Artificial lakes delay the migration of brown trout Salmo trutta smolts: a comparison of migratory behaviour in a stream and through an artificial lake

Schwinn, Michael; Baktoft, Henrik; Aarestrup, Kim; Koed, Anders

Published in:
Journal of Fish Biology

Link to article, DOI:
10.1111/jfb.13950

Publication date:
2019

Document Version
Peer reviewed version

Citation (APA):
Artificial lakes delay the migration of brown trout *Salmo trutta* smolts: a comparison of migratory behaviour in a stream and through an artificial lake

MICHAEL SCHWINN | HENRIK BAKTOFT | KIM AARESTRUP | ANDERS KOED

National Institute of Aquatic Resources, Technical University of Denmark, Vejløsøvej 39, Silkeborg, Denmark

Correspondence
Anders Koed, National Institute of Aquatic Resources, Technical University of Denmark, Vejløsøvej 39, 8600 Silkeborg, Denmark
E-Mail: ak@aqua.dtu.dk

Funding information
This study was funded by the Danish Rod and Net Fishing Licence.

ABSTRACT

Juvenile salmonids experience high mortality when negotiating lentic waters during their downstream migration to the sea. The development of artificial lakes and wetlands in streams has become a widely used management tool to reduce nutrient load to coastal areas. Such wetlands may threaten anadromous populations. In this study we quantify net ground speed of downstream migrating brown trout *Salmo trutta* smolts in equally long stream and lake sections in a Danish lowland stream and artificial lake. This was done by passive integrated
transponder telemetry in 2016 and 2017. Mean net ground speed in the stream section was 36.58 km day$^{-1}$ and 0.8 km day$^{-1}$ in the lake section. This decrease of net ground speed through the lake may lead to prolonged exposure to predators and probably contributes to high mortalities threatening anadromous populations.

KEYWORDS

artificial lake, ground speed, lowland stream, *Salmo trutta*, salmonids, wetland

1 | INTRODUCTION

Juvenile anadromous brown trout *Salmo trutta* L. 1758 migrate to the sea after previous physiological and behavioural changes (smoltification; Folmar & Dickhoff, 1980). The downstream migration phase is often associated with high mortalities due to predation by fish, mammals and birds. When the water current is reduced by river obstructions, such as weirs or artificial lakes, predation can cause extraordinary high mortality among downstream migrating salmonid smolts due to extended exposure time and high abundance of predators (Jepsen et al., 1998; Aarestrup et al., 1999; Olsson et al., 2001; Gauld et al., 2013; Schwinn et al., 2017a,b, 2018). This has become an increasing problem internationally, since a high number of artificial lakes and wetlands are created for their potential to reduce nutrient load to coastal areas and to improve habitats for birds and amphibians (Arheimer & Pers, 2017; Hoffmann & Baattrup-Pedersen, 2007; Vymazal, 2017).

In the late 1980s, wetlands and lakes were proposed as a nitrogen management tool (Mitsch, 1992; van der Valk & Jolly, 1992). Since then, artificial lakes and wetlands have
been created in Europe, North America, Asia and Australia (Vymazal, 2017) mainly to remove nutrients from agricultural drainage. This method is regarded as cost-effective (Fleischer et al., 2014) and, it is argued, has additional benefits besides nutrient removal, such as the creation of habitat for rare or endangered species, recreational opportunities and potential flood protection (van der Valk & Jolly, 1992; Ebel & Lowe, 2013).

The downstream migration of salmonids is believed to be partly passive displacement by the current (Thorpe et al., 1981), but studies have shown that S. trutta smolts position actively horizontally in the middle of the stream, where current velocity usually is highest (Svendsen et al., 2007). In the process of smoltification, salmonids lose their positive rheotactic behaviour and therefore current velocity mainly determines speed of river descent (Hansen & Jonsson, 1985; Aarestrup et al., 2002; Jonsson & Jonsson, 2011). When smolts must traverse lentic waters with no unidirectional currents, they must actively swim and search for the outlet and cannot depend on passive displacement.

The focus of this study is a comparison of migration speeds of descending S. trutta smolts in a small lowland stream and in an artificial lake, Egå Engsø. We investigate how discharge, water temperature, fork length (L_F) and time of day affect net ground speeds in the different sections over 2 years and discuss the results and potential consequences.

2 | MATERIAL AND METHODS

Handling and tagging of fish were conducted in accordance to the guidelines described in permission 2012-DY-2934-00007 from the Danish Experimental Animal Committee.

