A DSO-level contract market for conditional demand response

Kok, Corey; Kazempour, Jalal; Pinson, Pierre

Published in:
Proceedings of IEEE PES PowerTech 2019

Publication date:
2019

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
A DSO-Level Contract Market for Conditional Demand Response

Corey Kok, Jalal Kazempour, Pierre Pinson
Technical University of Denmark, Centre for Electric Power and Energy, Kgs. Lyngby, Denmark
Email: {corkok, seykaz, ppin}@elektro.dtu.dk

Abstract—This paper proposes a fixed-term (e.g., monthly) Demand Response (DR) contract market. Based on the outcomes of this market, the Distribution System Operator (DSO) pays DR aggregators to modify power consumption within a fixed window each day. Two contract types are introduced: Scheduled contracts require the DR daily, while conditional contracts require the DR after an activation signal from the DSO. Asymmetric block offers, introducing integer variables, are used to model DR with a rebound effect, potentially causing the DR offers to clear at a loss for the aggregators. Without an activation cost for conditional contracts, the DSO has the incentive to dispatch DR, despite consumer discomfort exceeding grid security benefits. Thus, the proposed market incorporates side-payments. A numerical study shows that among all DR services considered, the proposed market determines the optimal service for the whole system, ensuring the profitability of each market participant.

Index Terms—Electricity market, fixed-term contract, conditional demand response, asymmetric block offer, side-payment.

I. INTRODUCTION

In the current European electricity markets, the market operators use a zonal model, ignoring the grid constraints within each bidding zone that often encompasses an entire country. The zonal market clearing brings challenges to both Transmission System Operators (TSOs) and Distribution System Operators (DSOs), who are responsible for the secure operation of their underlying grids. Ideas based on “flexibility markets” and “flexibility products” [1] as part of ensuring grid security, have recently been proposed, all relying on reservation and activation of flexible resources to meet the TSOs’ and DSOs’ needs (as well as the needs of other market participants, e.g., balance responsible parties). The majority of the flexible resources, especially Demand Response (DR) aggregators, is spread at the distribution level, and exploiting the flexibility of these resources may further worsen the DSOs’ challenges depending on the utilisation of this flexibility. Several TSO-DSO coordination schemes have been recently proposed [2], [3], each model having their pros and cons. Among these schemes, the two main ones are based on either a common TSO-DSO flexibility market design, or two sequential flexibility markets, one for the DSO and another for the TSO, but this scheme requires a coordination on TSO-DSO interface flow.

In this paper, we take a different approach, proposing a fixed-term (e.g., a monthly) contract market for the DSO. In this market, the DSO procures contracts for flexibility services from DR aggregators located at the distribution level, still leaving room for those aggregators to sell the flexibility left to other participants, e.g., TSO. The contracts procured may span specific time-periods during each day of the market horizon, e.g., the peak time periods only.

The benefits of using flexibility of the aggregation of thermostatically controlled loads are highlighted in [4] and [5]. One important observation in the functioning of these loads (and their aggregators in general) is that any load reduction causes a deviation from their steady-state operation, e.g., the set-point temperature of refrigerators. Thus, load reduction needs to follow a load increase to return to this steady state. This phenomenon is referred to as rebound (or kick-back) effect [6]. In the market context, this effect is modelled by defining two joint blocks (called response and rebound), one representing the load decrease and another corresponding to the load increase. The rebound block is following the response one with no time gap between the two blocks, and the combination of these two blocks is so-called as an asymmetric block offer [7]. By asymmetric, it means that the rebound and response blocks are not necessarily identical with respect to the time period and load quantity reduced/increased. The DSO benefit of utilising DR each day depends on the temperature and consumption patterns, which vary from day-to-day. For some days, the DSO benefit of dispatching DR may not justify the resulting consumer discomfort. Thus, we define two distinct DR services as the two products of the proposed DSO-level contract market: Scheduled and conditional services. The former requires the DR units to provide their offer every day; and conditional services, where the DSO must provide an activation signal to dispatch the DR units. One may interpret the conditional demand response as “capacity reservation” for flexibility, which can be activated by DSO.

