Controlling the dispersion of Co3O4 nanoparticles inside mesoporous nanorattle catalysts

Zacho, Simone Louise; Hyllested, Jes Æ.; Kasama, Takeshi; Mielby, Jerrik Jørgen

Published in: Catalysis Communications

Link to article, DOI: 10.1016/j.catcom.2019.02.020

Publication date: 2019

Document Version
Peer reviewed version

Accepted Manuscript

Controlling the dispersion of Co3O4 nanoparticles inside mesoporous nanorattle catalysts

Simone L. Zacho, JesÆ. Hyllested, Takeshi Kasama, Jerrik Mielby

PII: S1566-7367(19)30054-8
DOI: https://doi.org/10.1016/j.catcom.2019.02.020
Reference: CATCOM 5631
To appear in: Catalysis Communications

Received date: 15 November 2018
Revised date: 31 January 2019
Accepted date: 21 February 2019

Please cite this article as: S.L. Zacho, JÆ. Hyllested, T. Kasama, et al., Controlling the dispersion of Co3O4 nanoparticles inside mesoporous nanorattle catalysts, Catalysis Communications, https://doi.org/10.1016/j.catcom.2019.02.020

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Controlling the Dispersion of Co₃O₄ Nanoparticles inside Mesoporous Nanorattle Catalysts

Simone L. Zacho, a Jes. Æ. Hyllested, b Takeshi Kasama b and Jerrik Mielby a, * jjmie@kemi.dtu.dk

a DTU Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
b DTU Center for Electron Nanoscopy, Technical University of Denmark, Fysikvej 307, 2800 Kgs. Lyngby, Denmark

*Corresponding author.

Abstract

Here we report a simple method to synthesize cobalt nanoparticles inside mesoporous nanorattle catalysts. In this method, zeolitic imidazolate framework ZIF-67 is used as structural template for the preparation of a mesoporous metal oxide shell as well as sacrificial precursor to form cobalt nanoparticles inside the shell. Furthermore, we demonstrate that the introduction of a carbonization step prior to the final calcination can decrease the required calcination temperature from 550 °C to 300 °C. This has a large effect on the dispersion and catalytic activity of Co₃O₄ for CO oxidation and decreases the light-of temperature (temperature at 50% conversion) from 160°C to 134°C.

Exploiting metal-organic frameworks as both structural template and sacrificial precursor offers precise control of size, shape and structure and opens up new exiting opportunities for design of advanced nanostructured catalysts.

Keywords: metal-organic frameworks, mesoporous materials, templating, nanorattle catalysts, CO oxidation

1. Introduction

The rational design and synthesis of hollow nanostructured materials holds great promise for new and emerging technologies in fields ranging from energy storage,[1–3] catalysis,[4] adsorption,[5] separation,[6] sensing,[7] photocatalysis[8] to drug delivery.[9,10] Besides their high porosity, high surface area and low density, the hollow nanomaterials offer a number of key advantages with respect to loading or functionalization of their interior.[11] Furthermore, hollow nanostructures may help to prevent aggregation, sintering and metal leaching.[12] In particular, these advantages have been intensely pursued in confined synthesis,[13] nanoreactors[4,14] and controlled release.[15]

There are several methods to prepare hollow nanomaterials. These methods are typically based on ‘templating’ using either hard[16] or soft templates[17–19]. Alternative template-free methods based on the Kirkendall effect,[20] Ostwald ripening,[21] selective dissolution[22] or recrystallization are also available.[23] All these methods have different advantages and disadvantages, but typically suffer from complicated synthesis procedures, expensive additives, poor yield or non-uniform materials. Subsequent loading or functionalization often causes further challenges and limitations. This has encouraged researchers to continue finding new and effective methods to synthesize hollow nanomaterials in simple and economically viable ways.

Metal-organic frameworks (MOFs) consist of metal ions or clusters that are coordinated by organic linkers to form three-dimensional structures. The tunable porosity of these structures gives rise to remarkable physical properties with many promising applications in gas storage, separation and catalysis.[24,25]
Furthermore, MOFs have recently attracted much interest as sacrificial precursors for preparation of porous N-doped carbons for applications in electrochemistry.[26,27] Here we demonstrate how a type of MOFs known as zeolitic imidazolate frameworks (ZIFs) represents a promising platform for the design and synthesis of heterogeneous nanorattle catalysts. Furthermore, we show how the carbonization and/or calcination of the ZIFs controls the three-dimensional distributions of metal nanoparticles inside the nanorattles.

In the first step, ZIF-67 is synthesized from a solution of cobalt(II) nitrate and 2-methyl imidazole in methanol. We then exploit the ZIF-67 as structural template for the synthesis of a shell of mesoporous silica using tetra ethyl orthosilicate (TEOS) and cetyltrimethylammonium bromide (CTAB). The composite material is then calcined in order to decompose the ZIF-67 core into Co$_3$O$_4$ and remove the organic template by combustion. This process requires a temperature of >550 °C. However, if the material is first carbonized under inert atmosphere, the ZIF-67 is decomposed into small Co nanoparticles stabilized by a N-doped carbon matrix inside the shell. Although this carbonization step is performed at 600 °C, the subsequent calcination to remove the N-doped carbon and oxidize Co into Co$_3$O$_4$ already occur at 300 °C, see Error! Reference source not found.. Sequential carbonization and calcination therefore results in less sintered and smaller cobalt oxide nanoparticles than possible by direct calcination of ZIF-67. Table 1 shows a schematic outline of the synthetic procedure and the prepared materials.