2.1 | Study area
Egå Engsø is an artificial lake that was established in 2006 with the aim of reducing nutrient loads to Aarhus Bight. The lake is situated north of the city Aarhus in Denmark (56°13’ N, 10°13’ E; Figure 1). The shallow, eutrophic lake has a surface area of 90–112 ha, depending on stream discharge. The mean depth is c. 0.8 m and the maximum depth c. 2 m. The lake is fed by the Egå Stream, which originates from Lake Geding, c. 10 km upstream of Egå Engsø and drains into Aarhus Bight c. 4.1 km downstream of the lake. Mean discharge into the lake was 0.52 m3 s$^{-1}$ and water retention time in the lake was c. 20 days in 2014. As well as S. trutta, other fish species occasionally observed during electrofishing surveys are three-spined stickleback Gasterosteus aculeatus L. 1758, pike Esox lucius L. 1758, perch Perca fluviatilis L. 1758, common roach Rutilus rutilus (L. 1758) and European eel Anguilla anguilla (L. 1758). Stocking plans include annual release of 500 1 year-old hatchery-reared F1 offspring of wild S. trutta in mid-April. These fish are released c. 6 km upstream of the river mouth. Additionally, river mouth plantings of one-year-old S. trutta are conducted in Egå: 3800 1 year-old fish are released annually in the middle of April, c. 500 m upstream of the river mouth. In 2016, 21,600 fish were planted in the river mouth.

2.2 | Experimental fish and PIT Telemetry

In the periods 23 February–04 March 2016 and 27 February–09 March 2017, 821 and 841 wild S. trutta, respectively, were caught by electrofishing in a c. 4 km long stretch of the river Egå starting 100 m upstream of PIT antenna array 1 and a 500 m stretch of the tributary Koldkær bæk (Figure 1). Electrofishing was carried out using 500 V pulsed direct current, produced by a 2000 W generator (EU 20i, Honda; www.honda.co.jp). Prior to tagging, fork length (L_F, ± 1 mm) was measured. Fish with a L_F of at least 110 mm were anaesthetised using benzocaine (20 mg l$^{-1}$) until operculum movement slowed significantly (4–5 min). PIT
tags (Texas Instruments Type RI-TRP-RRHP, half duplex, 134 kHz, length 23 mm, diameter 3.85 mm, mass 0.6 g; www.ti.com) were implanted into the body cavity through a 3–4 mm ventro-lateral incision made using a scalpel, anterior of the pelvic fins. Time for measuring and tagging was < 20 s per fish. Fish recovered (i.e., full equilibrium) and were released in the stream section where they were caught. Time from capture to release was typically between 20 and 60 minutes.

Two arrays of paired swim-through PIT antennas covering the entire streambed and channel depth, were installed in 2009 at the inlet (antenna array 2) and outlet (antenna array 3; c. 300 m upstream and c. 20 m downstream of the lake) to record fish entering and leaving the lake. In January 2016, a third array (antenna array 1) was installed c. 1500 m upstream of the lake, so the three arrays cover two similar distances (assuming linear distance in the lake). The PIT stations at the lake were powered by mains electricity and operated continuously during the study period. The array upstream in the river (antenna array 1) operated on two 12 V leisure batteries that were changed weekly. Uptime of this array was 100% during the study period in 2016 and 99.99% in 2017. This was validated using timed auto-emitter check tags that register in 30 min intervals on each individual antenna. Each antenna had a detection range of c. 0.5 m and operated with a 50 ms energisation, 50 ms receiving time, resulting in a rate of c. 10 scans s\(^{-1}\).

2.3 | Environmental variables

Water-level data were recorded at a station 250 m upstream of the inlet in 15 min intervals and used as a proxy for discharge. Water temperature data was logged in hourly intervals using a temperature logger (HOBO TidbiT 2; www.hobo.com) positioned at the PIT array located at the lake inlet.
2.4 | Handling of data and statistical analysis

2.4.1 | Antenna efficiency

Efficiency of the two upstream PIT antenna arrays was calculated based on the total number of individual downstream registrations and missed upstream registrations on each array.

2.4.2 | Selection of fish

For further analyses, only tagged fish 110–250 mm L_F with a smolt or pre-smolt phenotype (Hoar, 1988) were selected. Each fish had to have a subsequent registration at the PIT antenna arrays 1 and 2 in the period between tagging and end of May (same year). Fish without registrations or fish that moved upstream were disregarded for the analyses.

