution of the Laplace equation is the
potential flow for the velocity field for finite water depths which satisfies
the free kinematic boundary conditions (Cauchy-Poisson) (Journ�ee and
Massie, 2000)

ϕðx; z; tÞ ¼ ηa
kω

cosh½kðhþ zÞ�
sinhðkhÞ sinðkx� ωtÞ (11)

where ηa � H=2 is the wave amplitude, with H being the linear wave
height. The stretching consists in replacing the physical vertical coordi-
nate z in z', as

z' ¼ h
	
hþ z
hþ η



� h; �h � z' � 0; �h � z � η (12)

Introducing Eq. (12) into Eq. (11) the residual term of the Laplace
equation can be computed, as

r2ϕw ¼ k
�
α2 � 1

�
ϕw (13)

where it has been indicated with

α ¼ h
hþ η

(14)

The residual term in Eq. (13) vanishes as the water depth increases
meaning that no error is present at infinite water depths. Thus, at finite
water depths, a correction can be introduced on the argument of the si-
nusoidal function

bϕwðx; z; tÞ ¼
ηa
kω

cosh
h
kh
�
hþz
hþη

�i
sinhðkhÞ sinðαkx� ωtÞ (15)

where bϕwðx; z; tÞ is the potential flow function with corrected Wheeler
stretching. It can be verified that the new potential function satisfies the
two dimensional field equation, as

r2bϕw ¼ 0 (16)

It is worth noting that for h→∞, the following relations are valid

kh
	
hþ z
hþ η



→kh; α→1 (17)

To quantify the deviation in particle velocity from Wheeler stretch-
ing, the new kinematics are derived from the corrected potential flow
expressed by Eq. (15) leading to the linear velocity and acceleration in
the horizontal direction, where the corrective term is applied

u ¼ ∂ϕ
∂x ; a ¼ ∂u

∂t (18)

buðx; z; tÞ ¼ α ηa ω
cosh

h
h
�
hþz
hþη

�i
sinhðkhÞ cosðαkx� ωtÞ (19)

baðx; z; tÞ ¼ α ηa ω
2
cosh

h
kh
�
hþz
hþη

�i
sinhðkhÞ sinðαkx� ωtÞ (20)

Table 5
Accumulated DEL computed using the 60th percentile normalized with
respect to the corresponding DEL computed using the 90th percentile.

Case FA SS

Nt ¼ 2 0.91 0.95
Nt ¼ 6 0.92 0.95

Fig. 3. Mudline FA bending moment at a)U ¼ 7 m/s and b) U ¼ 19 m/s in wake conditions (Nt ¼ 2), showing the difference between the selected turbulence
percentiles.
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The numerical example displayed in Fig. 4a, shows a velocity profile
of a unimodal wave assuming a period Tw ¼ 8 s, a water depth h ¼ 20 m
and a wave height ηa varying in the interval 0

3 m. As displayed in Fig. 4a,
the correction in the potential function leads to lower velocities for
positive wave heights, Fig. 4. Furthermore, the deviation increases with
the wave height. In the following discussions and figures, this model will
be referred to as Wheeler correction.

It is important to remark that this derivation has the aim to only
quantify the effects of satisfying the Laplace equation at finite water
depths. Since it is not based on any experimental work, the approach has
not been validated and it is not certain that it will necessarily lead to
more accurate load predictions.

5. Uncertainty of drag and inertia coefficients

The sensitivity of DEL due to wave forces during normal operation is
analysed in this section, in order to quantify the effect of random vari-
ability of the hydrodynamic coefficients employed to compute wave
forces. The empirical formulation introduced by Morison (Morison et al.,
1950), is by far the most common way of predicting unidirectional wave
load acting on an immerse slender body in an unsteady flow, in this case
the monopile being a hollow cylinder. As described in (DNV), above the
range defined as the limit Dm=λ � 0:2 where Dm is the pile diameter and λ
the wave length, the pile affects the wave flow leading to wave diffrac-
tion phenomena. This can be taken into account by the MacCamyFuchs
correction on the inertia coefficient Cm. Other environmental factors are
responsible for a variation of the hydrodynamic coefficients. Marine
growth for instance, which is a biological accumulation of microorgan-
isms and algea on wetted surfaces, results in increased of inertia and drag
forces as a consequence of increased surface roughness and cross-section
area (Shi et al., 2012). In fact, roughness due to marine growth modifies
the transition laminar to turbulent flow at lower Reynold's numbers
resulting in increased drag. In consequence of the natural variability of
the oceanic environment, the validity of the Morison equation may not
always be respected. In structural reliability, the uncertainty on the hy-
drodynamic forces exerted on a pile foundation turns into a load varia-
tion due to wave-structure interaction. For computing loads on the
substructure, inertia and drag coefficients can be treated as normally
distributed random variables, chosen here as Cm � N ðμm; σmÞ ¼
ð1:9; 0:1Þ and Cd � N ðμd;σdÞ ¼ ð0:9;0:1Þ, with μ and σ being respectively
their mean and standard deviation. Although higher values of the un-
certainty in the hydrodynamic coefficients can be found in practice,

values provided in literature for fatigue analyses were used, (Veldkamp,
Burrows et al., 1997). Thus, two parallel studies are performed respec-
tively considering the hydrodynamic coefficients as random and deter-
ministic variables, the latter corresponding to their mean values. Under
normal operating conditions, the load case DLC 1.2 (b) is used. A set of
2000 randomly sampled environmental conditions from Eq. (3) are used
as input parameters to aeroelastic simulations. Waves are modelled as
irregular linear random waves and Wheeler stretching. A side analysis is
performed to quantify the statistical impact of wave forces on the DEL by
only including wind forces. Thus, in order to show the influence of the
wave load on the SS direction, wave directional spreading is included in
this analysis along with a wave misalignment of 10 deg. Results are
displayed in Fig. 5 in terms of probability distributions of the mudline
bending moments.

As shown in Fig. 5 the wave force increases the mode of the DEL
distribution by nearly 20% of the total fatigue loads in the FA direction
and 28% in the SS direction as summarized in Table 6. The values are
normalized with respect to the bending moments in the corresponding
direction of the deterministic case.

In Fig. 5 the smoothing was obtained by kernel density estimator
(Sheather and Jones, 1991). As it can be inferred, the distribution of the
DEL in both SS and FA directions is insensitive to the uncertainty intro-
duced on the hydrodynamic coefficients. A slight increase of 2% and 4%
respectively are encountered as seen from Table 6. Although this small
variation, their deterministic expected values can be conveniently
adopted without significant impact. However, larger uncertainties if
present in the hydrodynamic coefficients than the ones considered in this
study may have larger impact on fatigue loads. The analysis also shows
the statistical contribution of wave loads. The latter increase the mean
DEL compared to the case where only wind excitation is present. The
difference displayed in Fig. 5 between wind only and combined
wind-wave excitation has to be interpreted qualitatively, since wind and
wave forces are coupled with the dynamic response of the structure and
their effect cannot in principle be studied separately.

6. Damage model

6.1. Cumulative damage

For the assessment of fatigue damage, a linear cumulative law based
SN-curve and Palmgren-Miner's method is used. The SN-curve is a rela-
tionship between number of stress cycles to failure and the associated

Fig. 4. a) Velocity field uðzÞ along the vertical coordinate at a given point in time and fixed abscissa. Wave height ηa ¼ 1 m. b) Wheeler stretching error at different
water depths as a function of wave height.
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stress amplitude. The expected short term cumulative damage DsðUÞ can
be expressed in the integral and discrete forms, as

Ds ¼ N
a
∫ ∞
0 ΔσðUÞmf ðΔσÞ dσ ¼

XNΔσ

i

ni
ai
ΔσðUÞmi (21)

where NΔσ is the total number of cycles experienced during the simula-
tion time Ts, logðaÞ the intercept of the SN-curve and f ðΔσðUÞÞ the stress
ranges distribution conditional on the mean wind speed obtained from
Rainflow counting. In literature, as for instance in (Sørensen et al., 2008)
and (Nejad et al., 2014), there are several formulations assuming a closed
form of the integral in Eq. (21). This is in practice accomplished by
assuming a model for the stress range distribution f ðΔσÞ, typically two
parameters Weibull distribution. Here the long term expected damage D
is obtained by Palmgren-Miner's rule by integrating the short term
damage conditional to the mean wind speed over the long term mean
wind speed distribution f ðUÞ. For offshore substructures, the full sea and
wind state has to be considered through the joint probability distribution
of the environmental variables f ðU;Hs;Tp;σuÞ. However, in this work only
discrete states are considered for fatigue damage, which means that the
environmental variables are all conditional to the mean wind speed U.

6.2. Fatigue reliability

Fatigue life of a structural component is the time spent under ordinary
loading conditions necessary to initiate a physical crack which would
result in a loss of ultimate fatigue strength of the member. The fatigue
damage limit state function gðXÞ can be formulated according to the SN
approach, where X ¼ ½X1;X2;…Xn� is a collection of random variables in
the load and resistance model. The condition gðXÞ � 0 indicates a failure
occurrence. In this work, the cumulative damage during operation and
standstill is considered, indicated respectively as Dop and Dss.

gðXÞ ¼ Δ� Dop

�
Xop

�� DstðXstÞ (22)

The turbine lifetime is taken as reference period for computing the
cumulative damage by means of Eq. (33). In case of offshore turbines, the
service life is set to Tlife ¼ 25 years, which comprises a contribution to
damage from operational conditions computed through DLC 1.2 (b), and
from idling computed through DLC 6.4 (see Table 3). In Eq. (22), the term
Δ represents the failure limit modelled as a stochastic variable associated
with Miner's rule, i.e. the degree of uncertainty in predicting variable
amplitude fatigue loads usually conducted from constant amplitude tests.
The vector X denotes the set of uncertainties considered. Once the limit
state function is known explicitly through Eq. (22), the probability of
failure Pf is defined as

bPf ¼ P½gðXÞ � 0� ¼ ∫
gðXÞ�0

fxðXÞ dx (23)

where fxðXÞ is the joint probability density function of the random var-
iables X. From reliability theory, the estimated generalised reliability

index bβ, simply indicated as β, is linked to the estimated probability of

failure bPf , as

β ¼ �Φ�1
�bPf

�
(24)

where Φ is the standard normal probability distribution function. Given
the complexity of the limit state function gðXÞ, the integral in Eq. (24) is
calculated through first order reliability method (FORM) followed by re-
evaluation with importance sampling (IS) based on a Gaussian sampling
distribution, (Dimitrov et al., 2013). The FORMmethod assumes a linear
safety margin, which in some cases may lead to inaccurate estimation of
the reliability index. On the other hand, FORM is an efficient way to find
the most likely failure point. Importance sampling centered at the design
point Xd determined by a FORM analysis can serve as verification and
improvement of the FORM results, since IS, as most simulation methods,
is not strongly affected by nonlinearity in the safety margin. This tech-
nique was more computationally efficient than crude MC simulations, as
confirmed by preliminary attempts.

6.3. Uncertainties

A review of the major uncertainties typically considered in reliability
of offshore structures can be found in (Hahn, 1999; Sørensen et al., 2008;
DNV; Tarp-Johansen, 2003; Rangel-Ramírez and Sørensen, 2012). The

Fig. 5. DEL distribution at the mudline for random and deterministic variability of hydrodynamic coefficients and wind forces only. FA and SS directions
are displayed.

Table 6
Normalized mode of the DEL distribution for deterministic and random vari-
ation of the hydrodynamic coefficients.

Cm ;Cd FA SS

Deterministic 1.00 1.00
Random 1.02 1.04
Wind only 0.81 0.72
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uncertainties considered contain a statistical uncertainty related to wind
and wave climate assessment Xst , model uncertainty in the simulation of
the dynamic response Xdyn, blade aerodynamic model Xaero, wake tur-
bulence model Xwk and stress calculation from finite elements models or
others Xstr . An uncertainty is also considered to account for the limited
simulation time, Xsim, representative for the entire lifetime. Numerical
values of the aforementioned quantities are retrieved from available
literature and listed in Table 8. An additional contribution is introduced
to model the uncertainty associated with the wave kinematic model
adopted. These are specified for standstill and operational condition
separately, respectively indicated as Xh;ss, Xh;op. The cumulative damage
is a nonlinear function of these quantities because the uncertainties are
applied to the respective parameters on which they produce effect.

7. Wave induced fatigue loads

7.1. Wave kinematic models

The surface elevation process ηðtÞ of a long crested unidirectional sea
wave can be expressed as linear superposition

ηðx; z; tÞ ¼
XN
i¼1

AiðωiÞ cosðkix� ωit þ εiÞ (25)

where the input parameters are the wave amplitude AiðωiÞ, the spectral
frequency ωi, the wave number ki and the random phase εi. Three
different wave kinematic models are compared. Eq. (26) expresses the
horizontal particle velocity field derived from Eq. (25) where Wheeler
stretching is applied. The second order non linear wave kinematic model
applied here is described (Natarajan, 2014). The nonlinear horizontal
velocity field unl is expressed by Eq. (27). Furthermore, a third kinematic
model uses velocity and acceleration obtained by the generation of linear
random waves corrected by the factor derived in section 4 as bulðtÞ ¼
α ulðtÞ.

ulðx; z; tÞ ¼
XN
i¼1

Ai ωi

cosh
h
kih
�
hþz
hþη

�i
sinhðkihÞ cos

�
kix� ωit þ εij

�
(26)

Likewise, the expressions for the horizontal acceleration and kine-
matics in the vertical direction can be written. The second order transfer
functions Bþ

ij ðzÞ, B�
ij ðzÞ, Cþ

ij ðzÞ, C�
ij ðzÞ rearranged in Eq. (27) are function of

wave amplitude, frequency, wave number, water depth and vertical co-
ordinate, their explicit formulation is reported for instance in (Agarwal
and Manuel, 2011). The second order expansion is evaluated at i 6¼ j. The
superscripts þ and � refer to a summation or difference between
frequencies.

7.2. Assessment of the wave model uncertainty

This analysis has the aim to quantify the model uncertainties in fa-
tigue loads associated with the wave kinematic model adopted. Model
uncertainties are epistemic and originate from imperfect knowledge or
idealizations of the mathematical formulation used to predict a natural
process. In other words, it is a measure of the ability of a mathematical
model to reproduce a natural phenomena. For example, Ambühl et al.
(2015), explicitly expressed this bias by evaluating the performance of
different mathematical models against real wave measurements. In this
work, due to absence of measurements, the second order wave kinematic
model andWheeler correction at finite water depth are compared against
the linear wave model in Eq. (26). The load variation is then expressed as
a relative ratio Xh between the equivalent stress σ0ψ ;eq computed from the
different wave kinematic models and from the linear wave model σψ ;eq, as
in Eq. (28). The equivalent stress is defined similarly to Eq. (5), consid-
ering stress time series instead of loads.

Xh ¼ σ0
ψ ;eq

σψ ;eq
(28)

The nominal stress parametrised with respect to the radial position on
a specific section of the monopile ψ , is expressed by Eq. (29). Given the
monopile geometry and dimensions, the stress can be well approximated
by a longitudinal membrane stress as defined by DNV-GL (AS, ). The

contribution from the vertical force is neglected due to of its small load
range, which does not contribute to fatigue. It is assumed that shear
stresses are also negligible.

σψ ðtÞ ¼ MxðtÞ
I

R sinðψÞ �MyðtÞ
I

R cosðψÞ (29)

In Eq. (29), R ¼ 3 m is the medium radius of the monopile and
I¼ 4.12m4 the area and the area moment of inertia of the circular hollow
section. In Eq. (29) the dependency from the environmental parameters

Table 7
Environmental parameters used for the assessment of the wave load variation. Pi is the probability of occurrence of each state.

Variable s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

U [m/s] 3 5 7 9 11 13 15 17 19 21 23 25
Hs [m] 1.00 1.52 3.12 3.72 4.10 4.63 5.06 5.33 6.04 6.64 7.10 7.33
Tp [s] 6.00 6.50 6.72 7.08 7.43 7.90 8.26 8.48 9.02 9.46 9.78 9.94
Pi [�] 0.132 0.142 0.146 0.160 0.152 0.127 0.094 0.062 0.036 0.019 0.009 0.004

Table 8
Stochastic model for fatigue reliability - welded steel (LN¼ lognormal,
N¼ normal, D¼ deterministic).

Description Variable Distribution Value Mean Std

Miner's rule Δ N – 1.00 0.10
Wind climate Xst LN – 1.00 0.05
Aerodynamic Xaero GB – 1.00 0.10
Structural dynamic Xdyn LN – 1.00 0.03
Farm wakes Xwk LN – 1.00 0.10
Simulation time Xsim N – 1.00 0.02
Stress computation Xsc LN – 1.00 0.03
Intercept SN-curve (m1 ¼ 3) logða1Þ D 12.05 – –

Intercept SN-curve (m2 ¼ 5) logða2Þ D 16.08 – –

Interia coeff. Cm D 1.9 – –

Drag coeff. Cd D 1.0 – –

unlðx; z; tÞ ¼
XN
i¼1

Ai ωi
cosh½kiðzþ hÞ�

sinhðkihÞ cosðkix� ωitÞ þ
XN
i¼1

XN
j¼1

h
Bþ
ij ðzÞcos

�
kþij x� ωþ

ij t þ εij
�
þ B�

ij ðzÞcos
�
k�ij x� ω�

ij t þ εij
�i

(27)
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is omitted. The first two statistical moments of Xh provide a measure of
the relative model uncertainty.

Table 7 shows the discrete set of environmental parameters. To
compare the wave kinematic models, only the states s3 to s12 are used
due to data availability. The states s1 and s2 will be used in the next
section and reported here for completeness. The probability of occur-
rence is taken according to the wind speed Weibull distribution in the
range 7–25m/s, with step of 2m/s resulting in 10 discrete states. The
turbulence level as expressed by Eq. (1) is used. The hydrodynamic load
acting on the substructure is computed by the Morison formula with
coupled wave-structure interaction, as

FðtÞ¼ 1
2
ρCdDm

����uðtÞ� _qðtÞ
����ðuðtÞ� _qðtÞÞþπD2

m

4
ρCm _uðtÞ�πD2

4
ρðCm�1Þ€qðtÞ

(30)

where FðtÞ is the wave force per unit length, Cm and Cd are respectively
inertia and drag coefficients, Dm the monopile diameter, ρ the water mass
density and q denotes the structural displacement in the FA direction.
Due to the random variability of the hydrodynamic coefficients not
significantly affecting the load distribution in the long term, Cm and Cd

are considered constant.
The load case DLC 6.4 defined by IEC design standards for offshore

turbines (IEC, 61400-3) concerns fatigue analysis during idling. Ac-
cording to the description, resonant loading of the substructure from
wave excitation has to be taken into account assuming NSS and wave
misalignment. In this analysis a wave misalignment of 10 deg is
considered. Resonance effects are caused by the wave spectral energy
typically concentrated in a frequency band close to the first natural fre-
quencies of the turbine (FA, SS).

Damping is an important player for fatigue. Several experimental
studies on offshore turbines have shown the variation of the additional
damping provided by the rotor. In (Koukoura et al., 2015) this value was
found to be approximately 12% in idling in the FA direction while when
the turbine is operating, it may rise up to 60% (logarithmic decrement).
Although aerodynamic damping represents a large portion of the total
damping in operation, this latter is a sum of additional contributions
given by soil, hydrodynamic interaction, structure and controller. Here-
by, two different states of the turbine are analysed, namely idling or
standstill and normal operation. The flow chart in Fig. 7 explains the
procedure to estimate the model uncertainty of the wave forces associ-
ated with the defined wind turbine states.

7.3. Lower-order turbine model

In order to specify Xh, a set of nonlinear waves based on the second
order kinematic model is generated using the statistical parameters listed
in Table 7. Since the aim of the analysis is to quantify the wave kinematic
model uncertainty, the effect of other uncertainties must be neglected.
These include aerodynamic interaction, structural model, rotor excita-
tion, controller unit and soil model. For this reason, a lower order three-
dimensional numerical model of a wind turbine structure is set-up, where
the rotor nacelle assembly is replaced by a lumped mass at the tower top
mtop and a bottom fixed monopile. The portion of soil pile is calibrated in
length to match the first natural frequency of the areroelastic model, the
latter being f0 ¼ 0:237 Hz in both FA and SS directions (apparent fixity).
The system is modelled with Timoshenko beam elements (Friswell,
2010). This set-up ensures coherence with the dynamic response of the
full aeroelastic model.

7.4. Standstill loads

First an analysis is performed on the full aeroelastic and equivalent
model in idling conditions, where only hydrodynamic forces are exerted
on the structures given the negligible contribution of the wind force
acting on the system. These are applied in the two directions x and y

according to the misalignment applied. A logarithmic decrement damp-
ing δss ¼ 7% is considered representative for standstill. Because the tur-
bine is not operating, the damping can be assumed constant for all the
environmental states defined in Table 7. In both systems, a stiffness
proportional Rayleigh damping matrix C ¼ αK is tuned by varying the
structural damping of the support structure and then computing the
analytical logarithmic decrement as ratio between real and imaginary
part of the eigenvalue λ, as

δ ¼ 2π
ℛðλÞ
I ðλÞ (31)

This value includes contributions from soil and structure damping. A
comparison of the response in time domain of the two systems in
standstill is displayed in Fig. 8.

7.5. Operational loads

To quantify the hydrodynamic load variation during operation, an
estimate of the aerodynamic damping at different mean wind speeds is
needed (see Fig. 9). This is accomplished by computing the logarithmic
decrement damping δop of the tower-top acceleration to a small pertur-
bation of a constant mean wind speed, using the full aeroelastic model.
No turbulence and waves are applied. The resulting free decay response
is used to estimate the logarithmic decrement and damping ratio as
indicated in Eq. (32). This procedure provides an engineering estimate of
the damping available during normal power production (see e.g. Tempel
(2006)). Fig. 12 displays the damping ratio estimated by this procedure.

δ ¼ 1
n
log
	
p0
pn



; ζ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2πδ �2q (32)

In Eq. (32), p0 is the first peak response while pn is the peak response
after n periods. Subsequently, the estimated aerodynamic damping in the
FA direction, is used as input to the simplified system as additional
contribution applied at the tower-top mass as shown in Fig. 6, and
modelled with an internal viscous damper. The damping coefficient is
found as c ¼ 2ζ

ffiffiffiffiffiffiffi
km

p
, where m and k are respectively modal mass and

modal stiffness of the considered modes in the FA and SS directions.
Thus, the aerodynamic forces applied on the simplified model are the
tower-top bendingmoments in the two directions x and y, the thrust force
and the horizontal force in the y direction. The hydrodynamic forces are
applied as in the standstill case. All these components are extracted from
aeroelastic simulations using the full model. The thrust force was ob-
tained from an aeroelastic model with stiff tower and rotor, in order to
eliminate the wind-structure interaction.

Fig. 8 shows the good agreement between the structural response of

Fig. 6. Simplified mechanical system for estimating the wave model uncertainty
in standstill and operating conditions.
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Fig. 7. Estimation of the model uncertainty from the wave kinematic models adopted.

Fig. 8. Comparison lower-order model vs. full aeroelastic model of the mudline FA and SS bending moments in standstill.

Fig. 9. Comparison lower-order model vs. full aeroelastic model of the mudline FA and SS bending moments in operation.

Fig. 10. Comparison between mudline FA bending moments from linear and nonlinear wave excitation. In a) idling and b) operational conditions computed from the
lower-order model.

L. Colone et al. Ocean Engineering 155 (2018) 295–309

304



the simplified and the full aeroelastic model. A better match is seen for
standstill conditions than in operation. This is not surprising because the
structural response in operation is influenced by the controller, which is
absent in the simplified model.

Fig. 10 shows an example of transient load in standstill and operation
where the load difference can be visually perceived. As it can be inferred,
nonlinear waves result in higher structural loads and become more
important at low damping values. Their effect almost vanishes when the
response is sufficiently damped by aerodynamic contributions, Fig. 13, as
also found for instance in (Marino et al., 2013). This means that
modelling nonlinear waves is important for standstill or idling conditions
where resonances due to nonlinear interaction phenomena between
waves and structure occur. The high load difference captured in Fig. 10
between 420 and 440 s is due to different wave used seed between linear
and nonlinear waves.

The Wheeler correction at finite water depth slightly decreases the
load as displayed in Fig. 13. Note that, at 20m water depth this becomes
visible but not significant, Fig. 11. The mudline FA and SS bending mo-
ments obtained from the input parameters listed in Table 7 have a
duration of approximately 1 h. Due to this, the load variation statistics
were determined by windowing with a sliding period of 10min starting
from every third minute. This resulted in 18 time series for each state.
The ratio Xh defined in Eq. (28) is then computed in the two directions
using a bilinear SN-curve (see Table 8). Coherently, the same set of input
data is used to calculate the load variation when finite water depth
correction is applied. Statistics are reported in Table 8.

Fig. 13a and b displays the wave model uncertainty as function of the
mean wind speed compute at an angular point ψ ¼ π=4 rad. When
nonlinear waves are modelled, the ratio Xh shows a positive trend with
the mean wind speed in operational conditions. Moreover, the figures
highlight the variation in fatigue loads in the two states considered. In

standstill the equivalent stress variation can reach 30% to 40% at high
wind speeds, while in operation this effect is clearly attenuated by high
damping to 10% to 20%. Because the ratio Xh shows a slightly decreasing
trend when the correction at finite water depth is applied, its dependence
on the mean wind speed is considered constant in the reliability analysis.
Table 9 shows the statistics determined based on the results discussed
above, where a linear fit is performed to obtain the trend. Only one single
value of the standard deviation is adopted, corresponding to the mean
value of the standard deviations computed at each mean wind speed. The
wave model uncertainties are all assumed log-normally distributed.

8. Stochastic model for fatigue reliability

The load variation coefficients obtained from different wave kine-
matic models and the different equivalent turbulence level in wake
conditions are employed in the lifetime reliability analysis. The cumu-
lative damage combines the contributions of the design load cases DLC
1.2 (b) and 6.4 with reference to Table 3, respectively operation and
standstill (idling) conditions. Table 8 describes the stochastic model. The
mechanical properties of the monopile steel are defined in (Veritas, ),
which provide a variety of cases corresponding to different marine ex-
posures. In this example, a bilinear SN-curve in seawater with cathodic
protection for butt welded elements is selected. In Table 9 the coefficients
a ¼ 0:01, b ¼ 0:02 and c ¼ 0:87 are obtained from Fig. 13.

The expression of the cumulative damage as function of wave
misalignment φ, wind direction θ, mean wind speedU, the radial angle ψ ,
random variables X and time t can be readily expressed as

where t is taken at one year steps. The random variables are specified in
operational and standstill conditions, as

Xop ¼
�
Xst;Xdyn;Xaero;Xwk;Xsim;Xstr ;Xh;op

�
Xss ¼

�
Xst ;Xdyn;Xsim;Xstr;Xh;ss

�
(34)

Note that in standstill the uncertainty due to wakes and aerodynamic
computations are not considered, since wind loads do not significantly
affect fatigue when the turbine is not operating. To account for the dif-
ference between the wave model uncertainty, it is assumed that Xh;op and
Xh;ss are average multiplicative factors reflecting the load variation when

Fig. 11. Comparison between mudline FA bending moments with and without linear wave correction at finite water depths. In a) idling and b) operational conditions
computed from the lower-order model.

Fig. 12. Estimated damping ratio from free decays of the tower-top
acceleration.

Dψ ðt;XÞ ¼ t
Ts

XNU

i¼1

XNθ

j¼1

XNφ

k¼1

Ds

�
Ui; θj;φk;Xop

�
P
�
Ui; θj

�
PðφkÞ þ

t
Ts

XNU

i¼1

XNθ

j¼1

XNφ

k¼1

Ds

�
Ui; θj;φk ;Xss

�
P
�
Ui; θj

�
PðφkÞ (33)
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different kinematic models than the linear model are used. With this in
mind, the damage is computed by Eq. (21), where the following trans-
formation is applied

Δσ' ¼ Xh Δσ (35)

by noting that

D∝σm
eq (36)

where Δσ' is the stress range when wave model uncertainties are applied
and Δσ is the stress range resulting from linear waves. The mechanical
stress is computed at an angular point ψ ¼ π=4 rad of the most fatigue
loaded section, which turned out to be located 7m below the mudline.
The model uncertainties derived at the mudline section are valid at every
vertical station along the monopile height, which is a deterministic
geometrical dimension. The reference period T is thus partitioned into
the two periods, T ¼ Tss þ Top. It is assumed that the annual turbine
availability is 92%. For simplicity, the frequency of occurrence of the
mean wind speed is assumed to be the same for both standstill and
operation in this particular case, although without compromising the
validity of the results. Standstill conditions are simulated with rotor
blades pitched at 82 deg and the rotor let free to rotate.

According to the local hot spot model, a stress concentration factor
SCF ¼ 1 is adopted as suggested by (DNV), in case of no change of
thickness and no imperfections. As a consequence, an uncertainty due to
SCFs was not included in the stochastic model. Thickness correction for
the stress distribution is applied as recommended in (Veritas, ). In total, 8
wind directions are considered and for each wind direction 3 cases of
wave misalignment are modelled, being respectively φ ¼ ½�10;0;þ10�
deg with respective probability of occurrence PðφÞ ¼ ½0:25;0:5;0:25�. A
uniform wind direction probability PðθwÞ is considered in order keep the
numerical case more general, although realistic. Indicating with mx and
my the bending moments at each wind direction, the FA and SS bending

moments can found as

Mxðt; θwÞ ¼ mxðtÞcosðθwÞ � myðtÞsinðθwÞ
Myðt; θwÞ ¼ mxðtÞsinðθwÞ þ myðtÞcosðθwÞ (37)

9. Results

A study case of a turbine in a wind farm is considered, where the
number of neighbouring turbines is Nt ¼ 6 positioned radially with
respect to the turbine analysed at a distance of 5 rotor diameters. A set 12
discrete environmental states is employed for the estimation of the cu-
mulative damage and their respective frequency of occurrence is shown
in Table 7. The fatigue damage is computed from numerical simulations
using the full aeroelastic model.

The reliability analysis is performed on a reference period of one year
throughout the entire lifetime. The reliability index at time t is computed
from the cumulative probability of failure bPf ðtÞ expressed by Eq. (24),
where the number of trials simulated by IS ensures convergence on the
probability of failure until a CoV ¼ 0:02 is reached, (Marelli et al., 2017).
In order to compare the annual reliability level at the end of life for all the
cases studied, Eq. (24) is computed where the annual probability of
failure is given by

ΔbPf ðtÞ ¼
bPf ðtÞ � bPf ðt � ΔtÞ�

1� bPf ðtÞ
�
Δt

(38)

where ð1� bPf ðtÞÞ is the survival probability at time t, (Rangel-Ramírez

and Sørensen, 2012) and bPf ðtÞ is the cumulative probability of failure at
time t, displayed in Fig. 14a. Today's standards recommend an annual
reliability index β � 3:3 for offshore substructures, corresponding to
minor or moderate consequences of failure. A preliminary analysis
showed that under the loading conditions assumed the structure reaches
an annual reliability index at 25 years of βref ¼ 2:4 in the baseline case
calculated by Eq. (38), which implies that the design requirements at the
end of life are not met. Thus, in order to have a safe baseline for com-
parison, a design factor z ¼ 1:3 was introduced. This parameter is a
multiplicative factor of the monopile thickness τ, of which the approxi-
mated area moment of inertia of a tubular section is a linear variable

I � πR3τ (39)

By doing so, the annual reliability index calculated by Eq. (38) in the
reference case reaches βref ¼ 3:45 at 25 years, which is considered

Fig. 13. Model uncertainty for the nonlinear wave kinematic model and correction at finite water depths as function of the mean wind speed. a) Operational
conditions b) Standstill.

