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Abstract

The accuracy of the interaction methods for combined flexural and lateral torsional buckling are investigated using statistical data,
which has become available after the introduction of Eurocode EN1993-1-1:2005. The freely available statistical data for geometric
and material parameters for standard profiles are quite limited and as background documents are based on IPE 160 profile, our
investigations are also based on this profile. A semi-probabilistic first order reliability approach is used and the resistance of the
member is treated as a stochastic variable. Latin Hypercube Sampling is used for population sampling. This simulation approach
for determination of the buckling interaction surface has not previously been reported. The Eurocode handles buckling interaction
through two interaction equations. These equations include a number of interaction factors. The calculation of the interaction
factors may be performed by one of two methods, referred to as Method 1 and Method 2. Both interaction methods make use of the
buckling curves for determination of reduction factors for both flexural and lateral torsional buckling. The flexural buckling curve is
well calibrated; however, this is not the case for lateral torsional buckling. It turns out that the methods may lead to unsafe designs
when a lateral torsionally slender column is loaded predominantly in bending. The present paper investigates how the Eurocode
emulate the complex behavior also for very slender beam-columns. The 0.1% quantile interaction curves are compared to those
resulting from the use of Method 1 and Method 2.

Keywords: Flexural buckling, Lateral torsional buckling, Buckling interaction, Eurocode, Stability, FORM.

1. Introduction

When steel members are subjected to both axial compression
and strong axis bending the structural response is highly com-
plex and depends on many factors such as for example initial
geometric imperfections, which can vary in both amplitude and
shape, residual stress, plasticity and second order effects. This
in turn as a consequence makes the modelling of such behaviour
a difficult task, which has been under scrutiny ever since the
work with the Eurocodes started over 40 years ago. A compre-
hensive historical review of the development of the European
column buckling curves and finite element modelling can be
found in Jönsson & Stan [1] and the theoretical research on sta-
bility of beam-columns with combined compression and bend-
ing has thoroughly been described in the ECCS background
document [2]. As described in the background document the
current Eurocode EN 1993-1-1, [3], handles the interaction be-
tween axial compression and bending moment through two sep-
arate interaction formulae including interaction factors which
can be calculated using either Method 1 or Method 2. These
methods were developed over a period of nine years by two sep-
arate research teams from different universities in Austria, Ger-
many, France and Belgium. The methods share the same theo-
retical background as outlined by Snijder [4], but employ differ-
ent philosophies in their derivation of the coefficients leading to
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the interaction factors. Method 1 aims for transparency by hav-
ing effects represented by individual factors, while Method 2
aims at being simple and user friendly with compact interac-
tion factors. The Eurocode EN 1990 [5] provides the basis of
structural design and contains specific guidelines for the level
of reliability of structures. The resistance of structures is tra-
ditionally found by deterministic methods using safety factors
and conservative estimators of the variables that influence the
load carrying capacity, however the reliability of structures is
usually expressed in probabilistic terms, see [5] and [6]. The
Eurocode provides the necessary guidelines for determining the
reliability using a semi-probabilistic or even a fully probabilis-
tic approach. The European test series and Monte Carlo sim-
ulations were performed on IPE160 sections, see for example
Strating & Vos [7]. Therefore, in the present investigation an
IPE 160 beam-column is subjected to a reliability analysis ac-
cording to the Eurocode [5]. The reliability analysis is per-
formed using a First Order Reliability Method (FORM) with a
semi-probabilistic approach where the resistance of the beam-
column is treated as a stochastic variable, which has a Gaussian
probability distribution. The resistance found in the analysis as
the 0.1% quantile is then compared to the Eurocode interaction
formulae calculated using both Method 1 and Method 2. This
is done in order to determine whether or not the formulae, and
their respective coefficients, meet the required level of reliabil-
ity. The reliability analysis will be carried out by using Geomet-
rically and Materially Nonlinear Imperfect Analyses (GMNIA)
in the Finite Element (FE) software Abaqus [8].
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A condensed introduction is given to the basic beam-column
interaction factors found in the Eurocode and to the probabilis-
tic theory utilized in the reliability analysis. The FE-model
is explained in detail in order to facilitate reproduction of the
results that are presented. Then a short investigation into the
shape of the initial geometrical imperfections is given using
buckling mode shapes and its effect on the structural carrying
capacity. This is done to ensure that the most conservative ap-
proach to the initial imperfect geometry of the steel member is
chosen as the basis for the simulations used for the reliability
analysis. Finally the procedure of the reliability analysis is ex-
plained along with the given statistical geometric and material
data, before the results of the analysis are presented and com-
pared to the analytically calculated values from the Eurocode.

Details and elaborate explanations of the theories and inves-
tigations reported in this paper can be found in the master the-
sis by Gamst & Müller [9], supervised by Jönsson and visiting
PhD-student Vales at DTU.

2. Preliminary theory

2.1. Beam-column interaction factors

The design equations for beam-column interaction in the Eu-
rocode are written in a linear format, meaning that non-linear
effects need to be accounted for through the interaction fac-
tors utilized in the equations. The design effects of loadings on
beam-columns are given as the normal force NEd, the moments
about the strong and weak axes respectively My,Ed and Mz,Ed

and the changes of strong and weak axis moments due to shift
of the neutral axis ∆My,Ed and ∆Mz,Ed. The design resistances
are given as NRd for the normal force and My,Rd and Mz,Rd for
the moments about the strong and weak axes respectively. Es-
sentially the utilisation with respect to each section force load
effect is given by the ratio of the section force load effects and
its design resistance. However in case of flexural buckling (FB)
the normal force resistance is reduced by the buckling reduction
factors, χy or χz corresponding to strong or weak axis buckling
depending on which case is considered. Furthermore in cases
where lateral torsional buckling (LTB) is relevant the strong
axis moment resistance is reduced by the LTB reduction factor
χLT . In order to take moment amplifications caused by second
order effects from axial force, plasticity, imperfections and the
shape of the moment diagram into account interaction factors
kyy, kyz, kzy, and kzz are introduced in the Eurocode. With the
introduced parameters the two beam-column interaction equa-
tions which have to be fulfilled according to the Eurocode[3]
are:

NEd

χyNRd
+ kyy

My,Ed + ∆My,Ed

χLT My,Rd
+ kyz

Mz,Ed + ∆Mz,Ed

Mz,Rd
≤ 1 (1)

NEd

χzNRd
+ kzy

My,Ed + ∆My,Ed

χLT My,Rd
+ kzz

Mz,Ed + ∆Mz,Ed

Mz,Rd
≤ 1 (2)

Due to the somewhat complex process of including all the
above mentioned effects into the four factors, the beam-column
interaction factors are quite complex and may be calculated by

ψMEd MEd

NEdNEd

M I
max

M II
max Mmax

Figure 1: Location of the maximum bending moment when both first (MI ) and
second order bending moments (MII ) are present.