Table 1. Outline of the synthetic procedure and the prepared materials.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Material</th>
<th>Carbonization temp.</th>
<th>Calcination temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ZIF-67@SiO$_2$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Co$_3$O$_4$@SiO$_2$ (-/550)</td>
<td>-</td>
<td>550 °C</td>
</tr>
<tr>
<td>3</td>
<td>Co/NC@SiO$_2$ (600/-)</td>
<td>600 °C</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Co$_3$O$_4$@SiO$_2$ (600/550)</td>
<td>600 °C</td>
<td>550 °C</td>
</tr>
<tr>
<td>5</td>
<td>Co$_3$O$_4$@SiO$_2$ (600/300)</td>
<td>600 °C</td>
<td>300 °C</td>
</tr>
</tbody>
</table>
2. Results and discussion

The ZIF-67@SiO₂ core-shell material was characterized by X-ray powder diffraction (XRD) to verify the successful synthesis of ZIF-67. The XRD pattern showed the characteristic diffraction peaks of ZIF-67 along with an additional broad peak originating from amorphous SiO₂ at around 2θ=20°, see Error! Reference source not found.. After carbonization and/or calcination, weak diffraction peaks from cobalt or cobalt oxide replaced the diffraction peaks of the ZIF-67, indicating a complete decomposition of the metal precursor. The XRD analysis also showed that Co nanoparticles were present after carbonization at 600 °C in Ar, while Co₃O₄ nanoparticles were present after calcination at 300-550 °C in air. In particular, the XRD pattern of the carbonized catalyst, Co/NC@SiO₂ (600/−), showed a weak peak from Co(111) at 2θ=44.3°, whereas the three calcined catalysts, Co₃O₄@SiO₂ (-/550), Co₃O₄@SiO₂ (600/550) and Co₃O₄@SiO₂ (600/300), showed the peak corresponding to Co₃O₄(311) at 2θ=36.8°. The catalyst prepared by direct calcination, Co₃O₄@SiO₂ (-/550), showed sharper diffraction peaks, indicating that significantly larger Co₃O₄ nanoparticles were present in this sample, see Error! Reference source not found... In general, the measured diffraction peaks were too weak to give good estimates of their nanoparticle sizes by line broadening analysis. XPS analysis did not indicate any significant changes in the chemical state of Co₃O₄, see Figure S3.

Error! Reference source not found. shows the N₂ physisorption isotherms of the investigated catalysts at 77 K. In general, the specific BET surface areas were around 802 m² g⁻¹ for the ZIF-67@SiO₂ precursor and in the range of 626-1271 m² g⁻¹ for the carbonized and/or calcined catalysts, see Table S1. We speculate that residual CTAB in the uncalcined SiO₂ shell limited the physisorption of N₂ in the ZIF, which could explain the relatively low surface area of the ZIF-67@SiO₂. All the carbonized and/or calcined catalysts had high total pore volumes ranging from 0.34-0.69 cm³ g⁻¹ and relatively small mesopores of around 3 nm in diameter, see DFT pore size distribution in Error! Reference source not found... The isotherm of the carbonized catalyst, Co/NC@SiO₂ (600/-), showed the highest total pore volume with a significant H4 hysteresis loop closing at around p/p⁰=0.46. We believe that this hysteresis loop may originate from the restricted porosity of the N-doped carbon matrix inside the mesoporous SiO₂ shell.

Transmission electron microscopy (TEM) showed the successful formation of porous silica shells encapsulating metal nanoparticles with complete replication of the rhombic dodecahedral ZIF-67, see Error! Reference source not found.. The TEM analysis of Co₃O₄@SiO₂ (-/550) showed that the direct calcination resulted in severe sintering accompanied by the formation of large agglomerated nanoparticles of up to 75 nm in diameter, which is in good agreement with the XRD results. These particles were also visible by scanning electron microscopy (SEM) because of their large sizes, see Error! Reference source not found.. In contrast, the carbonization at 600°C under Ar resulted in small cobalt nanoparticles, typically <25 nm in diameter. This suggested that the carbonization of the organic linkers resulted in the formation of a N-doped carbon matrix inside the mesoporous silica shell. This carbon matrix effectively confined the size of the Co nanoparticles, see Error! Reference source not found.. In order to obtain active catalysts for CO oxidation, we subsequently calcined the carbonized catalysts in air at 300 °C and 550 °C, respectively. The calcination temperature appeared to have a large effect on the dispersion of Co₃O₄. While the nanoparticles in Co₃O₄@SiO₂ (600/550) were up to 65 nm in diameter, the nanoparticles in Co₃O₄@SiO₂ (600/300) were less agglomerated and typically around 20 nm in diameter, see Error! Reference source not found.. Both samples showed a significantly higher metal dispersion than Co₃O₄@SiO₂ (-/550) prepared by the direct calcination of ZIF-67@SiO₂.