In this context, this paper designs a fixed-term contract market for DR, describing the types of aggregators expected to participate in this market, and how to fairly pay the aggregators that can provide demand response. Two main challenges arise when attempting to guarantee each DR aggregator’s profitability. Firstly, allowing aggregators to offer asymmetric blocks introduces integer variables to the model. It is well documented that this can lead to revenue inadequacy, specifically the aggregators may incur a loss [8]. Secondly, for conditional services for DR, if there is no cost or limit on the number of times that the DSO can dispatch this DR, the DSO has an incentive to dispatch DR every day.
Side-payments are introduced to tackle the challenges above, ensuring that each DR offer is revenue adequate. The market clearing guarantees that the optimal DR blocks (based on their offer-costs) are chosen, with the adjustment ensuring that each aggregator does not incur a loss from participating in this market. To prevent the over-dispatch of conditional services, aggregators can also set a dispatch cost where the payment to each aggregator is dependent on the number of activations. The proposed market design is being demonstrated in practice in the context of EcoGrid 2.0 project [9] in Bornholm island of Denmark.

The paper is laid out as follows. In Section II the interaction between aggregators and DSO is described. The DSO market-clearing tool is also formulated and described, with the ex-post adjustments required to ensure revenue adequacy. In Section III we present results from a case study that numerically validates the design of the proposed market and the ex-post adjustments. In Section IV we draw conclusions.

II. Market Definition

We consider a DSO that buys flexibility services from DR aggregators within a competitive market. The services are in the form of fixed-term contracts, lasting roughly one month, that either schedule aggregators to provide DR every day, or require an activation signal from the DSO shortly before the DR service time period each day.

Once we have the DSO’s bids and DR aggregators’ offers, we need to determine the best combination of DSO bid and DR aggregator offers that maximises the profit to the system as a whole. We first present an optimisation model in Section II-B, then describe the side-payment process in Sections II-C and II-D.

A. Description of Participants

As each aggregator could also offer their flexibility in the TSO-level flexibility market [7], there is an opportunity cost to reserving flexibility in this DSO-level contract market and depends directly on the time and length of the DR service. If the weather is a significant factor determining whether the DSO dispatches the DR units, then the average day that a conditional service is activated can be significantly different.

In the second term of (1), we have the expected dispatch cost \(\mathbb{P}_p DC_p \), given by the daily probability of activation \(\mathbb{P}_p \) (stated by the DSO) multiplied by net dispatch cost \(DC_p \), which is defined in (3). Note that the daily probability of activation for scheduled services is equal to 1.0, while for conditional services it is a value between zero and 1.0, and is stated before the market clearing by the DSO. The dispatch cost reflects the expected cost of redispatch in the TSO-level flexibility market and consumer discomfort. This objective is normalised to a single day. Thus, to calculate the actual cost, the optimal value obtained for (1) should be multiplied by the length of the contract, \(L \) in days.

Fig. 1. A sample asymmetric block offer, including response (green) and rebound (red) blocks. In this specific example, the response block corresponds to an up regulation service (i.e. load decrease), while the rebound block corresponds to down regulation (load increase). Another type of block offer is the one whose response and rebound blocks provide down and up regulations, respectively.
Equation (2) defines the cost of the reserve component of meeting the DR services.

\[RC_p = \sum_{t \in \mathcal{T}} \sum_{p \in \mathcal{P}} C^{\text{Con}}_{p} p_{\text{pit}} + \sum_{c \in \mathcal{C}} \sum_{d \in \mathcal{D}_c} C^{\text{DR}}_{p} r_{\text{pcd}} \]

\[+ \sum_{t \in T_r} C^{\text{Reb}}_{p} s_{pt} - C^{\text{DSO}}_{p} z_{pt} \quad \forall p \in \mathcal{P}. \]

(2)