one of two independent methods referred to as Method 1 and
Method 2 located in annex A and B of Eurocode 1993-1-1 [3].
Method 1 is developed by a French-Belgian research team and
is characterized by its use of individual coefficients to describe
each effect involved in beam-column interaction. This is also
part of the continuity aspect of the method, where the equation
reduces to a cross section check when effects are not present.
Method 2 on the other hand is developed by a German-Austrian
research team and is more compact as it is derived mostly from
GMNIA testing, meaning it is more suitable for hand calcula-
tions. It is important to note that the two equations (1) and (2)
are not related to a simple physical utilisation ratio, they are a
result of equational manipulation of the classic stress utilisation
ratio for the deformed situation. It is however clear from the
ECCS background document [2] that both methods are based
the same stress utilisation equation, which can be written in a
classic format as:

NEd

NRd
+

1

1 − NEd
Ncr

NEdu
MRd

+
1

1 − NEd
Ncr

CmMI
Ed,max

MRd
(3)

Where u is the initial bow imperfection in the member, MI
Ed,max

is the first order moment, and Cm is the equivalent moment fac-
tor. The equivalent moment factor is implemented in order to
avoid having to locate the maximum bending moment along
the member length, caused by the addition of an axial force to
a member already loaded in bending. This problem is illus-
trated in Figure 1. This is solved in Method 1 by assuming a
sinusoidal shape of the first order moment, and in Method 2 by
assuming a constant value of the first order moment. Both ap-
proaches will ensure a maximum total bending moment at mid-
span of the beam-column. This concludes the brief introduction
to the stability equations related to Method 1 and Method 2.

2.2. Structural reliability
A first order reliability method with a semi-probabilistic ap-

proach is used in this paper to perform a reliability analysis on
an IPE 160 beam loaded in axial compression and bending.

There are two methods of conducting a probabilistic reliabil-
ity analysis; fully probabilistic or semi-probabilistic. A fully
probabilistic approach entails modeling both the load and the
resistance as stochastic variables before performing a Monte
Carlo simulation in order to determine the failure surface, i.e.
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Figure 2: Design reliability condition.

the intersection between the two probability distributions. In a
semi-probabilistic approach only the distribution of the resis-
tance is known and the probability of failure can be estimated
using the First Order Reliability Method (FORM), which will
be elaborated on the following

Design conditions of reliability of standard EN 1990 are
based on the FORM method, which was first introduced in the
1960s. It has now evolved to become one of the most impor-
tant methods for evaluating structural reliability see Faber [10]
and Zhao and Ono [11] especially in combination with the finite
element method.

Structural reliability is expressed as a function of the random
resistance R and random load effect E:

M = R − E ≥ 0 (4)

where M is the so-called safety margin. Probability of failure
can be expressed by the equation

P f = P(R < E) = P(R − E < 0) = P(M < 0) (5)

Let us assume that R, E are statistically independent variables
with Gauss pdf with mean values µR, µE and standard deviations
σR, σE . Under these assumptions, M also has Gauss probability
density function (pdf) with mean value µM and standard devia-
tion σM , which can be expressed as:

µM = µR − µE (6)

σM =

√
σ2

R + σ2
E (7)

The probability that M = R−E < 0 is expressed by the integra-
tion of the pdf fM of random variable M:

P f =

∫ 0

∞

fM dm = Φ

(
0 − µM

σM

)
= Φ(−β) (8)

where Φ( ) is the cumulative normalized Gauss distribution and
µM/σM is the so-called reliability index β, see Figure 2. For a
target value of the reliability index, for example β = βd = 3.8,
the probability of failure is determined as P f = Φ(−3.8) = 7.2 ·
10−5. In standard EN 1990,[5], reliability is generally verified
by the inequality

β =
µM

σM
≥ βd (9)

which upon substituting into (8) represents the probabilistic de-
sign condition P f < P f d, where P f d is the target value of

Failure surface

β

P

E/σQ

R/σR

−αQβ

αRβ

Figure 3: Design point p and reliability index β.

failure probability [5]. For practical use, inequality (9) can be
transformed by introducing the so-called FORM sensitivity fac-
tors αR, αE , which are obtained from the treatment of (7) as:

σM =

√
σ2

R + σ2
E =

σ2
R + σ2

E√
σ2

R + σ2
E

=
σR√

σ2
R + σ2

E

σR +
σE√

σ2
R + σ2

E

σE

= αRσR + αEσE (10)

The standard [5] permits the introduction of αR, αE with con-
stant values αR = 0.8, αE = 0.7, which for commonly occurring
values σR and σE (common design conditions) lead to an ap-
proximately constant value σM ≈ 0.8σR + 0.7σE . Substitution
of (6) and (10) into (9) leads to the design condition of relia-
bility with formally separated sides expressing the design load
and the design resistance:

µE + αEβdσE ≤ µR + αRβdσR (11)

The design value of the resistance Rd is expressed as

Rd = µR − 0.8βdσR (12)

The design load effect can be determined in the same manner by
introducing µE , σE and αE = 0.7. The principle is illustrated in
Figure 3, which has been reproduced from standard EN 1990.
The probability that the resistance is lower than the design value
is then expressed as

P(R ≤ Rd) = Φ

(
µR − αRβdσR − µR

σR

)
= Φ(−αRβd) (13)

As in this paper, when the reliability index is taken as β = βd =

3.8 and the FORM sensitivity factor for resistance as αR = 0.8
then the probability of having a resistance that is lower than
the design resistance found by equation (12) as Φ(−0.8 · 3.8) =

0.118%, which approximately corresponds to the 0.1% quantile
of the resistance pdf. The quantile resistance curves shown in
this paper are thus found using equation (12), see Figure 4. The
specific choice of these parameters will be discussed in a later
section.
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µR − 0.8βdσR

0.1%

R

Frequency of occurence

Figure 4: Illustration of the normal distributed resistance and the 0.1% quantile.

3. Finite element modelling

For this paper multiple GMNIA analyses have been exe-
cuted using a finite element model in the software Abaqus, [8].
The presence of naturally occurring imperfections in the beam-
column and in the material itself is approximately included in
the model. The finite element model of the IPE 160 beam-
column is made using rectangular shell elements referred to in
the Abaqus as the S4 type element. Shell elements are used as
they appropriately model the desired behaviour of structures in
which one of the dimensions is significantly smaller than the
other. The S4 element is a general purpose quadrangular 4-
node shell element without reduced integration, which is not
sensitive to distortion and provides accurate solutions to buck-
ling problems. The element density is chosen to be 16 elements
along the flange width, and 16 elements along the web height
as illustrated in Figure 5. This correlates with the recommenda-
tion from DNV [13] of using 3-6 elements per expected half
wave. To avoid element deformation deficiencies along the
member length from non-ideal ratios between element width
and length, the number of elements in the longitudinal direc-
tion varies from 100 for the first few slenderness values, to 140
between λLT = 0.4 and λLT = 1.4, and finally 180 elements for
the final range up to λLT = 2.1.

In the Abaqus model the global x-axis is parallel to the lon-
gitudinal direction of the beam-column, the y-axis is parallel to

M

N

U y Ux

U z

y
x

z

Ry

Rx

Rz

Figure 5: FE mesh, coordinate directions and nodal degrees of freedom.

