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Abstract: We report a method to create amorphous silicon waveguides passivated with
deuterium and demonstrate stability under moderate continuous-wave power. The waveguides
have nonlinear properties comparable to hydrogenated amorphous silicon.

OCIS codes: 130.3130, 130.4310, 130.5990

1. Introduction

Several material platforms have emerged for realizing efficient optical Kerr nonlinearity in photonic integrated circuits.
The ideal platform has a high optical nonlinearity (γ), low linear and nonlinear losses, and is compatible with existing
complementary metal-oxide semiconductor (CMOS) fabrication. Crystalline silicon has a large nonlinearity but suffers
from large two-photon absorption (TPA) at 1550 nm due to its 1.1 eV bandgap. This drawback has prompted investi-
gations of other materials having larger bandgaps, including silicon nitride (SN), silicon-rich nitride (SRN), aluminum
gallium arsenide (AlGaAs), and hydrogenated amorphous silicon (a-Si:H). However, SN has much lower γ [2], SRN
has high linear losses [2], AlGaAs-on-insulator requires bonding to silica [3], and a-Si:H is unstable at high average
powers. Apart from its instability, a-Si:H is particularly attractive as it has the highest γ of any CMOS-compatible
material demonstrated to date [2] and has a bandgap that can be tuned by the growth conditions.

Here, we address the stability of a-Si:H by using an approach which has been successfully implemented for amor-
phous silicon solar cells, memory, and transistors: passivation with deuterium, creating a-Si:HD films. Waveguides
fabricated from this platform have low insertion losses and a nonlinear index (n2 ∼ 3×10−17 m2W−1) and nonlinear-
ity (γ ∼ 750W

−1m
−1) comparable to reported values for a-Si:H. Furthermore, the waveguides are demonstrated to be

stable under moderate power continuous wave (CW) illumination for a period of over 1 hour.

2. Material Growth, Waveguide Fabrication and Measured Properties

The films were grown by plasma-enhanced chemical vapor deposition (PECVD) using a concurrent flow of SiH4 and
D2 at 300 ◦C with 500 mTorr total pressure and 80 W of power at 13.56 MHz. A relatively large power was chosen to
efficiently dissociate D2. The SiH4 flow rate was either 6 or 12 sccm, while the D2 flow rate was varied between 30 and
240 sccm. By varying the ratio of the flow rates, the isotopic fraction (IF) — the ratio of the Fourier transform infrared
(FTIR) signal magnitude of Si-D to the total Si-D and Si-H signal magnitude — of deuterium can be increased to
nearly 100% (Fig. 1). All films were grown onto a 2.5 µm thermally grown buried oxide on crystalline silicon wafers.
Waveguides with 580 nm width were fabricated using a 250 nm thick 50% IF film, which had a measured index of
3.44 at 1550 nm. Deep ultra-violet stepper lithography and reactive ion etching were used to define the waveguides,
which were top-cladded with an SU-8 polymer by spincoating.

The linear propagation loss for transverse-electric polarized light measured by a cutback method is approximately
5.2 dB/cm, and the coupling loss between a 3 µm spot size tapered fiber and the waveguide is 3.75 dB per facet. The
stability was determined by measuring the power and time dependence of the insertion loss (IL) for CW illumination
at 1550 nm. A 3 mm long waveguide was cycled through consecutive power sweeps as shown in Fig. 2 (a). The IL
(Fig. 2 (b)) was measured three times during the cyclic testing after re-optimizing the waveguide coupling. The same
measurements were done using a 6 mm long a-Si:H waveguide having a starting linear propagation loss of 4.2 dB/cm
and similar coupling losses. While the a-Si:H waveguide incurs an additional IL of 4 dB due to the cycling, presumably
due to Staebler-Wronski degradation, the a-Si:HD waveguide shows no significant changes.

The TPA coefficient and carrier lifetime of the a-Si:HD material were determined using the long-pulse combined
pump-probe technique of Aldaya et al [1]. To accurately model the stretched-exponential carrier lifetime response
present in amorphous materials [4], the right hand side of Eqn. (2) in [1] was multiplied by the unitless prefactor



Fig. 1: Measured FTIR spectra for films grown with different gas flow rate ratios, showing tunability of the deuterium content.

β (t/τ)β−1, where β is a unitless stretched exponential factor with a value between 0 and 1, t is time, and τ is the
characteristic carrier lifetime. The lifetime was characterized for 500 ns long, 25% duty cycle pulses with input coupled
average powers of 0, 3, and 6 dBm. The modified waveguide model of Aldaya et al was fit to the measured response
using a particle swarm optimization algorithm to obtain values of the TPA coefficient, carrier lifetime, and β . Values
of 34×10−12 m/W, 0.9 ns, and 0.48 were obtained for the TPA coefficient, carrier lifetime, and β , respectively. Using
four-wave mixing with a CW pump and signal, we obtained a nonlinear index n2 ∼ 3×10−17 m2/W and device
nonlinearity γ ∼ 750W−1m−1.
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Fig. 2: (a) Power vs. time profile for the IL measurements. (b) Measured IL of a-Si:H and a-Si:HD (50% IF) waveguides. (c)
Measured and fitted a-Si:HD waveguide response to 500 ns pulses.

3. Summary

We report a method to fabricate deuterium-passivated amorphous silicon waveguides and demonstrate that they are
stable under continuous wave power. The waveguides have nonlinear and carrier dynamical properties which are
comparable to those of hydrogenated amorphous silicon.
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