Table 9
Statistics of the wave model uncertainty in operation Xh;op and in standstill Xh;ss

(log-normal).

Nonlinear waves Wheeler corr.

Variable mean std mean std
Xh;op aUþ c 0.06 0.97 0.01
Xh;ss bUþ c 0.10 0.91 0.01
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satisfactory for this case.
In Fig. 14, the cumulative probability of failure and reliability index

are visualised where the reference case corresponds to the 90th percentile
of the turbulence and linear waves. These results are obtained by running
a reliability analysis using Eq. (33) where t ¼ 5

25 years with a step of one
year. The impact of the environmental models becomes more evident
over time because fatigue damage is a cumulative process. The results in
Table 11 show this variation in terms of percentage indicated as χ defined
in Eq. (40), between the end of life annual reliability indices when
different models are used, against the baseline case. In order to quantify
the significance between the cases analysed, a 5% variation threshold
against the baseline case is set. Note that the reliability values shown in
Table 10 and Fig. 14 differ because in Fig. 14 the cumulative reliability
index computed at time t takes into account the survival probability at
time t� 1.

χ ¼ 100

 
1� β

βref

!
(40)

As inferred from Table 11, not all cases are significantly affecting the
reliability, when compared to the baseline case. Nonlinear waves and
lower percentile play an opposite effect, and their combined case results
in a slight variation below the threshold defined. Also the Wheeler
correction alone is not significant in this case of 20m water depth. In this
latter case it is possible to notice the high impact of the turbulence
percentile.

Additionally, the importance factors of the random variables are
computed from the FORM analysis showing that the model uncertainties
due to the wave kinematic models have less impact compared to the
remaining model uncertainties, as reported in Table 12. This can be
explained by the dependency of the wave model uncertainty on the mean
wind speed, and noting that the most frequent significant wave heights
occur in the medium range (Table 7) according to the wind speed dis-
tribution, at which the model uncertainties are moderate (Fig. 13). The
reported values in Table 12 have been computed using 90th turbulence
percentile. The wave model uncertainties are given as a summation over
all the mean wind speeds, including standstill and operational
conditions.

10. Discussion

Although the effect of the investigated environmental models is
important on structural loads, they are not the primary drivers for fatigue
reliability as also confirmed by the analysis of the importance factors. In
fact, the reliability index level seems to be mostly sensitive to the type of
damagemodel used. For instance, by eliminating the thickness correction
defined by DNV-GL standard practice, the annual reliability at 25 years in
the baseline case increases noticeably from βref ¼ 3:45 to βref ¼ 3:90.
However, the meaning of this type of analysis is to provide evidence of
the degree of variation of the reliability index under the different factors

Fig. 14. a) Cumulative probability of failure as a function of time for different wave kinematic models and turbulence levels, based on the SN-curve approach. b)
Corresponding reliability index.

Table 10
Annual reliability index at the end of life for different turbulence percentiles and
wave kinematic models.

Nonlinear w. Wheeler corr.

Lifetime βref 60th 90th 60th 90th
25yrs 3.45 3.35 3.22 3.70 3.48
20yrs 3.70 3.60 3.39 3.92 3.75

Table 11
Impact of the environmental models on fatigue reliability in terms of percentage
of variation of the annual reliability index, χ, from the baseline case.

Nonlinear w. Wheeler corr.

Lifetime 60th 90th 60th 90th
25 yrs �3% �7% þ8% þ1%
20 yrs �3% �9% þ6% þ1%

Table 12
Importance factors for the fatigue reliability models.

Case Δ Xst Xaero Xdyn Xwk Xsim Xstr
P

iXhðUiÞ
Linear waves 0.012 0.003 0.688 0.011 0.265 0.011 0.011 –

Nonlinear waves 0.012 0.003 0.674 0.011 0.268 0.011 0.011 0.009
Wheeler corr. 0.011 0.003 0.696 0.011 0.256 0.010 0.011 0.003
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considered.
Despite the effect not being drastic, this is still easily observable. For

instance, the Wheeler correction at finite water depth combined with the
60th percentile results in an increased annual reliability index by 15% at
25 and 20 years, which corresponds to circa 6 times lower probability of
failure, compared to the case where nonlinear waves and the 90th
percentile are used. Therefore, this confirms that the choice of the
environmental models used has an impact on the design as well as the
estimation of the remaining life after several years of operation. In the
industry, this procedure still substantially relies on analytical models
implemented in aero-hydro-servo-elastic codes, due to several impracti-
calities connected to a direct load measurement throughout the entire
service life, especially in the foundation. As a consequence, monitoring
the availability and the climate during different operational states is very
important for load assessment. In cases of deep waters, nonlinear effects
vanish making it realistic to use linear models.

The correction to theWheeler stretching formulation is seen to reduce
the particle velocities and acceleration in the horizontal direction,
leading to lower fatigue loads. It should be noted that this formulation is
not intended to replace the original model, but rather only to quantify the
effects of satisfying the Laplace equation. Its validity in real applications
has not been tested, and additional future experimental investigations
could be made to prove the validity of this approach.

The wave model uncertainties generally depend on the joint distri-
bution of the main environmental parameters, namely mean wind speed
and significant wave height. In this work, due to lack of wave measure-
ments, only mean wind speed was considered as driving parameter.
Instead, a wider range of sea states should be considered with their
respective probability of occurrence. Furthermore, since most offshore
site are located in highly irregular sea bottoms at shallow waters causing
breaking phenomena, further interesting research may be carried out to
quantify their impact on long term loads.

In general, it is important to remark that the reliability assessment is
case specific and cannot be represented by one case study only, as the one
analysed in this paper. Therefore, in order to decide on what type of
environmental model to employ, it is recommended to perform a careful
evaluation of the expected turbine loads in connection to the specific site
characteristics and preliminary structural analyses.

Standstill loads and wind farm wakes considered in this analysis
contribute considerably to fatigue damage and this could explain the
lower reliability level obtained compared to the original design. Conse-
quently, in order to achieve the desired target reliability level in the
reference case, a design factor was introduced. It is important to notice
that the right calibration of the design parameter would require a

reliability-based design optimization, which is outside the scope of this
work.

In the reliability analysis, the uncertainty in the W€ohler exponent has
not been considered. In connection to this study, since fatigue damage is
a nonlinear function of the mechanical stress through the W€ohler expo-
nent, it is expected that its uncertainty would amplify the effect of wave
nonlinearities on the monopile loads, especially in standstill.

11. Conclusions

This research highlights the importance of modelling turbulence and
waves for the assessment of fatigue loads on offshore wind turbine
monopiles. With respect to the environmental models, nonlinear waves,
correction at finite water depth, uncertainty in the hydrodynamic co-
efficients and turbulence level have been analysed. The influence of
nonlinear waves is more pronounced during standstill and its effect is
conditional to the operational damping and the wind speed distribution.
The load calculated when correction at finite water depth is applied
shows some degree of variation by decreasing the load estimation, which
is expected to increase at lower water depths. Uncertainty introduced in
the hydrodynamic coefficients does not seem to affect significantly the
probability distribution of the equivalent loads on the monopile. This has
been quantified by numerical MC simulations where uncertain hydro-
dynamic coefficients were used.

The importance of estimating a correct equivalent value of the turbu-
lence intensity has been discussed. The turbulence level defined by IEC
standards is in general conservative for the assessment of the monopile
fatigue loads. In this specific case, a 60th percentile was found to be more
realistic, namely closer to the full MC approach. However, the influence of
the free ambient turbulencedecreases in thepresenceof strong farmwakes.
For the analysis, a realistic caseof6neighbouring turbines equidistant from
the objective one was considered. Further investigation is needed to
quantify howdifferentwind and turbulence classes affect the choice of this
parameter. In general, the fatigue load reduction resulting from the
application of lower equivalent turbulence could potentially lead in lighter
structures, saving material and installation costs on large scales. Future
research should quantify this reduction in practical and economical terms.
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Appendix A. Derivation of the linear relationship between turbulence and damage equivalent loads

In the following steps, previous studies were followed by Arani et al., (Troldborg et al., 2014). The external force is represented by a thrust TðtÞ
acting at the tower top. Denoting by A the rotor area and CT the thrust coefficient, the thrust force can be approximated as

TðtÞ ¼ 1
2
ρACTUðtÞ2 (A.1)

where the wind speed UðtÞ can be expressed by the sum of a time invariant mean wind speed U and a turbulent term uðtÞ. The thrust can then be
linearised using quasi-steady assumptions where the turbulent term uðtÞ is considered small

TðtÞ ¼ 1
2
ρACT ðU þ uðtÞÞ2 � 1

2
ρACT

�
U2 þ 2UuðtÞ� (A.2)

According to Eq. (A.2), the second order term of the turbulence uðtÞ has been omitted by linear approximation. This implies a direct proportionality
between the linearised standard deviation of the thrust force σT and the standard deviation of the wind speed fluctuations given a constant mean wind
speed U, as

σT∝σu (A.3)

Furthermore, to simplify the scheme, only the first mode corresponding to the FA direction is considered. In frequency domain, the response
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spectrum of an output through a linear and time invariant system exited by a random load, can be expressed as

SyyðωÞ ¼
��HðωÞj2SuuðωÞ (A.4)

where SyyðωÞ is the spectrum of the response yðtÞ, HðωÞ is the energy transfer function of the linear structural system and SuuðωÞ spectrum of the
excitation. The wind field generated by the aeroelastic code used is based on the Mann turbulence model (Larsen and Hansen, 2007) while DNV-GL
guidelines (DNV) suggest a Kaimal spectrum. The standard deviation of the response σy is proportional to the standard deviation of the turbulence
term σu at a constant mean wind speed U. Under certain assumptions the approach can be demonstrated analytically as shown in reference (Troldborg
et al., 2014) for a Kaimal spectrum.

σy∝σu (A.5)

which, in turn, using Eq. (A.3) implies a direct proportionality between σy∝σT . As shown in (Frandsen, 2007), if the response yðtÞ can be considered
narrow banded where the dominant natural frequency is ω0 and linear SN-curve are assumed, the DEL is also proportional to σy conditionally on the
W€ohler exponent and the mean wind speed.

LðUÞ∝σu (A.6)

This relation can also be extended to the Mann turbulence model, by noting that the latter is built on the Kaimal spectrum, (Mann, 1998). However,
since the proportionality is determined by the transfer function which is outside the spectrum, the formulation should in principle be valid for any
spectrum.

References

Agarwal, P., Manuel, L., 2011. Incorporating irregular nonlinear waves in coupled
simulation and reliability studies of offshore wind turbines. Appl. Ocean Res. 33 (3),
215–227.

Ambühl, S., Ferri, F., Kofoed, J.P., Sørensen, J.D., 2015. Fatigue reliability and calibration
of fatigue design factors of wave energy converters. Int. J. Marine Energy 10, 17–38.

Arapogianni, A., Genachte, A., Ochagavia, R.M., Vergara, J., Castell, D.,
Tsouroukdissian, A.R., Korbijn, J., Bolleman, N., Huera-Huarte, F., Schuon, F., et al.,
2013. Deep Water - the Next Step for Offshore Wind Energy, European Wind Energy
Association (EWEA). ISBN, Brussels, Belgium, pp. 978–982.

D. N. V. AS, Buckling Strength of Shells.
S. Bhattacharya, Challenges in design of foundations for offshore wind turbines, Eng.

Technol. Ref. 1(1).
Burrows, R., Tickell, R., Hames, D., Najafian, G., 1997. Morison wave force coefficients

for application to random seas. Appl. Ocean Res. 19 (3–4), 183–199.
Dimitrov, N., Friis-Hansen, P., Berggreen, C., 2013. Reliability analysis of a composite

wind turbine blade section using the model correction factor method: numerical
study and validation. Appl. Compos. Mater. 20 (1), 17–39.

G. DNV, DNV-OS-J101–design of Offshore Wind Turbine Structures, DNV GL.
Feng, Y., Tavner, P., Long, H., 2010. Early experiences with UK Round 1 offshore wind

farms. Proc. Inst. Civ. Eng.Energy 163 (4), 167–181.
Frandsen, S.T., 2007. Turbulence and Turbulence-generated Structural Loading in Wind

Turbine Clusters. Technical University of Denmark, Risø National Laboratory for
Sustainable Energy.

Friswell, M.I., 2010. Dynamics of Rotating Machines. Cambridge University Press.
Hahn, B., 1999. Reliability assessment of wind turbines in Germany. In: 1999 European

Wind Energy Conference, pp. 1–5.
I. E. C. IEC, Wind Turbines - Part I: Design Requirements - IEC 61400–1.
I. E. C. IEC, Wind Turbines - Part III: Design Requirements for Offshore Wind Turbines -

IEC 61400–3.
IEC, I.E.C., 2005. Amendment to IEC 61400-1, p. 2008.
Jonkman, J., Musial, W., 2010. Offshore Code Comparison Collaboration (OC3) for Iea

Wind Task 23 Offshore Wind Technology and Deployment. Tech. rep.. National
Renewable Energy Lab. (NREL), Golden, CO (United States).

Jonkman, J., Butterfield, S., Musial, W., Scott, G., 2009. Definition of a 5-MW Reference
Wind Turbine for Offshore System Development. Tech. rep.. National Renewable
Energy Laboratory (NREL), Golden, CO.

Journ�ee, J., Massie, W., 2000. Offshore Hydromechanics. TU Delft.
Kim, T., Natarajan, A., 2013. Effect of coupled nonlinear wave kinematics and soil

flexibility on the design loads of offshore wind turbines. In: Proceedings of 51st AIAA
Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace
Exposition.

Koukoura, C., Natarajan, A., Vesth, A., 2015. Identification of support structure damping
of a full scale offshore wind turbine in normal operation. Renew. Energy 81,
882–895.

E. L Petersen, C. B. Hasager, M. Courtney, A. Natarajan, T. J. Larsen, H. Bredmose, G. C.
Larsen, P. E. Sørensen, N. A. Cutululis, N. Erik-Clausen, et al., Offshore wind farms,
Handbook of Clean Energy Systems.

Larsen, T.J., Hansen, A.M., 2007. How 2 Hawc2, the User's Manual. Tech. rep.. Risø
National Laboratory.

Mann, J., 1998. Wind field simulation. Probabilist. Eng. Mech. 13 (4), 269–282.
Marelli, S., Sch€obi, R., Sudret, B., 2017. Uqlab User Manual–structural Reliability. Tech.

rep., Technical report, Chair of Risk, Safety and Uncertainty Quantification, ETH
Zurich. Report UQLab-V1. 0-107.

Marino, E., Lugni, C., Borri, C., 2013. The role of the nonlinear wave kinematics on the
global responses of an OWT in parked and operating conditions. J. Wind Eng. Ind.
Aerod. 123, 363–376.

Mittendorf, K.E., 2009. Joint description methods of wind and waves for the design of
offshore wind turbines. Mar. Technol. Soc. J. 43 (3), 23–33.

Moan, T., Zheng, X.Y., Quek, S.T., 2007. Frequency-domain analysis of non-linear wave
effects on offshore platform responses. Int. J. Non Lin. Mech. 42 (3), 555–565.

Morison, J., Johnson, J., Schaaf, S., et al., 1950. The force exerted by surface waves on
piles. J. Petrol. Technol. 2 (05), 149–154.

Natarajan, A., 2014. Influence of second-order random wave kinematics on the design
loads of offshore wind turbine support structures. Renew. Energy 68, 829–841.

Nejad, A.R., Gao, Z., Moan, T., 2014. On long-term fatigue damage and reliability analysis
of gears under wind loads in offshore wind turbine drivetrains. Int. J. Fatig. 61,
116–128.

Rangel-Ramírez, J.G., Sørensen, J.D., 2012. Risk-based inspection planning optimisation
of offshore wind turbines. Struct. Infrastruct. Eng. 8 (5), 473–481.

A. RP2A-LRFD, Recommended Practice for Planning, Designing and Constructing Fixed
Offshore Platforms-load’and Resistance Factor Design, American Petroleum Institute,
Washington.

Schløer, S., Bredmose, H., Bingham, H.B., 2016. The influence of fully nonlinear wave
forces on aero-hydro-elastic calculations of monopile wind turbines. Mar. Struct. 50,
162–188.

Sharma, J.N., 1980. Development and Evaluation of a Procedure for Simulating a Random
Directional Second-order Sea Surface and Associated Wave Forces.

Sheather, S.J., Jones, M.C., 1991. A reliable data-based bandwidth selection method for
kernel density estimation. J. Roy. Stat. Soc. B 683–690.

Shi, W., Park, H.-C., Baek, J.-H., Kim, C.-W., Kim, Y.-C., Shin, H.-K., 2012. Study on the
marine growth effect on the dynamic response of offshore wind turbines. Int. J.
Precis. Eng. Manuf. 13 (7), 1167–1176.

Sørensen, J.D., Frandsen, S., Tarp-Johansen, N., 2008. Effective turbulence models and
fatigue reliability in wind farms. Probabilist. Eng. Mech. 23 (4), 531–538.

Tarp-Johansen, N.J., 2003. Examples of Fatigue Lifetime and Reliability Evaluation of
Larger Wind Turbine Components. Tech. rep.

Tempel, J.V.D., 2006. Design of Support Structures for Offshore Wind Turbines no. april.
Toft, H.S., Svenningsen, L., Moser, W., Sørensen, J.D., Thøgersen, M.L., 2016. Wind

climate parameters for wind turbine fatigue load assessment. J. Sol. Energy Eng. 138
(3), 031010.

Troldborg, N., Sørensen, J.N., Mikkelsen, R., Sørensen, N.N., 2014. A simple atmospheric
boundary layer model applied to large eddy simulations of wind turbine wakes. Wind
Energy 17 (4), 657–669.

Van Der Meulen, M.B., Ashuri, T., Van Bussel, G.J., Molenaar, D.P., 2012. Influence of
nonlinear irregular waves on the fatigue loads of an offshore wind turbine. In: The
Science of Making Torque from Wind; 4th Scientific Conference, Oldenburg
(Germany), 9-12 Oct, 2012.

H. F. Veldkamp, Chances in Wind Energy: a Probabilistic Approach to Wind Turbine
Fatigue Design.

Veldkamp, H., Van Der Tempel, J., 2005. Influence of wave modelling on the prediction
of fatigue for offshore wind turbines. Wind Energy 8 (1), 49–65.

D. N. Veritas, Fatigue Design of Offshore Steel Structures, No. DNV-RP-C203 30.
Wheeler, J., et al., 1969. Methods for calculating forces produced by irregular waves. In:

Offshore Technology Conference, Offshore Technology Conference.
Ziegler, L., Muskulus, M., 2016. Fatigue reassessment for lifetime extension of offshore

wind monopile substructures. J. Phys. Conf. 753, 092010. IOP Publishing.

L. Colone et al. Ocean Engineering 155 (2018) 295–309

309



Chapter 3

Coupling load and failure maps

Never look down while climbing.

The author

The research question addressed in this chapter is the attempt to predict wind farm failures

by looking at the distribution of critical components and experienced loads within a wind

farm as indication of physical damage.

The case study considered is a wind farm in operation for 5 years, where several records of

pitch malfunctions were experienced and recorded in the alarm logs. The idea is to combine

the frequency of occurrence of these multifunction within the wind farm with suitable damage

indicators commonly derived from wind farm load simulations, including the effect of wake

turbulence generated by neighbor turbines. The final aim is to provide these indicators under

the form of ”maps”, to be compared with a probability map of the malfunctions.

Given the nature of the recorded alarms, which will be clearer in the following, it was

initially thought that the pitch bearing friction effect may be a good candidate to explain

the occurrence of the alarms. In fact, the bearing friction can cause a deviation between the

reference pitch communicated by the control system and the actual pitch delivered by the

actuator through a torque. On this purpose, the pitch error originating from the presence

of a friction torque is selected as best indicator. In the attempt of quantifying this effect,

a methodology to include the pitch friction into the EOM of the pitch system used in the

aeroelastic solver is developed. This model is composed by two steps. The first step concerns

the development of a frictionless torque-based pitch controller, meaning that the dynamic of

the pitch actuator results in a torque that is in reality supplied by the pitch actuator.

The stability of this system is tested in a open and closed loop set-up and the initial part

of this chapter is dedicated at explaining the steps upon which the model is built, starting

from basic notions of control theory. The second step consists of including the friction torque

as an additional contribution to the frictionless torque that appears in the EOMs. This second

step however, turned out to be unsuccessful due to convergence problems. Although the model

developed here has not been eventually used in the analysis, its derivation is reported for

completeness.

Instead of the pitch error due to friction torque, other indicators of possible malfunctions

are selected. These are the flapwise blade root bending moment DEL, the mean friction

moment and actuator duty cycle (ADC). The reason for the flapwise bending moment is its
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direct relation to the friction moment on the pitch bearing, and the DEL is used as indication

of damage at the blade root section, where the pitch bearing is located. The friction moment is

chosen since it comprises the contribution of the in-plane bending moment and the longitudinal

force. Finally, the ADC is a measure of the intensity of the pitch activity.

The main idea upon which the analysis is based, is that these quantities may vary

significantly within the wind farm due to wake effects, and from the fact that turbulence is

the major driver for pitch activity and cycling loads. The final aim is to understand whether

an initial load map assessment can reveal critical areas within the wind farm with increased

risk of failure.

The indicator maps are obtained using an in-house developed tool based on PCE, although

some adjustments were needed for its calibration for the specific case study. The development

of a stable dynamic pitch system based on frictionless torque and the introduction of the

friction torque into the EOM, can also be considered a further contribution, despite its

convergence problems.

3.1 Failure-load correlation

In Ch.1 it was mentioned that wind turbines are subject to highly fluctuating environments,

thus becoming more prone to fatigue-driven failures, meaning by cycling loading. A throughout

based on a significant databased on failure observations in several components work by Reder

& Melero, Reder et al. [27, 40, 79, 80] has shown important correlations between environmental

factors such as relative humidity, temperatures and turbulence and reliability of main wind

turbine components. Besides weather conditions, reliability may also depend directly on

mechanical loads. It is important to notice that harsh weather is often associated with

high power production, thus increasing wear and degradation of mechanical parts. However,

computing loads requires an aeroelastic model and computation of wind farm loads based

on the its configuration. The aim of this analysis is to correlate wind farm load maps with

failure maps, obtained respectively using the the methodologies adopted in [43] and real event

recorded.

3.2 Linear time invariant systems

In this section some theoretical knowledge of control theory is recalled, which is preliminary

to the next sections, in particular PID (proportional, integral, derivative) controllers. The

theory recalled here is based on [81]. These techniques are also applied in experimental modal

analysis.

First, it is important to make clear that the systems considered in this chapter are linear

time invariant (LTI). Given a LTI system with input x(t) and output y(t), the transfer function

(TF), denoted by H(s), is defined as the Laplace transform of the impulse response function

h(t). The Laplace transform of a function x(t) is an improper integral defined as

X(s) = L[x(t)] =
∫
x(t)est dt (3.1)

where s = σ + jω is the Laplace variable. The response of a LTI system to an input can be

found through the convolution integral, as
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y(t) =
∫ t

0
h(τ)x(t− τ) dτ (3.2)

In frequency domain, after applying the Laplace transformation, Eq.3.3 simply becomes

Y (s) = H(s)X(s) (3.3)

The impulse response is the response of the system to a Dirac delta δ(t), in time domain. The

reason why a Delta is used as input function is because it is able to excite the entire frequency

band of a system at equal energy, ideally from 0 to infinity. In fact, the Laplace (or Fourier)

transform of a Delta is equal to 1. In this way, the properties of the system can be suitably

characterized (amplitude and phase).

The frequency response function (FRF) is the steady-state response of a LTI system to a

harmonic input, namely when the transient response vanishes. By varying the frequency of

the harmonic input, it is possible to explore the behaviour of the output through the entire

frequency band of interest, thus obtaining a picture of the system’s behaviour. The FRF can

be obtained by the TF by substituting s = jω.

Finally, the unit step response is the response of a system to a unit step input. This

method can be used to analyze the damping properties of a system and overshoot to a sudden

perturbation.

3.3 Controllers

In the Laplace domain, the TF of a PID becomes

H(s) = Kp

(
1 + 1

Tis
+ Tds

)
(3.4)

Ziegler and Nichols, proposed an experimental rule to determine the values of the parameters

Kp, Ki and Kd. The method is based on deriving an experimental step response of the PID

through an open loop system, trying to limit the maximum overshoot. The method is only

applicable if the system is stable with dominant negative poles and thus unit step response

close to an S-shape. The step response is generated experimentally, as in Fig.3.1.

PID
x(t) y(t)

Figure 3.1: Open loop diagram for PID controller parameter tuning based on Ziegler-Nichols method.

Under this assumptions, the TF can be approximated by a first order TF, as

X(s)
Y (s) = K1e

−Ls

Ts+ 1 (3.5)

where L and T are the time delay and time constant respectively. Thus, the tuning rules for

the first order step response PID controller according to Ziegler and Nichols are found as

Kp = 1.2T
L
, Ti = 2L, Td = 0.5L (3.6)
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3.4 Blade pitch actuator

In pitch-regulated-variable-speed wind turbines, the pitch angle in the full load region is

regulated to balance aerodynamic thrust and torque in order to achieve the desired power

output. The pitch mechanism consists of an actuator, which controls and moves the system.

This movement is a rotation around the longitudinal axis of the blade, the pitch angle. Modern

wind turbines implement a collective pitch system, where the blades pitch simultaneously and

the same reference pitch angle ϑref is communicated by the controller unit to the actuator.

Another possibility which is gaining more focus in the recent years is individual pitch, [82].

Common commercial pitch actuators can be hydraulic or electromechanical. In aeroelastic

simulations, the dynamic motion of the actuator, the servo system, can be modeled either

through a first order filter, as second order filter [83], or through actuator forces. The first two

types are based on specifying a body-to-body constrain acting as a bearing and controlling

position, velocity and acceleration by a servo mechanism. When ϑref is communicated to the

actuator by the controller, the actual pitch angle ϑ reaches the value ϑref through a TF. Eq.3.7

is the mathematical expression of a first order filter, which typically models electromechanical

actuators [84], as

ϑ̇ = 1
τ

(ϑ− ϑref ) (3.7)

where τ is the time constant. This topics are well presented for instance in [85]. The second

order second filter, Eq.3.8, is used to model hydraulic actuators[86]. The FRF in Eq.3.10 can

be determined by giving as input a harmonic excitation ϑref with a frequency ω.

ϑ̈+ 2ζω0ϑ̇+ ω2
0ϑ = ϑ0e

jωt (3.8)

ϑ(t) = |H(jω)|ϑ0e
j(ωt−φ) (3.9)

where φ is a phase term and the complex FRF is

H(jω) = ω2
0

ω2
0 − ω2 + 2jζω0ω

(3.10)

Typically in a damping ratio ζ ≤ 1 is chosen, in order to model a underdamped or critically

damped response. The frequency ω0 is set according to the specific purpose. Note that the

parameters of the TF can be used to simulate a possible pitch fault [83].

3.5 Actuator motion based on forces

In practice, the motion around the blade longitudinal axis is enabled by a slewing bearing

located between the hub and the blade root. An example of this type of roller bearing is

displayed in Fig.3.3, similarly used for the yaw mechanism. The main disadvantage of using

first and second order filters to model the pitch actuator as explained in the previous section,

resides in the inability to explicitly control a pitch torque, by limiting the analysis only at

describing the dynamic motion of the pitch angle through a FRF. An alternative way to

control the pitch angle is by controlling the actuator forces through a servo. An example

provided in [87] shows a system based on a two cascade PI units from which the frictionless
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pitch torque can be derived and given as input in the rigid body EOM, which include the

pitch angle variation due to the blade’s inertia forces. The tuning of this system provided a

sufficiently damped response. More detailed approaches are based on direct modelling of the

actuator internal mechanism as for instance in [86] where the system’s dynamic is triggered

by the compressibility of the hydraulic oil.

To model this system in HAWC2 a similar approach as in [87] is followed. The difference

is that a constraint between the shaft and the blades is introduced through an external system

dll (dynamic link library). The constrain consists of a set of equations describing a spatial

node where the only free DOF is the rotation around the longitudinal axis of the blade, as

shown in Fig.3.2.

ux

uy

uz

θx

θy

θz Mx

Fx

M ,y Fy

M ,z Fz

Figure 3.2: Degrees of freedom and forces of the node between shaft and blades to model the pitch
motion.

The vector of DOFs q = {ux, uy, uz, ϑx, ϑy, ϑz}, where ϑz is the pitch angle, simply

indicated as ϑ. The vector r = {Fx, Fy, Fz,Mx,My,Mz} are the reaction forces obtained by

linear and rotational springs. The moment Mz is the frictionless pitch torque, indicated as Qc.

The subset of equations comprising the first five EOM are stiff reaction forces of the body in

Fig.3.2 and can be written in matrix form, as

r̄ = K̄q̄ (3.11)

with K̄ = kI is a diagonal matrix where I is a 5×5 identity matrix and the stiffness k is set big

enough to provide rigid reactions. The torque Qc is function of the pitch error e = ϑ− ϑref ,

which can be controlled by a PID unit, by using the following set of equations

Qc = Kpe+Ki

∫
e dt+Kdϑ̇

ϑ− e = ϑref

ė− ϑ = 0

(3.12)

where the second and third equations in Eq.3.12 are additional states introduced to stabilise

and control the system.

As pointed out in [87], the pitch motion is fully coupled with external loads and inertia of

the system, such as blade and bearing. Therefore, in operation, the equilibrium at the node

between the two bodies, shaft and blade, is satisfied according to the following equation
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Figure 3.3: Example of slewing bearing for wind turbine pitch systems.

I +Qc +Qa +Qg +Qf = 0 (3.13)

where I is the contribution from inertia forces of the blade and bearing, Qa the resultant

moment from the aerodynamic forces, Qg the resultant moment from gravitational forces, and

Qf is a friction term. Note that Qc is a controlled force, which is applied to allow the pitch

motion. In operation, the total pitch torque will need to balance the contribution of all the

remaining terms in order to keep the pitch angle at the desired position.

3.5.1 Calibration of the motor torque in standstill

To analyse the frictionless motor torque only and tune the PID parameters, standstill

conditions are considered, meaning that Eq.3.17 becomes Eq.3.14, where only the system’s

intertia inertia J is taken into account [87].

Jϑ̈ = Qc(t) (3.14)

The parameters of the PID can be found experimentally using the first method proposed by

Ziegler and Nichols described in Sec.3.3. Fig.3.4 shows the step response of the PID. As can

be seen, the tuning provides a maximum overshoot of 15% while the response is sufficiently

damped.

By inserting Eq.3.12 into Eq.3.14, the resulting closed loop equation is obtained (Eq.3.15.

The block diagram of the closed loop system for the pitch actuator is shown in Fig.3.5.

Jϑ̈+Kp(ϑ− ϑref ) +Ki

∫
(ϑ− ϑref ) dt+Kdϑ̇ = 0 (3.15)

In the Laplace domain, the TF becomes

ϑ(s)
ϑref (s) =

Kp +Ki/s

Js2 +Kp +Ki/s+Kds
(3.16)

Based on the PID parameters tuned before, Eq.3.16 provides a Bode diagram as shown in

Fig.3.6. As can be noticed, the response of the system equals a critically damped response of

a second order system [85]. For a frequency range below 1 Hz, the system provides a damped

response with no amplifications and sufficiently in phase with the input ϑref which in this

case set at 0.5 Hz.