Flange node constraints Web node constraints

Master nodes: Slave nodes:

Figure 6: Constrained degrees of freedom in web and flanges.

the height of the web, and the z-axis is parallel to the flange
width. Both external loads and boundary conditions are ap-
plied to the member ends utilising the kinematic constraints.
These constraints allow for the degrees of freedom (DOF) of
coupled nodes to be restricted to the movement of a master
node. The beam-column boundary conditions correspond to the
so called fork end-conditions and they are modelled using two
multi point kinematic constraints at each end. The orientation
of the nodal displacements and rotations are shown in Figure 5.
The kinematically constraints are illustrated in Figure 6. It can
be seen that in the end cross sections the nodal displacements
Ux and Uy along the flange widths are constrained to displace
as the central flange node. Furthermore the nodal displacements
Ux, Uz and Rx are constrained along the web height to displace
as the central web node (master node). This enables the applica-
tion of the global boundary conditions at the central master web
node and to apply the external force and moment load at this
same master node. The boundary conditions applied to the two
master web nodes ensures that the member is free to compress
along its length whilst at the same time preventing the in-plane,
lateral, and rotational movement at the member ends (but allow-
ing transverse expansion of the web and flange). To constrain
the model from moving as a stiff body in the axial x-direction a
simple constraint Ux is placed at mid-span of the beam-column.
As stated the use of kinematic coupling constraints allows ex-
ternal forces to be applied at a single point at the beam-column
ends, and furthermore it is worth noting that thereby one avoids
having to use specific linear, non-linear or rigid plastic stress
distributions as loads on the end cross sections. The model is
loaded simultaneously with both axial force and bending mo-
ment at the central master web node at the member ends using
a proportional loading scheme.

The model of the IPE160 cross section profile is not modelled
to include the fillets usually present in such hot rolled profiles.
This is done in order to reduce the complexity of the model.
When I-profiles are modelled using shell elements the thickness
of the elements leads to an overlap of material in the connection
points between the flanges and the web, illustrated in Figure
7. This overlap is present in the finite element model and it is
included in the analytical calculations according to Eurocode.

The 0.1% quantile results from the GMNIA analyses are to
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h

b

tw

tf

    tf

Element overlap IPE160

h 160 mm
b 82 mm
t f 7.4 mm
tw 5 mm

Figure 7: Nominal cross-section dimensions.

IPE160 Properties
E 210 [GPa]
fy 235 [MPa]
A 1.98 [103 mm2]

Wy,el 107 [103 mm2]
Wy,pl 121.7 [103 mm2]

Iy 8.55 [106 mm4]
Iz 681.7 [103 mm4]
K 28.82 [103 mm4]
Iω 4352 [106 mm6]

Table 1: Nominal cross-section properties of the IPE160 profile model.

be compared to the carrying capacity (resistance) found using
the Eurocode formulae calculated using the nominal values of
the cross-section and material parameters. These are calculated
including the added area from the overlap of the shell elements,
and can be seen in Table 1.

In the nonlinear finite element analysis the carrying capacity,
i.e. the resistance, is determined as the maximum peak load ob-
tained in the analysis as recommended in Eurocode 3 part 1-5
[14] for structures susceptible to buckling.

Figure 8: Bi-linear stress-strain curve used in the material model.

3.1. Material model

Detailed material properties such as statistically determined
stress-strain curves for the steel behaviour are not a part of
the data-set utilized in the presented reliability analysis. How-
ever a material model has to be implemented in the finite el-
ement model in order to adequately simulate the material be-
haviour. This is done by choosing an approximate simplified
material stress-strain curve that models the expected behavior
sufficiently. The plastic hardening properties of the material
may add to the ultimate capacity past the elastic and first yield
limit. In Eurocode 3 part 1-5 [14] four different assumptions
for the material behaviour are proposed.

a) Elastic-plastic without strain hardening

b) Elastic-plastic with a nominal plateau slope of E/1000

c) Elastic-plastic with a linear strain hardening slope of E/100

d) True stress-strain curve modified from test results

Of the aforementioned options for the material stress-strain be-
haviour option (d) from the Eurocode is not feasible due to lack
of test data. Buckling is largely an elastic phenomenon, mean-
ing it is more critical at higher slenderness values, and the hard-
ening behaviour is relevant at lower slenderness values. Thus,
the plastic properties of the materials could be of importance
to the ultimate capacity when performing non-linear buckling
analyses. The case (c) with a hardening slope of E/100 is cho-
sen for the analyses carried out in this paper. A Von Mises
plasticity model with isotropic hardening is used. The uniax-
ial behaviour of the material model is shown in figure 8. The
material yield stress in this paper is chosen to correspond to the
nominal value of 235MPa used in the S 235 type steel. The
slope of the stress-strain ratio from zero to the value of the ma-
terial yield stress, represented by the Young’s modulus E, is
chosen to correspond to the nominal value of 210GPa. Both
The Youngs modulus E and the yield stress fy are sampled with
respect to the assumed probability density distributions.

3.2. Geometric imperfections

Geometric imperfections refers to the initial out-of-
straightness of the member and is sub-divided into two dis-
tinct types; global and local imperfections. Local imperfections
mean imperfections which are related to the individual plate
parts of the profile, such as initial deformations of the flange or
the web. Analogously, global imperfections are imperfections
related to the member as a whole such as initial deflections of
the entire member. This paper considers the IPE160 profile,
which is in cross section class 1 for pure compression and bend-
ing. This means that plastic stresses and an elastic plastic stress
distribution may develop in both the flanges and the web with-
out local buckling. Thus local imperfections are neglected in
the simulations, see [15], under the assumption that their influ-
ence is negligible. Therefor in the present text the term geomet-
rical imperfections only refers to the global imperfections. The
Eurocode allows that the geometric imperfections of a member
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Figure 9: Buckling mode for weak axis flexural buckling (FBz).

Figure 10: Buckling mode for lateral torsional buckling (LTB).

analysed with FE-tools can be based on the shape of the criti-
cal buckling modes [14]. Examples of geometric imperfection
shapes based on the buckling modes can be seen in figures 9
and 10. These examples are taken from one analysis performed
in this paper. As the scale of this deformation is normalized and
an imperfection scale factor is introduced to give the member
appropriate amplitude of the out-of-straightness. The nominal
value of the scale factor of the imperfections in advanced finite
element analysis is usually set to L/1000, as residual stresses
are modelled separately in the model. From EN1090-2 [16] the
maximum allowed out-of-straightness, or amplitude of the bow
imperfection, is given as L/750. This implies that the value of
L/1000 corresponds to 75% of the maximum allowed geomet-
ric imperfection, which is a value that existing literature gen-
erally agrees is a fitting approximation [15], [17]. The imper-
fection and statistical modeling used in the simulations of this
paper are described later in section 4. The recommended values
of the geometrical imperfection in table 5.1 in EC1993-1-1 [14]
yields a much larger amplitude of the initial imperfection. This
is because these values are meant to model the combined effect
of both out-of-straightness and residual stress, and thus the use
of these would be incorrect in this model where these effects
are separated. Furthermore these values are too conservative as
discussed in [1].