In the first term, we define the cost from conventional load aggregators, where the cost per \(kW \) is given by \(C^{\text{Con}}_{p} \) (service \(p \), conventional load aggregator \(i \), time \(t \)) and the amount of conventional load reduction (in \(kW \)) is given by \(p_{\text{pit}} \). In the second term, we have the cost from asymmetric block offers, where the cost per block \(d \) (belonging to aggregator \(c \) for service \(p \)) is given by \(C^{\text{DR}}_{p} \) and the number of blocks is given by integer variable \(r_{\text{pcd}} \). In the third term, we have the cost to the DSO when aggregators utilise their allowed rebound, with the rebound cost per \(kW \) is given by \(C^{\text{Reb}}_{p} \) (service \(p \), time \(t \)) and the amount of allowed rebound (in \(kW \)) is given by \(s_{pt} \). In the final term, we subtract the benefit (utility) to the DSO for clearing the DR service, where the benefit of each DR service \(p \) is given by \(C^{\text{DSO}}_{p} \) with binary variable \(z_{pt} \) indicating which DR service clears.

Similarly, (3) defines the cost from dispatch. Note that the cost parameters in (3) are different than those in (2), differentiated by a separate superscript (D instead of R).

\[DC_p = \sum_{t \in \mathcal{T}} \sum_{p \in \mathcal{P}} C^{\text{Con}}_{p} p_{\text{pit}} + \sum_{c \in \mathcal{C}} \sum_{d \in \mathcal{D}_c} C^{\text{DR}}_{p} r_{\text{pcd}} \]

\[+ \sum_{t \in T_r} C^{\text{Reb}}_{p} s_{pt} - C^{\text{DSO}}_{p} z_{pt} \quad \forall p \in \mathcal{P}. \]

(3)

Constraint (4) defines an upper limit \(p_{\text{pit}} \) on \(p_{\text{pit}} \). This represents the amount of up regulation that each aggregator \(i \) can provide at each time \(t \) for each DR product \(p \).

\[p_{\text{pit}} \leq \bar{p}_{\text{pit}} \quad i \in \mathcal{I}, t \in T_p. \]

(4)

According to the flexibility portfolio of aggregators within a given time period, each aggregator \(c \) might be able to offer several asymmetric blocks, each with a different shape of response and rebound blocks. However, it can eventually deliver at most one of those block offers. Thus, we define binary variable \(m_{\text{pcd}} \), indicating (for service \(p \), aggregator \(c \)) which asymmetric block \(d \) is chosen. For a given DR service indicated by \(z_{pt} \), constraint (5) allows each aggregator to offer multiple blocks into the market, knowing at most one of these blocks will be dispatched.

\[\sum_{d \in \mathcal{D}_c} m_{\text{pcd}} \leq z_{pt} \quad \forall p \in \mathcal{P}, c \in \mathcal{C}. \]

(5)

Each asymmetric block offered into the DSO-level market can be split into multiple blocks. Constraint (6) defines the number of granular blocks \(B_{\text{pcd}}^{\text{DR}} \) that make up the full utilisation of the asymmetric block \(d \) (offered by DR aggregator \(c \) for service \(p \)), where any integer up to \(B_{\text{pcd}}^{\text{DR}} \) may clear the DSO-level market.

\[r_{\text{pcd}} \leq B_{\text{pcd}}^{\text{DR}} m_{\text{pcd}} \quad \forall p \in \mathcal{P}, c \in \mathcal{C}, d \in \mathcal{D}_c. \]

(6)

With the DSO able to submit multiple bids for demand response services \(p \), each with their associated response requirements and benefit to the DSO, constraint (7) ensures that at most one of these services clears the market.

\[\sum_{p \in \mathcal{P}} z_{pt} \leq 1. \]

(7)

During rebound periods, constraint (8) limits the amount of rebound \(s_{pt} \) to a maximum \(D_{\text{Reg}}^{\text{DR}} \) of allowed rebound at each time \(t \) for the cleared DR service \(p \) (indicated with \(z_{pt} \)).