Fig.3.7 shows the response of the system implemented in HAWC2 using the full aeroelastic

model in standstill conditions, where a step pitch is given as reference. Note the similarity

with Fig.3.4.
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Figure 3.4: Step response of the PID system controlling the pitch torque.
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Figure 3.5: Closed loop diagram of the pitch actuator based on forces.

Afterwards, a harmonic pitch excitation is given as input to the system, where the only

contribution to the pitch torque comes from the inertia, as per Eq.3.14. Results are displayed

in Fig.3.8, where the motor torque corresponds to the blade’s inertia forces driven by the

pitch acceleration ϑ̈.

3.5.2 Operational tests

After calibrating the model and the proved the stability of the system, further tests are

carried out here. Fig.3.9 shows the motor torque to a constant step wind speed ranging from

4 to 25 m/s. No turbulence is considered. Note that the equilibrium follows Eq.3.13, where

all contribution are now embedded. The aerodynamic forces mainly govern the reaction of

the pitch torque, as a result of the full dynamic coupling. This can be verified by comparing

Fig.3.9a and 3.10a, which displays the blade root torsional moment for the same simulation.

Fig.3.9b and 3.11b highlight the effect of gravitational forces, which shifts the response by

120 degrees for each blade. This effect cannot be encountered in Fig.3.8b, since gravitational

forces are neglected.
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Figure 3.6: Amplitude and phase of the closed loop response of the pitch actuator.

3.5.3 Bearing friction

Besides the frictionless turning moment Qc necessary to actuate the pitch motion, the

bearing will experience an additional friction torque, which is addressed in this section. Once

able to control Qc through a controller PID, an additional contribution Qf due to friction can

be introduced (Eq.3.17). This quantity is typically calculated according to physical models

and it generally depends on the system’s states and forces described in the previous section.

With reference to Eq.3.14, which represent the EOM when the turbine is standing still, the

equation becomes

Jϑ̈ = Qc(t) +Qf (t,q, q̇, r). (3.17)
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Figure 3.7: Step pitch response of the actuator system based on forces.
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Figure 3.8: Pitch response to a harmonic pitch excitation. No aerodynamic and gravitational forces
are considered.
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Figure 3.9: Pitch torque for a step wind speed varying within the operational range 4 to 25 m/s.

It is important to notice that the direction of friction moment follows the pitch velocity.

To solve this problem, the authors in [88] expressed the friction moment as function of the

pitch velocity ϑ̇, through a piecewise activation function. Herein however, in order to ensure

numerical convergence in the aeroelastic code, the activation function requires continuous

differentiability.

Qf (t,q, q̇, r) = 2
π
f(r)f(ϑ̇) (3.18)

In Eq.3.18, f(ϑ̇) = arctan(Kϑ̇) where the constant K is large enough to provide a sufficiently

smooth and fast transition from negative to positive pitch velocities. An example of this

function is displayed in Fig.3.12 for different values of the parameter K in a typical range of

pitch velocities for a wind speed at 17 m/s. The y-axis shows dimensionless function 2
πf(ϑ̇ in

Eq.3.18.

The function f(r) contains the load dependent and independent contributions to the

friction moment. Here, the model proposed by [89] is employed. This model only considers

the Coulomb friction, namely only the load dependent contribution. Other models can be

found in [90], or more specifically [91]. Eq.3.19 displays such model, where the coefficients α,
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Figure 3.10: a) Blade root torsional moment and b) pitch comparison between second order filter and
pitch actuator based on forces for a step wind speed varying within the operational range
4 to 25 m/s.
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Figure 3.11: Pitch torque for a turbulent case at 17 m/s mean wind speed.

β and γ depend on the the friction coefficients, bearing geometry and mechanical properties,

while Mxy is the in-plane resulting bending moment, Fxy the in plane resulting force found

through Eq.3.20 and Fz is the axial force (see Fig.3.2).

f(r) = αMxy + βFxy + γFz (3.19)

Mxy =
√
M2
x +M2

y , Fxy =
√
F 2
x + F 2

y (3.20)

However, in order to observe the effect of a real pitch system controlled by forces, a

limitation to amount of torque provided by the motor should be set. This can be done

by setting a maximum allowable torque delivered by the actuator. After that limit, the

pitch bearing basically slides. This was modelled through a symmetric function between the

theoretical demanded torque Qd and the real one delivered by the actuator Qc. In this way,

the effect of the friction would be visible, in that the maximum level would reach it’s value

earlier, due to the additional friction torque Qf . Otherwise, the system would always be able

to deliver infinite amount of torque.
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Figure 3.12: Friction activation as function of the pitch velocity.

However, by putting an upper threshold to the torque, resulted in convergence problems

for the solver. Therefore, at this point of the thesis, a decision was taken. The numerical

results obtained in the following sections compare the wind farm pitch activity map, rather

than the pitch error resulting from modelling the friction torque into the EOMs, as initially

planned. However, the model described above in this chapter is still valid and exploitable for

further research. Unfortunately due to time constraints, it was not possible to find a solution

to make the solver converge.

3.5.4 Pitch duty activity

The ADC is the percentage of time the actuator needs to deliver a motion relative to

its maximum allowable motion. Because of this definition, the pitch duty cycle of hydraulic

actuators can be used as an indication of the amount of work required by the actuator before

occurring malfunctions, such as overheating, sliding, oil-leaking etc. The formulation reported

by Tibaldi et al. [92] is herein used, which expresses the pitch duty cycle as function the pitch

velocity, as

ADC = 1
T

∫ T

0

β̇(t, U)
β̇max

dt (3.21)

where T is the simulation time and β̇ the pitch velocity. The maximum pitch velocity β̇max is

defined in the controller unit, which computes the optimal pitch reference.

3.6 Wind farm load mapping

Loads on turbines within a wind farm depend on the farm configuration and need to be

assessed based on full probabilistic aeroelastic simulations [69]. 5 load channels are considered,

3 blade root bending moments, ADC and mean friction. These quantities will be referred to

as indicators. The aeroelastic model of the real turbine was available for the analysis. The

water depth is considered fixed at 20 m and no soil model is included. For the wind farm

maps, the indicators are computed distinctly on the three blades for each simulation and the

average value is taken. Unless specified, 12 turbulence seeds are considered for each simulation

case. The DLC 1.2 is used.
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3.6.1 Assessment of site conditions

Data are available as 10-minute average values from an offshore wind farm during an

operational periods of 5 years. Periods of turbine inactivity were removed from the dataset

by applying two filters. These are power less or equal than zero to filter out non operational

wind speed records. To reconstruct the fatigue load map through aeroelastic simulations,

a statistical characterization of the site data is first needed. Based on available data, the

analysis requires the following ingredients:

• Assessment of free wind speed conditions from nacelle anemometers

• Determination of the free wind speed wind rose

• Mean wind speed directional distribution

• Shear and density distributions

• Mean and standard deviation of the turbulence

• Wave statistical parameters such as significant wave height and peak period

Some of the quantities listed above are expressed as function of the mean wind speed,

given their significant variation. The standard deviation of the turbulence corresponds to

the standard deviation of the 10 min turbulence. Since the failure analyzed happen during

operation, only operational loads are considered (DLC 1.2, see Sec. 2.3). Fig.3.13 display the

wind roses for the wind farm analysed by using 36 and 12 bins. The coherence between the

two roses makes is reasonable to use 12 bins for the analyses.
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Figure 3.13: Wind rose for the wind farm analysed, left 12 bins, right 36 bins.

The mean free ambient turbulence and its standard deviation are described by quadratic

functions of mean wind speed, Eq.3.22. The wind speed statistics are derived from nacelle

anemometers readings, as average values taken from the free stream operating WTs depending

on the wind direction. The estimation of the second was made by averaging the standard
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deviations of the turbulence for each wind speed bin between 4 and 24 m/s, which is the most

frequent interval, with a step of 2 m/s. Given the turbulence statistics, its distribution is

assumed log-normal conditional on the mean wind speed. The scatter plots in Fig.3.16 show

examples of mean turbulence variations for the two dominant directions. In all graphs, fitting

was performed by maximum likelihood estimation.

µσu = a1U
2 + a2U + a3 (3.22)

σσu = b1U
2 + b2U + b3 (3.23)

From Fig.3.16 it can be seen that the turbulence intensity, defined as ration between turbulence

and mean wind speed, reaches values around 0.1 for the entire wind speed range. This may be

due to the fact that the wind speed profile of offshore sites is not affected by terrain roughness

and other obstacles, thus keeping the turbulence values relatively low.

Fig.3.14 displays the differences in wind distributions for 3 different sectors, while Fig.3.15

shows the histograms and Weibull fit for all directions considered.
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Figure 3.14: Mean wind speed distributions for 3 different directions.
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Figure 3.15: Mean wind speed distributions for all the 12 directions considered.

As exemplified in Fig.3.17, the standard deviation of the turbulence may vary significantly

depending on the wind direction. This information should be included in the MC sampling

to generate realistic loading conditions. However, due to limited amount of data it was not

possible to compute the turbulence standard deviation for each wind direction. Tab.3.1 reports

the numerical values of the site statistics.
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Figure 3.16: Quadratic polynomial fit to the turbulence as function of the 10-minute average wind
speed from nacelle anemometer for directions 9 and 10.
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Figure 3.17: Quadratic polynomial fit to the turbulence standard deviation as function of the average
wind speed bin from nacelle anemometer for directions 9 and 10.

Table 3.1: Weibull scale and shape parameters A, k, directional distribution and regression coefficients
for each wind direction (N - SSE).

N NNE ENE E ESE SSE

A 9.55 9.74 9.88 9.26 8.50 9.87

k 2.49 2.74 2.57 2.63 2.48 2.39

P (ϑ) 0.0471 0.0648 0.0755 0.0582 0.0455 0.0606

a1 0.0018 0.0028 0.0019 0.0022 0.0022 0.0006

a2 0.0560 0.0350 0.0487 0.0377 0.0305 0.0616

a3 0.1658 0.2364 0.1782 0.2324 0.2645 0.1501

b1 0.0007 0.0006 0.0001 -0.0005 -0.0007 -0.0007

b2 -0.0090 -0.0091 0.0020 0.0147 0.0230 0.0179

b3 0.1860 0.2008 0.1455 0.0998 0.0659 0.1185

Table 3.2: Weibull scale and shape parameters A, k, directional distribution and regression coefficients
for each wind direction (S - NNW).

S SSW WSW W WNW NNW

A 10.91 12.17 10.92 10.02 9.54 9.64

k 2.17 2.67 2.71 2.59 2.37 2.40

P (ϑ) 0.0798 0.1861 0.1549 0.0937 0.0774 0.0564

a1 0.0012 0.0017 0.0019 0.0025 0.0025 0.0019

a2 0.0544 0.0383 0.0472 0.0387 0.0460 0.0543

a3 0.1360 0.2070 0.1685 0.2032 0.1816 0.1674

b1 -0.0004 0.0001 0.0004 0.0011 0.0001 0.0007

b2 0.0135 0.0016 -0.0020 -0.0111 0.0024 -0.0110

b3 0.0951 0.1646 0.1519 0.1657 0.1111 0.1758

Ultimately, the sea input conditions implemented as showed in Fig.3.18. These are
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considered constant for all wind directions, since the interest in this study is not particularly

dedicated at foundation loads.
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Figure 3.18: Significant wave height as function of the mean wind speed (left), and peak period as
function of the significant wave height.

3.6.2 PCE

This paragraph introduces the basic concepts of PCE ([93]). Given a set of random input

variables X and an output function Y = G(X), the PCE is based on fitting a finite number of

orthogonal polynomial functions to describe this dependency, through the following mapping

G(X)

Y = G(X) =
∑
α

wαΨα(X) (3.24)

where Ψ are multivariate polynomials and w their corresponding coefficients. In practice, a

finite number for α must be chosen. Most probabilistic models require the input variables X
to be independent and identically distributed (i.i.d.). Thus a Resenblatt transformation [94]

followed by normalization to a normal space is performed. This motivates the employment

of the Legendre family of univariate orthonormal polynomials, thanks to their interval of

definition [-1,1], which is convenient for mapping the bounded random variables X through

their cumulative distribution [95]. According to this, the polynomial basis functions in Eq.3.24

become

Ψα(X) =
M∏
i=1

Pαi(ξi) (3.25)

where Pαi are M -dimensional multivariate polynomials and

ξi = 2F (Xi)− 1 (3.26)

with F (Xi) being the cumulating distribution function of the variable Xi. Eq.3.25 means that

each multivariate polynomial Ψα(X) is expressed as the product of univariate polynomials,

where the elements of the vector α are the orders of each univariate polynomial term.



59 3.6. Wind farm load mapping

3.6.3 Calibration of the surrogate model

According to Dimitrov et al. [95], the farm loads are obtained by building a surrogate

model that based on polynomial basis functions. The procedure allows to determine the

wake-induced load variation within a wind farm, by strongly reducing the number of simulation

cases of each turbine, which would ne necessary to account for the variability of the input

variables. This represent the great benefit of using surrogate models. Alternatively, the load

simulations should be set up on the single turbine, which besides large computational expenses,

would also require considerable manual work. The main assumptions of the approach is

that the relationship between wake-induced loads, wind farm geometry and environmental

conditions can be efficiently derived through polynomial fitting, or similarly, with machine

learning algorithms.

The surrogate model is based on setting up a set of load simulations for one turbine

representative for a specific row of the wind farm, where the stochastic variability of the input

variables is considered including wake contributions to turbulence from neighboring turbines.

The reason for proceeding in this way is indeed to account for wake turbulence, which varies

from row to row of the farm. Once the load simulation results are available, polynomial fitting

is performed by taking the indicators as scalar output functions, and using input variables

as regressors. The input set normally contains the environemntal variables used as input in

the aeroelastic simulator. In this way it becomes possible to map the variation of the output

function in every point along the 2-dimensional domain of the wind farm as function of the

input set. Since the fitting functions are continuous polynomials, the output is mapped in

every point of the domain, in particular where turbines are located.

The output parameters are in this case stress indicators, i.e. blade root DEL (Eq.2.18),

ADC (Eq.3.21) and mean friction (Eq.3.18). The latter is obtained by post-processing the

load simulations. For the blade root fatigue, a Wöhler exponent m = 12 is used for the three

directions, flapwise, edgewise and torsion, as recommended by DNV-GL guidelines [96] for

glass fiber composites. The DWM [68] is used to compute the wind conditions at each wind

farm row.

In Eq.3.24, the selected input functions are mean wind speed U , turbulence σ, wind shear

α, turbine spacing S and wake angle ω. The following variable bounds have been selected

based on similar studies or derived from available data:

• Mean free wind speed from 4 to 25 m/s (10 min. average)

• 12 wind directions

• Ambient turbulence calculated from available site data

• Wind shear exponent from 0.05 to 0.2

• Spacing between turbines min. 5Dr, max. 25Dr (Dr = rotor diameter)

• Wake angle from -20 to +20 deg

The duration of the time series is 10 minutes and the simulations are performed using the

commercially available aeroelastic code HAWC2 [61]. For each row, 500 MC simulation cases

are set up, by random sampling the input variables from the joint PDF of the environmental

conditions. 12 turbulence seeds are considered for each case. Thus, the number of simulations
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per wind farm row is 6000. The polynomial order of Eq.3.24 is set to 6. The total number

of polynomials in Eq.3.24 depends on the dimension of the input space and the maximum

polynomial degree. For further details, the reader should refer to [95].

The indicators are then projected into cumulative values according to the integral in

Eq.3.27, where Llife is the numerical value of the indicator and the indexes 1 and 2 stands for

upper and lower value, as

Llife =
(∫ U2

U1

∫ σ2

σ1

∫ ϑ2

ϑ1
Li(U, σ, ϑ)mf(U, σ, ϑ) dU dσ dϑ

)1/m

(3.27)

In Eq.3.27, Li is the value of the indicator conditional to the environmental conditions, derived

through the surrogate model. The main environmental parameters considered are wind speed

U , wind direction ϑ and turbulence σ, which probability of occurrence is computed according

to the their joint distribution

f(U, σ, ϑ) = f(σ | U, ϑ)f(u | ϑ)f(ϑ). (3.28)

The resulting vector Llife over the wind farm is then normalized with respect to its maximum

value. Note that because of this normalization, it is not necessary to average Llife over the

representative number of cycles or duration of the entire time period considered. Furthermore,

due to insufficient amount of data, the turbulence is considered as a deterministic function of

the wind speed and wind direction while the wind shear is kept constant to α = 0.1, which is

normal for offshore sites. Thus, only Eq.3.22 is considered and Eq.3.27 reduces to

Llife =
(∫ U2

U1

∫ ϑ2

ϑ1
Li(U, ϑ)mf(U, ϑ) dU dϑ

)1/m

(3.29)

Typically, a validation of the PCE against the truth system should be included in the

analysis in order to demonstrate whether the fitting is able to predict fatigue loads in this case.

Thus, two steps are necessary to argue motivate why this is missing in this dissertation. One

step is the validation of the DWM. Although this is not treated in this application, there are

in literature several papers demonstrating how the DWM can accurately predict wake-induced

loads (see e.g. [68]). Furthermore, the work by Murcia and Dimitrov [97] shows how the

surrogate model is indeed good in predicting the output of the DWM model.

3.7 Results

By training the PCE functions in Eq.3.24, the mean friction and ADC turned out to have

a coefficient of determination (R-squared) less than 0.8 for every farm row, which indicates

an improper polynomial fit. Thus, these two outputs were discarded. Fig.3.19 shows the

R-squared for the blade root bending and torsional moments as function of the rows. An error

less than 3% is encountered, which is considered satisfactory.

Fig.3.20 displays the normalized blade root cumulative DELs. As expected, the edgewise

moment does not vary significantly within the wind farm, unlike flapwise and torsional, since

the edgewise moment is mostly driven by gravitational loads, rather than turbulence. In

particular, the torsional moment DEL shows greater variation than the flapwise. This variation

may be due to the simplified aeroelastic modeling of the blade torsional response, such as



61 3.7. Results

5 10 15

Row no.

0.96

0.97

0.98

0.99

1

R
-s

q
u
a
re

d

Edge

Flap

Torsional

Figure 3.19: Coefficients of determination for blade root bending moment DEL for the 3 blades. In
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Figure 3.20: Normalized cumulative DEL within the wind farm. Blade root flapwise, edgewise and
torsional bending moments averaged over the 3 blades.

not properly adjusted damping properties. However, the first order Sobol indexes of the

polynomial function (Eq.3.24), displayed in Fig.3.21, show that for the flapwise, the most

important variable is turbulence, while the torsional moment is also affected by wind shear,

turbine spacing and wake angle. This may induce larger variations, which are however not

investigated here. Each line in Fig.3.21 correspond to a wind farm row.
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Figure 3.21: Sobol indexes of the DEL polynomial regressors for blade root 1 flapwise bending moment
(left) and torsional moment (right) for all the wind farm rows.

It is important to notice that the input variables used to calculate the Sobol indexes are

correlated, and thus different results could be obtained bu using more accurate estimations

that take into account this correlation (see Ch.4).

Fig.3.22a shows the probability of the pitch alarm events. The following alarms were

selected from the alarm-log of the wind farm, which can be considered related to demanding

operation, thus to loads:

• Sludge pitch hydraulic station

• High pitch pressure

• Low pressure pitch-block

• Pitch hydraulic temperature too high

• Pitch hydraulic leakages

• Pitch deviations

• Pitch velocity errors

• Pitch errors

In total, circa 1000 alarms were recorded during the time frame analyzed. Fig.3.22 are

the load maps showing the normalized DEL of blade root flapwise bending and torsional

moments. From Eq.3.18 it can be noticed that the torsion is neither connected to friction nor

to possible malfunctions in the hydraulic and pitch systems and thus to any of the alarms

listed above, unlike the flapwise bending moment. In addition, the edgewise moment does

not show variation along the wind farm, as expected, since it is not driven by turbulence.

Thus these two channels are not displayed. In Fig.3.22a, interpolation is obtained by cubic

polynomials for graphical display.
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Figure 3.22: Normalized blade root flapwise DEL map and alarm event map of the selected pitch
malfunction.

Figure 3.23: Contour regions flapwise bending moment DEL greater than 0.95 and frequency of
occurrence of pitch alarms greater than 1% (red edges, white fill).

Fig.3.23 shows a contour plot of the failure areas with frequency of occurrence greater

than 1%, and fatigue loads greater than 0.95, from where it emerges that is unclear to define

patterns between them. The alarms occured over a period of 5 years, and their distribution

is somewhat uniform across the wind farm. Higher fatigue loads are more concentrated in

specific regions of the farm, which reflect the wake distribution.

3.8 Conclusions on the load maps

The flapwise bending moment direction can be in this case considered as a good indicator,

since it is related to the friction moment in the pitch bearing, and thus to the alarms selected,

and carries the variation due to wake effects across the wind farm, as shown from Fig.3.20.

The DEL is chosen as a scalar quantity in order to obtain the map, besides being a popular
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metric for assessing the cumulative load distribution in real practice. In this work, the flapwise

bending moment statistics could have been used as well.

Despite a not clear pattern between alarms and loads, from Fig.3.22 it can be inferred that

the alarms are more likely to happen in regions of higher cumulative DEL, greater than 0.95.

However, the pitch alarms seem to be uniformly spread around the farm and no correlation

can be effectively proven. The row experiencing the least number of alarms is the front row

with respect to the prevalent wind direction, being less affected by wakes, as expected. Some

unexplained anomalies can be seen in some turbines from Fig.3.22a, which experienced a very

high number of alarms. This could depend on the specific loading conditions, which may not

be necessarily correlated with an overall picture of the fatigue DEL maps, as well as serial

failures or manufacturing defects. The area with stronger wake effects is marked by higher

fatigue loads. In particular the 3rd raw from the east direction has also experienced pitch

malfunctions.

It can be concluded that in this case the load maps cannot be used as indicative picture

to understand the most critical turbines within the farm. However, more detailed analysis

would be necessary. For instance, from the operational report of the farm it turned out that

the turbines analyzed were heavily curtailed during the period considered for this study, and

this condition was not taken into account in the aeroelastic simulations. Introducing one

or two levels of curtailment will modify the load distribution across the wind farm, due to

varying operational parameters such as blade pitch angle and rotor speed, which in turn will

modify the wake produced by the turbines. A more specialized analysis could also include the

calculation of the cumulative loads, or other indicators, up to the time of occurrence of the

alarms, in order to include the temporal information. This was missing in the analysis, and

only cumulative normalised values were considered.

It is important to remark that the scope of this analysis is not to explain the occurrences of

shut down events as a direct consequence of excessive loads, but only to provide a qualitative

assessment to find out weather fatigue load maps, or any other indicator map, could suggest

what regions of the farm layout are more critical in terms of loads, as a consequence of wake

turbulence. In this case, fatigue loads was shown, but in practice more specific indicators can

be found. In general, however, fatigue loads are not the best indicators for the malfunctions

analyzed. The analysis should be continued with more informative quantities such as friction

torque and ADC, which have not been shown here due unsatisfactory the polynomial fit.



Chapter 4

Artificial intelligence in wind power

It’s no trick to get the answers when you
have all the data. The trick is to get the
answers when you only have half the
data and half that is wrong and you don’t
know which half.

W. Thomson

The aim of this chapter is to introduce the reader to the analytical concept around

predictive maintenance used in this thesis, starting from a discussion about intelligent systems

in the context of the 4th industrial revolution, mathematical background of machine learning

algorithms and performance metrics for predictive models.

4.1 A brief history of intelligence

The advent of machines taking over repeated human operations is a topic that persists since

the first industrial revolution. Now more than ever, this subject keeps inspiring curiosity to

further explore deeper functionalities of our brain. Most importantly however, is to understand

how biological intelligence has developed over time and to mark the key steps of what today

is referred to as AI.

Intelligence is a rather philosophical concept. The early ideas date back to ancient Greeks,

who established intelligence as a mean to ”rank” all living creatures. Their view was however

biased, since it advocated that some humans, specifically educated males, are naturally born

with a rational element that allows them to rule over the uncivilized remaining part of the

population, including women and animals. For example, Aristotele introduced the concept of

master and slave. Although this teaching remained untouched for centuries and represented

the foundation of Western philosophy and the base ground of logical thinking, the concept of

sovereignty and slavery also stimulated ideas of rulers to differentiate men from women from

animals, culture from culture, and even race from race, all according to a scale of superiority

based on intellectual skills. Sadly, this often resulted in catastrophic mistakes. Similar

conclusions to Aristotele’s were reached by Kant centuries later during the Enlightenment.

Thus, it can be argued that intelligence was originally deemed as a political tool employed to

define what an individual can or cannot do, rather than an inherent faculty common to all
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humans. Not far from the modern era, this inspired the idea of quantifying intelligence as any

other measurable quantity. An example first appeared in Britain in the early 19th century,

when written tests were introduced to evaluate the competences of young students in order to

address them in the most suitable scale of society [98].

The argument however made some turns few centuries ago. Perhaps the work published

by Charles Darwin on the origin of species provided clear scientific answers of how humans

can be differentiated from other living creatures. Darwin did not have an explicit opinion

on human evolution, but he indirectly claimed that there are actually no marked behavioral

differences with animals [99], except for an extraordinary intellectual capacity. However, the

process that led humans to acquire this superior intelligence and dominate over other species

is still an open question, seemingly rooted in complex genetic mutations occurred at some

point in history that favored brain growth, which specific origins are however still unexplained.

Clearly the discussion could trigger controversial political debates on use and misuse

of intelligence to measure human skills, and how this has driven decisions through history.

However, this is not the aim of the present work. The interested reader may consult various

documents on this subject. The way people perceive this concept nowadays is tremendously

different than what philosophers and thinkers argued centuries ago. The methodologies

adopted by contemporary institutions to asses the suitability of candidates is free from any

apriori classification or rank mentioned above, but purely based on testing individual aptitudes

in performing specific tasks. It remains however fascinating to run through the event line that

made human beings aware of their own abilities, which eventually resulted in important steps

ahead towards the establishment of equality principles, on behalf of of societal progress and

mutual respect.

A modern definition regards intelligence as a characteristic common to all living creatures.

It includes logical thinking, creativity, problem solving ability to think ahead, plan and

learn. Generally speaking intelligence is itself an ability to infer information from the

surrounding environment, preserve it and use it in outer contexts. Several different types of

intelligence are distinguished, e.g. musical, logical, emotional, linguistic, interpersonal and

so on. Furthermore, recent trends deem intelligence as something beyond human cognitive

abilities, and this perception helped differentiate biological from artificial forms of intelligence,

commonly referred to as AI. The latter are related to the experience of progressive information

technologies aimed at improving the quality of life. The advent of data mining has fueled the

transition to AI and it is expected that this process will lead the next step of societal change.

A historical analogy is the example of the early industrial revolutions started at the turn of

the 18th century. These in fact demonstrated how the invention of machines replacing manual

work brought in substantial benefits by enabling mass production and faster operations,

thanks to auxiliary machines running by burning coal to produce steam, a core element of the

early Western industrialization. Among these benefits however, there were also increase of

literacy, better working conditions and establishment of faster routes for international trades.

Similarly, some believe that the AI-driven revolution will provide people more time to engage

in more interesting intellectual subjects, by dissuading them from redundant and repetitive

work. Concerns related to empowering AI rather than being empowered by AI arise with the

fast-developing abilities of intelligent machines.

In modern societies, a wide range of institutions from private and government organizations,

aviation, navy, transportation, medicine, biotechnology and corporations exploit the potential

of fast and reliable AI tools to provide services. Most of these, are based on predictive analytic.
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4.2 Explanatory versus predictive power

In literature three types of statistical modeling are distinguished, respectively explanatory,

predictive and descriptive [100]. In particular, in this dissertation is of primary relevance to

clear the difference between explaining and predicting, as a fundamental knowledge for proper

statistical modeling. Interpretation refers to the model’s ability to find hidden patterns in data

to explain causal links between input and output. Prediction on the other hand has a different

objective, although the same model can be used for both purposes. The distinction is that

boosting the model towards prediction performance typically results in highly complex models,

which in turn are poorly interpretable, for obvious reasons. Moreover, some highly performing

predictive models are often regarded as black boxes, due to their uncontrolled training of

internal links. This may also explain why for interpretation purpose, usually simple linear

models are preferred, while complex algorithms such as artificial neural networks (ANN) are

mostly employed for prediction. It is evident that this distinction suggests the existence of a

trade-off between these two different purposes, since the model typically looses its explanatory

abilities when performance is prioritized. Thus, it is important that the practitioner is aware

of the inner difference between these two faces of the same coin. However, if the purpose of

the model is to predict, it should not matter whether it is a black box or a simple, interpretable

model, as long as it can be appropriately validated [101].

When moving the bar towards prediction performance the model may result in extremely

suited functions describing the relationship input-output. The outcome is a model with

too optimistic predictions, a problem commonly known as overfitting. When the model is

overfitted to the set of data used for training, it looses its generalization abilities and may

perform poorly when a new sample is presented to the model that was not present in the

training set. To give a honest description of the model performance, cross validation is adopted

to prevent overfitting [101, 102].

4.3 Learning paradigms

Machine learning algorithms discover patterns in data and recognize future observations

never seen by the them. Thus, their are known to have generalization abilities. Generalization

is of primary importance in machine learning, since training is usually performed based on a

limited number of observations of a given process. Indeed, the main distinction between learning

techniques resides in the type of training process employed to achieve these generalization

abilities, which can be:

• Unsupervised learning is when the structure of the dataset or similarity between

groups of data are identified without a target value. Examples are clustering, data

visualization or density estimation.

• Supervised learning is when the training process where examples of input and output

are presented to the algorithm, which models internal relationship by trying to minimize

an error. In probabilistic terms, supervised learning concerns the definition of the

conditional probability p(output | input). If the task is to recognize categorical classes,

the procedure is called classification. If the task is to recognize the behavior of

continuous variables, the procedure is called regression.
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There are also other types of paradigms, such as reinforcement learning, which is based

on training through a reward. The nature of this techniques is in between unsupervised

and supervised. A further distinction of learning techniques can be made in terms of their

mathematical nature, as:

• Parametric means that the analytical relationship between input and output is decided

apriori, which assumes specific forms based on prior knowledge. This also comprises the

statistical distribution of the output variables.

• Non-parametric means that the relationship between input and output is not known

apriori, but rather constructed based on observations.

The model structure being already fixed, parametric techniques may require less compu-

tational effort than the other. This distinction is valid for both regression and classification

problems.

4.4 Learning algorithms

This section describes the learning algorithms used throughout this part of the thesis.

Specific information and nomenclature are taken from [103]. Unless otherwise specified,

the mathematical description refers to N input vectors xn collected in a matrix X, where

n = 1, . . . N , and the dimensionality of the vectors x is D. Note that in the scientific papers

attached to this thesis, the nomenclature may differ, due to ease of interpretation. Further

reading is adviced in order to understand specific details of this work, which for the sake of

brevity have not been fully addressed.

4.4.1 Linear discriminant analysis

Linear discriminant analysis (LDA) was not explicitly used throughout this work. However,

it represents one the simplest classifier, and, on the author’s belief, it clearly illustrate the

concept of class separability. LDA is a dimensionality reduction technique, in that it reduces

D-dimensional vectors into scalar scores. Given a multi-class problem, the vector of linearly

transformed scores y is found as

y = WTx (4.1)

where W is a projection matrix, which is found as described in the following. The within

scatter is defined as

SW =
K∑
k=1

∑
n∈Ck

(xn − µk)T (xn − µk) (4.2)

where the mean class vectors with Nk are

µk = 1
Nk

∑
n∈Ck

xn (4.3)

where Nk is the number of observations for the class Ck and K the total number of classes.