0.3 fy

0.3 fy

-0.3 fy

-0.3 fy

0.3 fy

-0.3 fy

Figure 11: Linear residual stress distribution σr assumed in IPE160 profiles.

3.3. Residual stress

The manufacturing process of steel beams leaves material
imperfections in the form of residual stress in the profiles which
in turn affects the buckling capacity [2]. This residual stress is
assumed to be uniform along the member and varies across the
flanges and web. The height to width ratio and the thicknesses
of the flanges and web has an influence on the residual stress
distribution. The residual stress distribution is considerably af-
fected by how the cross section is made, that being welded or
rolled, and there are many proposals as to how this should be
modelled in an FE-analysis throughout existing literature, e.g.
[15], [18], [19], see also the discussion in [1]. A typical ap-
proximate linear shape of the residual stress distribution for a
hot-rolled profile can be seen in figure 11, and it is this shape
which is utilized in the analyses carried out in this paper. The
ratio between height and width h/b determines the amplitude of
the residual stress. A value of h/b < 1.2 gives an amplitude of
0.5 · fy, while more ’slender’ cross sections at h/b > 1.2 have an
amplitude of 0.3 · fy as described in [18]. The IPE 160 profile
investigated in this paper falls under the latter case, and thus
the nominal value of the amplitude of the residual stress is set
to 0.3 fy. The Eurocode states that the residual stresses may be
represented by a stress pattern from the fabrication process with
amplitudes equivalent to the expected values [14].

In this paper the residual stress distribution, σr, is imple-
mented in the FE- model using an equivalent temperate load.
The procedure consists of giving the model a temperature load
in an initial step. The relation between the material stress, here
σr, caused by temperature induced strain gives

σr = Eα∆T ⇒ ∆T =
σr

Eαs
(14)

Where E is the material Young’s modulus, ∆T is the tempera-
ture increment, and αs is the thermal expansion coefficient. By
solving for the temperature increment, a temperature load ∆T
can be applied to the model. It should be noted that the software
and finite element calculation is based on the use of interpola-
tion points at which stresses are found. For the chosen ele-
ment the membrane stresses are approximately constant within
each element, but the software may average these between ele-
ments. This means that the correctly obtained residual stresses
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Figure 12: N-M-diagram for an IPE 160 profile where three different mode
shapes: LTB, FB, and interactional between the two, are used to model the
imperfections in the simulation.

obtained in the model are only precise at the interpolation points
and not necessarily at the edges.

3.4. Imperfection shapes and proportional loading

In nonlinear finite element analyses the buckling mode shape
from an initial linear buckling analysis is most often used as
a basis for the assumed geometrical imperfections in a beam-
column. Figure 12 shows the results of GMNIA analysis with
different choices of imperfection mode shapes for proportional
loading paths with combined moment and normal force. The
load paths with inclinations of α = 1.0 and α = 0.667 have
been included to illustrate the proportional loading paths. The
GMNIA results shown in the Figure 12 corresponding to the
maximum value of the load proportionality factor are found for
a relative slenderness of λz = 1 and otherwise identical param-
eters. The main difference is seen for high relative magnitudes
of compression. In this area the upper results curve corresponds
to the use of the LTB mode shape, the intermediate curve corre-
sponds to the interactional mode shape found by buckling anal-
ysis (standard choice) and finally the lowest curve corresponds
to the use of the weak axis FB mode as imperfection shape. It
can be seen that the choice of global imperfection shape has
an influence on the final capacity. In situations dominated by
bending the pure LTB shape most often gives more conserva-
tive results and in situations dominated by compression use of
the pure FB shape for buckling about the weak axis (FBz) often
gives conservative results.

The main difference between the mode shapes is that the flex-
ural buckling mode consists only of lateral deformation u, while
the LTB mode also includes rotation φ of the cross-section. And
since the buckling mode shape is normalized with respect to
maximum displacement before it is multiplied by the imper-
fection factor, i.e. for example L/1000, to get the imperfection
shape, the ratio between the amount of lateral and rotational

e

u φh2

φ

Figure 13: Lateral and rotational imperfection parameters in LTB.

deformation is the key to the difference in the final capacity.
The maximum geometrical imperfection e at the top of the web,
when both rotational φ and lateral deformation u are present, is
shown in Figure 13 and can be written as

e = u + φ
h
2

(15)

when assuming small rotations.
As seen in Figure 12 the results for the conventionally ”com-

bined mode” imperfection shape follows the results for the LTB
imperfection shape closely for load paths with ”inclinations”
greater than one, i.e. α ≥ 1. For load paths with ”inclina-
tions” lower than one, α < 1, the use of an imperfection mode
corresponding to the weak axis buckling mode (FBz) seems to
give the most conservative results. This suggests that the use
of an interactional standard ”combined” buckling mode shape
may be non-conservative in the range of high axial force. In
the presented implementations it has therefore been decided to
use the LTB imperfection shape for high bending moments cor-
responding to α ≥ 1, and the FBz imperfection shape for high
axial forces corresponding to α < 1, where the load proportion-
ality ratio (inclination) is given by

α =
My/My,R

N/NR
(16)

where the cross section plastic compression resistance and the
strong axis moment resistance respectively are given by

NR = A fy (17)
My,R = Wy,pl fy (18)

As described the non-linear finite element simulations are
performed using proportional load increments in which the ratio
between normal force and moment load is kept constant. Since
the problem is of a non-linear character non-proportional load
paths will change the results due to a changed plastic energy
dissipation. In the following GMNIA finite element results are
presented for 11 load paths. Table 2 defines the different load
paths used in the simulations and the imperfection shape used.

3.5. Column lengths and slenderness ratios
The length of the beam-columns investigated was chosen in

order to represent lengths which could be used in a real world
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Path n = N/NR m = My/My,R α = m/n Imp.

1 0.0 1.0 ∞ LTB
2 0.1 0.9 9.00 LTB
3 0.2 0.8 4.00 LTB
4 0.3 0.7 2.33 LTB
5 0.4 0.6 1.50 LTB
6 0.5 0.5 1.00 LTB
7 0.6 0.4 0.667 FBz
8 0.7 0.3 0.428 FBz
9 0.8 0.2 0.250 FBz

10 0.9 0.1 0.111 FBz
11 1.0 0.0 0 FBz

Table 2: Proportional compression and moment loading.

λLT λz ∼ L [m]

0.2 0.226 0.397
0.3 0.343 0.603
0.4 0.466 0.820
0.5 0.596 1.049
0.6 0.736 1.296
0.7 0.889 1.564
0.8 1.055 1.858
0.9 1.239 2.180
1.0 1.440 2.530
1.1 1.663 2.927

λLT λz ∼ L [m]

1.2 1.907 3.358
1.3 2.175 3.829
1.4 2.466 4.342
1.5 2.782 4.897
1.6 3.122 5.496
1.7 3.487 6.139
1.8 3.877 6.825
1.9 4.291 7.554
2.0 4.729 8.326
2.1 5.192 9.140

Table 3: λLT values and corresponding λz and beam lengths, L.

scenario, where the λLT values ranged from 0.2 to 2.1, equiva-
lent to lengths of around 0.397 m to 9.14 m. The finite element
simulations are performed using 20 different values of λLT .