\[s_{pt} \leq D_{\text{Reg}}^{\text{DR}} z_{pt} \quad \forall p \in \mathcal{P}, t \in T_p. \]

(8)

For each service \(p \) and at each time \(t \), constraint (9) enforces that the total load reduction provided by DR aggregators satisfies the minimum service requirement, accounting for the rebound effect. The parameter \(D_{\text{Reg}}^{\text{DR}} \), set by the DSO, defines the minimum response required at each time \(t \) for service \(p \).

\[\sum_{t \in \mathcal{T}} \sum_{c \in \mathcal{C}} Q_{\text{pcd}}^{\text{DR}} r_{\text{pcd}} \geq D_{\text{Reg}}^{\text{DR}} z_{pt} - s_{pt} \quad \forall p \in \mathcal{P}, t \in T_p. \]

(9)

Finally, constraints (10a)-(10e) constitute variable declarations.

\[p_{\text{pit}} \geq 0 \quad \forall p \in \mathcal{P}, i \in \mathcal{I}, t \in T_p \]

(10a)

\[r_{\text{pcd}} \in \mathbb{Z}_+ \quad \forall p \in \mathcal{P}, c \in \mathcal{C}, d \in \mathcal{D}_c \]

(10b)

\[m_{\text{pcd}} \in \{0,1\} \quad \forall p \in \mathcal{P}, c \in \mathcal{C}, d \in \mathcal{D}_c \]

(10c)

\[z_{pt} \in \{0,1\} \quad \forall p \in \mathcal{P} \]

(10d)

\[s_{pt} \geq 0 \quad \forall p \in \mathcal{P}, t \in T_p. \]

(10e)

The optimisation problem (1)-(10e) is a mixed-integer program, and therefore, we cannot derive dual variables for determining uniform market prices. One common solution for deriving prices from a mixed-integer problem, especially in the US markets, is to solve the original mixed-integer linear problem, and then to fix the values of integer and binary variables \(r, m \) and \(z \) to those obtained from the original problem, which results in a linear and continuous problem. Then, the market prices can be obtained using the dual variables. However, it is now well-known that fixing integer and binary variables may yield unsupporting market-clearing prices, meaning that the market prices may not reflect all system costs, which may yield a negative profit for some market participants [8]. Therefore, a side (uplift) payment is required, as explained later in Section II-D.

C. DSO Payment to Aggregator

The original problem (1)-(10e) becomes a continuous problem by fixing integer and binary variables, and then the dual variable associated with (9) is treated as the market price. We denote this dual variable as \(\pi_{\text{pit}} \), implying the market
price of service p at time t. Summing across the service time T_p, equation (11a) gives the payment from the DSO to the conventional load aggregator i. Similarly, (11b) gives the payment to the aggregator c:

$$T_{pi}^{Con} = \sum_{t \in T_p} \pi_{pit} p_{pit} \quad \forall p \in \mathcal{P}, \, i \in \mathcal{I} \quad (11a)$$

$$T_{pc}^{DR} = \sum_{t \in T_p} \pi_{pt} \sum_{d \in D_c} Q_{pcd}^{DR} r_{pcd} \quad \forall p \in \mathcal{P}, \, c \in \mathcal{C}. \quad (11b)$$

Assuming that all market participants are price-takers, i.e., all bids and offers represent the true utility and costs, the daily profit for each conventional load aggregator i, each DR aggregator c, and the DSO from each service p is determined using (12a), (12b) and (12c), respectively:

$$W_{pi}^{Con} = T_{pi}^{Con} - \sum_{t \in T_p} (C_{pit}^{R, Con} - P_p C_{pit}^{D, Con}) p_{pit} \quad \forall p \in \mathcal{P}, \, i \in \mathcal{I} \quad (12a)$$

$$W_{pc}^{DR} = T_{pc}^{DR} - \sum_{d \in D_c} (C_{pcd}^{R, DR} - P_p C_{pcd}^{D, DR}) r_{pcd} \quad \forall p \in \mathcal{P}, \, c \in \mathcal{C} \quad (12b)$$

$$W_{pi}^{DSO} = \sum_{t \in T_p} (C_{pt}^{R, DSO} + P_p C_{pt}^{D, DSO}) z_{pt}$$

$$- \sum_{t \in T_p} (C_{pit}^{R, Reb} + P_p C_{pit}^{D, Reb}) s_{pt}$$

$$- \sum_{i \in \mathcal{I}} T_{pi}^{Con} - \sum_{c \in \mathcal{C}} T_{pc}^{DR} \quad \forall p \in \mathcal{P}. \quad (12c)$$