By defining the total mean vector of th entire dataset
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µ = 1
N

N∑
n=1

xn (4.4)

the between scatter matrix is defined as

SB =
K∑
k=1

Nk(µk − µ)T (µk − µ) (4.5)

At this point, the matrix W is found to maximize the following function

J(W) = Tr{(WSWWT )−1(WSBWT )} (4.6)

Once the linear scores are obtained through Eq.4.1, the class membership probability can be

found through softmax transform

P (y = Cj | x) = exT Wj∑K
k=1 e

xT Wk
(4.7)
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Figure 4.1: Classification of a 2-dimensional normally distributed vector in 3 classes through LDA.

The linear surfaces are also called decision boundaries and their dimensionality is D−1. In

the example of Fig.4.1, the linear surfaces (straight lines) are clearly distinguished. The plot

is obtained through MC sampling of the vector x ∼ N(µ,Σ) where D = 2 where the 3 classes

have different Gaussian distributed mean vector µ and covariance matrix Σ corresponding

to the identity matrix. The data points are subsequently classified through the procedure

explained above. To perform successfully, classification requires a certain class separability.

For further details the reader should consult [103].

4.4.2 Näıve Bayes

The Näıve Bayes (NB) classifier is the simplest way to account for several input variables.

NB is based on the assumption that these variables are conditionally independent given their

membership class y. Thus, NB has the structure of a simplified BN. Although this hypothesis

is often not realistic in practical examples, the NB classifier nevertheless often performs

satisfactorily.
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Given a set of random N variables x, a vector of realizations x = {x1, . . . xD} and a binary

output variable y = {0, 1}, the joint probability of x conditional on y is computed from the

conditional independence assumption, as

P (x | y = Cj) =
∏
i

P (xi | y = Cj) (4.8)

where C denotes the class. Recalling the Bayes’ rule, the class-conditional probability can be

expressed as

P (y = Cj | x) = P (y = Cj)P (x | y = Cj)
P (x) (4.9)

The class-conditional PDFs can be described in some cases by parametric distributions or

non-parametric kernel densities. Given a variable, or covariate, of N observations generically

indicated with X = {x1 , x2 , . . . , xN}, corresponding to a column of the matrix X defined above,

the univariate kernel density estimate p̂(x) is expressed as

p̂(x) = 1
nh

n∑
i=1

k
(x− xi

h

)
(4.10)

where h is the bandwidth and k the kernel basis function.

4.4.3 Linear models

Following the notation used in [103], in general terms a regression model can be written in

the form of Eq.4.11, where y is a scalar output, x = {x1, . . . xD} is a vector of regressors, w
the vector of coefficients and φ are the basis functions, as

y(x,w) =
N∑
j=0

wjφj(x) (4.11)

A linear model (LM) is obtained by setting the basis function as linear, i.e. φ(x) = x,

which can be written explicitly as

y(x,w) = w0 + w1x1 + w2x2 + . . . wDxD. (4.12)

More precisely, the LM gives an estimate of the variable y given the predictors x, as

yi = w0 +
N∑
j=1

wjxij + ei (4.13)

where ei is a Gaussian distributed error. The parameters w are to be determined. Typically,

the least squares are used estimates of the parameters by minimizing the objective function

min
w

M∑
i=1

(
yi − w0 +

N∑
j=1

wjxij
)2

(4.14)

If N is large, Eq.4.14 admits infinite solutions, and the chances to overfit the model increase.

Furthermore, there are two other reasons why an alternative method would be preferable to

the least square estimate. The first is the prediction accuracy, which can be improved by
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shrinking the values of the regression coefficients, or setting the coefficient of unimportant

covariates to zero. The second reason is to interpret the model, i.e. to identify a subset of

predictors which best describes the output.

If the predictors are standardized to zero mean and unit variance, the coefficients w are

called standard regression coefficients. The least absolute square and shrinkage operator

(LASSO) allows the model regularization, by solving the following problem in the Lagrangian

form

min
w
||y− xTw||22 + λ||w||1 (4.15)

where the index 2 indicated the Euclidean norm, or L2 norm, 1 indicates the L1 norm and

λ ≥ 0 is the Lagrangian parameter. LASSO is closely related to the ridge regression, where the

L2 norm is used instead of L1. The LASSO regularization can be used for variable selection

and sensitivity analysis, in order to improve the model interpretability. For further details,

the reader should refer to [104]. In Article III a variable selection method is used to first

understand and regularize the model. This latter also prevents overfitting and multicollinearity.

A generalized linear model (LM) is a generalization of a linear regression model, where the

error distribution can be other than normal. Therefore, given its extension to model different

error distributions than normal, LM are suitable for regression and classification. In the first

type, the error is normally distributed.

4.4.4 Random forests

Random forests (RF) is a fully data-driven supervised learning technique, which can be

used for both classification and regression [105]. RF is based on the concept of bootstrapping

the training set, build multiple decision trees and then average their predictions, thus reducing

uncertainty and improving performance. For further reading about RF the reader should refer

e.g. to [106], from which this text has been rearranged. Given a set of input variables Xi

with i = 1, . . . p, the decision tree firsts divides the input space into a set of regions, Rj , with

j = 1, . . . J . Once the classes are built, a similar classification similar to LDA is performed for

new samples. The regions or boxes are built by minimizing the error squared, as

J∑
j=1

∑
i∈Rj

(yi − ŷRj )2 (4.16)

where ŷRj is the mean of the j-th box. To overcome the problem of heavy computations, the

recursive binary splitting, or greedy top-down approach is used. The input space is divided

into the regions {X | Xi < s} and {X | Xi ≥ s}, where s is a boundary value.

When RF is performed, several decision trees are created. Here, not only the training

dataset is randomly split by bootstrapping, but also the number of predictors is randomly

sampled, namely at each bootstrap a number m < p predictors is selected. This operation is

performed to eliminate the possibility that the presence of a strong predictor may out-stand

over all the remaining predictors. This will reduce the effect of multiple trainings because of

correlated resulting trees, and thus the variance will not reduce significantly. RF is said to

have decorrelation properties.
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4.4.5 Feed-forward artificial neural networks

Linear models can be easily extended to include nonlinearities, by plugging in higher

order polynomial terms. However, unless specific knowledge of the process being modeled is

available, the user does not know whether the degree suitably describes the process. This is

true extrinsically for predicting categorical data. In the context of supervised learning, neural

networks (NN) can be regarded as a non-parametric technique. Often they are addressed as

artificial, to distinguish them from the real biological neural network [107]. The mathematical

steps shown below refer to a single layer perceptron feed forward architecture.

As seen for LM, the relationship between input and output can be expressed as linear

combinations of linear or nonlinear basis functions φj(x), as

y(x,w) = f
(∑

j

wjφj(x)
)

(4.17)

where the operator f(·) is a nonlinear activation function. For example φ(x) = xp is a

polynomial basis function of order p. NN are a series of basic transformations starting from a

the first layer, which defines the following linear activations aj

aj =
∑
i

w
(1)
ji xi + w

(1)
j0 (4.18)

where j = 1, . . .M with M the maximum number of linear combinations and 1 is the layer

where the transformation occurs. The term wji are the network parameters while wj0 its

biases. The activations are then transformed using a nonlinear activation function, which

corresponds to the basis function φj in Eq.4.17, as

zj = h(aj) (4.19)

where the function h(·) is the hidden unit activation. Thus, the operation repeats for the

output layer as well indicated as (2), where the activation is referred to as output activation

function

ak =
∑
j

w
(2)
kj zj + w

(2)
k0 (4.20)

where k is the total number of outputs. Finally, the general expression of the NN can be

written as

yk(x,w) = σ
(∑

j

w
(2)
kj h

(∑
i

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0

)
(4.21)

where yk is the k-th output variable. It is important to notice that in Eq.4.21 it is

φ(x) = h
(∑

i

w
(1)
ji xi + w

(1)
j0

)
. (4.22)

Moreover, in Eq.4.21, the activation function σ is the non linear activation differs for regression

and classification models. For the first class, yk = ak, while for the second class, the output is

transformed into a probabilistic quantity through the sigmoid function, which for a binary

case is simply
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σa = 1
1 + e−a

(4.23)

for multiclass classification, the sofmtax transform of type Eq.4.7 is employed. Eq.eq:sigmoid

corresponds to the class membership probability.

Thus, training NN is a supervised mode means minimizing the sum of the error squared,

given a set of observations of the output on, with n = 1, . . . N the number of observations, as

E(w) = 1
2
∑
n

‖y(xn,w)− on‖2 (4.24)

To solve the optimization problem in Eq.4.24, gradient information is typically used, to

find local stationary points through the condition

∇E(w) = 0 (4.25)

Regardless the choice of the classification or regression model selected, cross validation is a

technique to avoid model overfitting.

4.5 Performance metrics

Although many regression and classification may adopt the same techniques, their per-

formance is measured in different ways, given the nature of the predicted output variable.

For the first type, the output is continuous, and typical measure such as the coefficient of

determination (R-squared) and root mean square error (RMSE) are used, defined as

R2 = 1− Var(ŷ − y)
Var(y) (4.26)

RMSE =
√

1
N

∑
i

(ŷ − y)2 (4.27)

where y are the real observed values, ŷ the predicted values and N the number of samples. A

more appropriate metric for binary classifiers is the ROC plot, which displays true positive

rate against false positive rate. The curve can be obtained through probabilistic classifiers,

namely those that output a probability of the predicted variable belonging to one of the two

classes. This is achieved by putting a threshold to the output probability, varying from 0 to 1,

and thus spanning the entire ROC space. The probability of detection (POD) and false alarm

rate (FAR), are defined as

POD = P (ŷ = 1 | y = 1)
FAR = 1− P (ŷ = 0 | y = 0)

(4.28)

Regardless the choice of the classification or regression model selected, the model perfor-

mance is evaluated by averaging several trained models. This is accomplished by randomly

splitting the entire dataset into a batch used for training the model and a hold-out for testing

left apart. The performance metric is then calculated on the testing hold-out. This operation

is known as cross validation [101]. Typically, 5 or 10 validations are enough to establish an
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unbiased estimate. Cross-validation prevents overfitting, since the model is tested several

times on different batches.

In Article II, a multi-training and multi-testing approach is used to quantify the spread

around the average ROC curve. This information should be included in reliability analyses as

prediction uncertainties, and it provides a way of comparison between different algorithms in

terms of reliability of the predictive system. The dataset is first split into k different folds

and the algorithm is manually trained k times, by leaving out every time a different batch

for testing (10%) and the remaining data for training (90%). An ROC curve is obtained for

each testing. The concept of the multi-testing approach is however similar to a bootstrapping,

and to some extent, it also provides an indication of overfitting, in case particular hold-outs

perform too high.

4.6 Sensitivity analysis

The general scope of a sensitivity study is to identify the importance of an input set of

variables with respect to an output variable, and this relationship a functional dependency,

which structure can be known a priori or derived from data. Saltelli et al. [108] define a

sensitivity analysis as the study of how uncertainty in the output of a model (numerical or

otherwise) can be apportioned to different sources of uncertainty in the model input. The

derivatives of a model, numerical or analytical, is a type of sensitivity which depends on the

particular point of the variable space considered, often referred to as local sensitivity.

In this thesis, a global measure of sensitivity is used, which accounts for the uncertainty in

the input variables. Thus, the question is, what happens to the variance of the output when

a specific input varies? Given a scalar function Y = f (X1 , . . .Xi), where Xi are considered

uniformly distributed and independent variables in the unit hypercube, the first order global

Sobol indexes measure the contribution of each input variable Xi to the output variance,

computed as

SXi = Var(EX∼i(Y | Xi))
Var(Y ) (4.29)

where Var(Y ) is the total output variance. Note that Eq.4.29 are always between 0 and

1. From the normalized input space, the Resemblant transformation is used to to map the

variables in the physical space, by taking into account their joint PDF. For further details refer

to [109]. The approach is called global because in Eq.4.29, the dependence on Xi disappears,

given the average over all possible values of Xi. Thus, these indexes measure the relative

importance of a variable on the output. However, Eq.4.29 is only valid under the assumption

of uncorrelated input variables. In case this condition is not fulfilled, the correlation should

be taken into account and the analytical expression of the indexes varies, along with the real

contribution of each variable.
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Condition-based maintenance

The person who insists on seeing with
perfect clearness before deciding, never
decides.

H.F. Amiel

This chapter explains the CBM approach used in this work, starting from a description of

data-driven technology, types of data available for wind turbine monitoring and some basic

notions of decision theory including decision and event trees in the context of predictive

maintenance.

5.1 Data-driven condition monitoring

For some applications, as condition monitoring or predictive maintenance of wind turbine

components, fully data-driven techniques seem to have gained a large popularity compared

to more traditional physics-based methods. Although mathematical models are usually very

appealing for their ability to describe a physical phenomenon through differential equations,

they also require knowledge about a time depended process. Numerical values of the model’s

parameters can be updated using evidence from the real world, so to decrease their uncertainty

and reach more accurate predictions. While this approach is particularly popular for some class

of problems, as for instance fatigue modelling [17], setting up a physical model for complex

systems such as operating WT machines is very hard and time consuming. The number of

variables into play is enormous and a complete formulation of the physical process can be

hardly achieved, often associated with high computational expense. The system’s state varies

over time-depended on operational conditions, environmental loads, climate and maintenance

actions. From the author’s experience it emerges that these considerations represent important

obstacles that have deterred wind energy practitioners from using highly complex models for

monitoring purposes. Although not easier to implement, statistical data-driven models are far

simpler to manage.

However, the problem was raised in other industries much earlier than wind energy. The

authors in [110] conclude that quantitative model based methods are often not applicable in

industrial applications due to the high dimensionality of the data, the system’s complexity

and nonlinearity, as also argued in [111]. For techniques relying on historical data instead, the
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problem is that typically no dataset with all faults is available that would allow to fully learn

the fault behavior. On the other hand, data sets with normal behavior are usually available.

In those cases data-driven monitoring can be achieved by exploiting the properties of a process

in normal operation, typically in supervised learning framework. This is also enabled by the

advent of advanced machine learning tools and the outbreak of the new industrial revolution.

Early applications of intelligent systems in maintenance programs were set-up by the British

airways, however more 30 years ago.

It can be concluded that maintenance management of wind farms belongs to this framework.

Clearly, extracting information from collected data to build statistical models seems an

approach well tailored for O&M purposes.

5.2 SCADA and vibration technology

Modern multi-MW wind turbines are equipped with SCADA and condition motoring

systems (CMS). The first type of system comprise sensors to record operational data such as

power output, rotational speed, pitch angles and various temperatures in different components.

SCADA systems were initially installed to provide operational data mainly to support control

activity of the turbine behaviour in variable speed pitch regulated machines. This is achieved

by pitching the blades or controlling the main shaft torque, depending on the power curve

region in pitch regulated machines. The second system is dedicated to measuring accelerations

or strains and oil particles, and it was initially installed for monitoring mechanical components

due to its already well established experience from other industries [13]. Vibration analysis

relies on the exaction of features sensitive to a large variety of damages. These features are

vibration RMS, kurtosis, impact frequencies wavelet-transform and natural frequencies, which

can be extracted through signal processing techniques such as FFT, Envelope and Cepstrum

analyses [10]. These techniques can handle typical issues in rotating equipment, such as signal

non-stationary and frequency variation as function of the rotational speed. However, most of

these quantities require a certain degree of human interpretation, which is not fully desirable

for automated procedure typical of machine learning applications. The sampling frequency of

CMS is typically in the order of kHz, while the SCADA is in the order of Hz but are commonly

stored as 10-minute average values.

Both systems record threshold-based alarms occurring when a specific parameter crosses

pre-defined thresholds, typically set by the component manufacturer based on design limits,

or by wind farm operators based on their experience.

Although SCADA and CMS have been historically installed separately for distinct purposes,

since few years their usefulness for monitoring has been under massive investigation, thanks to

the outbreak of machine intelligence [51]. Furthermore, at the moment a standard monitoring

system does not exist. Thus, an important step ahead in this area regards standardization

and merging of these two sources of information, in order to reduce the amount of data to be

stored and processed and to avoid dealing with different types of systems depending on the

turbine manufacturer. A detailed review of these techniques and a throughout discussion on

the possibilities of merging CMS and SCADA is provided in Article V.
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5.3 Decision theory

Despite important steps ahead taken in the area of monitoring WTs, some key questions

still need to be answered. AI-based systems in general can provide significantly improved and

informed maintenance interventions. However, as any other new technology it becomes crucial

for managers to assess the technical and economic risks against the benefit of implementing

it. In case of wind farms, this provides the business tools for helping making decisions, in

parallel with a fast growing market and large-scale deployment of offshore wind farms. In

practice, most wind energy operators are indeed often reluctant in applying new technologies

until their effectiveness is demonstrated in terms of costs and this article aims at providing

further steps in this direction.

Therefore, after analyzing data and building prediction models, how is the derived infor-

mation used for supporting decisions? Decision making is step subsequent to prediction. The

basic concepts of decision theory are reported in this section, with the primary scope of is to

provide an approach to quantify risks and benefits associated with implementing predictive

systems, in the context of WT failures.

The theoretical aspects rearranged here are documented in detail in [74, 112, 113]. Decision

analyses are employed for several different purposes, from feasibility studies, reassessment of

structural integrity, cost-benefit analyses, decommissioning and so on. Decision problems are

represented by decisions trees, when the system requires actions to be performed based on a

rule, or an event tree, which models the occurrence of a series of events originating from a

common event. The event tree lacks of decision nodes. A decision analysis is composed by

the following steps

• Identification of decisions and outcomes ϑ. An outcome can have multiple attributes,

which are associated to the risk of performing an action or taking a decision, and can

vary depending on the applications. Attributes can be for instance cost, net profit, loss

of life, lifetime, environmental impact and so on.

• Determination of the probability distribution f(ϑ) | a) conditional on the decision,

action or event a. This information is typically retrieved from data and it is possible to

update the distributions based on new inference.

• Definition of a utility function E(u), which maps the outcomes of the tree onto numbers.

• Computation of the total expected utility at each decision point as a function of the

parameters of the tree.

New inference can come from experimental test or new observations. Often, the role of

the decision analysis is also to quantify the benefit of an experimental test, and measure the

benefit of the new information gained. To answer this question, the Value of Information is

used.

With reference to Fig.5.1, the analysis of the tree concerns computing the expected utilities

of all possible decision alternatives. The optimal point is the one providing the maximum

expected utility. The optimal decision then, can be found as

aopt = max
a

E[u(a, ϑ) | a] (5.1)
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Figure 5.1: An example of decision tree with actions, parameters (or system state) and utilities.

where the expected utility if found by summing all over possible alternatives given a decision,

which in the discrete case can be expressed as

E[u(a, ϑ) | a] =
m∑
j=1

u(ϑj ,a)P (ϑj | a) (5.2)

The utility function can be used to make cost-optimizations with respect to the system

performance. In this thesis, only financial attributes are considered, but it is clear that

multi-attribute analyses are not uncommon. Decision trees can be represented graphically

through Bayesian networks. If a Bayesian network extended to include utility and decision

nodes, it becomes an influence diagram.

5.4 Failure prediction

It has been discussed in Ch.1 that preventive maintenance does not account for the daily-

to-daily variation of operational conditions. Thus, predictive maintenance is here deemed as a

more suitable policy, especially for monitoring major wind turbine components, which are the

main focus of this thesis.

Prediction, refers to the art of building models to predict yet unseen events. Predictive

maintenance is being shaped by data mining and applications of AI for the industrial business.

This process is well known as Big-data analysis. In the context of failure analysis, Big-data

is a terminology introduced in the recent years to indicate the set of tools and techniques

employed to mine data, eliminate repetitive data processing and extract information from

it, with the ultimate goal to monitoring large amount of operating machines and reduce

human interaction with these activities. The core of practicing Big-data lies in reducing to

the essential information what appears to be a load of signals. Thus, reducing the input

dimensionality also belongs to this world.

Recent research has focused on making predictive systems suitable for large scale applica-

tions. As discussed in [114], a condition monitoring system should be highly scalable, this

means that human interpretation should be reduced at minimum when large scaled. Fig.5.2

shows the general framework of failure prediction here adopted, based on a CBM approach.

In the scenario of a wind farm owner set about building data-driven models to predict and

understand failures throughout its fleet, the flow starts from the identification of critical
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malfunctions and decision of what type of predictive system to use. Note that this operation

is only possible after some years of operations, when

Normal behaviour 
modelling of damage 

sensitive features 

Main component 
failure 

Frequent 
Events/Failures 

Identification of 
critical malfunctions 

Tracking deterioration 

Prediction of specific 
events conditionally on 
SCADA and CMS data 

Regression 
models 

Classification
models 

Figure 5.2: Failure prediction using classification and regression techniques.

Two most common machine learning paradigms as explained in Ch.4 are considered,

namely regression and classification. These two approaches are exemplified through real

applications of failure prediction, based on the following steps

• Identification of critical failure modes

• Data preparation

• Training prediction algorithms

• Decision analysis

With reference to Fig.5.2, the first type of prediction system used is based on regression

models. The data-driven model is based on GLM described in Ch.4 to build a NBM of

damage sensitive features. In the example provided in Article III, the inner-ring main bearing

temperature is chosen to track the degradation of this component. The system is based on

building a normal behavior model of the temperature and measure the deviations over time.

These deviations are defined as

e = y − ŷ (5.3)

where y and ŷ are respectively the real measurement and the model prediction of the temper-

ature. Thus, in order to quantify the PFA, a statistical description of the model deviations is

needed. This is achieved by fitting a log-normal distribution to the signal. The Q-Q plot is

shown in Fig.5.3 for different levels of the signal filtered through a moving average, in order

to eliminate high frequency fluctuations. The plot shows the good agreement between the

standard quantiles and those of the log-normal distribution.

An alternative type of prediction system is based on classification of SCADA alarms, which

is based on the idea of predicting low-severity events to prevent severe events from happening.

These latter are for instance failures of major components or sub-assemblies. The method
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Figure 5.3: Q-Q plot of the log-normal distributed prediction residuals of the main bearing temperature
NBM.

is based on a conjecture that the failure space is a subspace of the event space. Events are

defined as normal shut-down due to SCADA alarms, which in the long run are indicative

of multifunction leading to failure. Thus, it is assumed that the early prediction of these

events prevents the main components from operating in critical conditions and void excessive

damage. Fig.5.4 exemplifies this concept visually.

Failures space 

Event space 

Failures space

Figure 5.4: Visual concept of event space and failure subspace.

With reference to Fig.5.4, the definition of event and failure employed in Article II is

based on recorded downtime associated to a certain shut-down event, as

• Donwntime ≤ 10 seconds = False alarm

• Donwntime ≥ 5 minutes = Event (E)

• Donwntime ≥ 10 days = Failure (F )

where with false alarm is intended a false in the SCADA alarm system, and should not be

confused with false alarms from the classifier, quantified through the PFA. Based on this

definition, the a description of the distribution of the SCADA parameters conditional on

an event f(X | E) and non-event f(X | Ē) is given. The distribution in normal conditions,
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corresponding to f(X | Ē), is obtained by down-sampling the pool of data in normal conditions,

this is to create a balanced dataset and avoid feeding the classifiers with unnecessary data,

resulting in high computational time. It is important to notice that performing down-sampling

must result in a satisfactory statistical representation of the PDF in normal behaviour, since

this generally depends on the number of samples used.

The efficiency of intervention introduced in Article II and used in Article III, is a parameter

that affects the probability of failure. If the early intervention is successful, the mechanical

component does not fail. Thus, inefficiency means unsuccessful intervention, which turns into

a residual probability of failure. In real applications, this parameter can be modelled through

a Binomial distribution. Given the random variable ξ ∈ [0, 1], the Binomial distribution

describes the probability of k successes in n trials, ξ ∼ B(n, p) expressed as

P (ξ = k) = n!
k!(n− k)!p

k(1− p)n−k (5.4)

In this case, n is the number of events and k is the number of successful interventions and p

the probability of success. Note that Eq.5.4 has a mean and variance, corresponding to

µ(ξ) = np (5.5)

σ2(ξ) = np(1− p). (5.6)

As explained in Ch.2, if n is sufficiently large, the Binomial distribution can be approximated

with a normal distribution, which is used in this work. This probability can be updated when

new information is available using Bayesian inference, by noting that the Beta distribution is

a prior for the Bernoulli distribution.

In Article II, the choice best configuration of the classifier to be adopted can be made

by quantifying how the efficiency at 4-hour should be to obtain the same utility of a system

trained with 1-hour lead time data. This comparison is given by assuming the respective

POD and PFA depending on the classifier adopted. The same comparison can be given in the

POD-ξ plot as in Fig.5.6, which displays the 4-hour efficiency and POD locus resulting in the

same utility of a 1-hour system. The FAR is in both cases fixed at 0.003 (10 min−1). This

plot can be further used by operators to calibrate their classifiers as function of efficiency and

POD.

In the analysis presented in Article II, the average values of the cost parameters as well as

performance of the predictive system are used. Thus, it may be further of interest to identify

how the uncertainty in different parameters affects the final outcome. This question can be

addressed by a sensitivity study on the net utility based on the variables listed in Tab.5.1 and

their respective uncertainty. A log-normal distribution is adopted for some variables in order

to have a positive range.

An arbitrary 5% uncertainty is assigned to P(E), P(F | E) and ξ, in order to show

their probabilistic impact on the model. The results in Fig.5.5 are generated using a global

sensitivity approach, by propagating the uncertainty of the input variables through the scalar

output function via Monte Carlo simulations, and thus computing global sensitivity indexes,

or first order Sobol indexes [115]. Given a scalar function Y = f (X1 , . . .XM ), these indexes

measure the contribution of each input variable Xj to the output variance as
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Table 5.1: Numerical quantities for the cost model and associated coefficient of variation (CoV). The
mean downtime was estimated from historical data (LN = lognormal, G = Gaussian, D =
deterministic).

Name Distribution µ CoV Description

Ta [h] LN 1 0.2 Time for intervention

Td [h] LN 617 0.55 Failure downtime

P̄a [MWh/h] G 0.97 0.2 Hourly mean production

Cr [e] G 25 · 104 0.05 Cost of replacement

Cl [e/h] LN 33 0.2 Cost of labour

Cel [e/MWh] G 100 0.2 Price of electricity

Nw [-] D 3 - Number of workers

P(E) [-] G 4.7 · 10−2 0.05 Probability of event

P(F | E) [-] G 6.9 · 10−3 0.05 Probability of failure

ξ [-] G 0.5 0.05 Efficiency

SXj = Var(EX∼j(Y | Xj))
Var(Y ) (5.7)

where Var(Y ) is the total output variance. Further details can be found in [109].
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Figure 5.5: First order Sobol indexes of the net utility for different FAR.

Fig.5.5 shows that the net utility is most sensitive to uncertainties in the time for inter-

vention, the probability of failure and the efficiency. As expected, the impact of Ta increases

with FAR. The uncertainty in the downtime due to failure does not seem to have a relevant

impact, as opposed to the hourly mean production loss P̄a. The sensitivity analysis shows

that the uncertainty in these values has a significant impact on the final result.



83 5.4. Failure prediction

0 0.2 0.4 0.6 0.8 1

POD

0

0.2

0.4

0.6

0.8

1

4
h

1h
 = 0.1

1h
 = 0.3

1h
 = 0.5

1h
 = 0.7

Figure 5.6: Expected utility as function of POD and efficiency of intervention.



Received 26 April 2016; Revised 6 June 2016; Accepted 6 June 2016
DOI: xxx/xxxx

ARTICLE TYPE
Predictive repair scheduling of wind turbine drive-traincomponents based on machine learning
L. Colone*1 | N. Dimitrov1 | D. Straub2
1Wind Energy Department, Technical
University of Denmark, Frederiksborgvej 399,
4000 Roskilde, Denmark

2Engineering Risk Analysis Group, Technical
University of Munich, Theresienstr. 90, 80333
Munich, Germany
Correspondence
*L. Colone Email: lcol@dtu.dk
Present Address
Technical University of Denmark,
Frederiksborgvej 399, 4000 Roskilde, Denmark

Wedevise amethodology to predict failures in wind turbine drive-train components, and quantify
its utility. The methodology consists of two main steps. The first step is the set-up of a predic-
tive model for shut-down events, which is able to raise an alarm in advance of the fault-induced
shut-down. The model is trained on data for shut down events retrieved from the alarm log of an
offshore wind farm. Here it is assumed that the timely prediction of low-severity events, typically
caused by abnormal component operation, allows for an intervention that can prevent prema-
ture component failures. The prediction models are based on statistical classification using only
supervisory control and data acquisition (SCADA) data. In the second step, the shut-down pre-
diction model is combined with a cost model, to provide an estimate of the benefits associated
with implementing the predictive maintenance system. This is achieved by computing the maxi-
mum net utility attainable as a function of the model performance and efficiency of intervention
carried out by the user. Results show that the system can be expected to be cost-effective under
specific conditions. A discussion about potential improvements of the approach is provided, along
with suggestions for further research in this area.
KEYWORDS:
Wind turbine failure, Predictivemaintenance, SCADA data analysis, ROC curve, Event tree, Utility
function.

1 INTRODUCTION
The cost of Operation and Maintenance (O&M) of wind power plants is having a significant effect on the levelized cost of energy (LCOE) 1,2. A key
challenge in O&M management is achieving a reliable prediction of mechanical failures. This could enable a better understanding of deterioration
mechanisms and provide benefits by allowing a sufficient lead time for making decisions. Early prediction of failures would be especially beneficial
for offshore wind farms, where remote location and harsh oceanic weather often impede their accessibility.

The rapid advancements of intelligent data management coupled with large volumes of data 3 have potential for improving maintenance activ-
ities on wind turbines (WTs), allowing for more informed and timely decisions. Maintenance based on real-time health assessment of mechanical
components is an alternative to more traditional preventive actions 4. This type of predictive policy is already well established in several industrial
fields, known as condition-based or predictive maintenance 5,6. Detailed analyses on historical O&M costs demonstrate that innovations in this
field together with effective offshore operational and logistic strategies can have a high impact in terms of reduction of the LCOE 1.

Modern multi-megawatt wind turbines are equipped with SCADA and vibration based condition monitoring systems, which generate valuable
data streams that can be exploited to support maintenance decisions. The analysis of these data received a growing interest in recent years, along
with the gain in popularity of data-driven techniques based on regressionmodels of damage-sensitive parameters. A review of thesemethodologies
is provided in e.g. 7,8. Here we focus on the use of statistical classification for optimizing repair activities in wind turbines.
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Statistical classification is commonly used for predictivemaintenance. In aerospace, Loyer et al. 9 usemachine learning algorithms and parametric

techniques for intelligent maintenance scheduling of jet engine sub-components. Cai et al. 10 use support vector machines and association rule
mining for fault diagnosis of marine diesel engines. In the area of fault prediction for WTs, Bach et al. 11 implement supervised deep convolutional
neural networks to successfully classify acceleration spectral data to detect faults in WT bearings and helical gear-boxes. Their algorithms predict
failures long in advance, in the order of several months. In the same work, receiver operator characteristic (ROC) curves are used to quantify the
performance of binary classifiers. Another recent study on WTs by Koukura et al. 12, implements decision trees to classify vibration features of
faulty WT gears.

Besides the above listed examples applied to real failures, the prediction of warnings is regarded as an alternative monitoring approach (Leahy
et al. 13). Since mechanical failures are generally associated with multivariate processes, which can be treated via a sensor data-fusion 14, the idea
of the present study is to capture the information contained in the full set of SCADA data available close to an observed fault-induced event, in
order to predict future occurrences of the same type of event. A fault-induced event is defined as an occurrence that leads to a complete turbine
shut-down. The fault-induced events considered in this study will be simply referred to as events.