Since results given in the following are related to these spe-
cific values of the LTB slenderness, λLT , and thereby enable
comparison to Eurocode, the length of the member used in each
finite element simulation is determined through the related crit-
ical LTB length of the member. The definition of the LTB rela-
tive slenderness gives us

Mcr =
My,R

λ2
LT

(19)

and the classic solution for the critical LTB moment for constant
moment is given by:

Mcr =

√
π2EIz

L2 +

(
GK +

π2EIω
L2

)
(20)

in which Iz is the weak axis bending stiffness, G is the shear
modulus, K the torsional stiffness and Iω is the warping stiff-
ness. Solving for the length L in the classic equation (20) and
introducing the critical moment expressed from equation (19)
determines the length to use in the simulation as:

L =

√√√√√
π2λ4

LT

2M2
y,R

EIzGK +

√√
(EIzGK)2 +

4EIωEIzM2
y,R

λ4
LT

 (21)

In the analysis performed beams are analysed with statistically
varying cross-section geometry and material properties. Since
results are normalized there will be small changes in the length
of the beam-column as the slight differences in geometry and
material properties affect the length. Having the length of the
beam column and the specific geometry, then the related weak
axis FB slenderness ratio λz can be found. Table 3 gives the
values of the 20 different LTB slenderness ratios, the FBz slen-
derness ratios and the nominal column lengths.

4. Statistical parameters

A reliability analysis carried out using GMNIA analyses
requires statistical information about geometric and material
properties of the investigated beam-column in order to reflect
the naturally occurring variation such a beam-column would
have in real life. Information on the statistical parameters,
which are used in the population sampling for the IPE 160 pro-
files have been provided by Faculty of Civil Engineering, Brno
University of Technology, and are taken from the same data
base used in the paper by Melcher et al [20]. The data are more
than ten years old and have been used even though there is a
possibility that advancements in steel production over the past
decade might have changed these data. However steel produc-
ers no longer disclose such data and newer information does
not seem to be available. Relatively little recent statistical data
on the metallurgical products is available, see for example [21]
and [22].

In total there are eight randome input parameters which all
are mutually statistically independent and are considered to
have a Gaussian probability distribution. These parameters are
listed in Table 4 along with their mean value and standard devi-
ation. According to the results of the stochastic sensitivity anal-
ysis [23] the Poisson ratio was assumed to be constant ν = 0.3.
All other cross section properties are governed by these geo-
metrical and material parameters. Meaning that e.g., a dataset
with a small cross section height and width would have a corre-
sponding smaller area, moment of area, critical elastic moment,
etc.

Except for the yield stress the mean values given in Table
4 correspond to the characteristic value. In the present simu-
lations the yield stress fy is assumed to be a stochastic vari-
able with a normal distribution with a characteristic value of

Parameter Mean St. dev. Unit

Cross-section height h 160 0.71 [mm]
Cross-section width b 82 0.81 [mm]
Web thickness tw 5 0.2 [mm]
Flange thickness t f 7.4 0.34 [mm]
Youngs modulus E 210 10 [GPa]
Yield stress fy 297.3 16.8 [MPa]
Residual stress σr 89.19 17.83 [MPa]
Normalized imp. ē 0 1

Table 4: Statistical geometric and material parameters for the IPE 160.
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235MPa corresponding to the 5% fractile of the distribution
[5]. It should be noted that a different probability distribu-
tion such as the log-normal distribution could alternatively have
been chosen. The steel producers only have to guarantee that
the yield stress meets this 5% fractile requirement and as a re-
sult of this the mean yield stress of steel with a quality of S 235
will have a significantly higher value than 235MPa. A conse-
quence of this is that the yield stress of the steel used in this
reliability analysis is quite a bit higher than 235MPa as they
are sampled from a population with a mean value of 297.3MPa
[20].

So far in this paper the magnitude of the global geometri-
cal imperfection has been introduced as being L/1000, a choice
based on recommendations from [15] and practice used in de-
veloping the Eurocode buckling curves [17]. However, that
would imply that all beams of the same length and thus the
same slenderness would have the same imperfections, which of
course does not reflect real beams adequately. The imperfection
magnitude is therefore assumed to be a Normal distributed ran-
dom variable with a mean value, µe and a standard deviation,
σe. The model imperfection is thus given by

e = µe + ē · σe (22)

in which ē is assumed to be a normalized imperfection param-
eter which is normally distributed with a standard deviation of
one. Note that the model imperfection e contains both the lat-
eral imperfection u and the torsional imperfection φ, for the
LTB shape of global initial imperfections, and only u in the FBz
shape of imperfections. Given that the average beam is consid-
ered to be a perfectly straight beam which might have imper-
fections in both positive and negative directions, the mean of
the imperfection is zero

µe = 0 (23)

It is then assumed that 95% of the realizations of the imperfec-
tion are within the tolerance limits of ±L/1000, i.e. that a 95%
confidence interval is used to derive the standard deviation of
the geometrical imperfections. Let

P(X ≤ x) = F−1(x) (24)

where F−1(x) is the cumulative distribution function for the im-
perfection magnitude x = e. The confidence interval can be
written as

0.95 = P
(
µe −

L
1000 ≤ e ≤ µe + L

1000

)
(25)

Then in order to use the inverse cumulative distribution function
for the standard Normal distribution Φ, the variable x which in
this case corresponds to the limits of the confidence interval,
has to be standardised. Thus

P(X ≤ x) = Φ
(

x−µe
σe

)
(26)

This facilitates solving for the standard deviation as follows

0.95 = Φ

µe + L
1000 − µe

σe

 − Φ

µe −
L

1000 − µe

σe


= Φ

(
L

1000σe

)
− Φ

(
− L

1000σe

)
= 2 · Φ

(
L

1000σe

)
− 1

⇒ 0.975 = Φ
(

L
1000σe

)
⇒ σe = L

1960 (27)

By substituting equations (23) and (27) into equation (22) the
magnitude to be used in the simulation becomes:

e = ē ·
L

1960
(28)

In the sampled data the normalized imperfection parameter ē is
given and according to equation (28) it has to be multiplied by
L/1960 to be used in the finite element model. This approach
is also the basis for the studies in [23] and [6]. The maxi-
mum sampled value in the present realization is ēmax = 2.22696
which corresponds to about e = L/880, which is a little smaller
than the maximum allowed out-of-straightness of L/750 in
EN1090-2 [16]. If the number of samples are increased this
value will probably increase.

The total 30 random realizations of the eight input variables
of the IPE160 steel member are simulated. The Latin Hyper-
cube Sampling (LHS) method is used, see Mckay et al [12].
Input random variables are introduced as statistically indepen-
dent.
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Figure 14: Three dimensional plot illustrating the results of the 6600 finite element simulations.

5. Finite element simulations and statistic verification

For each of the 20 different LTB relative slenderness ratios,
λLT , given in Table 3, finite element simulations are performed
with the 30 sampled IPE160 data sets for each of the 11 pro-
portional load ratios between axial force and bending moment
given in Table 2. All in all this corresponds to 20 · 30 · 11 sim-
ulations, i.e. 6600 in total.