2.4.3 | Modelling net ground speed in the stream and in the lake

Net ground speed was calculated by dividing the length of the migration route between the PIT arrays (1.5 km) by the difference in time between the first downstream registration and the last previous upstream registration (in the respective section). As the sizes of tagged fish were quite similar, distances in m or km were used instead of bodylengths.

Preliminary graphical analysis of the telemetry data indicated nonlinear patterns in the relationship between net ground speed and other variables. Therefore, data were analysed by using generalised additive models (GAM). Continuous predictor variables were checked for outliers and collinearity. (Zuur et al., 2010). Fish with $L_F > 190$ mm were removed from the
modelling dataset as they were underrepresented in the dataset \((n = 23)\). A GAM using a \(\gamma\)-distribution with a log-link function was applied to analyse the response variable net ground speed using the predictors \(L_F\), water temperature \((T_W)\), water level \((H_W)\), time of day \((t_{24})\) and year. The different sections stream and lake were added as an interaction term \((\text{section})\) with all variables to the model, so that different smoothers are calculated for the different sections (indicated by \(f_{\text{section}()}\)). Values of water temperature, water level and time of day were measured at the time of the registration at the first PIT array \((\text{antenna array 1})\) for the stream section and at the second PIT array \((\text{antenna array 2})\) for the lake section. This model was applied to a subset of fish that were passing the stream section within 12 h, to exclude fish that apparently interrupted their migration after a first registration at the PIT array \(1; n = 155)\). The final dataset used for this analysis consisted of 535 observations in the stream and 234 observations in the lake: Net ground speed, \(V_i \sim \gamma(\mu_i, \tau); E(V_i) = \mu_i\) and var. \((V_i) = \frac{\mu_i^2}{\tau}\); \(\mu_i^2 \tau^{-1}; \log(\pi_i) = \alpha + f_{\text{section}}(L_Fi) + f_{\text{section}}(H_Wi) + f_{\text{section}}(t_{24i}) + f_{\text{section}}(T_Wi) + \text{year}_i : \text{section}_i + \text{year}_i + \text{section}_i\).

Smoothing parameters were estimated by generalised cross validation \((\text{Wood, 2006})\). For time of day, a cyclic penalized cubic regression spline was used to estimate a smoother, due to the circular nature of this variable. Smoothing basis dimensions were 9 for time of day and 10 for other variables in the model. Model selection aimed at the minimisation of the Akaike information criterion \((\text{AIC})\). The correlation between net ground speed in the two sections was assessed using Pearson’s correlation. Statistical analysis was performed in \(\text{R} 3.5.1\) \((\text{www.r-project.org})\). The \(\text{R}\) package \(\text{mgcv} 1.8–24\) \((\text{Wood, 2011})\) was used for GAMs.

3 | RESULTS

3.1 | Antenna registrations and lake passage
Out of the total of 1662 tagged fish, 709 (43%) were registered at both PIT arrays upstream of the lake. The majority ($n = 550$) of those passed the stream section within 12 h. The remaining tagged fish were either not registered in the study period, only at a single array, or returned upstream after a registration at the inlet of the lake. Success rate of lake passage of the 709 fish registered at both upstream arrays was 34% ($n = 243$) but varied between years (47% in 2016 and 28% in 2017).

3.2 Antenna efficiency

The efficiency of PIT array 1 was 93.3% and 95.3% in 2016 and 2017, respectively. The efficiency of PIT array 2 was 82.9% and 82.3% in 2016 and 2017, respectively.

3.3 Net ground speed in the stream and lake

Net ground speed differed substantially between the stream and the lake section. Mean net ground speed was 36.58 km day$^{-1}$ in the stream and 0.8 km day$^{-1}$ in the lake (Table 1 and Figure 2). No association was found between net ground speed in the stream and in the lake (Pearson’s correlation: $P > 0.05$, $r = -0.07$), meaning that fish moving slowly in the stream did not necessarily move slowly in the lake, or vice versa.

3.4 Generalised additive model for net ground speed

There was no problematic collinearity between continuous predictors in the model. The correlation between water temperature and water level was 0.5. Single term deletion
(including the interaction with section) from the full model revealed that the most important predictors for net ground speed were water level, year, temperature and time of day. \(L_F \) had less predictive power judged by the \(\Delta \) AIC value. Table 2 shows AIC, \(\Delta \)AIC and degrees of freedom of the full model and a set of candidate models where one predictor was removed from the model.