Overall, a significant amount of research has been carried out in the area of monitoring WT components, mainly on improving the performance
of prediction models. However, limited effort has been devoted to understanding whether their online implementation can produce cost-effective
output, which is the main question of this study. This assessment can be achieved by means of decision analysis tools, which are here used in
combination with intelligent condition monitoring. An example of this applications is provided by Colone et al. 15 for normal behaviour models of
main mechanical components.

The procedure consists of two main steps: first, a classification technique is derived for early prediction of events, and second, a cost analysis is
proposed aimed at demonstrating the potential economic benefits of implementing the predictive maintenance system. The second step involves
investigating the optimal configuration of the classifier as a function of performance and efficiency of intervention carried out by the user in case
of an alarm triggered by the trained classifier. The problem is similar to other risk engineering applications, 16,17, from which the present approach
has drawn inspiration. The main goal of this study is the understanding how available WT data could be used to prevent the occurrence of critical
sub-system failures of WTs, along with providing the tools for an economic assessment of the system performance.

The article is organized as follows. Section 2 explains the background and motivation of the work. The methodology section introduces the
procedure starting from a description of the variation of the dataset near an event, assumptions, data processing and cost analysis. The latter is
based on a decision tree model where ROC curves are used as input performance metric. Results are presented in terms of the maximum net utility
obtained. The final section provides a discussion about how operational conditions may increase the risk of failures along with improvements to
be addressed in future research.

2 BACKGROUND AND PROBLEM DEFINITION
Wind farm operators and owners have to deal with different types of failures, depending on the installed capacity of the wind farm, turbine
size, site specific environmental conditions, component manufacturer and other factors 18. Failure of main mechanical components such as e.g.
gearbox, main bearing and generator typically lead to significant repair or replacement time. For this problem, data-driven procedures already exist,
to track changes in damage-sensitive features based on regression techniques, e.g. normal behaviour modelling 19. These techniques have been
used successful for several failure modes 20. An additional source of information present in the SCADA data are the component and turbine status
alarms, which are here reffered to as events. The occurrence of events results in a shut-down due to certain parameters reaching their operational
limit, which is typically set based on the operator’s experience, by the component manufacturer or based on other considerations. Although these
events are not necessarily severe in terms of downtime and maintenance action, their repeated occurrence in time anticipates, or can be related
to, more important failures of major components.

A conjecture used in this study is that the failure space is a subset of the event space, i.e. every failure is preceded by a series of events, and
that the timely prediction of these events may help prevent the occurrence of important failures. This means that valuable information is contained
in the warning records, which are more numerous than the failure records and thus more suitable for classification and other machine learning
techiques. Before model training, a preliminary analysis on the variation of the SCADA data, by comparing their distribution conditionally to an
alarm, can provide a first insight into the usefulness of the classification approach as well as a physical interpretation of the operational conditions
that led to the issuing of the alarm.

The term alarm in the context of the decision analysis presented below is referred to as the early prediction of an event based on the classification
technique developed in this study. This prediction happens by training the classifier with data preceding the occurrence of the shut-down. The
shut-down and a potential corrective intervention are associated with a certain downtime, dependent on the damage severity. Thus, the definition
of failure is based on the duration of the downtime, as will be clarified in the following.
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3 DATA DESCRIPTION
The data used for the numerical investigation were collected from a large offshore wind farm comprising circa 100 turbines, over a period of 5
years. This period corresponds approximately to the entire operational life of the farm up to the time of the study. The SCADA dataset consists
of 48 tags containing 10-minute average records. The data were filtered to select relevant operational conditions by deleting periods of inactivity
corresponding to negative and zero active power as well as recording errors. The wind speed is recorded by nacelle anemometers placed on each
turbine.

The warning system of the WTs under consideration is based on thresholds set on specific control parameters. Warnings are retrieved from
the alarm-log of the wind farm, which was also available for the present study. For the type of system installed, the selected warnings can be
considered as indicators of abnormalities in main components. When a parameter reaches its design threshold, the component may experience
higher degree of deterioration if the turbine keeps operating in these critical conditions. Events related to main component malfunctions, such
as gearbox, generator and generator bearings, were considered. More specifically, the description of the events identified as critical include high
gear-oil temperature, gear-oil level too high or too low, unstable gear-oil pressure, low gear water level, high generator bearing temperature, high
generator slip-ring temperature, and generator water temperature too high. The recorded events are categorized in Tab.1 in terms of associated
and maintenance action performed. In the absence of historical information on the type of maintenance action performed, the latter has been
deduced from the associated downtime.

TABLE 1 Number of events categorised according to the associated downtime.
Downtime Number of events Category
≥ 5 min 1910 Automatic restart
≥ 1 day 90 Manual restart
≥ 3 days 28 Minor repair
≥ 10 days 14 Major replacement

Events associated with a downtime greater than 10 days are defined as failures, where it is assumed that a major replacement of at least one
sub-component among the ones analysed was performed in practice. Similar considerations were made in 21.

4 METHODOLOGY
We develop a methodology to predict event data based on statistical classification, and derive the optimal configuration of the classifier based on
a decision analysis. Statistical classification is a supervised learning technique, which uses a function to map a set of instances x ∈ X onto one
of the class labels y ∈ {0, 1, . . .K}, where K is the total number of classes and X the feature space. As opposed to hard classifiers based on
optimal decision rules, probabilistic classifiers explicitly produce a continuous class membership probability of the instance P(y = j | x). In binary
classification the class vector becomes y ∈ {0, 1}, where y = 0 and y = 1 here indicate respectively a normal condition and an event. In the
present study, two types of classifiers are used: a Naïve Bayes (NB) classifier, and a Neural Network (NN). The NB classifier is conceptually easy
and computationally inexpensive, even for a large number of predictors. NN classifiers require more efforts to set up, but are versatile and can
provide good performance in a wide range of applications. The theoretical background on classification briefly summarized here can be found in
more details in e.g. 22,23,24.

In this section, k ∈ {1 . . .K} is used for indexing the class number, i ∈ {1 . . .N} is used for indexing the observation where N is the total
number of observations per feature, j ∈ {1 . . .M} is used for indexing the feature number, where M is the total number of features.

4.1 Class distributions
In general, the performance of a classifier depends on the discriminatory power between the classes, which can be quantified by computing the
statistical difference between two conditional probability density functions (PDFs) of the SCADA parameter, conditional on normal condition and
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on the occurrence of an event. This measure is here chosen as the relative entropy between the two PDFs, the Kullback-Leibler divergence (KLD) 25.
The two conditional distributions are s(x) := p(X | y = 1) and q(x) := p(X | y = 0) estimated by Eq.4, and the KLD is

KLD(s || q) =

∞∫

−∞

s(x) log
( s(x)

q(x)

)
dx. (1)

Other distance measures could be also used such as density overlap or in case of normally distributed variables the Fisher’s ratio, as in 26. The KLD
does not only account for the class overlap, but also the different shape of the distributions compared.

4.2 Kernel-based Naïve Bayes classifier
A simple way to take into account multiple input variables is to assume that they are conditionally independent given their membership class y ,
which is the main assumption behind the NB classifier. Although this hypothesis is obviously not fulfilled in practice, the NB classifier nevertheless
often performs satisfactorily. A sketch of the NB network is displayed Fig.1. From the conditional independence assumption, the joint probability
of x conditional on y is computed as

P (x | y = k)
M∏

j=1

P (xj | y = k) (2)
Recalling Bayes’ rule, the class-conditional probability can be expressed as

P (y = k | x) =
P (y = k)P (x | y = k)

P (x)
(3)

y

X1 X2 X3 XM

FIGURE 1 A Naïve Bayes’ network. The features are conditionally independent given the class.

In Eq.2 and 3, x = {x1 , x2 , . . . , xj , . . . xM } is the instance feature vector. The class-conditional PDFs can be described in some cases by
parametric distributions. However, when data do not respect such condition, non-parametric kernel densities should be employed 27. Given a
feature j of N observations X = {xj1 , xj2 , . . . , xji , . . . xN }, its univariate kernel density estimate p̂(x) can be expressed as

p̂(x) =
1

Nh

N∑

i=1

ϕ
(xj − xji

h

) (4)
where ϕ(·) is the kernel base function taken here as Gaussian 23, and h the bandwidth parameter selected according to 28. The NB classifier directly
computes a class membership probability.

4.3 Neural network classifier
The high flexibility of NN is in their ability to model nonlinear complex relationships between input and output, categorical or continuous. NN is
here used for prediction purposes. A single hidden layer architecture is used, wherein the number of hidden nodes is set as the average number
between input and output nodes. This choice, which is common in NN-based machine learning 24, is based on testing different configurations and
engineering judgment. Fig.2 shows the structure of the network adopted.
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X1 X2 X3 XM

y

FIGURE 2 A Neural network configuration for binary classification with one input layer, one hidden layer and one binary output layer.

The probabilistic output of the network is obtained in this case by a logistic sigmoid activation function on the binary output layer 22,29. The
logistic function σ(α) is a nonlinear transformation of the activations α, Eq.5:

σ(α) =
1

1 + e−α
(5)

The resulting output of the two-layer network can be interpreted as a class membership probability, expressed as

P (y = k | x) = σ(wT
1 tanh(wT

0 x + b0) + b1) (6)
where w are the network’s weights, x the instance feature vector and b are constant vectors. Note that Eq.6 can be interpreted as the class
membership probability P(y = 1 | x), where P(y = 0 | x) = 1−P(y = 1 | x) 22. A multilayer feed-forward NN algorithm for binary classification
is used.

Training a network consists ofminimizing the error function and estimating the parametersw andb. Note that by definition the classmembership
probability is given by a Bernoulli distribution 22, as

p(y | w,x) = ŷ(w,x)y(1− ŷ(w,x))1−y . (7)
Thus, for classification, a cross-entropy error function is employed, Eq.8.

E(w) = −
N∑

i=1

(
yi ln(ŷi(w,x)) + (1− yi) ln(1− ŷi(w,x))

) (8)
The trainig optimization problem is solved by backpropagation, using the deep learning tools described in 30.

4.4 Training process
The training process is sketched in the flow chart of Fig.3. The data are first filtered and normalized to zero mean and unit variance. Afterwards,
normal and event records in the form of class labels defined in the previous sections are synchronized with SCADA data. The classifiers are trained
using data points picked before the real event record, to understand whether it is possible to obtain an earlier prediction of the event. Two time
lags are chosen, 1 hour and 4 hours. These time lags will be referred to as lead times in the remainder of the paper. The lead time is introduced to
understand whether the SCADA dataset manifests a certain degree of variation earlier than the actual adverse event, which could be exploited to
issue a timely warning. These specific values are assumed to be sufficient for the component to avoid excessive damage, by stopping the turbine
earlier than the actual shut-down and perform an online intervention. Whether this assumption is true in real life cannot be retrieved from the
information available for the present study. By proceeding in this way, it is important to make sure that consecutive events occur at intervals greater
than the selected lead times.

Since normal operation observations outnumber event data, random down-sampling without replacement is applied to reduce the normal
operation pool of data from approximately 30 million to 1 million data points. The PDFs of the predictors are compared before and after down-
sampling, to verify that this operation does not introduce any loss of information. Another reason to apply down-sampling at this stage is to improve
computational efficiency during training and to allow for a faster data handling while retaining the statistical information of the complete dataset.
Data falling into the 98th percent confidence interval of their Mahalanobis squared distance D2 31, are considered as normal behaviour data (Eq.9).
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FIGURE 3 Summary of the SCADA processing flow from the database to training and testing.

A similar approach for selection of data in normal operation was used in 32. This filter helps to remove outliers as well as other fault-induced
observations not considered in this study.

D2 = (x− µx)Σ−1
xx (x− µx) (9)

In Eq.9, µx is the mean of the observation vector and Σxx the correlation matrix of the dataset. The entire dataset is then randomly shuffled, to
redistribute the class labels uniformly within the dataset. This is equivalent to assuming that for training the classifiers, events are independent
of each other. In the records it was found that consecutive events are more likely to happen than a single event within days, weeks or months
from each other. Therefore, a more accurate modelling would require to take into account the correlation in time of these events. However, this
would imply the modelling of the conditional probability of consecutive events, which would require a greater amount of observations. The lack of
extensive event data thus motivates the independence assumption.

The data points are picked before shuffling, since the latter breaks the chronological order of the data. The dataset is split into 90% for training
the model and 10% for blind testing. This operation is repeated 10 times where the two batches of 90% training and 10% test data are randomly
selected. At this step, random shuffling ensures that the number of event data in the testing dataset is comparable for each holdout, to avoid
misinterpretations due to the different number of events. Further down-sampling to normal data is applied in order to rebalance the classes to a
ratio 20% of y = 1 to 80% of y = 0, 29,33. This ratio is specifically chosen to be able to explore the sensitivity of the classifier in the low false
alarm rate (FAR) region. Likewise, a test on the PDF before and after down-sampling was performed. This procedure generates an ROC curve for
each holdout, with the aim to provide an estimate of the uncertainty in the prediction and be able to assess the performance of different models.
A 5-fold cross validation (CV) is applied during model training to prevent overfitting.
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4.5 Performance measures
ROC curves are used to measure the performance of the algorithms, which is a suitable metric for binary classification 34. It is obtained by varying
the threshold to the predicted class posterior probabilities. The following statistical performance measures can be calculated

sensitivity = P (ŷ = 1 | y = 1) = POD

specificity = P (ŷ = 0 | y = 0) = 1− FAR
(10)

where the variable ŷ is the estimated class label, the quantity 1 − specificity is the false alarm rate (FAR) and sensitivity corresponds to the
probability of detection (POD). The ROC curve displays the POD against FAR. A scalar quantity used to summarise the information contained in
an ROC plot is the area under the curve (AUC), which corresponds to the probability of ranking randomly chosen positive instances higher than
negative ones. The AUC of a random classifier is 0.5, resulting from a straight line in the ROC plot. Any useful classifier must perform higher than
this value. However, the AUC alone is not a sufficient summary of performance. In fact, a classifier with a high AUCmay still perform poorly in some
regions of interest for specific cases. The selection of the optimal parameters of the ROC curve and thus the threshold value is made according to
a cost analysis by specifying the utility as function of the performance metrics, as presented in the following.

4.6 Decision analysis
The scope of the decision analysis is to devise a criterion for deciding on whether or not to use the SCADA-based predictive system and to identify
the optimal configuration of the classification algorithm. This is achieved by a simple cost model based on an event tree. We denote with E the
events and with F the event of a failure. The occurrence of an event would eventually trigger a shut-down by the default warning system, and the
role of the classifier is to issue an early prediction of this event. This early alarm is indicated as A. The analysis is performed on an hourly basis.
NE is the observed number of events corresponding to categories 1 to 4 in Tab.1, NF is the observed number of failure events corresponding to
category 4 in Tab.1 andNy = 5 is the number of operational years for which data are available.P(E) and the conditionalP(F | E) are estimated as

P (E) ≈ NE

8760 Ny
, P (F | E) ≈ NF

NE
, (11)

where 8760 is the number of hours in a year. The event tree illustrated in Fig.4 explores the entire space of possible sequences resulting from
the occurrence of a warning and models the action to reduce or mitigate the consequences of the initiating event. Fig.4 also shows the influence
diagram associated to the event tree, which explains the relationships between alarm A, event E and failure F as well as the associated costs. The
event tree assumes a fixed decision policy, which consists of stopping the turbine and performing an intervention whenever the system raises an
alarm and the user performs an intervention. No action is performed in case of no alarm Ā.
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FIGURE 4 Influence diagram and event tree for the risk analysis of the classification system.
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When the turbine stops, the operator proceeds to check if the operational data can provide evidence of malfunction, resulting in a positive or

negative occurrence of the event. A utility function u() is associated with each outcome of the tree. The only attribute considered in this study
are economic losses. Therefore, with reference to Fig.4, the utilities are

u(A,E, F ) = CF + CI

u(A,E, F̄ ) = CI

u(A, Ē, F̄ ) = CI

u(A, Ē, F ) = CF + CI

u(Ā, E, F ) = CF

u(Ā, E, F̄ ) = 0

u(Ā, Ē, F ) = CF

u(Ā, Ē, F̄ ) = 0

(12)

The intervention cost CI and failure costs CF in Eq.12 are estimated as

CI = Nw Ta Cl + Ta P̄a Cel

CF = Cr + TD P̄a Cel

(13)
The cost of failure is equal to the replacements costs Cr plus the power loss due to downtime, where P̄a is the average power loss, Cel the price
of electricity and TD the downtime due to failure. Ta is the time for an online analysis after an alarm when the turbine is stopped, Cl the price of
labour and Nw the total number of workers employed in the analysis. More accurate analyses could also include the material cost for the online
intervention, if any. Numerical values and description of the quantities in Eq.13 are reported in Tab.3 in the result section.

The discrete branch probabilities are computed according to the conditional probability rule, as expressed in Eq.14 for one of the branches.

P (A ∩ E ∩ F ) = P (F | E ∩A) P (E | A) P (A) (14)
A failure is a subset of the event space, hence P(F | Ē) = 0. It follows that P(A ∩ Ē ∩ F ) = 0 and P(Ā ∩ Ē ∩ F ) = 0. The potential outcomes
(success or failure) of the mitigation action are modelled by introducing an efficiency function. The probability of failure conditional on E and the
alarm A, which systematically implies an intervention (see Fig.4), are expressed as a function of the efficiency as

P (F | E ∩A) = P (F | E ∩ Ā) (1− ξ) (15)
where the efficiency ξ ∈ [0, 1] reduces the probability of failure linearly from 0 to 1. For ξ = 1, the probability of failure after intervention is 0. For
ξ = 0, the probability of failure stays P(F | E ∩ Ā). The remaining conditional probabilities in Eq.14 can be derived from Bayes’ rule and expressed
as a function of the POD and FAR, as

P (E | A) =
P (A | E) P (E)

P (A)
= POD

P (E)

P (A)
(16)

P (E | Ā) =
P (Ā | E) P (E)

P (Ā)
= (1− POD)

P (E)

P (Ā)
(17)

and likewise

P (Ē | A) = PFA
(1− P (E))

P (A)
(18)

where P(Ē) = 1 − P(E), P(F̄ ) = 1 − P(F ) and the probability of false alarm (PFA) is approximated by FAR times 1 hour. For a discrete event
probability tree, the expected utility is found as the sum of the utilities times the probability of occurrence of the respective branches over all
possible consequences. The expected utility given the adoption of the monitoring system can be thus obtained, Eq.19.

E[U | system] = P (F | E)(1− ξ)P (E)POD(CF + CI) +
[
1− P (F | E)(1− ξ)

]
P (E)POD(CF + CI)+

+ (1− P (E))PFACI + P (F | E)P (E)(1− POD)CF =

= P (F | E)P (E)POD(CIξ + CF ) + (1− P (E))PFACI + P (F | E)P (E)CF

(19)

Not implementing the classifier has also an associated utility, which corresponds to the positive cost of failure times its probability of occurrence,
when no intervention is performed, expressed by Eq.20.

E[U | no system] = P (F | E)P (E)CF (20)
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Therefore, the net utility is defined as the difference between Eq.19 and Eq.20, as

Unet = E[U | system]− E[U | no system] (21)
Note that Eq.21 is linear in the efficiency. Since the net utility in Eq.21 can be expressed as function of POD and FAR, the maximum net utility
attainable from the classifier, for a given efficiency ξ can be obtained as

Unet,max(ξ) = max
POD,FAR∈ROC

E[U(POD,FAR, ξ)] (22)
where the maximization is over all pairs of POD and FAR as defined by the ROC curve.

5 RESULTS
The KLD plot of the SCADA dataset in Fig.5 reflects the changes in the environmental and operational parameters close to an event. The larger
the KLD, the larger the relative change in the distribution with the occurrence of the event. Fig.5 shows that the PDFs of many parameters before
the event differ from the respective normal operation PDFs. This behavior is observed for the 10-minute mean values but also for the standard
deviations of some environmental parameters. The KLD of the dataset provides an initial assessment of the data and helps understanding whether
this information can be used for classification.
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FIGURE 5 Kullback-Leibler distance (KLD between distributions in normal conditions and prior to an event, with different lead times.)

The wind speed statistics close to an event, as shown in Fig.6 and 7a, manifest an increase compared to normal operation. This indicates that
these events are associated with operational conditions on average more demanding than normal operation, driven by stronger inflow conditions.
The results are in agreement with findings of recent studies 18, where the impact of environmental conditions such as relative humidity, turbulence
and temperature variations was found to contribute to the overall turbine reliability, especially of main components such as gearboxes. However,
the dataset used in the present study did not comprise other environmental parameters than ambient temperature and wind speed. Note that Fig.6
to 8 refer to normalized quantities with zero mean and unit variance, for confidentiality reasons.

From the comparison between the PDFs it can be inferred that the events are more likely to occur around the rated wind speed, and the wind
speed statistics such as minimum, maximum and standard deviation are also higher than average. Turbulence carries the contribution of free stream
and farm wakes. Moreover, the picture of the operational conditions of the faulty turbines may suggest that these events mostly occur during
power curtailment as inferred for instance by the distributions of the full load hour counter and active power in Fig.7c. Given the wind speed
conditions shown in Fig.6a, the turbines should be expected to operate in the design full load region.

Other environmental factors such as the mean ambient temperature do not seem to show significant differences. Internal parameters such
as specific components and oil temperatures show higher mean value, see Fig.8, which confirms that the turbines are operating under stressed
conditions. This also plays a role in the performance of the prediction algorithms.
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FIGURE 6 Distributions of mean wind speed, maximum and minimum in normal operation 4 hours before an event. Quantities are normalised to
zero mean and unit variance in normal conditions. The KLDs are respectively 0.28, 0.24, 0.28 from left to right.
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FIGURE 7 Distributions of turbulence, active power and full load counter in normal operation 4 hours before an event. Quantities are normalised
to zero mean and unit variance in normal conditions. The KLDs are respectively 0.23, 0.09, 0.19 from left to right.

The next analysis concerns the training of the classifiers. In terms of predictions, some features could be removed out because of redundancy.
However, variable selection and model reduction were not performed here, since the computational performance is not an objective of the present
study, but rather a comparison between techniques and demonstration of a cost analysis. Fig.9,10 highlight important differences in the classifiers
in terms of performance. It is clear from Fig.5 that 4 hours before an event the SCADA parameters show less variation from the normal conditions
than 1 hour before an event, resulting in poorer performance of both algorithms for this lead time. Furthermore, the ROC curves show that NN is
able to provide less uncertain predictions than NB. This consideration is useful in practice, since it allows an evaluation of the confidence level of
the prediction model adopted. Tab.2 is a summary of the performance measures, where AUC is determined from the average ROC curve computed
from testing data of each of the 10 hold-outs.

TABLE 2 Performance table of the different classifiers at different lead times.
Lead time AUC
1 hrs NN 0.947
4 hrs NN 0.867
1 hrs NB 0.854
4 hrs NB 0.771
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FIGURE 8Distributions of high speed bearing, gear oil and generator bearing temperatures in normal operation 4 hours before an event. Quantities
are normalised to zero mean and unit variance in normal conditions. The KLDs are respectively 0.18, 0.25, 0.33 from left to right.
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FIGURE 9 Cross validated and average ROC curves for obtained by using 1 hour shifted back in time data for NN (left) and NB (right).

Tab.3 lists the numerical parameters used in the cost model. The downtime Td is obtained directly from data. It is assumed that the lost power
production corresponds to the mean production per turbine per hour P̄a , estimated by the available annual power production data of a reference
year. Note that this is an actual value, which is lower than the one obtained by estimating the theoretical annual energy production per turbine.
The price of electricity Cel is taken from 35. The cost of replacement Cr is taken as the average cost of replacing a major drive-train component
based on literature 35, 21 and expert knowledge. This covers material costs, crew and vessel required. For analysing the alarms, a crew of 3 workers
is considered and the cost per hour taken as the average European labour cost in 2017.

The average performance of the classifiers is displayed along with the contour lines of the net utility in Fig.11, obtained by using the mean values
of the random variables defined in Tab.3, except for the efficiency ξ, which is in this case set equal to 1. The dots represent the optimal points. The
log-scale is used to highlight the low FAR intervals. The sensitivity of the classifier in these intervals depends on the number of observations per
class label, as well as the algorithm employed. It is important to notice that these values, which are assumed constant in this study, should vary
with the lead time.

NN clearly outperforms NB. Besides the fact that the AUC values in Tab.2 differ by 10% between the two classifiers, important differences in
terms of performance can be observed in the low FAR region, as seen from Fig.11. This is the region where the highest utility is achieved. Therefore,
the maximum net utility along the performance curves is displayed in Fig.12a against the efficiency of intervention.

Fig.12a shows Unet,max (ξ); for efficiencies greater than 0.3 all investigated classifiers provide positive net utility. The maximum net utility
increases with the efficiency of intervention. The optimal configuration of the online classifier concerns selecting a threshold from which POD and
FAR can be computed, resulting in a specific point on the curve.
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FIGURE 10 Cross validated and average ROC curves for obtained by using 4 hours shifted back in time data for NN (left) and NB (right).

TABLE 3 Numerical quantities for the cost model and associated coefficient of variation (CoV). The mean downtime was estimated from historical
data (LN = lognormal, G = Gaussian, D = deterministic).

Name Value Description
Ta [h] 1 Time for intervention
Td [h] 617 Failure downtime
P̄a [MWh/h] 0.97 Hourly mean production
Cr [e] 25 · 104 Cost of replacement
Cl [e/h] 33 Cost of labour
Cel [e/MWh] 100 Price of electricity
Nw [-] 3 Number of workers
P(E) [-] 4.7 · 10−2 Probability of event
P(F | E) [-] 6.9 · 10−3 Probability of failure
ξ [-] 0.5 Efficiency

Fig.12b makes a comparison in terms of performance at the two different lead times. The figure shows an estimate of the efficiency of a 4h
lead time system which would be required to match the utility of a 1h lead time system. The computation is done for a fixed FAR of 0.003 (10
min−1) and its corresponding POD, computed by the ROC curves respectively for the NN and NB classifiers. The plot shows that for the NN, higher
efficiency is required for the 4h lead time system to achieve the same utility of a 1h system. Moreover, if 60% efficiency can be achieved with the
a 1h system, the 4h system becomes obsolete, as it will require an efficiency of more than 1 to achieve the same utility. The higher performance
of NN over NB can be inferred by noting that a lower efficiency at 1h would be required given the same level of the efficiency at 4h.

6 DISCUSSION
We presented a methodology for assessing the economic viability of using monitoring data for predictive maintenance and repair. It also facilitates
the optimization of the applied machine learning algorithms and the threshold values utilized to decide on repair actions. While the employed
decision model is simple, it is deemed sufficiently realistic for these purposes. However, the parameters utilized in the case studies, in particular
the times for intervention and the cost values, should be reexamined prior to an application of the methodology in practice. It is pointed out that
a FAR = 10−3 (10 min)−1, which corresponds to FAR = 6 · 10−3 h−1, implies approximately one false alarm every week. However, the optimal
configuration of the system identified in the case study leads to FAR of around 6 · 10−2 h−1, which is 10 false alarms per week on average. This
indicates that the cost for an intervention are selected as too low in our case study.
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FIGURE 11 Isolines of the net utility Unet as a function of the FAR and POD given efficiency ξ = 1, and respective classifier output performance
for 1 hour lead time (left) and 4 hours (right). The dots are the optimums.
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FIGURE 12 a) Maximum net utility as a function of the efficiency of intervention derived from the ROC curves for different lead times. b) Efficiency
of intervention at 4 hours resulting in the same utility of a system with an efficiency at 1 hour given the same FAR, for the NB and NN classifiers.

More robust predictions can be achieved by using more specialized data. For instance, the use of vibration data is promising for classification of
damaged WT components. In particular, vibration data can provide higher performance for longer lead times, as for instance demonstrated in 11.
Longer lead times enable additional decision policies, as opposed the fixed decision policy adopted in this study. Prediction performance can be
also increased by training the classifiers at different operational regimes, by dividing the operational conditions into a finite number of classes, e.g.
rotor speed and active power, as for instance proposed in 36. Moreover, restricting the detection to specific components is expected to result in
higher prediction performance, but this would result in a problem of retrieving sufficient failure data, which could represent a challege. Significant
differences in terms of performance between the two classifiers used in this study suggest that the choice of the algorithm plays an important
role for the performance of the system. We also note that the overall performance may vary when modeling times series, as opposed to random
shuffling 37,13.

Some characteristics of the failure events can be inferred from the analysis, by noting that the events experienced occur mostly during wind
speeds around the rated speed. Generally, the transition from below to above rated power, is a critical operational range for the turbine, because
of repeated pitch activation, which may result in high dynamic loading of the machine. This condition is especially intensified during periods of
higher than average turbulence, as observed in this study. Moreover, the operational report states that during the analyzed period, the wind farm
was heavily curtailed, for about 38% of the time at different curtailment levels. However, the interaction between WT control strategies, external
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factors, and the reliability of the wind farm, is out of the scope of the present study. A more detailed analysis should be performed preferably using
higher frequency data, supported by aeroelastic simulations.

7 CONCLUSIONS
The research presented in this article demonstrates an application of SCADA data for improving the alarm system for indicating malfunctions of
mainWT components such as gearbox, generators and bearings considered in this study, and eventually leading to failure. In practice, the approach
could prevent the turbine from operating during periods of high component degradation. A risk analysis based on a fixed decision policy was set
up to quantify the economic benefit of implementing the monitoring system. The resulting maximum net utility shows that it is possible to achieve
positive utilities. To summarize, the main contributions of this work can be highlighted as follows:

• A method is devised for avoiding the occurrence of critical failures by predicting warnings and intervene in a timely manner with a certain
efficiency, potentially leading to improved wind farm operations and smooth running conditions

• Coupling machine learning prediction with event-trees to quantify the reliability of data-driven monitoring systems to provide a criterion
to select a risk-based threshold for on-line classifiers

• Modelling of the reduced probability of failure of mechanical components given maintenance intervention and quantification of its effect
on the maximum net utility

The novelty of the approach resides in the combination of the prediction ability of machine learning techniques with probabilistic modelling and
optimization of maintenance practice applied to wind energy. A discussion on performance and reliability of the monitoring system was provided.
Results demonstrate that SCADAdata alone could already represent a valuable source of information to help the industry transition from preventive
to predictive maintenance policies. The study also showed the importance of recording data statistics and the implementation of advancedmachine
learning techniques, which resulted in higher performance and less prediction uncertainty. This should encourage maintenance practitioners to
record statistics beyond mean values, which is the current practice for most signals.
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Abstract. This paper provides enhancements to normal behaviour models for monitoring major wind
turbine components and a methodology to assess the monitoring system reliability based on SCADA data and
decision analysis. Typically, these monitoring systems are based on fully data-driven regression of damage
sensitive-parameters. Firstly, the problem of selecting suitable inputs for building a temperature model of
operating main bearings is addressed, based on a sensitivity study. This shows that the dimensionality of
the dataset can be greatly reduced while reaching sufficient prediction accuracy. Subsequently, performance
quantities are derived from a statistical description of the prediction error and used as input to a decision
analysis. Two distinct intervention policies, replacement and repair, are compared in terms of expected
utility. The aim of this study is to provide a method to quantify the benefit of implementing the online
system from an economic risk perspective. Under the realistic hypotheses made, the numerical example
shows for instance that replacement is not convenient compared to repair.