For each of these simulations the maximum value of the pro-
portional load factor was extracted and used to find the maxi-
mum values of the combined axial force and bending moment
loading in order to obtain the data pool used in the probabilis-
tic treatment to find the 0.1% quantile. Figure 14 illustrates the
resulting data pool as the axial force and bending moment inter-
action space of the problem for each analyzed LTB slenderness,
λLT , by connecting the results of the interaction curves in each
of the 30 data sets. Some results of the 30 input sets are hidden
by others, but the statistical variation is clear.

In order to show that the results are statistically valid it is ver-
ified that the results have a Gaussian distribution. This is done
by taking all the data from each relative slenderness value in the
simulations and test them using an Anderson-Darling test with
unknown mean values and standard deviations. The Anderson-
Darling test is a ”goodness-of-fit” test, see [25] and [26], which
is used to check the hypothesis of a population sample hav-
ing a certain probability distribution. The test did not reject
the hypothesis of normal distribution of the results with a sig-
nificance level of 1%. To achieve this the maximum size of
the increments in the finite element analysis had to be reduced

to prevent result fluctuations in the simulations due to difficul-
ties in following the correct buckling branch in cases with rela-
tively small imperfections. Further more it is important to note
that the Anderson-Darling test does not indicate that you def-
initely have the probability distribution you are testing for. It
only indicates that it is unlikely that you do not have the distri-
bution in question. Nevertheless it is concluded based on the
Anderson-Darling test that the load-carrying capacity results
from the beam-column simulations can be regarded as normal
distributed.

6. Reliability analysis

According to the Eurocode reliability is defined as ”the abil-
ity of a structure or a structural member to fulfil the specified
requirements, including the design working life, for which it has
been designed. Reliability is usually expressed in probabilistic
terms” [5]. With regard to the ultimate limit state this can be
interpreted as the ability of a member to resists the effects of
actions exerted on the member. In this section the processing of
the simulation data pool and the basis for comparison with the
Eurocode will be briefly discussed before results are presented
in the next section.

Annex B of Eurocode EN1990, [5], provides recommenda-
tions for a reliability index, β, in the ultimate limit state in con-
junction with reliability classes and Clause B3.2(2) in EN1990
associates these reliability classes with consequence classes. To
be brief Table B2 in this annex recommends a minimum value
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Figure 15: The interaction curves of the 30 input sets and the 0.1% quantile for
λLT = 0.5.

for β with a 50 year reference period and reliability class 2 (cor-
responding to consequence class 2) of βd = 3.8. The FORM
sensitivity factor for the resistance is given in Annex C of the
EN1990 in clause C.7(3) as αR = 0.8. Thus the probability of
the resistance being lower than the design value can be written
as

Φ(−αRβd) = Φ(−0.8 · 3.8) = 0.1183% (29)

This means that the probability of having a lower design value
of the resistance is 0.1183%. This approximately corresponds
to the 0.1% quantile of the distribution of the resistance and
therefore forms the basis for the comparison of the results
from the reliability analysis with the calculated resistances from
Method 1 and 2 in the Eurocode. Using the simulation data pool
of resistance the mean value µR and the standard deviationσR of
the 30 results in each data set is used to find the 0.1% resistance
quantile. The 0.1% resistance quantile is thus given dependent
on the proportional load case and the LTB slenderness values
by:

R0.1%(α, λLT ) = µR − αRβdσR = µR − 0.8 · 3.8σR (30)

The definition of the quantile is illustrated in Figure 4 and the
0.1% quantile of the 30 input sets for λLT = 0.5 is illustrated in
Figure 15.

7. Results, comparison and discussion

In this section the results from all the GMNIA simulations
in the form of the 0.1% quantile resistance found through the
reliability analysis will be compared to the corresponding ana-
lytically calculated resistance using the beam-column interac-
tion formulae in the Eurocode with the interaction factors de-
scribed by the two methods Method 1 and Method 2. In this
regard and in the discussion the Eurocode resistance formulae
are compared as being conservative or not or being on the safe
or unsafe side in comparison to the 0.1% quantile results. This

is done since the quantile results are based on the probabilistic
approach of the code.

In the following the results related to pure flexural buckling
and to pure lateral torsional buckling are shown and compared.
The dependency of the simulation resistances on the imperfec-
tion is illustrated using trend lines and the correlation coeffi-
cient of each trend line. Then the interactional buckling results
are illustrated and compared for combined bending and axial
compression for all the values of the lateral torsional slender-
ness using both Method 1 and Method 2. Finally the 0.1% re-
sistance results are used to find the kyy and kzy interaction factors
(by replacing the My,0.1%/My,R values of the interaction curves)
and compare to those of both Method 1 and Method 2 for a
relevant span of λLT slenderness values.

7.1. Flexural buckling and lateral torsional buckling
Due to the format of the beam-column interaction formu-

lae the accuracy of the beam-column interaction capacities are
heavily influenced by how well the pure instability cases of
LTB and FB are estimated by the Eurocode. The FB curves
are generally known to accurately describe the stability load of
a column susceptible to flexural buckling, however the curves
describing “rolled and equivalent welded” sections susceptible
to lateral torsional buckling does not show the same level of ac-
curacy, see [19] and [27]. In the case of pure axial compression
this makes the analytical formulae a good basis for comparison
with the results acquired from the GMNIA analyses, and this
comparison could in some sense be used as a validation tool for
the FE model. For pure bending the results are of interest due to
its effect on the beam-column interaction formulae in equation
1 and 2.

From the left hand plot in Figure 16 it can be seen that buck-
ling curve b for flexural buckling is a decent fit to the result-
ing 0.1% quantile, but the lower and higher relative slenderness
values, namely λz < 0.5 and λz > 1, the buckling curve is on
the conservative side with a decent margin of up to about 13%
for large relative slenderness ratios. Up to λz = 0.5 the effects
of strain hardening will increase its ultimate capacity, explain-
ing the difference in this range. In the range of 0.5 to 1.0 the
curve does seem to have a better fit to the 0.1% quantile of the
test results, but here some values are slightly non-conservative
which can also be seen in the right hand part of Figure 16. In
this λ-range the effect of residual stress is significant and the
idealized linear stress distribution might influence the results.
Also as the member starts behaving more elastic, the geometri-
cal imperfection will start influencing results in this range. For
the hot rolled design case the curvature of the LTB buckling
curve shown in Figure 17 seem to correlate well with the shape
itself of the 0.1% quantile, although the Eurocode curve is at a
higher value. This means that the LTB curves seem to be non-
conservative throughout almost the whole range of slenderness
values tested, with a peak in relative difference of ∼ 9% around
λz = 1.0 as seen in Figure 17 in the right hand plot.