In the next step, interactions between individual predictors and section were removed from the model not containing \(L_F \), to test whether effects differ between the stream and lake section. Resulting models were compared by AIC. After removal of individual interaction terms, one model had a \(\Delta \)AIC value < 6 (\(\Delta \)AIC = 0.4) compared with the respective candidate models. Hence, this model was selected as final model (AIC = 5071.8, explained deviance 84.8 \%): \(\log(\pi_i) = \alpha + f_{\text{section}}(H_{Wi}) + f_{\text{section}}(T_{Wi}) + f(t_{24i}) + \text{year}_i : \text{section}_i \). The GAM model reveals section-specific effects of temperature and water level, whereas time of day appears to have a similar effect in both sections. In the stream, net ground speed was increased with increasing water level, at temperatures 5–9°C and during the hours around midnight (Figure 3). The analysed variables did not seem to affect net ground speed in the lake. \(L_F \) had a comparatively minor effect on net ground speed and was not retained in the model.

4 | DISCUSSION

Major difference in migration speed of \(S. \ trutta \) smolts were found between river and lake sections. The observed mean value of net ground speed in the stream of 36.58 km day\(^{-1}\) was similar to values reported in other studies (Aarestrup et al., 2014; Serrano et al., 2009). In the lake, the fish were significantly slower, moving at a mean net ground speed of 0.8 km day\(^{-1}\) (median, 0.47 km day\(^{-1}\)). Mean values of net ground speed in the same lake, calculated from data published by Schwinn et al. (2017a) varied between 0.24 and 0.3 km day\(^{-1}\) in the years
2009–2015. Net ground speed in a similar, albeit smaller artificial pond calculated from data published by Olsson et al. (2001) was 0.13 day\(^{-1}\).

This difference in net ground speed was probably due to the different current regime in lotic and lentic environments. It has been shown that active positioning and swimming was relevant for downstream migration in riverine environments (Svendsen et al., 2007) and crucial to traverse lacustrine water bodies (Jepsen et al., 1998; Aarestrup et al., 1999; Olsson et al., 2001; Schwinn et al., 2017a,b). Yet, it is apparent that passive displacement plays a major role since downstream migration speed is largely dependent on current speed in streams and rivers, as shown in this study by the use of water level as proxy for discharge and elsewhere (Aarestrup et al., 2002). The current speed of the stream quickly fades in the lake and only comparatively low, wind-driven currents prevail in the lake. Accordingly, water level (flow) of the stream did not affect net ground speed in the lake and individual speed in the stream and in the lake was not associated; i.e., fish that were swimming fast in the stream did not necessarily negotiate the lake faster than individuals with a low net ground speed in the stream. Therefore, it seems that potential individual traits associated with migration speed in the stream have no predictive power for behaviour in the lake or vice versa. Wind-induced currents probably determine migration speed and direction in the lake to a large extent.

Further research is needed to clarify the effects and interactions of these variables on smolt \textit{S. trutta} swimming speed in lakes without unidirectional currents. A radio telemetry study in the same system revealed highly erratic patterns of smolts during lake passage (Schwinn et al. 2018). These included several back and forth movements between eastern and western regions of the lake, indicating a lack of orientation that delays or prevents successful lake passage. Similar reversed migration in lakes was found by Jepsen et al. (1998, 2000) and Aarestrup et al. (1999).
Time of day and water temperature were less important for the explanation of net ground speed. Most fish negotiated the stream and lake sections during night, which is the typical pattern of downstream migrating salmonid smolts (Moore & Potter, 1994; Moore et al., 1998; Aarestrup et al. 2002) and higher net ground speeds in the stream and in the lake were observed, when fish entered the respective sections during night time. However, only a few observations were available for daytime hours and the variation of net ground speed was high at any time. Most fish negotiated the stream at water temperatures of 5–9°C. The model predicts highest net ground speeds at stream water temperatures between c. 5.5 and 7.4°C (Figure 3). Swimming performance of ectothermic fish increases with water temperature up to optimal values. Yet a high variation in net ground speed, even close to the thermal optimum suggests that other factors (probably discharge) play a more important role. Only a slight effect of increasing water temperature was observed on net ground speed within the lake. This could be due to increasing swimming endurance of S. trutta smolts at elevated temperatures up to 16.1°C, as reported by Ojanguren and Braña (2000). However, a temperature effect on the time needed to negotiate the lake was not found in a wider dataset from this study (Schwinn et al. 2017b). Therefore, observed temperature effects should be interpreted with care, since they are most likely masked by the strong effect of stream discharge. Furthermore, temperature effects may be of minor relevance considering the small spatial scale of the study area.