1. Introduction
The significant maintenance cost associated with failures of large wind turbine (WT) components
calls for improved operation and maintenance (O&M) decision support systems. Such systems
are increasingly drawing the attention of operators, especially in the offshore sector [1].
Maintenance actions are necessary to ensure a certain level of reliability of a machine throughout
its lifetime. Maintenance strategies can be broadly categorised into corrective and preventive
[2, 3]. The second type can in turn be divided into scheduled and condition based maintenance
(CBM), with the latter being a predictive policy. CBM is helpful to avoid early replacement of
healthy components while identifying critically worn-out components. Wind energy, especially
offshore, is still a maturing industry and the scenario around CBM poses some new and
unique challenges. The lack of extensive datasets containing run-to-failure data often does
not allow the adoption of supervised learning techniques [4]. Moreover, realistic physics-based
deterioration models are not generally available due to the complexity of the machine behaviour
under operation and its dependence on multiple physical variables. To deal with this problem
some studies have suggested to derive a fully data-driven normal behaviour model (NBM) of
specific damage-sensitive features [5]. This process refers to building a model characterizing
the behaviour of a system directly from measured data. Such NBMs are regularly used to
detect anomalies in wind turbine behaviour, as demonstrated in [6,7]. Since the model variables
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are typically continuous, prediction models are based on linear or nonlinear regression. This
approach seems to be well tailored for main components, thanks to its simplicity of application
with regards to the data requirements and scalability [8]. From an operator’s perspective it is
important to understand the economic benefit of implementing predictive systems. This can
be achieved by defining a performance measure to quantify the reliability of early detection
warnings, followed by a cost-benefit analysis. Often, when dealing with rare events, a sufficient
number of failure observations is not available and thus not allowing to establish performance
statistics, as for instance used in [8]. Hence, this indicates the need for alternative metrics.
In the present study, the lead time to failure events against the probability of false alarms
(PFA) is analysed, in order to assess the system performance from an economic perspective.
Considerations about the nature of failure are taken into account to identify suitable detection
thresholds. A case study of main bearing failures from an onshore wind farm is carried out and
analysed. The system output is condensed into a scalar anomaly measure to track the component
deterioration. Furthermore, a sensitivity study selecting the most important input variables is
carried out, in order to enhance NBM. Each section explains the methodology adopted and uses
information previously derived. From section 3 on, results are presented in a progressive order
without a dedicated result section. The paper concludes with a discussion on the contribution
and future research in the area.

2. Model
The analytical model used herein has the structure of a hierarchical NBM between input vectors
x and output ŷ. For modelling the main bearing temperature in the form ŷ = g(µ(x)) + e, a
generalised linear model (GLM) with mean µ, a Gaussian error distribution ei ∼ N (0, σe,i) and
an identity link function g(·) is used [9], so that, for the ith output variable, g(µi) = µi = E(ŷi),
where E is the expected value operator. The model is expressed in scalar form as

E(ŷi) = α̂0i +
K∑

j=1

α̂ijxj + ei, (1)

where α̂ is assumed to be α̂ ∼ N (ᾱ, σα) , with ᾱ and σα being respectively mean and standard
deviation of the model parameters andK the number of explanatory variables, or covariates. The
error between the model output ŷ and the measurements y has zero mean, and the appearance
of bias indicates deviation from the normal behaviour. The parameter estimation is based on
a least-squares optimization with a least absolute shrinkage and selection operator (Lasso) [10].
This regularisation method uses a penalisation on the L1 norm, and is an effective technique
for subset selection in high dimensional multivariate models. The Lasso solves the following
optimisation problem, where the penalisation parameter λ is introduced:

α̂lasso(λ) = arg min
α̂∗

‖y − xα̂∗‖22 + λ ‖α̂∗‖1 , (2)

where x is the vector of model covariates and λ is the penalisation parameter. The remaining
terms are the same as in Eq.1. Lasso is applied here by virtue of its ability to achieve high
prediction quality with the minimum number of covariates. The relative importance of covariates
is measured for the training with the coefficient of determination (R-squared), and for the
predictions with the mean absolute error (MAE) and root mean squared error (RMSE). In this
manner, the herein used techniques have practical utilization.
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3. Training
A set of SCADA data from an onshore wind farm with more than 10 turbines is available over
a period of 5 years. During this period 3 turbines, WT1, WT2 and WT3, experienced main
bearing failures. This component has been identified in previous studies as one of the most
critical WT components in terms of failure frequency and downtime [11]. The full SCADA
dataset consists of 74 channels given as 10 minutes average values. Operational data only are
selected from the dataset by removing unnecessary observations, corresponding to power less or
equal than zero as well as measurement errors.

The training dataset is built by selecting normal behaviour data from 6 turbines including the
3 having experienced failures. In these latter, NBM data are selected until 6 months before the
failure event, in order to not introduce degradation information into the training dataset. From
the selected training pool of normal behaviour data, random down-sampling is applied in order
to reduce its size while conserving the variability of the data coming from different turbines
and their operational conditions. In total, N = 3 · 105 samples are employed for training,
corresponding to the equivalent of 6 years of data from 1 turbine. All the SCADA variables
are normalised between 0 and 1. The turbine validation demonstrates that the NBM has more
universal applicability and ensures that the failure detection does not rely on conditions specific
to the turbines that have experienced the event. The GLM was trained with a 10-fold cross
validation.

4. Variable Selection and sensitivity study
Model reduction is an important step in improving the model speed and usability when dealing
with large datasets. Although the GLM is computationally efficient, reducing the number of
covariates will lead to further benefits as it will reduce the data storage requirements and data
processing. A certain degree of model reduction is ensured by the Lasso approach, as the
penalization function leads to some model coefficients being reduced towards zero, which allows
their elimination from the model. This is performed through a variable importance analysis
by comparing the standardised coefficient magnitudes for each input variable obtained through
the estimation process. The model predicts the main bearing temperature using the full set
of variables in the SCADA dataset. The 15 most important variables obtained are displayed
in Fig.1. Blue colour indicates a positive effect on the model result, which means that with
increasing values for the coefficient of this covariate the model response also increases. Red bars
indicate the inverse relationship.

Interestingly, the first top 10 covariates are temperature measurements, which may suggest
a correlation between abnormal bearing temperature rise, which eventually leads to failure,
and high operational demand, as shown in Fig.1. Rising brake temperature, lower external
temperature and lower non-drive-end (NDE) generator bearing temperatures contributed to the
increasing main bearing temperature. At first glance, this might seem contradictory. However,
lower external temperatures are usually related to higher wind speeds, which affect the failure
bahaviour of certain components [12,13]. At this step, further analysis could be carried out such
as Chi-square tests or ANOVA, in order to further reduce the number of input parameters, [14].

Fig.2 displays the model RMSE, the MAE and R-squared performance metrics as function
of the number of model covariates. To obtain the figure, the model is first trained using the full
set of variables, then retrained subsequently by adding one variable at the time from the most
important to least important variable to establish the variable importance. The x-axis indicates
the number of input covariates ordered according to the standardized model coefficients from
the most important (number 1) to the least important variable (number 74). Including more
covariates to a model implies higher model complexity and longer model evaluation times. Thus,
a compromise between the number of model covariates and model accuracy has to be found. It
is shown in the graph that by including the 15 most important covariates the R-squared reaches
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Figure 1: Top-15 standardised regression coefficient with respect to main bearing temperature
from Lasso
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Figure 2: The R-squared of the model and the prediction errors MAE and RMSE using different
numbers of inputs.

a value of approximately 0.91, along with a sufficiently low prediction error.

5. Damage detection
The set of covariates obtained in the previous section is selected for building the model and
testing it on the damaged turbines. In the case of a single model output (e.g. inner-ring
temperature), the deviation function is a univariate measure, which is here selected as the
RMSE, namely RMS of 10 consecutive samples of the model residuals, corresponding to an
effective operating time ∆t = 100 minutes. Previous studies e.g. [6], suggested to average the
discordance measure over 3 days in order to reduce the occurrence of false alarms. In the present
study, however, shorter time periods are achieved by applying a low-pass filter, a centered moving
average, to the model residuals. In Eq.3, the parameter η is the window size of the filter.
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ef (i) =
1

2η + 1

2η∑

j=0

h(e(i+ η − j)) (3)

In this way, a more robust performance is ensured. The raw and filtered RMSE in normal
behaviour are displayed in Fig.3a, while Fig.3b shows their distributions at different filtering
levels, where a log-normal distribution is fitted, which is the distribution that resulted in the
best fit. As can be noticed, the uncertainty decreases with the level of filtering. This information
is useful to quantify the reliability of the monitoring system.
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Figure 3: a) Raw and filtered RMSE from the normal behaviour dataset. b) Log-normal
distributions of the filtered RMSE from normal behaviour data.

In general a multivariate discordance metric can be used as degradation function, if for
instance the output set is composed of a correlated set of damage-sensitive features. For instance,
Fig.4 shows the main bearing vertical acceleration RMS, temperature, and tower-top acceleration
RMS in an example case of failure. The interaction between these variables could be exploited
to obtain earlier and more robust predictions. However, this study only focuses on SCADA
data, leaving out the vibration analysis.
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Figure 4: Main bearing temperature, acceleration RMS and tower-top acceleration RMS close
a main bearing failure event (WT1).

Fig.5a and 5b show the trend of the filtered RMSE for the damaged dataset on the three
turbines. The damage progression can be readily identified and an NBM-based alarm is issued
when the failure threshold is crossed.

The lead time is here defined as the time lag between the first warning issued by the model
and the first threshold-based alarm from the SCADA system. The selection of the NBM-based
alarm threshold is a tradeoff between lead time and probability of false alarms (PFA), where
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Figure 5: a) Filtered RMSE of the damaged (testing) dataset. b) Normalised cumulative RMSE
and alarms issued by threshold-based and NBM-based system (WT2)

for a given reference period the PFA equals the probability of exceeding the threshold under
normal, stationary conditions. The PFA can thus be found as P [RMSE > T ], where T is a
threshold.

6. Decision analysis
The decision analysis has the aim to assess the economic advantage of using the system based
on field data. Since the analysis is based on simple cost considerations, it is best suitable for
preliminary assessments. A utility function is derived by associating a cost to a false alarm and
a saving to detecting a failure early. The NBM-based threshold is chosen such that the lead
time is long enough to cover the entire mobilization time, needed for preparing the crew and
hiring the crane vessel. Only consequences associated with direct financial losses are considered,
i.e. human injuries, environmental effects and similar are not taken into account. The decision
tree is sketched in Fig.6, which shows all possible alternatives originating from an NBM-based
alarm A. In the simplest case, when an alarm is issued, the turbine keeps running and a site
inspection is performed, which can result in false case (Ē) or a true case (E). It is assumed that
the inspections are perfect. As shown in Fig.6, if the inspection reveals a developing failure, an
intervention a is performed, corresponding to a repair r or full component replacement R and
their associated costs. In case of repair Ca = Cr, and in case of replacement Ca = CR. These
two cases are studied separately, as if the adopted policy is constrained to be only one of them.

A
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Figure 6: Decision tree associated to the detection of rare events and corresponding utility
functions for each outcome.
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Two discrete states: failure (F) and functional, or safe, (S) are considered after the
intervention is performed. In order to model the possibility that a repair fails to eliminate the
component damage, an efficiency coefficient ψ ∈ [0, 1] is introduced as formerly developed in [15].
The possible outcomes of the maintenance action are considered binary, i.e., the component is
either restored to its original undamaged state, or its state remains equivalent to its current
damaged state. The efficiency term specifies the probability that the repair action is successful
and the component health is fully restored, as

P (F | E ∩A ∩ a) = P (F | E)(1− ψ) = (1− ψ), (4)

where the assumption P (F | E) = 1 means that a true case is always associated with a developing
failure, regardless of the maintenance policy adopted. Therefore, the repair action influences
the probability of failure of the component by making it decrease linearly with the increasing
repair efficiency. In real applications, a similar function could be derived from historical data.
With reference to Fig.6, the discrete probabilities can be readily written as

P (F ∩ E ∩A ∩ a) = P (F | E ∩A ∩ a)P (E | A)P (A) = (1− ψ)λ0

P (S ∩ E ∩A ∩ a) = [1− P (F | E ∩A ∩ a)]P (E | A)P (A) = ψλ0
(5)

which make use of the following quantities expressed as functions of PFA and efficiency, derived
from the Bayes rule

P (E | A) =
P (A | E)P (E)

P (A)
=

λ0
P (A)

(6)

P (Ē | A) =
P (A | Ē)P (Ē)

P (A)
=

PFA(1− λ0)
P (A)

. (7)

Note that in Fig.6, the alternative Ā (dashed) is associated with zero utility, because U(Ē |
Ā) = 0 and P (E | Ā) = 0. P (A | E) = 1 because it is assumed the system always issues an
NBM-based alarm in case a failure is present. This is equivalent to assuming a probability of
detection equal to 1. Further information on this probability could not be inferred from available
data.

The tree includes the utilities ui associated to each possible outcome. Note that the quantity
P (A) 6= 0 does not need to be explicitly determined, since it cancels out when Eq.6 is inserted
into Eq.5.

The analysis is performed on a hourly basis, namely all the probabilities are expressed with
respect to 1 hour. A constant event rate P (E) = λ0 is assumed, derived as a frequentistic rate
from historical data, where 3 events on three different turbines were reported over the period
analysed of 5 years. Note that the hourly PFA is derived from the PFA computed for 100-
minute sampling windows by scaling with the ratio between the length of the sampling periods
(see Fig.3). To perform a repair comes at a cost Cr, while the inspection costs are CI . These
quantities were retrieved from available literature [16].

The cost of replacement is equal to the material cost plus the crew costs (which means the
possibility that the lead time is shorter than the mobilization time for crew and equipment
is neglected), while the cost of failure comprises the cost of replacement plus the power loss
during the mobilization time and replacement time. With reference to Tab.1, these quantities
are expressed as
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Table 1: Numerical quantities employed in the decision analysis.

Parameter Value Description
CI [e] 2500 Cost of inspection
Cr [e] 10 · 103 Cost of repair
P̄ [MWh/h] 1.05 Hourly average production
Cm [e] 15 · 104 Material cost
Nw [e] 10 Number of workers
Cel [e/MWh] 100 Price of electricity
Cl [e/h] 33 Cost of labour
MTTR [h] 240 Mean time to replacement
MT [h] 170 Mobilization time

CR = Cm + MTTR Cl Nw

CF = CR + (MTTR + MT) P̄ Cel.
(8)

The current electricity price from offshore wind was taken from [17]. Due to the absence of cost
parameters and time to repair for this specific case, the quantities found in [1] were adopted,
corresponding to the replacement of an equivalent main component, the gearbox. The total
expected utility is found as

U =
∑

i

Piui − U0, (9)

where U0 = λ0CF is the utility associated with not implementing the system. This comprises
the average power production losses, replacement or repair costs and labour costs, part of which
could be saved when a sufficient lead time and repair efficiency can be provided by the system.
Fig.7a shows the lead time as a function of the PFA where the jumps are due to the small sample
size. The changes in lead time and PFA are a direct function of the chosen error threshold, T .
The figure shows that achieving longer lead time requires lowering the error threshold and hence
increasing PFA. Conceptually, for a specifically chosen error threshold the lead time would be
a random variable, and there is a non-zero likelihood for the lead time to be shorter than the
required mobilization time. This is associated with a certain cost, which has a trade-off with
the cost of false alarms, as reducing the threshold will mean increasing the lead time but also
increasing the false alarm rate. It is possible to search for an optimal threshold that results in
the lowest overall cost, however this is not considered in the present study. Instead, a suitable
error threshold level is chosen such that the average lead time equals 23 days for filtering level
η = 100. Based on this choice, the corresponding PFA is obtained (Fig.7).

Fig.7b displays the expected utility in case of repair Ua(ψ), which is positive already for a
large span of the efficiency domain. The plot displays that low-pass filtering the error deviations
lead to lower PFA and thus higher benefit, besides providing positive utility at lower efficiency
values. In this numerical example, the replacement policy is not cost-effective compared to
repair, with Ua = −15.9 e and Ua = −18.6 e respectively for the maximum and minimum
levels of error filtering as shown in case of repair in Fig.7b).

7. Discussion
The positive standardized coefficient of the brake temperature could be due to thermal
conduction from the bearing to the brake, possibly indicating a cross-correlation between
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Figure 7: a) Lead time against probability of exceedance (POE) averaged over 3 failure cases, for
different filter levels. POE is equivalent to PFA. b) Repair utility as a function of the efficiency
of intervention.

the bearing temperature, the brake temperature and failure. For example, a high bearing
temperature combined with high brake temperature might mean normal operation under heavy
load. The NDE generator bearing located on the opposite end of the drive train compared to the
main bearing, is able to maintain lower temperatures. The increasing hub temperature might
instead be a consequence of the main bearing temperature raise, by thermal conduction through
the main shaft.

Main bearing failures as the ones analysed here, which show a clear temperature rise over
time, may be related to high friction, probably due to lack of proper grease lubrication. This
justifies the utilization of a repair policy.

More detailed cost models should be used in the decision analysis to include site accessibility,
parameter uncertainty [18], discount rate, updated probability of failure. Furthermore, advanced
models of inspections would be desirable [16], which will trigger more decision alternatives. In
this paper, perfect inspection was assumed. However these details are case-specific and thus
showing their value mainly in real applications.

Regarding the probability of failure in case of replacement, more detailed models would allow
for an updated probability of event or failure based on condition, rather than considering the
same measured event rate after replacement as done in this work. This is to account for the
increased probability of failure due to usage, as opposed to new.

A further improvement would be to incorporate lifetime prediction models as for instance
proposed in other structural components [19], in order to give an estimate of the remaining life
of the component. In this case, the latter can be achieved by for instance setting a maximum
temperature threshold at which the component is considered to be in failed state. In this way,
information about progressive failures can be obtained and included in the decision model, which
in real cases is expected to be more advanced.

8. Conclusions
This research has highlighted improvements in NBM of WT components and the definition of a
performance metric in case of rare events was defined. Thus, a model of the normal main bearing
inner-ring temperature is trained by using turbines other than the ones experiencing the damage
analysed (turbine validation). A linear model is used and a sensitivity study is performed to
select the most important variables. The Lasso-based model reduction successfully eliminated
unimportant input variables and provided an understanding of the failure mechanisms related
parameters. Brake temperature, hub temperature, external temperature and generator bearing
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(NDE) temperature were found to be the most important model covariates. The decision analysis
has shown that a replacement policy would not result in cost-effective solutions, while a repair
policy would be more suitable. These types of problems should be addressed by wind farm
operators in order to advance in maintenance management and make the wind energy market
more competitive with conventional energy generation. The approach can be implemented for
any kind a major wind turbine subsystems such as gear box, generators or blades. Thus, future
research will need to cover failure detection of main mechanical components and quantify the
benefit of using multivariate over single parameter approaches.

Acknowledgements
This project has received funding from the European Union’s Horizon 2020 research
and innovation program under the Marie Sk lodowska-Curie grant agreement No 642108
(AWESOME). Furthermore, the authors wish to thank Vattenfall for the support provided.

References
[1] Carroll J, McDonald A and McMillan D 2016 Wind Energy 19 1107–1119
[2] Randall R B 2011 Vibration-based condition monitoring: industrial, aerospace and automotive applications

(John Wiley & Sons)
[3] Rausand M and Arnljot H 2004 System reliability theory: models, statistical methods, and applications vol

396 (John Wiley & Sons)
[4] Bishop C M 2006 Pattern Recognition and Machine Learning (Information Science and Statistics) (Secaucus,

NJ, USA: Springer-Verlag New York, Inc.) ISBN 0387310738
[5] Tautz-Weinert J and Watson S J 2016 Comparison of different modelling approaches of drive train

temperature for the purposes of wind turbine failure detection Journal of Physics: Conference Series
vol 753 (IOP Publishing) p 072014

[6] Bangalore P and Tjernberg L B 2015 IEEE Transactions on Smart Grid 6 980–987
[7] Mazidi P, Bertling Tjernberg L and Sanz Bobi M A 2017 Proceedings of the Institution of Mechanical

Engineers, Part O: Journal of Risk and Reliability 231 121–129
[8] Bach-Andersen M, Winther O and Rømer-Odgaard B 2015 Scalable systems for early fault detection in wind

turbines: a data driven approach Annual Conference of the european Wind Energy Association
[9] Nelder J A and Baker R J 1972 Generalized linear models (Wiley Online Library)

[10] Tibshirani R 1994 Journal of the Royal Statistical Society, Series B 58 267–288
[11] Reder M, Gonzalez E and Melero J J 2016 Journal of Physics: Conference Series 753 072027 ISSN 1742-6588
[12] Reder M and Melero J J 2017 Journal of Physics: Conference Series 926 012012 ISSN 1742-6588
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Chapter 6

Conclusions

You will always find a clear blue sky,
even beyond the heaviest cloud.

The author

6.1 Main contributions

The present thesis addressed relevant topics in offshore wind farm O&M. The ultimate

objective of the work was to achieve a cost reduction through predictive maintenance and

improving load assessment models. Although it was demonstrated that it is possible to

achieve cost-effective solutions through advanced statistical modelling, many issue still remain

unsolved. First, the main conclusions and implications of this work can be readily listed as

follows:

• It is possible to achieve less conservative designs of offshore WT monopiles by reducing

the fatigue equivalent turbulence percentile than the level suggested by current standards.

In terms of their probability of failure, wave kinematic and turbulence models can have

an impact on reliability against fatigue damage up to 15%, despite the estimated

model uncertainties not being as important as other uncertainties, for instance in the

aerodynamic model. This result can lead to more accurate load predictions for both

initial design and load reassessment of aging turbines.

• The qualitative assessment between blade root flapwise bending DEL map and probability

map of pitch malfunctions experienced cannot confirm a direct correlation between loads

and failures. However, the approach could be potentially be used to achieve a better

configuration of the farm to account for possible financial losses due to and eventual

failures, which probability of occurrence increases in higher DEL zones. Alternatively,

the information could be used to adjust the operational conditions of critical turbines

by building a time varying fatigue load map.

• When building NBMs for damage sensitive features, such as for inner-ring main bearing

temperature adopted in this work, it is possible reduce the dimensionality of the input

dataset through a variable selection criteria, saving cumbersome data processing and
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time consuming model training. The LASSO regularization can also provides a physical

understanding of the failure process by correlating the input variables with the damage-

sensitive feature adopted. This result can help practitioners select the least number of

covariates and therefore achieve more reliable models. For this class of problems based

on regression, the decision tree allows to estimate the utility of the learning system

adopted prior its online implementation, by considering all possible decision policies,

realistic failure rates and false alarm rate. This approach can be used as a tool to

assess the viability of different maintenance policies of newly deployed wind farms given

historical information on similar wind farms or major mechanical component.

• Prediction systems based on early classification of SCADA alarms resulting in shut-down

events, can be coupled with decision trees to provide a criteria to select a risk-based

threshold for online classifiers to achieve an optimal configuration of the predictive

system. On this purpose, the quantification of the prediction uncertainty becomes

important. The introduction of an efficiency of intervention allows to model the CBM

effectiveness and thus estimate the utility-based threshold. Furthermore, the analysis of

the SCADA data for this study prior a shut-down event revealed that these events mostly

happen during periods of higher than average wind speed statistics, which may suggest

that failures are also driven by demanding environmental conditions. The average

statistics correspond to normal behaviour distributions, i.e. obtained by selecting data

far in time from the occurrence of an alarm. Outliers are excluded through a filter based

on Mahalanobis distance.

In connection with these conclusive statements, the study highlights practical and technical

recommendations for a potential cost-reduction of wind farms O&M. These are:

• Improve the technology by boosting the performance of machine learning algorithms,

reduce prediction uncertainties, improve POD versus PFA of online classifiers.

• Standardize monitoring systems by combining SCADA and CMS data. This will enable

large-scale deployments of monitoring systems and enable a fast and reliable the data

process from raw measurements into actionable maintenance information.

• Exploit sensor-fusion and variable selection for online predictive systems to reduce

amount of data. As by direct author’s experience, the labor cost associated with data

processing accounts for a considerable portion of the total costs of building and running

predictive systems.

• Careful tracking of field data, namely maintenance history, efficiency of intervention,

SCADA data, CMS data, costs and downtimes are necessary to be able to provide an

economic assessment of prediction models.

• Operators should exploit the warranty period to gather all the information necessary

and build prediction models based on history or recorded events.

Given the challenges encountered in terms of data gathering during these studies, a closer

collaboration towards more effective agreements between manufacturers and operator is

highly encouraged. Ambitious targets and closer communication will consent to achieve high

reliability levels in wind energy industry industry. This however, will be a blend of improved

design, materials and maintenance practice.
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6.2 Limitations

The benefit associated with this work is the gain in knowledge about the next generation

of problems the industry will face in terms of O&M planning of large offshore wind farms.

The up-scaling trend of WT means larger components to be replaced in case of failures, which

may increase the level of complexity of offshore operations. The analysis carried out in this

work are applicable to all kind of wind farms and show potential to be scaled up on large

fleets. The reader can understand the extent to which the problem is applicable, as well as

some important limitations.

The fact that changing environmental models for fatigue load assessment leads to sub-

stantially different results raises many questions about the suitability of models for lifetime

reassessment. Careful analyses of site conditions should be made to determine the most

suitable environmental models that better describe the site. This choice helps reduce both

conservatism in design and improved lifetime reassessment, by reducing the model uncer-

tainties. However, for broader objectives such as lifetime extension, load analysis through

aeroelastic simulations should be complemented with measured loads and inspections.

In case of strong wakes, the turbulence percentile related to the free stream ambient

turbulence will play a lower role, since wake turbulence will be predominant. In this cases, the

percentile reduction is not expected to provide significant benefit to current load estimation.

The trend shows that wind farms are constantly trying to occupy the least space possible,

thus trying to minimize the distance between turbines. This consequently increases the wake

effects.

When working on load maps, it is important to remark that a possible correlation should

be understood only between load-driven failures and loads or other stress indicator. Generally

speaking, failures are not only due to operating conditions, but also serial defects of mechanical

parts, for example.

The use of SCADA data is still very appealing for the industry. Although in this work it

was demonstrated that SCADA alarms can be predicted by suitably trained classifiers, their

implementation provided insufficient performance for practical applications at long lead times.

More robust predictions by using more specialized failure data to achieve higher POD against

lower PFA and longer lead times are necessary, as well as more realistic and detailed cost

models. Specialized data are for instance vibration records, detailed maintenance history,

information on the structure and policy of the organization, periodic maintenance activities,

failure downtimes and failure rates. The assumptions made in this work, although realistic,

may play a substantial role on the final outcome. This also remarks the importance of gaining

advanced expert knowledge to reduce the uncertainty on maintenance decisions.

A further disadvantage of data-driven monitoring systems is their dependencies on experi-

enced failures and large amount of data, especially for classification. In this work for instance,

historical failures were used, which implies that training the algorithms was only possible

based on a sufficient historical database of aged wind farms. This may represent a limitation

to assess the utility of monitoring systems when prior information is still not available.

These challeges must be tackled in real applications, in order for advanced analytics models

to be valuable from an financial perspective.
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6.3 Future work

The entity of the subject treated in this work is large, and this document only provides

few answers. Therefore, there are a number of points that deserve further focus, which are

here discussed.

In relation to offshore foundation loads, interest should be posed on quantifying the impact

of different environmental models on extreme loads besides fatigue, and provide a description

conditional to the significant wave height and wind speed required by IEC standards. This

can be achieved by for instance inverse-FORM techniques.

The failure maps should be explored further by including different scenario, as for instance

failure and no-failure, and obtain maps based on respective environmental conditions. This

will better reveal whether metrics such as DEL, ADC, friction and so on can actually indicate

areas of the farm layout with higher risk of failure. Furthermore, degradation models should be

included, to explain how the failure maps can evolve over time. For instance, in the example

developed in this work, the dynamic of the pitch actuator should comprise friction. An

interesting comparison should be made in terms of failure maps and recorded vibration history,

since the latter could potentially give a better description of the level of stress in mechanical

components. A probabilistic study is also adviced, in order to consider the variability of the

full set of environmental parameters more deeply.

For online classifiers, the inclusion of detailed vibration data into prediction models is

recommended. Vibrations can provide more robust predictions at longer lead times (see

Article V), which would increase the benefit significantly. Furthermore, in online applications,

time varying classifiers as for instance based on Markov models [116] should be preferred

over static classification. Scaling-up data-driven monitoring systems at a wind farm level will

enable flexible learning, allowing pair-wise comparison between turbines.

Further research is also necessary towards standardization of monitoring systems, by

combining CMS and SCADA data. This will enable a less amount of data to process, less

sensors to install and easier interpretation by the user. Moreover, given N occurrences of the

same type of SCADA alarm, it may be of interest to quantify after how many alarms the

system experiences failure.

The decision models should be extended to include longer lead times, thus allowing for more

actions and different consequences. Pre-posterior decision analyses could be implemented, in

order to find optimal maintenance decisions based on observed failures and updated parameters

in the decision models.

A final suggestion for future work is the continuation of the implementation of the friction

model into the actuator motion based on forces. The friction contribution into the turbine

dynamic could potentially reveal interesting connections between failures of hydraulic pitch

systems and loads.
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Article IV, V

The following articles have been made in collaboration with other PhD students in the

AWESOME project, Jannis Tautz-Weinert, Loughborough University, UK, and Maik Reder,

CIRCE - University of Zaragoza, Spain. The initial idea of the work was defined during an

industrial workshop hosted by Rambøll in Berlin, Germany, in February 2016. The objective

of the workshop was to promote communication between the PhD researchers and industrial

experts, in order to solve practical problems of interest for the industry.
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by the increasing installation of wind turbines offshore, where logistics are more difficult. This implies an increased
reliance on remote sensing systems for health assessment in the transition from corrective to predictive maintenance.

Early condition monitoring of wind turbines was based on the high frequency signals provided by a dedicated
Condition Monitoring System (CMS), in particular acceleration measurements (cf. [7]). The advantages and economic
benefits of CMS in the wind energy sector were analysed for instance in [9]-[10]. Current trends also provide clear
evidence of an increasing exploitation of Supervisory Control And Data Acquisition (SCADA) data for monitoring
purposes, thanks to its economic advantages and well established online data management. Following the latest
development in the field with regards to wind energy applications, artificial intelligence systems are receiving greater
consideration. An example of application is presented by Kusiak and Verma where genetic programming is employed
to predict blade pitch faults as early as an hour before occurrence [11]. Bangalore and Tjernberg detected gearbox
bearing damage with artificial neural networks (ANNs) one week earlier than the CMS [12]. A comprehensive review
of the main advances in this area is provided in [13].

There is a potential to widen the monitoring concept by taking advantage from combined information of operational
and condition monitoring data. However, wind farm operators and manufacturers claim to gather extensive data from
wind farms while lacking the capability to translate data into useful information for decision making. This motivates
further research for optimisation and standardisation of monitoring systems [14]. In this context, less effort has been
made to investigate synergistic effects of coexisting sensing technologies, e.g. SCADA and CMS. Hence, modern
approaches should focus on analysing the correlation between signals, in the attempt to enable better understanding
of the measurement data and eventually exclude irrelevant input variables.

The initial idea of the concept presented in this paper was developed during the 1st Joint Industrial Workshop
(JIW) within the European Union’s H2020 project AWESOME, as documented in [15]. This work is a continuation
and extension of the main idea presented in the workshop. A case study is carried out testing different techniques on
field data. The primary objective is the optimisation of the data acquisition by taking advantage of correlated signals
and mining algorithms. The base of the methodology is the prediction of certain variables using a set of conversion
functions between measurements. The approach is fully data driven, which implies that it is not relying on physical
models. The next section of this paper includes an outline of the proposed approach, followed by details of a case
study and results. The last section provides an outlook of ongoing and recommended future research in this field.