The design equation used to calibrate the Eurocode lateral
torsional buckling curves does not consider rotational geomet-
rical imperfections φ, see [2] and [28]. Figure 18 illustrates
the correlation between ultimate capacity and the imperfection
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Figure 16: Weak axis flexural buckling curve compared to the 0.1% quantile.
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Figure 17: Lateral torsional buckling curve compared to the 0.1% quantile.

scale factor ē, given by a correlation coefficient R (−1 ≤ R ≤ 1).
A similar study was carried out in [29], where statistical depen-
dence between the amplitude of the axis initial curvature and
lateral-torsional buckling resistance was studied. These figures
show that the pure bending case is highly dependent on the ge-
ometrical imperfection throughout the tested slenderness range,
while the axial force case is only highly dependent in the inter-
mediate range. The high correlation between ultimate capacity
and geometrical imperfections in the pure bending case, sug-
gest that a part of the error in the Eurocode design curves is
due to the fact that rotational imperfections φ are neglected. It
should be noted here that the small amount of input sets, i.e. 30
is not sufficient to make solid conclusions based on correlation,
but it gives a pointer to the most influential parameter.

The cut-off value at 0.4 can be seen to be on the unsafe side
compared to the 0.1% quantile, which goes above 1.0 at a lateral
torsional slenderness value in the area of 0.3. This suggest that
the choice of using 0.4 as a cut-off value to comply with older
codes [2], is non-conservative. The ECCS Technical Commit-
tee 8 [30] came to the opposite conclusion using a reliability
analysis. All in all the pure flexural buckling curve b of the
Eurocode does seem to give a decent fit well on the safe side,
while the pure lateral torsional buckling curve for the hot rolled
section does not. These results are similar to previous works
of Taras and Greiner, [19], and working group documents from
ECCS, [27]. The results also coincides with those found in the

preliminary testing of the finite element model using nominal
input parameters, see [9].

7.2. Interactional buckling for compression and bending

In this section the beam-column interaction equations (1) and
(2) with interaction factors from Method 1 and Method 2, are
compared to the 0.1% quantile of the GMNIA simulation. In
the following the results are grouped according to their slender-
ness value. First the low slenderness range of λLT = 0.2 to 0.9
and the higher range of λLT = 1.0 to 2.1. This provides a de-
cent illustration of how the accuracy of the methods develops
through the whole range of slenderness values investigated.

For the low slenderness range Figure 19 shows the 0.1%
quantile results. For the lateral torsional slenderness of 0.2 the
beam-column is very stocky and it can be discussed whether or
not the member can be considered to be a beam-column for this
case. To properly comprehend the development of the capac-
ity as the slenderness increases it is described in detail in the
following. It can be seen in this plot for λLT = 0.2 − 0.5 that
the 0.1% quantile interaction curve has a rather parabolic shape
when the member is loaded heavily in bending and the capacity
ends up being larger than unity for pure bending. This parabolic
shape can be explained by the relationship between the plastic
moment capacity as a function of axial compression for double

12



7e [mm]
-2 -1 0 1 2

M
y
=M

y
;R

0.98

1.00

1.02

0.98

1.00

1.02

6LT=0.3

Data (7e < 0)
R = 0.96102
Data (7e > 0)
R = -0.89661

7e [mm]
-2 -1 0 1 2

N
=N

R

0.95

1.00

1.05

0.95

1.00

1.05

0.95
6LT=0.3

Data (7e < 0)
R = 0.20839
Data (7e > 0)
R = -0.15549

7e [mm]
-2 -1 0 1 2

M
y
=M

y
;R

0.60

0.80

1.00

0.60

0.80
6LT=0.9

Data (7e < 0)
R = 0.85132
Data (7e > 0)
R = -0.78597

7e [mm]
-2 -1 0 1 2

N
=N

R

0.40

0.60

0.80

1.00

0.40

0.60

0.80

1.00

6LT=0.9

Data (7e < 0)
R = 0.85181
Data (7e > 0)
R = -0.87615

7e [mm]
-2 -1 0 1 2

M
y
=M

y
;R

0.30

0.40

0.50

0.60

0.30

0.40

0.50
6LT=1.5

Data (7e < 0)
R = 0.95527
Data (7e > 0)
R = -0.94377

7e [mm]
-2 -1 0 1 2

N
=N

R

0.12

0.14

0.16

0.18

0.20

6LT=1.5

Data (7e < 0)
R = 0.16458
Data (7e > 0)
R = -0.52551

Figure 18: Trend lines with given correlation coefficients for the axial compression and pure bending resistance dependency on the normalized imperfection factor
ē split into eccentricities lower than or larger than zero.

.

symmetric profiles as given in [31] as

My

My,R
= 1 −

( N
NR

)2 A2

4twWy,pl
(31)

As the slenderness values are low, the stress should have a plas-
tic distribution. Here the squared expression concerning the
axial force in (31) will give a shape similar to that observable
in Figure 19 for λLT = 0.2 − 0.5, and the linear additive form
of the Eurocode formulae is not suited to properly describe the
behaviour here as it does not contain a quadratic term. As the
slenderness is increased to 0.4 the capacity curve has become
quite linear and it can be observed that the fit with both Eu-
rocode methods is quite good, although the overestimation of
the lateral torsional buckling capacity can be seen. Ultimately
it can be said that in the range of lower slenderness values, both
Method 1 and Method 2 have a decent fit to the 0.1% quantile.
Method 1 is slightly less conservative for the load cases with
medium to high amounts of axial force, as it was able to fol-
low the curvature of the 0.1% quantile to a larger extent than
Method 2.

In the lower slenderness range from 0.4 to 0.7 Figure 19 the
interaction curves of the Eurocode are closest to the 0.1% quan-
tile especially for λLT = 0.6. An interesting trend that can be
observed is that the curvature characterized by the plastic stress
diminishes as the member length increases, and the stress dis-
tribution in the flanges will to a lesser degree show plastic be-
haviour. Furthermore the quantile curve is starting to take on a

more parabolic shape in the load cases where axial compression
is dominating, while the curve takes on a more linear shape for
the load cases which are dominated by bending moment as the
slenderness increases. This is due to the fact that the member
is starting to become so slender that the flexural buckling plays
a more predominant role on the load carrying capacity, as the
entire cross section is experiencing compression stress and the
beam-column buckles about the weak axis before the bending
moment starts to become a limiting factor. When comparing to
the Eurocode formulae it becomes apparent that the Eurocode
approximation of the capacity curve is not capable of fully em-
ulating the properties of the 0.1% quantile as the slenderness
increases. The Eurocode is increasingly on the ”unsafe” side of
the quantile curve when the member is loaded mainly in bend-
ing, this non-conservative trend seems to be larger in Method
2 which for the slenderness of 0.8 can be seen to be unsafe for
half of the load cases. On the other hand it can be observed that
both methods fail to follow the parabolic shape of the quantile
plot and thus the load carrying capacity for the load cases with
axial compression dominating is underestimated, a trend that
seems to be increasing as the slenderness is increased.