Since the effects of abiotic factors on net ground speed of fish that passed the stream section without long interruptions are of interest, 155 fish that remained for more than 12 hours in the stream section were excluded from the model. Yet, this exclusion did not change the general shape of the smoothing functions in the GAM and the median net ground speed of the fish that interrupted their migration was still higher in the stream (0.8 km day\(^{-1}\)) than in the lake (0.5 km day\(^{-1}\)).
Net ground speed in the stream was higher in 2016 than in 2017. This result was probably caused by a general higher discharge during 2016 (Figure 3). Likewise, net ground speed in the lake was higher in 2016 than in 2017. Since no effect of stream flow or discharge on net ground speed in the lake was found in this study and in Schwinn et al. (2017b), other factors may explain the observed variation. Most likely, turbidity has a strong effect on net ground speed and on passage probability (Jepsen et al., 1998). For example, much higher mean net ground speeds of *Salmo salar* L. 1758 smolts (3.5 km day\(^{-1}\); range 1.8–15.6 km day\(^{-1}\)) negotiating a large clear-watered lake in Newfoundland were observed (Bourgeois & O’Connell, 1988).

We observed that the mean speed in the lake was only 2% of the value of riverine migration speed. This slow progression through the lake leads to prolonged exposure to predators such as pike *E. lucius* or birds, which are numerous in lacustrine environments. As a consequence, the survival of *S. trutta* smolts negotiating artificial lakes can be very low (Schwinn et al. 2017a, 2018). Further research is needed to fully understand how environmental factors control migration speed in lakes. The outcomes could possibly be used to improve the design of future artificial lakes. Thus, bypass solutions, where an alternative migration route is available, have been used and pass smolts efficiently without fully compromising nutrient removal (unpubl. data). Additionally, river restoration and enhancement programmes are recommended in system where the sea trout (migratory *S. trutta*) population is compromised due to the development of artificial lakes, as improved smolt production may counteract high smolt-loss.

ACKNOWLEDGMENTS
We wish to thank Jes Dolby and Jørgen Skole Mikkelsen for technical assistance and help with the fieldwork.

REFERENCES

Table 1

Net ground speed and sample size in the stream and in the lake section

<table>
<thead>
<tr>
<th>Group</th>
<th>Section</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>Stream</td>
<td>0.02</td>
<td>83.10</td>
<td>39.26</td>
<td>29.42</td>
<td>43.52</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>Lake</td>
<td>0.08</td>
<td>15.54</td>
<td>1.16</td>
<td>1.89</td>
<td>0.62</td>
<td>109</td>
</tr>
<tr>
<td>2017</td>
<td>Stream</td>
<td>0.02</td>
<td>80.6</td>
<td>35.28</td>
<td>26.11</td>
<td>37.70</td>
<td>477</td>
</tr>
<tr>
<td></td>
<td>Lake</td>
<td>0.06</td>
<td>5.43</td>
<td>0.50</td>
<td>0.54</td>
<td>0.37</td>
<td>134</td>
</tr>
</tbody>
</table>

Table 2

Variables of the full model and candidate models and respective AIC, ∆AIC and df

<table>
<thead>
<tr>
<th>Length:</th>
<th>Time of day:</th>
<th>Water level:</th>
<th>Temperature:</th>
<th>Year:</th>
<th>Section</th>
<th>AIC</th>
<th>∆AIC</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section</td>
<td>section</td>
<td>section</td>
<td>section</td>
<td>section</td>
<td>AIC</td>
<td>∆AIC</td>
<td>df</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>5070.2</td>
<td>0</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>5071.4</td>
<td>1.2</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>5079.6</td>
<td>9.4</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>5136.6</td>
<td>66.4</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>5104.7</td>
<td>34.5</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>5115.8</td>
<td>45.6</td>
<td>34</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 1: Map of the study area. Numbers in circles indicate positions of the PIT antenna arrays.

FIGURE 2. Net ground speed in the two sections of the study area. Raw data are jittered along the x-axis and surrounded by a bean indicating density by width. Horizontal lines indicate the median value.

FIGURE 3 Mean (± 95% CI) net ground speed as a function of (a), (b) water level, (c), (d) water temperature and (e), (f) time of day in (a), (c), (e) the stream and (b), (d), (f) lake sections. Lines are predicted values, back-transformed to the original scale, obtained from a generalized additive model. Raw data points are added to the plot.