2. Methodology

A framework is proposed to investigate relationships between coexisting measurements to reveal potentially help-
ful correlations and synergistic effects. This hidden information will be identified by the evaluation of data-driven
conversion functions. To allow all possible interactions, selecting the input-output relations is not limited to a phys-
ical understanding of the system. On the contrary, each available signal x1, x2, x3...xn−1 has to be used as an input
for modelling one of the other signals (xi). Only the target signal itself is excluded from the input set, in order to
discard trivial conversion functions. Each signal acts once as the target, resulting in n multiple input and single output
conversion functions predicting with an error ε.

xi = fi(x ∈ X \ xi) + εi with X = {x1, x2, x3, ..., xn} and i = 1, 2, 3, ..., n (1)

Figure 1 illustrates a single exemplary conversion function in a wind turbine drive train. The investigation of
synergistic effects is based on three main steps:

1. Pre-process and extract features of training data,
2. Build n conversion functions,
3. Evaluate conversion functions.

In the first step, measurement data are prepared to be used to set up and feed the conversion functions. Pre-
processing has to include checking for missing signals and invalid values. Duplicated or non-working sensors are
excluded. As SCADA signals, which are commonly provided in 10 minute resolution, will be combined with ded-
icated CMS measurements at high sampling rate, a common working frequency has to be determined. It might be
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Fig. 1. Exemplary scheme for modelling the main bearing vibration (VIBB, green dot) with the conversion function (black box). The input signals
for the conversion function are depicted with red dots. T: temperature, VIB: vibration, RPM: rotational speed, AE: acoustic emission, bl: blade, B:
main bearing, GB: gearbox, G: generator.

reasonable to further normalise the temperatures, speeds or or oil particle counts, calculating amplitudes in character-
istic frequency bands for accelerations or use amplitudes or energy measures for acoustic emission.

In the second step, conversion functions are trained with measured data. The conversion function f needs to be
capable of modelling non-linear relationships. A suitable regression technique has to be selected according to the
properties of the signal as techniques might perform differently for predicting different kinds of signals. The selected
training window must be representative for the behaviour of the turbine and sufficiently long.

In the final step, the conversion functions are evaluated in terms of the prediction accuracy. If all possible inputs
are used then the prediction performance can be assessed to determine whether a signal is independent. If it is
representable by a function of the other signals, the contribution of the individual inputs has to be evaluated with a
sensitivity study to identify hidden relationships.

3. Case study

A brief case study with only SCADA data is conducted to test the proposed procedure. Although, the intention is
to combine SCADA and CMS signals for a full analysis, this application to real data demonstrates the methodology.
In the absence of a full set of signals, six SCADA sensor signals from an offshore wind turbine provided as 10-minute
average are available as listed in Table 1. In this simple case, pre-processing of signals as the step 1 of the procedure
can be reduced to a validity check as feature extraction is not required.

Table 1. SCADA signals used in the analysis provided as 10 minute average.

Variable Unit
Rotor speed (low speed shaft) rpm
Pitch angle deg
Yaw angle deg
Tower-top acceleration in x-direction (fore-aft) m/s2

Tower-top acceleration in y-direction (side-side) m/s2

Active power MW

In order to find the most suitable tool for building the conversion functions in step 2, four different regression
techniques are tested on two of the signals: (i) Random Forests (RF), (ii) Generalized Linear Model (GLM), (iii)
Gradient Boost Machine (GBM) and (iv) Artificial Neural Networks (ANNs).
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GLMs are flexible generalised linear regression models, formulated by Nelder & Wedderburn [16]. These types of
model allow the error to be a distribution other than the normal distribution. A canonical link function for a gaussian
distribution is used. Maximum likelihood estimation is used to fit the model to the data.

GBM is a regression and classification technique that originated from the idea of gradient boosting in order to
create an optimisation algorithm on a cost function in Breiman [17]. The regression gradient boosting algorithm was
developed by Friedman et al.[18]. GBM builds a stage-wise prediction model that consists of a combination of weak
prediction models, such as e.g. decision trees.

RF is a machine learning algorithm, which is also frequently used for classification and regression analysis. The
main idea was firstly developed in 1995 by Ho et al. [19] and later Breiman et al. [20] introduced the actual algorithm
known as random forests. The latter uses a combination of tree predictors and an out-of-bag error as estimate for the
generalisation error. The predictor variable importance is then obtained using permutation.

ANNs are a widely used tool for learning non-linear relationships inspired by the human brain. In a network of
layers of nodes, each node’s output is fed to all nodes in the next layer. In this study, an architecture of feed-forward
network with one input, one hidden and one output layer with 20 neurons in the hidden layer is trained by Levenberg-
Marquardt backpropagation [21]. Each neuron in the hidden layer produces an output with a hyperbolic tangent
sigmoid transfer function. ANNs have been applied successfully to wind turbine condition monitoring, e.g. [12].

The performance is evaluated for different training times. For this purpose, three datasets, as explained in Table 2,
corresponding to cases (A), (B) and (C) are used. Each set is divided into a training and a testing subset.

Table 2. Definition of training and testing subsets for increasing length of the dataset.

Case (A) Case (B) Case (C)
Training 48 days 108 days 156 days
Testing 16 days 36 days 52 days
Total 64 days 144 days 208 days

In order to evaluate the performance of the conversion functions in step 3, the performance metrics root mean
square error (RMSE), mean absolute error (MAE) and the coefficient of determination R2 are used, defined as:

RMS E =

√√√
1
N

N∑

i=1

(ŷi − yi)2, MAE =
1
N

N∑

i=1

√
(ŷi − yi)2, R2 = 1 − σ(ŷ − y)2

σ(y)2 ; (2)

where ŷ is the predicted variable, y its true value and σ denotes the standard deviation.
The sensitivity of the conversion function accuracy to the different inputs is analysed by training and testing of

conversion functions for all possible combinations of inputs (31 combinations for 5 possible predictors for each
target) based on case (C).

4. Case study results

In this section the results are presented for the comparison of modelling techniques and the input sensitivity study.

Comparison of modelling techniques

Table 3 and Table 4 summarise the blind testing results for the predictions of the active power and the tower accel-
eration in x-direction using the four different techniques and three different datasets. The values for MAE and RMSE
are all normalised to the rated power of the turbine or the maximum tower acceleration in x-direction, respectively. It
can be seen, that the GLM did not perform well in predicting the active power and thus it will not be considered fur-
ther. RF, GBM and ANNs performed well and showed similar results. An extended training time seemed to influence
the performance of RF and GBM positively, resulting in lower values for MAE and RMSE and higher ones for R2.
ANNs showed the best model metrics for case (B). Thus, their performance did not necessarily enhance with higher
amounts of input data.
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Table 3. Results for the MAE, RMSE and R2 with different training input sizes for predicting the active power (MAE and RMSE normalised to
rated power).

Technique Case (A) Case (B) Case (C)
MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

GLM 0.139 0.170 0.781 0.160 0.187 0.768 0.167 0.194 0.759
RF 0.021 0.035 0.990 0.017 0.032 0.993 0.016 0.031 0.994
GBM 0.017 0.030 0.993 0.015 0.031 0.994 0.014 0.028 0.995
ANNs 0.021 0.035 0.991 0.019 0.030 0.994 0.020 0.034 0.993

Table 4. Results for the MAE, RMSE and R2 with different training input sizes for predicting the Tower acceleration in the x-direction (MAE and
RMSE normalised to maximum value).

Technique Case (A) Case (B) Case (C)
MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

GLM 0.194 0.230 0.301 0.210 0.251 0.245 0.207 0.247 0.273
RF 0.103 0.142 0.740 0.091 0.130 0.809 0.091 0.127 0.811
GBM 0.084 0.132 0.790 0.070 0.115 0.851 0.073 0.115 0.850
ANNs 0.050 0.094 0.884 0.039 0.075 0.933 0.054 0.093 0.899
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Fig. 2. Original and predicted (a) power production and (b) tower acceleration in the x-direction for 100 time-steps based on case (C).

As shown in Table 4, for the blind testing of the tower acceleration prediction the ANNs clearly showed the best
results for all three cases. Regarding the training time, GBM and ANNs showed both a slightly better performance for
input case (B). Figure 2a shows the original and predicted active power using the four different techniques, normalised
to the turbine’s rated capacity. Figure 2b shows the original and predicted tower acceleration in the x-direction
normalised to the maximum value of the original data set. Due to limited space only a selection could be displayed,
thus, both figures show the first 100 time-steps of the blind testing based on case (C). The better prediction of the active
power compared to the acceleration is due to the strong correlation of the active power to all variables employed in
the analysis. For the tower acceleration this is not the case, as discussed in the subsequent sensitivity analysis.

Input sensitivity study

As ANNs performed well for both the prediction of the active power and the tower accelerations, the sensitivity
study on the variable importance is carried out with ANNs. Figures 3 - 5 show the results of the input sensitivity
study. As there are five possible inputs for each predicted signal, 31 combinations are given on the abscissa. The
performance of each input combination is given as the testing R2 on the ordinate based on case (C). The composition
of each combination is displayed by overlaying different markers for the inputs. It can be seen that rotor speed
and pitch angle are the most important signals for predicting the active power. If these two are combined, adding
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Fig. 3. Modelling accuracy for all possible input combinations if predicting (a) active power and (b) pitch angle.
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Fig. 4. Modelling accuracy for all possible input combinations if predicting (a) rotor speed and (b) yaw angle.
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Fig. 5. Modelling accuracy for all possible input combinations if predicting (a) tower-x acceleration and (b) tower-y acceleration.

the remaining signals does not contribute to a significantly better accuracy. Similarly, only active power and rotor
speed are necessary to predict the pitch angle. The active power is also the best single input predictor for the rotor
speed. Surprisingly, predicting the yaw angle is possible if the tower acceleration in the y-direction is included in
the inputs. This might reveal the presence of site-specific effects of misalignments causing this relationship. The
tower acceleration in the x-direction is best modelled in all cases by a single input if again active power is chosen.
However, adding yaw angle as an input is a clear benefit in all cases. The strong relationship of tower acceleration in
the y-direction and yaw angle can also be seen if the tower y acceleration is predicted.

Figure 6 visualises the identified relationships of the SCADA signals. An arrow from one node to another stands
for a prediction of the target node signal using the start node signal. The thickness of the connections between the
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Fig. 6. Diagram of the relationship between investigated SCADA signals in terms of correlation measure R2. Blue arrows depict single-input
predictions (with R2 > 0.25 for clarity), grey arrows contribute to a combination of two inputs in a node marked with + and red arrows combined
predictions significantly better than individual modelling.

nodes depicts the accuracy of prediction in terms of R2. The strong relationship of active power, pitch angle and rotor
speed is easily identifiable. Synergistic effects are shown by adding accuracies of predictions with two combined
inputs, which are significantly better than predicting with the individual inputs. The strongest synergistic effects are
seen in combining yaw angle with the tower accelerations.

5. Conclusions and outlook

In this work a novel approach for wind turbine condition monitoring was presented focusing on synergistic effects
between measured signals. The concept is based on predicting certain sensor signals using the information of other
sensors at different locations in the turbine. Conversion functions are employed in order to make these predictions.
In this work four machine learning algorithms: generalised linear models (GLM), gradient boosting machine (GBM),
random forests (RF) and artificial neural networks (ANN) are tested for the conversion functions. Their performance
was evaluated in a case study using 10 minute average SCADA data from an offshore wind farm. Three different
sizes of the training dataset were used in order to analyse the effects of different training times on the quality of the
outcome.

The results show that for predicting each of the parameters the different algorithms performed differently. GBM, RF
and ANNs showed very good results for both of the presented predictions. Nonetheless, ANNs showed slightly better
results, especially for predicting the tower acceleration, and were used to carry out a sensitivity study demonstrating
the variable importance of the predictors and the predicted parameters. The sensitivity study suggests how to interpret
the synergistic effects of combined measurements to predict a specific response.

The presented approach has shown to work well and will be extended in future studies. As the case study only
contained a limited sample data set, the machine learning algorithms will have to be tested on different datasets and
a sensitivity study has to be carried out for the contained parameters. These can contain for instance CMS data in
combination with SCADA data. The challenge here will be to understand how signals can be analysed at different
sampling frequencies, time windows and continuity in time. Also, the optimal training time should be investigated, as
it has been stated that especially ANNs are very sensitive to the latter and do not necessarily show better results with
more input data. Furthermore, extending the conversion functions so that measurements from one wind turbine are
used to model the status of other turbines in the wind farm, could reduce monitoring costs even further.
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In conclusion, further development of this novel approach may result in several benefits for wind farm O&M
practice. These range from possible economic benefits by omitting costly sensors in condition monitoring systems, as
their information could be predicted using other measurements, to controlling the accuracy of certain sensor outputs
by modelling their supposed thresholds. Nevertheless, additional research is also needed to quantify the real economic
benefit of O&M by the method proposed.
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Abstract

Wind turbines are commonly monitored by analysing spectral properties of high frequency (kHz range) vibrations
using a dedicated Condition Monitoring System (CMS) or by applying machine learning techniques to low frequency
(ten-minute) operational data from the Supervisory Control And Data Acquisition (SCADA) system. So far, these two
approaches have been investigated separately, but there could be benefits in combining the data sources for simplified
data processing and improved understanding of the required data for failure prediction. In this paper, a framework is
developed for merging the CMS vibration records and respective alarms with ten-minutely SCADA data to build a
consistent database. The main objective is to develop automated fault detection. Based on real data from an onshore
wind farm, this is carried out by, firstly, applying clustering and distance-based techniques to investigate relationships
between different signals. Secondly, an automated tool is developed to evaluate vibration measurements considering a
comparison at farm level. And thirdly, failure prediction is performed with four classification techniques and different
input data combinations. The results show the power of both automated and machine learning frameworks for failure
predictions, which outperform the alarms of the commercial CMS for the discussed main bearing failures and can
predict failures up to 119 days before they occur.

Keywords: Wind turbine, Operation and Maintenance, Condition Monitoring, Machine Learning, CMS, SCADA

1. Introduction

Over the past years, wind turbine (WT) Operation and Maintenance (O&M) has become an emerging field of
research. Operators are interested in finding new ways to anticipate wind turbine component failures and to optimise
their maintenance strategies. A coordinated shift towards condition-based maintenance could significantly lower the
costs related to O&M. Supervisory control and data acquisition (SCADA) systems are standard in modern WTs.5

However, WTs are increasingly being equipped with condition monitoring systems (CMS), which in many cases is a
requirement for certification and insurance purposes.

In this paper, novel automated failure detection techniques based on combining data from both SCADA and CMS,
are presented. Furthermore, the relationship between the two data types with the aim of enhancing predictive O&M is
investigated. In the following, the motivation and objectives of this work are discussed in more detail. Section 2 gives10

an overview of failure detection with CMS and SCADA data, before Section 3 introduces the analysed data. Sections
4 and 5 explain the used approach and observed results, respectively. The discussion of the findings is gathered in
Section 6. Section 7 concludes this paper and lists tasks for future work.

∗Corresponding author (J.J. Melero).
Email addresses: mreder@fcirce.es (M. Reder), jannis.tautz-weinert@ramboll.com (J. Tautz-Weinert), lcol@dtu.dk (L. Colone),
s.j.watson@tudelft.nl (S.J. Watson), melero@unizar.es (J.J. Melero)

Preprint submitted to Renewable Energy January 15, 2019



1.1. Motivation

While CMS have been used in several industries over many years, only recently have WT operators started to15

install dedicated CMS. This is due to the fact that installing CMS is rather expensive [1, 2], and thus, might not be
profitable for all wind farms. It could, however, be a financially attractive investment if the benefits of early failure
detection can outweigh the initial installation cost. At the same time, as SCADA systems are installed in nearly all
operating WTs, recent research has focused on using exclusively SCADA data for WT condition and performance
monitoring, implying no additional installation cost for CMS.20

CMS and SCADA data have been compared for failure detection [2, 3] but to the authors’ knowledge, combining
data from these two sources has not been explored as yet. There have been efforts to combine SCADA and vibration
measurements [4, 5], but this has been limited to the time-domain information in vibrations also recorded in the
SCADA system. The synergies within different SCADA channels have previously been analysed by the authors in
[6]. In the present paper, the aim is to use both SCADA and full CMS data, which could eventually lead to advanced25

knowledge of the WT health and remaining lifetime as pointed out previously, [7].
There are many reasons for combining CMS and SCADA in one database to enhance industrial O&M practice.

Both data sources contain important information on the turbine health and the operational and environmental condi-
tions at different level of detail. Most intuitively, the fact that one of the systems can fail at any time and that the
fault indicating sensor information of one system might not be available when needed [8], calls for including different30

information sources to ensure a reliable fault detection. In several meetings with European wind farm operators, it
was observed that there are currently problems related to the CMS and SCADA data processing, merging the infor-
mation contained in both sources and automating the failure detection process, [9]. Furthermore, installing CMS as
well as storing and analysing their data is often quite expensive and time consuming. Hence, failure detection based
on SCADA data could be used as a first and fast method to find faulty components. Since CMS data usually contain35

more detailed information on the components’ health, the techniques based on vibration measurements can be used
to reduce uncertainty in the failure detection and to further specify the failure modes. Nonetheless, also SCADA
data contain information, which is not present in the CMS data, such as operational variables like pitch angles, active
power production, temperatures, overloads, rotational speed, curtailment, etc. These could be very important inputs
for the failure detection algorithms of certain components, and thus, could enhance the failure prediction. In addition,40

for extending the turbine lifetime or making decisions on component maintenance, not only knowledge from vibration
data are necessary, but the entire operational history.

This paper extends the current state of the art in WT failure detection, firstly, by providing a new method for
merging the data of two distinct sources, i.e. CMS and SCADA. Furthermore, the development of automated failure
detection algorithms using either one or a combination of both sources provides new insight on how data can be used45

for this purpose. New tools are proposed that can complement and automate conventional failure detection. However,
the overall aim is not to replace conventional CMS or the analyses of their data, but rather to explore the possibilities
for automated failure detection. This could significantly enhance the operators’ ability to react to emerging component
failures and consequently decrease the cost related to O&M. In addition, it can be imagined that, due to operational or
financial reasons, the CMS might not constantly be in operation and SCADA data might provide primary monitoring50

based on learned relationships.

1.2. Objectives of the paper

Firstly, this paper proposes a framework for merging CMS vibration data with the ten-minute recordings from the
SCADA system to provide useful input to data analyses and machine learning algorithms. The processed data are
then used for the following objectives:55

• Understanding relationships between data: explore similarities of different signals in the merged data set.

• Distance-based automated vibration evaluation: develop an algorithm for automated failure detection based on
CMS data.

• Prediction of CMS alarms: evaluate the possibility of giving earlier warnings than the CMS system based on
data-driven learning. The following approaches are considered:60
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– Count of alarms: predict the number of alarms only with SCADA data to investigate the possibility of
substituting CMS.

– Time dependent probability of alarm: predict the probability of failures as an approach for early warnings
based on only SCADA data.

– Alarm time shifting: predict the alarm in a classification set-up as an alternative approach for early warn-65

ings, focussing also on the benefit of adding CMS data to the prediction.

Merging CMS and SCADA data
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Figure 1: Application of the merged data for different purposes

Figure 1 illustrates the different objectives of this paper with the techniques applied. The overall aim is to provide
the basis for further research on how SCADA and CMS data can be combined and used to optimise WT maintenance.
As this work is primarily intending to explore the possibilities of automated failure detection using either SCADA,
CMS data, or both data sources, the objectives presented in Figure 1 are not necessarily building on each other, but70

should be treated as separate approaches.

2. Background

This section details the state of the art in condition monitoring with CMS and SCADA data, which provides the
background for this study.

2.1. Condition monitoring with CMS data75

In general, a CMS consists of sensors installed at different locations in the WT with the purpose of e.g. vibration
analysis, acoustic measurements, oil analysis and strain measurement, [10]. This paper will focus on vibration analysis
as it is the most widely used technique in WT condition monitoring, due to the profound experience obtained in other
industries for rotating machinery, [2]. Accordingly, in this paper, the term CMS data will be used to refer exclusively
to vibration data obtained from the CMS.80

Manual analysis of raw vibration data is a rather difficult task and has limited benefit for failure detection. Common
processing techniques include time-domain analysis, such as Hilbert transform, statistical analysis (root mean square
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(RMS)) and Envelope analysis; frequency domain techniques like the Fast-Fourier-Transform (FFT) and Cepstrum
analysis, as well as time-frequency techniques, e.g. wavelet-transform, [11]. Commercial CMS usually send out
alarms, when the component’s vibration level indicated by the Envelope, FFT, Cepstrum or RMS exceeds a pre-85

defined threshold.

2.1.1. Fast-Fourier-Transform (FFT) for fault detection
The FFT is the most widely used technique to obtain the frequency spectrum and then relate certain frequencies

directly to degradation processes or specific WT component faults, [12, 13]. An FFT can be used to discover faults
in stationary signals, but non-stationary signals might result in indistinct FFT results. As WTs operate in highly90

non-stationary conditions, several approaches have been developed to ensure stationarity before applying an FFT,
[14, 15].

2.1.2. Envelope analysis for fault detection
Another frequently applied signal processing technique is called Envelope analysis, which helps to detect fault

frequencies that might not be present in the spectrum generated by the FFT, such as shock impulse repetition and95

their harmonics, [16]. A bandpass filter is applied to the time domain signal that centres on the desired frequency
energy region. Then amplitude demodulation is performed on the filtered time signal to extract the repetition rate of
the impact. By taking the FFT of the enveloped signal, the characteristic ‘impact frequencies’ and their modulations,
such as sidebands, can be derived.

2.1.3. Cepstrum analysis for fault detection100

Cepstrum analysis [17, 18] is carried out by taking the inverse Fourier transform of the logarithmic power spec-
trum. This is very similar to auto-correlation analysis, with the difference that it is performed on the logarithmic scale
of the power spectrum. Thus, it mainly emphasizes lower level frequencies, [12, 19, 20].

2.1.4. State of the art: Commercial and automated vibration analysis
In rotating machinery, fault frequencies can usually be distinguished from other frequencies by identifying har-105

monics or sidebands. While Envelope analysis is performed to find sidebands through amplitude demodulation,
Cepstrum analysis is used to distinguish between the different harmonic families, [21]. Combining techniques such
as FFT, Envelope and Cepstrum analysis can lead to good failure detection, as they are able to identify distinct fail-
ure types. Hence, many commercially available solutions for vibration analysis for WT condition monitoring rely on
RMS, FFT, Envelope and Cepstrum analysis for fault diagnosis, [22]. These tools usually require an expert to interpret110

the results and decide whether a fault is apparent. In [12, 20, 23], extensive reviews on the latest research in condition
monitoring based on vibration analysis are given.

Only few researchers, have tried to automate fault detection with CMS data, e.g. by deriving features like side
band energy and kurtosis [24], applying deep learning convolutional networks [25], or proposing a monitoring strategy
based on a classification with wind and rotor speeds, [26]. However, there is still a need for more generic approaches115

for fault detection with CMS data and machine learning techniques, which require the least possible human interaction.

2.2. Condition monitoring with SCADA data

As opposed to CMS, SCADA data were initially intended for operation and performance monitoring only. For
this reason, only average statistics are recorded to describe the wind conditions (wind speed, direction), the operation
(rotational speed, pitch angles, yaw angle, currents, power output) and the component health. The latter can be120

indicated by the SCADA system with temperatures and, possibly, vibrations. Due to the historical aim of describing
the wind conditions, the measurements have a sampling frequency of usually 1 Hz, but only ten-minute statistics are
saved. Additionally, all alarms issued by the SCADA system are logged.

An overview of various SCADA-based condition monitoring approaches is given in Tautz-Weinert and Watson,
[27]. Research on condition monitoring with SCADA data has investigated the use of the alarm logs [28–31], and125

shown the effect of weather on the WT failure behaviour, [32]. Wind turbine controller based fault detection using
SCADA data was analysed e.g. in [33–35], taking into account how the SCADA signals are influenced by the WT
control system. Furthermore, damage models based on SCADA records were investigated, [36, 37]. However, most
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attention has been dedicated to the potential of temperature measurements to detect drive-train problems. Some work
has tried to observe trends in the relationships between signals [1, 3] and other research has used clustering approaches130

[38], but the most promising results have been achieved using the normal behaviour modelling of temperatures. These
models can be based on artificial neural networks [39, 40], adaptive neuro-fuzzy inference systems [41], or various
other regression techniques, [42]. After data-driven training, residuals of measured and modelled temperatures act as
indicators for increased energy loss and consequently possible imminent failure. In one case study, it was shown that
this approach can detect problems even before a commercial CMS raises an alarm, [43]. However, there is still a need135

to fully assess the potential of SCADA data for failure detection purposes.

3. Data

This section explains the origin and properties of the measurements and failure documentation that was used to
develop and test the proposed algorithms.

This study is carried out using data from 13 WTs (referred to as T01 to T13) located in an onshore wind farm140

in Denmark. All WTs are three bladed and pitch regulated machines with 2.3 MW rated capacity. The data were
recorded throughout an observation period from January 2013 to December 2016. The data set is comprised of:

• SCADA data with 155 channels of 10-minute resolution.

• A log containing the alarms produced by the SCADA system.

• CMS vibration data consisting of multiple FFT, Envelope (Env), Cepstrum and RMS records in non-uniform145

sampling intervals. The data are obtained from a modern commercial CMS, which is installed in all 13 WTs.
The vibration records are labelled with characteristic sampling frequencies and bandwidths, e.g. ‘FFT1000’ for
an FFT with frequencies between 0 and 1000 Hz. For the data processing, it had to be ensured that the vibra-
tions were obtained under stationary conditions. Alternatively, if the data were obtained under non-stationary
conditions, techniques to re-sample vibration records could have been applied to achieve the same objective. In150

the commercial CMS system used for this study, the measurements were taken in seven different active power
intervals to classify them under quasi-stationary load and operating conditions. The vibrations of seven WT
components were measured:

1. Generator Drive End (GDE),
2. Generator Non-Drive End (GNDE),155

3. High Speed Shaft (HS),
4. Intermediate Speed Shaft (IMS),
5. Main Bearing (MB),
6. Planet (P),
7. Tower top acceleration, which only contained their root mean squared (RMS) amplitude.160

• Alarms per component as triggered by the commercial CMS.

This study uses information on component failures and replacements, provided by the operator, and the CMS
and SCADA records obtained prior to these failures. In the present case, main bearing failures in turbine T01, T03
and T08 were indicated by both CMS and SCADA systems and were followed by significant downtime. There
were no further confirmed major maintenance interventions (e.g. replacements) or main bearing failures during the165

observation period, but various CMS alarms of different severity. The SCADA alarms used in this study are high
temperature alarms related to the main bearing, which were raised automatically by the SCADA system when a
critical temperature value was reached. As this component failed shortly after, it is assumed that the related SCADA
alarms are no false alarms. The CMS alarms were triggered when the vibration level of the component indicated by
the Envelope, FFT, Cepstrum or RMS exceeded a certain threshold. In the present case of main bearing failures, the170

CMS used the RMS as an indicator.
Note, that for better readability ‘spectra’ and ‘frequency’ are used subsequently to describe CMS records, but

these terms shall also imply the equivalents in Cepstrum analysis.
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4. Methodology

In this section the techniques used to achieve the different objectives of this paper, as displayed in Figure 1,175

are discussed. Firstly, the data merging process is explained, which lays the foundation for the subsequent appli-
cations. Then, the techniques used to understand the relationships between the different data types are introduced.
Subsequently, the framework for the automated failure detection is presented. Finally, the data-driven CMS alarm
prediction is explained.

4.1. Merging CMS and SCADA180

CMS and SCADA data usually have different temporal resolutions. While SCADA measurements are often aver-
aged over 10-minute intervals, CMS measurements are taken once a day or once a week. Hence, the data need to be
processed to build a uniform database for thorough analysis and the application of data-driven prediction algorithms.

The different spectra can give information on deteriorating components, indicated by spectral peaks such as their
fault frequencies, side-bands and harmonics. For analysing the deterioration of a component, it is necessary to examine185

the evolution of the amplitudes of different spectral peaks over time to determine whether there a notable trend in their
behaviour.

At present, this is done manually by experts, by using plots similar to Figure 2, which shows an example for an
Envelope spectrum obtained before and after a main bearing failure. One can clearly see that the amplitude rises for
certain frequencies continuously until the failure occurs (in April 2016).190

Freq. (Hz)

Amplitude

Figure 2: Example of Envelope records plotted in the time-frequency domain (log-log axes) for manual analysis by experts. Significant failure
indicators happening in April 2016 are shown.

If the CMS records like FFT, Cepstrum and Envelopes are going to be used in a machine learning application,
a complexity reduction is advisable. Furthermore, including the entire spectrum in the algorithms would lead to an
excessively high number of channels.

A binning approach is chosen to pre-process the CMS records. Each FFT spectrum, Cepstrum or Envelope record
is split into bins of frequencies and subsequently the integral of each bin is calculated. After analysing the different195

CMS records (FFT, Cepstrum and Envelope), a total number of 17 bins was selected. With this resolution, it is possible
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to capture the different peaks in the spectrum, which indicate different fault frequencies, harmonics and side-bands,
while still reducing the sprectrum’s dimensionality. The bins are labelled in alphabetical order A,B,...,Q. Figure 3
visualises this process.
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Figure 3: The binning process visualised.

Figure 4 shows Box-Whisker plots of the binned Envelope and FFT spectra obtained in a healthy and faulty state200

of a WT main bearing. Here, the mean values and the variations obtained in a faulty state differ from those obtained in
healthy condition. As both techniques, however, treat the raw signal differently, the changes occur in different regions
of the spectra. Thus, the binning approach allows a significant dimensionality reduction of the spectra, whilst being
sensitive to condition changes.

(a) FFT (b) Envelope

Figure 4: Comparing binned FFT and Envelope records in a healthy and faulty state of a wind turbine main bearing.

For the final merging of the processed CMS records with the SCADA data, the temporal resolution needs to205

be matched. As the measurement vibration intervals are distinct from those of the SCADA data and fewer CMS
measurements are available, the CMS values are kept constant (i.e. assumed not to change) if no measurements are
available and are updated as soon as there are new measurements. Both, SCADA and CMS data were standardised
for all applications discussed in the following sections.

4.2. Understanding relationships between data210

Relationships between SCADA and CMS data are analysed with a focus on how the similarities change in the case
of a component failure. This knowledge can help to understand which signals are appropriate for data-driven failure
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detection and which signals can be omitted. Simple correlation analyses are susceptible to failure due to the irregular
temporal CMS data resolution and the large number of signals. Instead, Hierarchical Clustering (HC) and Dynamic
Time Warping (DTW) are applied.215

HC is a basic unsupervised machine learning tool to group data either bottom-up (agglomerative) or top-down
(divisive), [44]. In this paper, an agglomerative HC is used with the average linkage method and Euclidean distances.

DTW is a method to measure similarities in two time-dependent signals which may have characteristics that are
out of phase. The algorithm, originally developed for speech recognition, [45] re-aligns the signals by finding the best
‘warping’ path that results in the lowest sum of pairwise distances. The warping path is required to be monotonic and220

boundaries might be set to limit the adjustment. Here, DTW is applied with a Euclidean distance and a maximum
adjustment window of two weeks. Groups of data are compared by a 2-dimensional DTW distance that stretches all
signals of each group together.

4.3. Distance-based automated vibration evaluation

This section addresses the second objective of this study, namely a methodology to automate fault detection using225

CMS data. The distance-based automated vibration evaluation (DAVE) tool presented in this paper is a generic tool
for WT health assessment based on the fact that it is unlikely that all WTs in a farm have failures simultaneously.
It detects deviations in the vibration records measured at a WT component from ‘healthy’ behaviour by calculating
the pairwise DTW distances of vibration records of all WTs. The DAVE concept can be used for automated failure
detection and as an early warning system.230

The procedure involves, firstly, defining the initial detection setup using recorded data. Here, the CMS records
for each component are analysed separately. This setup is then used for the actual failure detection with online
measurements obtained for the same component. This is exemplified in this paper for the main bearing, for which
several failures were recorded in the data base. Figure 5 visualises the automated failure detection process.