D. Side-Payment

There are two reasons that the DSO payments to conventional loads and DR aggregators based on (11a) and (11b) may need an adjustment. We explain below these two reasons and the process of determining the side-payment incurred by each of those reasons.

Firstly, as explained in Section II-B, fixing integer and binary variables may yield unsupporting prices π_{pt}, in the sense that DR aggregators may end up a negative profit, i.e., the values obtained for (12b) might be negative. In that case, the DSO should compensate their loss, and ensure that their profit will be eventually non-negative. It is outside the scope of this paper to address how the DSO can recover its side-payments, but usually, it should distribute this cost in a fair manner among consumers.

Secondly, as explained in Section II-B, the DSO states the daily activation probability P_p for each service p before the market clearing, whose value lies between zero and 1.0 (as before) for conditional services, and then the market participants offer to the market accordingly. However, the realised percentage of activation for conditional services, denoted by Q_p, over the market horizon (e.g., a month) might be different than P_p. Therefore, a side-payment is required; otherwise, the DSO tends to state a reduced value for P_p, while the market participants are discouraged from offering in the market. We base our proposed side-payment on a pay-as-bid pricing scheme, meaning that for the difference of Q_p and P_p, the market participants are paid/charged according to their price offers (which is equal to their true costs for the price-taker participants). The final payment from the DSO to conventional loads i and DR aggregators c is given below:

$$\hat{T}_{pi}^{Con} = T_{pi}^{Con} + (Q_p - P_p) \sum_{t \in T_p} C_{pit}^{D, Con} p_{pit} \quad \text{as in (11a)}$$

$$\hat{T}_{pc}^{DR} = T_{pc}^{DR} + (Q_p - P_p) \sum_{d \in D_c} C_{pcd}^{D, DR} r_{pcd} \quad \text{as in (11b)}$$

$$\forall p \in \mathcal{P}, \, i \in \mathcal{I}$$

$$\forall p \in \mathcal{P}, \, c \in \mathcal{C}. \quad (13a)$$

Accordingly, the final daily profit of market participants and the DSO from each service p is written below:

$$\hat{W}_{pi}^{Con} = \hat{T}_{pi}^{Con} - \sum_{t \in T_p} (C_{pit}^{R, Con} - Q_p C_{pit}^{D, Con}) p_{pit}$$

$$\forall p \in \mathcal{P}, \, i \in \mathcal{I} \quad (14a)$$

$$\hat{W}_{pc}^{DR} = \hat{T}_{pc}^{DR} - \sum_{d \in D_c} (C_{pcd}^{R, DR} - Q_p C_{pcd}^{D, DR}) r_{pcd}$$

$$\forall p \in \mathcal{P}, \, c \in \mathcal{C} \quad (14b)$$

$$\hat{W}_{pi}^{DSO} = \sum_{t \in T_p} (C_{pt}^{R, DSO} + Q_p C_{pt}^{D, DSO}) z_{pt}$$

$$- \sum_{t \in T_p} (C_{pit}^{R, Reb} + Q_p C_{pit}^{D, Reb}) s_{pt}$$

$$- \sum_{i \in \mathcal{I}} \hat{T}_{pi}^{Con} - \sum_{c \in \mathcal{C}} \hat{T}_{pc}^{DR} \quad \forall p \in \mathcal{P}. \quad (14c)$$

III. NUMERICAL STUDY

A. Description of Case Study and Input Data

We consider a case study in which the DSO desires to reduce peak power consumption, which occurs every day from 17:00 to 18:00. We also consider one hour before and one hour after the peak time period as the potential rebound hours, i.e., the DR aggregators may increase their consumption to some extent in these two rebound hours to be able to reduce their consumption in the peak time period. The DSO runs a monthly contract market, and four market participants offer to reduce their consumption during the peak hours. Two of these participants are the aggregators of conventional loads (i_1 and i_2) with no rebound effects. The other two participants are aggregators c_1 and c_2, who model their rebound effect using asymmetric block offers.