Figure 20 shows the results for the higher range of lateral tor-
sional slenderness, i.e. λLT = 1.0 to λLT = 2.1. For this range
the inaccuracies of the design carrying capacity at the pure load
cases are starting to make the apparent fit worse, nevertheless
some noticeable trends can still be seen. It can be seen that in
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Figure 19: 0.1% quantile simulation results and Eurocode results using Method 1 and 2 in the lower slenderness range.
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Figure 20: 0.1% quantile simulation results and Eurocode results using Method 1 and 2 in the higher slenderness range.
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this slenderness range the characteristics of the quantile curve
that were discussed in the previous paragraph is further devel-
oped, namely a linear shape in the moment dominated load
cases and a parabolic shape in the compression dominated load
cases. Meaning a small change in bending moment will hardly
influence the axial capacity at high levels, but a reduction in ax-
ial force will increase the moment capacity significantly. It can
also be observed that the Eurocode formulae are pretty close to
each other for both methods. Method 1 fluctuates a bit since
both of the Eurocode formulae are active in this method, and
the transition point between equation 1 and 2 can be seen to
shift closer to the pure moment load case. This transition point
is recognizable by the outwards pointing ’hump’ in the curve
close to the middle. The fact that this shift between the two
design formulae moves towards more bending moment heavy
load cases, reflects the results from the simulations where it can
be seen that the weak axis flexural buckling is increasingly be-
coming the governing factor for the bearing capacity. This does
however hold little significance since equation (1) calculated
using Method 1 still fails to approximate the parabolic shape of
the quantile plot in this slenderness range and thus the differ-
ence from Method 2 is minimal. Although the overestimation
of the pure LT buckling capacity is relatively stable on about
8.5%−9% as seen in Figure 17, it can be seen that the intersec-
tion point between the Eurocode formulae and the quantile of
the results from the reliability analysis, i.e. the transition point
where the Eurocode goes from being non conservative to con-
servative is moving closer to the case of pure bending as the
slenderness increases. For the highest shown slenderness’s the
members become very long and as a consequence the weak axis
flexural buckling becomes more important in the buckling be-
haviour, as seen by the even more prominent parabolic shape of
the quantile curve.

7.3. Beam-column interaction factors kyy and kzy

Looking at the weak axis and strong axis interaction factors
kyy and kzy the results can be interpreted further. In order to
compare the results from the reliability analysis, these results
need to be in the same format as the interaction factors them-
selves. By rewriting the expressions from the Eurocode regard-
ing beam-column interaction, expressions for the interaction
factors kyy and kzy can be written as:

kyy =

(
1 −

N0.1%

χyNR

)
χLT NR

My,0.1%
(32)

kzy =

(
1 −

N0.1%

χzNR

)
χLT NR

My,0.1%
(33)

Where N0.1% and My,0.1% are the adjoint maximal axial force
and bending moment obtained for the given proportional load
ratio. It should be noted that the accuracy of these formulas
is affected by the accuracy of the lateral torsional and flexural
buckling reduction factors χLT and χ.

Figure 21 illustrates the development of the kyy factor from
Method 1, Method 2, and recalculated from the 0.1% quantile,
as the amount of axial force is increased in the load cases. Re-
garding Method 1, it can be seen that it does an overall good job

of approximating the development of the strong axis influence
on the My capacity, as the axial load increases for the range of
tested slenderness values. Only having non-conservative results
for the pure bending case, and for large axial forces. For pure
bending this is caused by the inaccurate LTB curves, while the
non-conservative values at high axial forces are irrelevant as
the weak axis factor kzy is utilized in the interaction formulae
at these load combinations. Method 2 on the other hand does
a poor job of approximating the development of the curve as
the slenderness of the member is increased, predicting far less
influence on My capacity from the strong axis. For the tested
cross section profile Method 2 will only utilize the strong axis
design equation (1) at a few load cases at lower slenderness
values. This means that the inaccurate development of kyy is
effectively irrelevant for λ > 0.3.

For the weak axis interaction factor kzy in figure 22 it can be
seen that for lower slenderness values the kzy values of Method
1 have an opposite slope compared to kzy,0.1% as the axial force
is increased in the intermediate slenderness range. When the
λLT is further increased a ‘dip’ in the curve appears caused by
a lower bound of the plasticity interaction factor Czy, a factor
included in Method 1 to decrease the benefit from plastic inter-
action as flexural buckling becomes more critical at higher axial
forces, see [32]. For the tested IPE 160 profile it can be seen
that this ‘dip’ is somewhat delayed compared to the slope of the
0.1% quantile. A change in the cut off level of the plasticity in-
teraction factor could possibly improve the fit of kzy for Method
1 compared to the 0.1% quantile curve, and additionally lead to
less conservative results for higher slenderness values using the
interaction equations (1) and (2). Method 2 with its linear ap-
proach leads to an overestimation of the influence of weak axis
forces on My in most load cases. Here the weak axis interac-
tion formula (2) is governing for most of the load cases used in
this simulation, as no intermediate restraints against weak axis
buckling is present.
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Figure 21: The development of the strong axis interaction factor kyy, calculated from the 0.1% quantile and the two Eurocode methods
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Figure 22: The development of the weak axis interaction factor kzy, calculated from the 0.1% quantile and the two Eurocode methods
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8. Conclusion

The accuracy of the buckling interaction formulae according
to the safety requirements and the probabilistic assumptions of
Eurocode itself have been investigated. With the assumptions of
this paper the probabilistic investigations performed show that
the Eurocode prescribes an unsafe design when a beam-column
member is loaded predominately in bending for members with a
lateral torsional slenderness, λLT , larger than 0.4. On the other
hand it also shows that the design according to the Eurocode
seems to become quite conservative for members loaded pre-
dominately in compression for beam-columns having a lateral
torsional slenderness , λLT , larger than 0.8.

In the case of pure axial force the Eurocode weak axis flex-
ural buckling reduction factor χz provided conservative results
compared to the 0.1% quantile of the results from the reliability
analysis for nearly all slenderness values tested. Slightly non-
conservative values were present in the range 0.5 ≤ λz ≤ 1.0.
This might be caused by both geometrical imperfections and
residual stress being influential in this range, as seen from cor-
relation between the input data and resulting capacity, whilst the
beneficial effect from the strain hardening shown at lower slen-
derness values are decreased. For pure bending the Eurocode
design values were non-conservative throughout the range of
slenderness values, where the 0.1% quantile only started ap-
proaching the design curve for LT buckling for very high slen-
derness values (λLT > 2.0). Due to the limited amount of
datasets included, it was hard to determine a sole cause of the
poor fit. But geometrical imperfections did seem to have a large
influence for all slenderness values, suggesting that omitting the
initial rotation φ in the calibration of the lateral torsional buck-
ling curves might contribute towards the poor fit. Concerning
the beam-column interaction, it could be seen that factors from
both Method 1 and Method 2 did a decent job of approximating
the results for lower slenderness values. For higher slenderness
values however, the fit of the curves deteriorated and it became
apparent that the Eurocode formulae did not properly emulate
the complex behaviour of the very slender beam-column. The
strong axis interaction factor kyy does a good job of approxi-
mating the recalculated kyy,0.1% values. Only showing signs of
being non-conservative or overly conservative where the inac-
curate χ factors from the Eurocode had a large effect, i.e. close
to the pure load cases. The weak axis interaction factor kzy did
not perfectly follow the recalculated kzy,0.1% as the axial force
was increased.
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