Figure 5: Distance-based Automated Vibration Evaluation (DAVE) workflow.

The procedure involves the following steps:235
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1. Initial setup: In this phase, thresholds are derived to identify anomalies from normal operation. This could be
done by an expert or be data-driven. The data-driven approach uses data obtained during ‘healthy’ operation
and includes two sub-tasks:

(a) Farm-level DTW calculation: At each time step t, the spectra of the vibration measurements of two WTs
are compared (e.g. the record of turbine T01 is compared to the one of T02, T03, etc.). Thus, for each240

point in time and each combination of WTs the similarity of two binned vibration spectra is assessed using
DTW distances. Here, the flexibility of the DTW algorithm is used to identify similar trends even if there
are slightly different peaks in the spectra. Accordingly, the warping window is limited to a maximum
adjustment of two neighbouring bins (one at each side of the actual bin) to allow a slight shift of peaks
without considering peaks at opposite ends of the spectra as corresponding.245

(b) Distribution fit and threshold definition: By fitting a distribution to the distances and setting a threshold
for the healthy condition, anomalies are defined for the subsequent on-line application. The threshold
represents a critical value, which is set to a certain percentile of the distribution. Thus, values higher than
this critical value will subsequently be flagged as anomalous.

2. Operation: The on-line data recorded during operation are then used for the following steps:250

(b) Farm-level DTW calculation: For each point in time, a distance matrix of all WTs is set up by calculating
all pairwise distances, analogous to step 1 (a).

(c) Anomaly detection: Based on the threshold defined during the initial setup, anomalies within the pairwise
distances are identified.

(d) Alarm assignment: To determine whether an alarm has to be triggered and to which turbine it corresponds,255

the number of anomalies from pairwise comparisons is counted for each turbine (at each time step). If the
count is larger than one, an alarm is issued. The alarm is assigned to the turbine with the highest count.

(e) Health status: Based on the above, alarms are generated for each turbine, component and CMS record.
The overall health status can be visualised with a dashboard summarising all alarms.

4.4. Prediction of CMS alarms260

CMS alarms are often triggered significantly before the component actually fails. Being able to predict these CMS
alarms could lead to notable benefits with regards to early failure predictions. This third objective is addressed with a
classical machine learning approach. As there have been observed failures in three WTs, we focus here only on main
bearing (MB) alarms. For the CMS alarm prediction, three different approaches are investigated: (1) The CMS alarm
count is modelled. (2) The probabilities of having an alarm over time are obtained. (3) The alarms are predicted in a265

classification set-up with an alarm time shifting approach.
In this part of the work four probabilistic regression and classification techniques are used:

• A Generalised Linear Model (GLM) [46] is applied with a penalised likelihood estimation technique using the
least absolute shrinkage and selection operator (LASSO), [47]. The obtained standardised coefficient magni-
tudes serve then as indicators for the importance of each input variable. The GLM is a generalisation of the
ordinary linear model and can be used with error distributions other than the Gaussian distribution. In this pa-
per two distinct error distributions are applied. At first, for modelling the count of alarms, a Poisson distributed
GLM with logarithmic link function is used. The probability density function (pdf) of the Poisson distribution
is given by:

Pr(yi | xi) =
µ

yi
i

yi!
e−µi , (1)

where y is the response variable and xi are the model covariates for each observation i. The conditional mean
and variance of the distribution are given by E(yi | xi) = Var(y | xi) = µi = exp(xiβi), with the estimation
coefficients βi. The logarithmic link function is denoted as:

g(µi) = log(µi) . (2)
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Secondly, for modelling the time dependent probability of alarms, a GLM with a binomial error distribution
and a logit link-function is used. The pdf of the binomial distribution is given as:

f (y | k) =

(
k
y

)
py(1 − p)k−y , (3)

where y is the number of successes when running k trials, and p is a model parameter. The logit link-function
is defined as:

g(p) = logit(pi) =
pi

1 − pi
. (4)

During the parameter estimation process the LASSO sets unimportant covariates to zero to reduce the number
of model covariates.

• A Random Forest (RF), [48], is an ensemble of single decision tree predictors, of which each one is considered270

a weak learner. Using a combination of these weak learners results in an enhanced prediction. The RF is trained
using the so called Bootstrap Aggregation (bagging) algorithm, [49]. Here, subsets of the whole database are
randomly generated and full trees for each random sub-set are grown. Subsequently, each decision tree of the
RF is used to predict the response variable with the testing data. The overall RF prediction is the response that
was predicted by the majority of the decision trees (for classification problems) or the mean of the predicted275

counts (for regression problems). In this study an RF with 60 individual decision trees is used. The importance
of each covariate is estimated via permutation, which investigates how the prediction accuracy, indicated by e.g.
the coefficient of determination R2, mean absolute error (MAE) or root mean squared error (RMSE), decreases
if one particular feature is not present.

• A Gradient Boosting Machine (GBM), [50], is also a prediction model based on weak learners. In contrast280

to the RF, which uses fully grown trees, the GBM uses very shallow decision trees. By virtue of their setup,
these shallow trees have low variance and high bias and a ‘boosting’ algorithm is used to reduce this bias.
The boosting is a sequential process, which in each iteration adds a decision tree to the existing one, and thus,
enhances the predictive ability of the model.

For the gradient boosting, a loss function is defined (e.g. an error metric such as the mean squared error285

(MSE)), which is minimised by continuously adding weak learners to the model, while leaving the existing
ones unchanged. In this paper a GBM with 100 decision trees is applied, with a maximum depth of 10 values
each. Again, permutation is used to obtain the significance of the different variables.

• Artificial Neural Networks are among the most popular machine learning algorithms that are frequently used
for classification and regression problems. These networks consist of several layers containing nodes (often290

called neurons), which are interconnected with weighted paths, the so called ‘synapses’. The importance of a
connection for predicting the outcome depends on the assigned weight to the respective synapses.

In this paper, a feed-forward Artificial Neural Network (ANN) is trained, implying that the nodes are only
connected in one direction: from the input layer towards the output layer. Three hidden layers of 50, 40 and
20 nodes are used respectively. This setup showed the best performance in an iterative testing of different295

configurations starting with one hidden layer and a small number of nodes.

Levenberg-Marquardt backpropagation [51] is used for training the ANN, which changes the internal structure
of the ANN (i.e. the weights and biases at each node) to minimise a given cost function, commonly the MSE. In
this process, at first the weights of the neural network are selected randomly and the response is calculated using
only one input variable. The cost function indicates then how close the predicted values are to the observed ones.300

Then, the output is propagated back through the ANN to determine the error of all hidden and output neurons,
and the neurons’ weights and biases are modified accordingly.

Finally, the variable importance is determined using functional analysis of the weight matrix, as introduced in
literature, [52].
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4.4.1. Count of alarms305

As the alarms are directly issued by the CMS, only SCADA data are used for prediction. SCADA channels
containing constant or cumulative values were eliminated for this task, as they would contain unnecessary information.
Two different concepts of defining training and testing data are investigated:

• Random sampling of all data from all WTs with a ratio of 80% training and 20% testing (labelled random
sampling subsequently).310

• Training with data from all WTs except one and blind testing on the remaining turbine, i.e. approx. 92%
training and 8% testing (labelled blind testing subsequently).

As the number of time-steps containing entries for alarm events is much lower than the time-steps where no alarms
were observed, the class distribution needs to be adjusted using a method called ‘under-sampling’. The resulting
training data set is under-sampled limiting the number of time-steps without alarm to 80% of the data, to re-balance315

the representation of different targets, [53].
For this task, the mentioned algorithms are used in a regression setup, i.e. predicting a discrete quantity output

for the alarm count. Thus, the GLM is set with a Poisson distribution and logarithmic link function. The other
algorithms are used as explained above in Section 4.4. The best performing model is determined by comparing the
evaluation metrics: coefficient of determination R2, mean absolute error (MAE) and root mean squared error (RMSE)320

on the training and testing data. The R2 is a standard evaluation metric and indicates how well the model explains the
variance in the response based on the input variables of a given data set. The R2 reaches from 0 to 1, while 0 states
that the model fails to accurately represent the data, 1 indicates a perfect fit. The MAE and RMSE are also standard
evaluation metrics for regression problems and represent the average magnitude of the prediction error. Ranging from
0 to infinity, lower numbers indicate better predictions. As the RMSE is slightly more sensitive to outliers than the325

MAE, both metrics are included in the analysis to thoroughly compare the model accuracy.

4.4.2. Time dependent probability of alarms
In this section, the aim is to generate a time-dependent probability of getting a CMS alarm in a classification

approach. Again, only SCADA data are used for the predictions. For the training, these are under-sampled to a ratio
of 80% and 20% for the two respective classes {0,1}, which stands for {‘no alarm’,‘alarm’}. The blind testing approach330

is applied, as any random sampling and testing would hinder a time-dependent evaluation. In this case, the algorithms
introduced in Section 4.4 are used to solve a classification problem. Hence, GLM is applied with a binomial error
distribution and a logit link-function. Also, when modelling binary response variables, the other learning algorithms
can be used as probabilistic classifiers. The output from the predictions is then a posterior class probability at each
point in time, [54]. To provide a comparison, the probabilistic output of the classifiers is analysed for WTs with and335

without failure.

4.4.3. Alarm time shifting
Again, a binary classification approach is used. Prediction is performed by shifting the data set to an earlier time

step, and thus, training the model with shifted data. Zero lead time corresponds here to modelling the alarm, while
higher lead times correspond to alarm prediction in advance. Although, this is a static way to represent a dynamic340

process, it can provide useful information about the classifiers’ performances before the actual occurrence of an event.
Several combinations of input sources are investigated, namely 1) SCADA, 2) SCADA and RMS and 3) ‘all data’.

‘All data’ stands here for SCADA, RMS and all MB spectra from one active power interval. This procedure allows
the evaluation of the contribution of each data source regarding the prediction accuracy. Data from all WTs are used
with random sampling and are again under-sampled, as described in the previous section. The classifiers employed in345

this section are RF and ANN.
A 10-fold cross validation is carried out on the data leading to 10 distinct predictions, which are then gathered to

provide an average performance.
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5. Results

In this section, the results for the application of the processed and merged CMS and SCADA data are presented350

for the three separate objectives of this paper: (1) understanding relationships between the data, (2) automated failure
detection (DAVE) and (3) predicting the CMS alarms.

5.1. Understanding relationships between Data

The results of the HC analysis of all data per turbine are given in Figures 6 - 7 with simplified dendrograms and
statistics of the most separated clusters. In general, a cluster analysis can show which signals are similar, i.e. joined in355

a cluster, and which signals are more different, i.e. in separated clusters. In agglomerative HC, the process of building
the clusters is more important than the final result due to the fact that all signals are eventually joined to one cluster. A
dendrogram visualises how clusters are formed by connecting two ‘leaves’, i.e. sub-clusters, to form the next cluster.
Here, the x-axis represents the sub-clusters or in the lowest level all signals. Due to the high number of signals (3375),
the lowest level is not shown, but the dendrograms were cut at 20 leaves. The height in the y-axis represents the360

difference of the two joined sub-clusters in terms of the Euclidean distance, i.e. a dendrogram with vertically close
clusters indicates very similar signals.

Figure 6a shows that there was no significant cluster separation for fault-free time periods. The two clusters that are
joined at the top of the dendrogram consisted here of one big cluster and one smaller cluster with only a few signals
(the most separated cluster). The second most separated cluster (which is not a sub-cluster of the most separated365

cluster) showed a similarly small number of signals. In case of the MB failures, however, there was a clear separation
of more signals (Figures 6b and 7). Here, the two most separated clusters were formed by many MB signals for T03
and T08. This proved that a number of signals shows clearly deviating features before the failures. Noticeably, there
were mainly GNDE and not MB contributors in the case of the MB failure in T01.
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Figure 6: Simplified dendrogram and contribution to most separated clusters in T01.
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Figure 7: Simplified dendrogram and contribution to most separated clusters in case of MB failure for WTs T03 and T08.

In a second step, the relationships between the CMS records for different active power intervals were evaluated
with DTW distances. Each spectrum was taken as a group of signals in this case without differentiation of the
individual bins. The DTW distance was then calculated by comparing with another spectrum measured in a different
active power interval. Here, the calculated distance is normalised by the number of samples in the signal for better
readability. The complete analysis resulted in pairwise distances for three different spectra FFT1000, Env200 and
FF35, (names indicate the signal type as well as its sampling frequencies and bandwiths – e.g. FFT35 stands for an
FFT signal with frequencies between 0 and 35 Hz) and seven active power intervals (<38%, 38-48%, 48-58%, 58-
69%, 69-79% and >90% of rated power). For each spectra-to-spectra relationship, a distance matrix T is described
by defining the element at position i, j as

Ti, j(rs) = dDTW (ri, s j) , (5)

with the DTW distance dDTW , r and s as the two selected spectra, superscripts describing the active power bin and
i = 1, 2, 3, . . . , 7, j = 1, 2, 3, . . . , 7. This means, for each of the r-s relationships a 7 × 7 matrix can be written. As an
example, the FFT1000-Env200 relationship for the period of failure in T08 (Oct-Dec 2015) results in the following:

T (FFT1000,Env200) =



0.137 0.144 0.145 0.142 0.137 0.141 0.167
0.113 0.112 0.118 0.114 0.109 0.109 0.179
0.115 0.116 0.119 0.115 0.111 0.110 0.181
0.102 0.101 0.109 0.103 0.099 0.106 0.175
0.103 0.107 0.110 0.107 0.106 0.109 0.178
0.109 0.107 0.116 0.111 0.105 0.116 0.188
0.221 0.223 0.220 0.222 0.224 0.215 0.219



(6)
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Six matrices were derived for each turbine and selected time window. Note that for certain relationships the matrix370

was symmetric and filled with zeros on the diagonal (e.g. FFT1000-FFT1000). The pairwise comparison of spectra
of different active power intervals showed that in case of MB failures, spectra from all active power intervals became
relatively similar with some normalised distances as low as 0.05-0.15. In contrast, for fault-free operation, normalised
distances were usually >0.2. The information for varying bins is further visualised in Figures 8 and 9 by using directed
graphs. The distance matrix T is split into two adjacency matrices for the upper and lower triangle, respectively. In375

the directed graph, each set of seven nodes represents the seven active power intervals. The heading above each set of
nodes identifies the two compared record types according to the direction of the arrows connecting the nodes (always
starting at the lower number). The colour of the arrows shows the similarity of the two connected spectra, as indicated
by the DTW distance. With this, higher distances imply higher dissimilarities.

Noticeably, some spectra were only similar for certain power intervals as shown in Figure 8 for T01. Very low380

distances and accordingly similar features were seen for all intervals in the FFT1000 spectra. In contrast, interval 1
appeared to have unique features for Env200 spectra, as they are not connected to any other node. If the different
record types are compared, the FFT1000 and Env200 are more similar, but the two FFT records FFT1000 and FFT35
are less similar. Figures 9a and 9b show the DTW distances for the MB failures in T03 and T08, respectively. The
identified relationships in T08 are comparable to T01, except for interval 7 with unique features (instead of interval385

1). However, all FFT1000 and Env200 distances were slightly larger in T08 – a trend that was amplified in T03
with even higher distances. All in all, the DTW analysis confirmed that the CMS records from the different active
power intervals showed mostly similar features, i.e. using data from only one active power interval is a reasonable
compromise to handle a large number of records. Thus, in the further, the study is based on data from the fourth active
power interval corresponding to 58-69% rated capacity.390
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Figure 8: DTW distances for various MB records with different active power intervals in the case of a MB failure for T01 (Jan-Mar 2016).
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Figure 9: DTW distances for various MB records with different active power intervals in the case of a MB failure for (a) T03 (Apr-Jun 2015) and
(b) T08 (Oct-Dec 2015).

5.2. Distance-based automated vibration evaluation

The performance of the automated failure detection is demonstrated in this section for CMS records obtained for
the main bearing.

For the initial setup of DAVE, the first two observed (healthy) years of the entire data set were used to derive
the thresholds directly from the WT data. In this context, a Weibull distribution showed the best fit to the calculated395

distances. The threshold for the anomaly was set to the 99.9th percentile of the distribution. Figure 10 shows the
alarms, triggered by CMS, SCADA and DAVE (for FFT1000), and the downtime caused by the failure during an
observation period of four years. WTs T09 to T13 are not shown in this graph as none of them had either CMS or
SCADA alarms. Also, DAVE did not indicate any alarms for these latter WTs. DAVE showed very early alarms for
the three MB failures in T01, T03 and T08. Additionally, no false positives or false negatives were recorded during the400

four year period. The other MB records, Env200 and FFT35 gave less reliable warnings. Table 1 shows the number
of days DAVE was able to anticipate the component problem in comparison to the CMS and SCADA alarms. Figure
10 and Table 1 show that DAVE was capable of detecting the problems up to 72 days prior to the CMS and 119 days
before the actual failure event.

Table 1: Number of days the different systems triggered alarms before failure.

WT DAVE CMS SCADA
FFT1000 FFT35 Env200

T01 106.5 11.8 - 34.5 9.3
T03 119.9 - 105.1 110.1 0
T08 65.1 - 93.8 5.5 0

405
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Figure 10: Results for the automated failure detection. Comparing CMS, SCADA and DAVE (FFT1000) alarms.

5.3. Prediction of CMS alarms

This section presents the results of the three approaches to predict CMS alarms in supervised learning frameworks.
At first, the results for modelling the number of CMS alarms are shown including a sensitivity study to determine the
most important input parameters. Then, the time dependent probability of having a CMS alarm is presented. Finally,
the alarms are shifted towards an earlier time step and predicted. For the latter, the performance of different input data410

combinations is evaluated.

5.3.1. Count of alarms
In the following, the results for modelling the number of CMS alarms by only using SCADA data are presented.

The performance of the different algorithms is evaluated with the Coefficient of Determination (R2), the mean absolute
error (MAE) and the root mean squared error (RMSE). The most important model covariates for each set-up are415

determined. The evaluation metrics for training and testing of each technique using random sampling are shown in
Table 2. Figure 11 shows the recorded CMS alarms and the predictions obtained from each model. RF and GBM
performed best, ANN showed intermediate results, while GLM resulted in poor performance. Figure 12 shows the
importance of the different variables in each model, indicating the most important model covariate, which was in all
cases the main bearing temperature.420

Table 2: Evaluation metrics for modelling CMS alarm counts using only SCADA data with random sampling.

Metric RF GBM GLM ANN

Tr
ai

n R2 0.893 0.942 0.142 0.610
MAE 0.151 0.192 0.982 0.388
RMSE 1.261 0.929 3.573 2.438

Metric RF GBM GLM ANN

Te
st MAE 0.149 0.224 0.982 0.379

RMSE 1.151 1.182 3.592 2.468
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(a) RF (b) GBM

(c) GLM (d) ANN

Figure 11: Results for modelling of CMS alarm counts with random sampling.

The results for blind testing are displayed in Figure 13 and Table 3. During the training phase, RF and GBM
performed better than ANN and GLM. The predictions using the testing data set were characterised by much higher
errors than in the previous section. This may be due to turbine-dependent operational and environmental conditions,
since it is difficult to capture all of these variations if one turbine is left out.425

Table 3: Evaluation metrics for modelling CMS alarm counts using only SCADA data with blind testing.

Metric RF GBM GLM ANN

Tr
ai

n R2 0.979 0.989 0.218 0.549
MAE 0.028 0.053 0.504 0.195
RMSE 0.364 0.256 2.211 1.672

Metric RF GBM GLM ANN

Te
st MAE 0.974 0.950 1.350 1.079

RMSE 4.698 4.689 5.640 5.498
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(a) RF (b) GBM

(c) GLM (d) ANN

Figure 12: Variable importance for the algorithms used for random sampling.
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(a) RF (b) GBM

(c) GLM (d) ANN

Figure 13: Results for modelling of CMS alarm counts with blind testing.
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5.3.2. Time dependent probability of alarms
This section is concerned with predicting how the probability of having a CMS alarm is evolving over time, based

only on SCADA data. The results are evaluated graphically by plotting the predicted probabilities over time, as well
as the alarm event. It is investigated how the probabilities behave before the event and which algorithm was able to430

indicate an upcoming alarm more reliably. Figure 14 shows the results for WTs T01, T03 and T08, for which MB
CMS alarms were recorded throughout the observation period. Furthermore, WTs T06, T10 and T11, which did not
experience any main bearing CMS alarms, are displayed. For easier interpretation of the graphs, the probabilities over
time are smoothed using a moving average filter.

It can be seen that GBM performed best. It indicated a rising probability towards the time of occurrence of435

the actual alarms for all WTs, while resulting in a near-zero probability for WTs T06, T10 and T11, which did not
experience any CMS alarms. The results for GLM and RF indicate a relatively high probability of alarm occurrence
for T06. GLM performed overall poorly for all cases. A certain seasonality was observed for the ANN predictions
of T01 and T06 as well as the GLM predictions of T01, T10 and T11. GBM and RF showed a peak in probability
approximately one year before the failure in T08, which could be caused by seasonality or a separate problem in the440

MB. Further investigation is required to fully understand the observed trends.
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Figure 14: Probability of having a CMS alarm.21



5.3.3. Alarm time shifting
The performance of the predictions using alarm time shifting is evaluated by receiver operator characteristic (ROC)

curves at different fixed lead times. ROC curves show the hit rate (probability of detection - POD) versus the false
alarm rate (FAR) as a function of the threshold for an alarm in a probabilistic setting. Figures 15a and 15b show the445

results for the predictions made using ANN and RF with a lead time of 0 hours. These consist of ten different ROC
curves for each of the predictions made during cross validation. The red line indicates the average ROC curve.
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Figure 15: Example of variation in the results of the 10-fold cross-validation.
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Figure 16: Average ROC curves for ANN and RF at lead times 0 and 40 hours.

In Figures 16a and 16b the average ROC curves for different input combinations and different lead times are
displayed. Notice that in the figures, different axis scales are used to emphasise the difference between different data
combinations, rather than comparing the performance of the two classifiers. Here, ‘all data’ denotes the input set450

comprised of SCADA, RMS, FFT and Envelope records. The RF algorithm performed considerably better than the
ANN in all cases. Interestingly, the POD of both algorithms in predicting CMS alarms by only using SCADA data is
high. Nonetheless, using more data improved the predictions. As expected, the combination of all CMS and SCADA
data performed best followed by the combined SCADA and RMS data. This demonstrates that the added value of
CMS data for failure detection is large. The temperature as sole fault indicator might not be sensitive to all failure455

modes and damages and vibration records can provide a more sensitive measure for the automated failure detection.
Furthermore, it is shown that with zero lead time the predictions for all combinations of input data are better. This
was also an expected result, since closer to an actual event the separability between the classes increases. It is worth
noting that the order of the POD and FAR displayed is affected by the pre-processing approach used for the data, in
particular the fact that the CMS records are kept constant if there was no measurement.460
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6. Discussion

In this section, the different results of this work will be further discussed. Several methods for WT failure detection
based on a database of merged CMS and SCADA data have been explored. The proposed merging procedure resulted
in a complexity reduction without losing fault relevant information (peaks, harmonics, sidebands, etc.) and was
intended to be a generic solution for various CMS records and possible failure modes. However, future work needs465

to validate the suitability for fault features not studied in this work and explore alternative solutions for merging the
data.

The HC analysis on one turbine highlighted that there is no strong cluster separation in case of normal conditions,
but separation of signals in case of imminent failures. This confirmed that failures are clearly reflected in a number of
CMS signals, not only recorded at the failing part but also at other locations. For some failures, SCADA signals were470

assigned to the same cluster, indicating a change in behaviour. This gave first evidence of overlapping information in
CMS and SCADA data. Further refining of the clustering analyses, e.g. by cutting into shorter windows, could have
potential for failure prediction, but classification setups were considered to be more efficient for this purpose.

The evaluation of DTW distances of different CMS records showed that the information contained in the MB
records is mostly similar for various active power intervals. This fact might be beneficial in industrial practice to limit475

the monitoring efforts. However, the results also indicated some dissimilarities for certain records and active power
intervals, which should be investigated in more detail.

The application of the DAVE framework to MB failures showed that an automated evaluation of the FFT and
Envelope records, emitted by several WTs within the same wind farm, works well for early failure prediction in this
component. Future research needs to validate DAVE with other failure modes beside MB. It would be helpful to480

establish the required similarity in the wind farm, e.g. will it work in complex terrain?
For predicting the CMS alarms, three distinct approaches were chosen to accomplish different objectives. This

helped to understand that it can be possible to anticipate the CMS alarms by only using SCADA data. The blind testing
results indicated that the exact number of alarms is difficult to predict. It can be argued, that this is not necessarily
required in practice, but rather a prediction of the failure by means of a probability.485

The probability of having a CMS alarm over time was calculated only based on SCADA data. It was found for
instance that the GBM algorithm reliably indicated a rise in the probability of having an alarm several months ahead
of the alarm. This setup could be used by operators as a monitoring system, if CMS are not continuously available, or
as an additional early warning system. However, it should be investigated why the different classification techniques
performed so differently and whether GBM gives reliable results also with other data.490

Finally, the CMS alarms were predicted using alarm time shifting. The results here showed that the combination
of SCADA and CMS performed better than using the single sources, which may suggest that the mutual information
between them could provide prediction synergies. Nonetheless, only using SCADA data still led to relatively low
false alarm rates. Future work needs to establish what lead times are feasible, i.e. how much in advance the alarms
can be predicted.495

An important point emerging from this research is how the different time-based or static learning techniques can
be used to provide information about progressive damage. In particular, reducing the dimensionality of the data set
can be achieved in several different ways, depending on the nature of failure. For instance, the techniques employed
in this paper led to substantially different results and considerations, that took into account relationships between data,
turbines and mechanical components as well. It seems likely that it is impossible to define a standard procedure to500

extract information from data for WT failure detection that will be valid for all failure modes and site-specific prop-
erties. Further explorative analyses are recommended, thus taking into account the nature of historical information,
e.g. whether labelled or unlabeled data are available to develop adequate automated processes for commercial O&M
practice.

When looking at the overall results of this paper, it could be argued that failure prediction can be carried out505

exclusively based on SCADA data, avoiding expensive CMS. This might hold true in certain cases and failure modes,
nonetheless, using both data sources enhances the failure detection. Hence, merging SCADA and CMS may lead to
standard monitoring systems calibrated for detecting a larger variety of failures, eliminating redundancy, decreasing
costs of equipment and increase data reliability (in case one system fails) and facilitate their processing.
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7. Conclusion510

This paper proposed a method for merging CMS, SCADA and alarm data and a thorough analysis was carried
out on the possible applications with respect to enhancing predictive O&M practice. Automated failure detection
algorithms using both data sources have been developed and tested, which to the authors’ knowledge has not been
subject to previous research. As this work was intended to give new practical solutions, it started off from an industry
perspective by considering data of a commercial monitoring system. The aim of this study was not to substitute CMS515

experts, but to provide them with useful tools to draw faster and more reliable conclusions regarding the necessary
O&M actions.

This research addressed optimisation of predictive O&M with the following novel contributions:

• A new method for merging CMS and SCADA data was presented to overcome issues with the different temporal
resolutions of both sources and to reduce the dimensionality for the use in machine learning algorithms.520

• The relationships between the two data sources were analysed using hierarchical clustering (HC) and dynamic
time warping (DTW).

• A tool for automated failure detection on wind farm level was developed for using vibrational data of all WTs:
distance-based vibration evaluation (DAVE).

• Algorithms for automated data-driven CMS alarm prediction were introduced. Here, three different approaches525

were carried out: predicting the number of alarms, predicting the probability of having an alarm over time and
predicting failures with an alarm time shifting setup.

The analysis of the merged data utilising HC showed that signal relationships changed before main bearing (MB)
failures. It became apparent, that not only dedicated CMS records for the MB might indicate the problem, but also
other CMS records of other components and SCADA signals. The CMS data taken in various active power intervals530

were found to be similar.
The application of the DAVE tool proved that reliable failure detection is feasible based on pair-wise comparisons

of vibration spectra. Three MB failures were detected up to 119 days in advance of the failure. DAVE gave consistently
earlier alarms than the commercial CMS.

The application of machine learning frameworks showed that after learning with CMS alarms, SCADA data alone535

could give a reasonably accurate failure prediction – in terms of the alarm count (used as failure indicator) and also
the time-dependent probability. However, the ratio of true and false alarms was clearly improved if CMS data were
also used.

It can be concluded that the herein presented automated failure detection algorithms based on both SCADA and
CMS data, have shown to perform very well and could contribute to lowering the costs related to maintenance actions.540

For future studies, there are several possibilities to build upon this work. This could include:

• Further analysis of data relationships should consider the detailed cluster composition and DTW similarities
inside these clusters.

• The DAVE framework should be evaluated for other failure modes and components.

• The probabilities of having an alarm could be integrated into an online monitoring framework.545

• The CMS alarm prediction could be extended using other learning algorithms, maximising the possible lead
times for several components.

• The effectiveness of the classification based predictions should be evaluated from a risk perspective.

• The different approaches presented in this work could be merged, e.g. by predicting alarms generated by DAVE.

• The proposed algorithms should be validated against traditional CMS analysis.550

In general, the synergies between CMS and SCADA data should be better explored. Direct data processing in the
turbine should be the final aim to avoid high frequency time series storage.
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[5] P. Lind, L. Vera-Tudela, M. Wächter, M. Kühn, J. Peinke, Normal Behaviour Models for Wind Turbine Vibrations: Comparison of Neural

Networks and a Stochastic Approach, Energies 10 (12) (2017) 1944, DOI: 10.3390/en10121944.
[6] L. Colone, M. Reder, J. Tautz-Weinert, J. J. Melero, A. Natarajan, S. J. Watson, Optimisation of Data Acquisition in Wind Turbines with

Data-Driven Conversion Functions for Sensor Measurements, Energy Procedia 137 (2017) 571–578, DOI: 10.1016/j.egypro.2017.10.386.570

[7] G. A. M. van Kuik, J. Peinke, R. Nijssen, D. Lekou, J. Mann, J. N. Sørensen, C. Ferreira, J. W. van Wingerden, D. Schlipf, P. Gebraad,
H. Polinder, A. Abrahamsen, G. J. W. van Bussel, J. D. Sørensen, P. Tavner, C. L. Bottasso, M. Muskulus, D. Matha, H. J. Lindeboom,
S. Degraer, O. Kramer, S. Lehnhoff, M. Sonnenschein, P. E. Sørensen, R. W. Künneke, P. E. Morthorst, K. Skytte, Long-term research
challenges in wind energy - a research agenda by the European Academy of Wind Energy, Wind Energy Science 1 (1) (2016) 1–39, DOI:
10.5194/wes-1-1-2016.575

[8] S. Dienst, J. Beseler, Automatic Anomaly Detection in Offshore Wind SCADA Data, WindEurope Summit 2016, 2016, pp. 1–6.
[9] E. Artigao, L. Colone, E. Gonzalez, E. Nanos, R. Pandit, M. Reder, H. Seyr, J. Tautz-Weinert, L. Valldecabres, N. Yilidirim, L. Ziegler, 1st

Joint Industry Workshop Scientific report, Tech. rep., melero, J J, Muskulus, M and Smolka, U (editors). URL: http://awesome-h2020.
eu/2016/02/20/1st-joint-industry-workshop-scientific-report/ Last accessed: 05/06/2018. (2016).
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