We consider three distinct DR services in this market, but as enforced by (7), at most one of these services will be eventually traded. The first one is a scheduled DR service, referred to as Sched, implying that this service needs to be delivered everyday (i.e., $P_{Sched} = 1$). The other two services (denoted as Cond1 and Cond2) are both conditional, i.e., they are capacity reservations and are delivered only if the
TABLE I
RESERVE COST PER BLOCK, DISPATCH COST PER BLOCK, AND NUMBER OF DIVISIBLE BLOCKS

\[
\begin{array}{|c|c|c|c|}
\hline
 c & d & C_{\text{R, DR}}^d (\text{€/bk}) & C_{\text{D, DR}}^d (\text{€/bk}) \\
\hline
 c1 & d1, d2 & 150 & 55 & 2 \\
 c1 & d3, d4 & 150 & 55 & 1 \\
 c2 & d1, d2, d3, d4 & 150 & 60 & 1 \\
\hline
\end{array}
\]

DSO activates them. The chance of these two services being activated is different, which is $P_{\text{Cond1}}=0.30$ and $P_{\text{Cond2}}=0.45$.

For each service, the aggregators $c1$ and $c2$ offer four asymmetric blocks ($d1$ to $d2$). The shape of these block offers is depicted in Figure 2, and their corresponding reserve and dispatch costs are given in Table I. In addition, the quantity and cost offers of conventional load aggregators $i1$ and $i2$ are provided in Table II. The benefit of the DSO from each service (i.e., DSO's bid prices) is given in Table III. The rebound cost of each service is also provided in Table II. The optimisation problem (1)-(10e) is implemented in GAMS using CPLEX solver, and the code used is available in [10]. The CPU time for all cases is around 1 second.

B. Results

We now present the outcomes of the proposed market. Among the three services, Cond2 is the one determined by the market clearing to be traded. The right-hand side plot of Figure 3, labelled by LP, shows the dispatch of the aggregators’ DR. Interestingly, the response block of aggregator $c1$ provides up regulation, while such a service is provided by the rebound block of aggregator $c2$. In other words, aggregator $c1$ decreases consumption between hours 17 and 18, and then increases consumption in the next hour. In contrast, aggregator $c2$ increases its consumption between hours 16 and 17, and then decreases consumption between hours 17 and 18. To highlight the importance of having binary and integer variables, the left-hand side plot of Figure 3, labelled by LP, shows the market outcomes if the integer constraints on z and r are relaxed – as expected, the dispatch decisions are made up of linear combinations of the asymmetric blocks, no longer maintaining the asymmetric block shape.

Table VI presents the market prices for service Cond2. As explained in Section II-B, the market prices are in fact the dual variables π_{pt} in problem (1)-(10e) when fixing the integer and binary variables. Table VII gives the daily profit of each market participant. As a benchmark, the second column of Table VII provides the linear version of problem (1)-(10e) when the binary and integer variables are relaxed (not fixed) – this corresponds to the case illustrated in the left-hand side plot of Figure 3. As expected, no one incurs a negative profit. However, as given in the third column of Table VII, this may happen based on prices given in Table VI. In this case, we solve the original mixed-integer linear problem (1)-(10e), fix the values of binary and integer variables to their
optimal values, and derive the dual variables π_{pt} – the dispatch results of this case are the ones presented in the right-hand side plot of Figure 3. In this example, aggregator c^2’s daily profit is $\text{€}177$. Therefore, we require a side-payment, as presented in the last column of Table VII. In this case, after side-payment, the daily profit of aggregator c^2 increases to zero, while the DSO’s benefit reduces.

We now consider the end of the market horizon (e.g., the end of the month), when the true proportion of activation for days with DR activation is either 0.15 (i.e., lower than the DSO’s expectation before market clearing), 0.45 (i.e., identical to the DSO’s expectation), or 0.75 (i.e., higher than the DSO’s expectation). As explained in Section II-D, we consider a side-payment based on a pay-as-bid auction. Accordingly, the aggregators providing service Cond2 are charged in a case in which the realised proportion of days with DR activation is 0.15, while they are paid in the case in which the realised proportion is 0.75. Table VIII gives the final daily profit of all market participants before and after the side-payment. Before the side-payment, the aggregators’ or the DSO’s profit might be negative, becoming non-negative after the side-payment.

IV. CONCLUSION

This paper proposed a fixed-term (e.g., monthly) contract market, where the DSO can purchase load reduction services during peak hours from DR aggregators. Within the proposed services, we consider conditional ones, which are not necessarily delivered every day, and only activate upon the DSO’s request. Although the proposed contract market provides the DSO with the optimal reservation of local flexibility resources, it might not be the optimal design for the whole electricity system, when considering the flexibility needs of the TSO. Therefore, the future work needs to study the impacts of the DSO’s decisions on the performance of the TSO.

ACKNOWLEDGMENT

This work was supported by the Danish Energy Technology Development and Demonstration Programme (EUDP) through the project of EcoGrid 2.0 (64015-0082/EUDP). We thank Anubhav Ratha and Alexander Hermann (DTU) for suggestions.

REFERENCES

TABLE VII

<table>
<thead>
<tr>
<th>Participant</th>
<th>LP Profit (€)</th>
<th>MIP Profit (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregator 1</td>
<td>114.15</td>
<td>114.15</td>
</tr>
<tr>
<td>Aggregator 2</td>
<td>1176.74</td>
<td>1310.50</td>
</tr>
<tr>
<td>Total</td>
<td>1290.02</td>
<td>1149.90</td>
</tr>
</tbody>
</table>

TABLE VIII

<table>
<thead>
<tr>
<th>Status</th>
<th>$\mathcal{Q}_{\text{Cond2}}$</th>
<th>c_1</th>
<th>c_2</th>
<th>i_1</th>
<th>i_2</th>
<th>DSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>0.15</td>
<td>30.65</td>
<td>18.00</td>
<td>230.25</td>
<td>36.90</td>
<td>-12.50</td>
</tr>
<tr>
<td>Side</td>
<td>0.45</td>
<td>14.15</td>
<td>0.00</td>
<td>2.25</td>
<td>0.00</td>
<td>1133.50</td>
</tr>
<tr>
<td>Payment</td>
<td>0.75</td>
<td>-2.35</td>
<td>-18.00</td>
<td>-225.75</td>
<td>-36.90</td>
<td>2279.50</td>
</tr>
<tr>
<td>After</td>
<td>0.15</td>
<td>14.15</td>
<td>0.00</td>
<td>2.25</td>
<td>0.00</td>
<td>286.90</td>
</tr>
<tr>
<td>Side</td>
<td>0.45</td>
<td>14.15</td>
<td>0.00</td>
<td>2.25</td>
<td>0.00</td>
<td>1133.50</td>
</tr>
<tr>
<td>Payment</td>
<td>0.75</td>
<td>14.15</td>
<td>0.00</td>
<td>2.25</td>
<td>0.00</td>
<td>1980.10</td>
</tr>
</tbody>
</table>

TABLE VI

<table>
<thead>
<tr>
<th>Time period (t)</th>
<th>π_{pt} (€/kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:00-16:59</td>
<td>2.80</td>
</tr>
<tr>
<td>17:00-17:59</td>
<td>2.80</td>
</tr>
<tr>
<td>18:00-18:59</td>
<td>0.45</td>
</tr>
</tbody>
</table>