In order to understand the three-dimensional distributions of Co and Co₃O₄ nanoparticles in the mesoporous nanorattle catalysts after the carbonization and the subsequent calcination, we used electron tomography in scanning TEM (STEM) to investigate Co/NC@SiO₂ (600/-) and Co₃O₄@SiO₂ (600/300). The tomography was performed by collecting tilt-series images from -68° to 68° and from -72° to 70°, respectively, using a high-angle annular dark-field (HAADF) detector. A tomographic reconstruction of Co/NC@SiO₂ (600/-) revealed that Co nanoparticles were supported on porous N-doped carbon located inside mesoporous SiO₂ shells, see Error! Reference source not found. and Movie S1. After calcination for 2 hours at 300 °C, the N-doped carbon was removed by combustion to leave Co₃O₄ nanoparticles on the
internal surface of the mesoporous shell in Co$_3$O$_4$@SiO$_2$ (600/300), see Error! Reference source not found. and Movie S2. Elemental mapping using energy dispersive X-ray (EDX) spectroscopy confirmed that the nanoparticles were confined inside the nanorattle catalyst, both before and after the calcination, see Figure 1. It is also clearly suggested that Co/NC@SiO$_2$ (600/-) had a uniform distribution of cobalt throughout the N-doped carbon, while the cobalt in Co$_3$O$_4$@SiO$_2$ (600/300) was located on the internal side of the SiO$_2$ shell, see Error! Reference source not found. b and Error! Reference source not found.b. The Co and O maps of Co$_3$O$_4$@SiO$_2$ (600/300) confirms that the Co nanoparticles were transformed into Co$_3$O$_4$ after the subsequent calcination. It is noted that the core in Co/NC@SiO$_2$ (600/-) is entirely filled with carbon while that in Co$_3$O$_4$@SiO$_2$ (600/300) has much less carbon, i.e. an empty core.

Figure 1. (a, b) Projected STEM-HAADF images of nanoparticles in Co/NC@SiO$_2$ (600/-) and Co$_3$O$_4$@SiO$_2$ (600/300), respectively. Scale bars are 100 nm. (c, d) STEM-EDS elemental maps acquired from the same particles studied by electron tomography.

In order to investigate the catalytic activity, we tested the nanorattle catalysts for CO oxidation. Figure 2 shows the so-called light-off curves of the three catalysts with the conversion of CO as a function of temperature. Because the metal loading was constant (22 wt% Co$_3$O$_4$ based on X-ray fluorescence analysis), and the same amount of catalyst were used in all experiments, the light-off curves allow direct comparison of the catalytic activity. While Co$_3$O$_4$@SiO$_2$ (-/550) and Co$_3$O$_4$@SiO$_2$ (600/550) showed similar catalytic activities to one another, reaching 50% conversion at 160 °C, Co$_3$O$_4$@SiO$_2$ (600/300) with the smallest nanoparticles showed a significantly higher activity, reaching 50% conversion at 134 °C. In agreement with previous studies,[28] these results show that decreasing the calcination temperature has a significant effect on the catalytic activity.
As a control experiment, we tested the catalytic activity of the carbonized catalyst Co/NC@SiO₂ (600/-), see Error! Reference source not found. While the initial activity was relatively poor (50% conversion at 208 °C), subsequent heating cycles resulted in a high catalytic activity (50% conversion at 134 °C). This experiment confirmed that a calcination step at around 300°C was required to oxidize Co into Co₃O₄ and activate the catalyst. For comparison, we also tested Co₃O₄/SiO₂ (-/550) prepared by simple impregnation of mesoporous silica spheres. The catalyst showed the lowest catalytic activity, reaching 50% conversion at 205°C, see Figure S14. All data from the light-off experiments are compiled in Table S2.

Co₃O₄ is known to be an active catalyst for CO oxidation at very low temperatures, but only under dry conditions (typically <1 ppm).[29–31] For instance, Jie et al. reported a Co₃O₄–SiO₂ nanocomposite with very high activity even at a temperature below -76°C.[32] Adsorption of H₂O however caused an unusual temperature-dependent activity curve with almost no activity at 80°C. At higher temperatures, the light-off temperatures were in the same range as reported in this work (132-160°C). The synthesis of small-sized Co₃O₄ particles with high stability and activity for CO oxidation under ambient conditions therefore remains a challenge.

3. Conclusions

In conclusion, we have reported a simple method to synthesize cobalt nanoparticles inside a mesoporous nanorattle catalyst. In this method, ZIF-67 is exploited as structural template to prepare a high surface area metal oxide shell as well as sacrificial precursor to form cobalt nanoparticles inside the shell. Furthermore, we showed that the calcination temperature had a large effect on the size and activity of the Co₃O₄ nanoparticles. By introducing a carbonization step, it was possible to decrease the final calcination temperature from 550 °C to 300 °C, which is well below the thermal decomposition temperature of ZIF-67. This resulted in a high dispersion of Co₃O₄ and, consequently, a high catalytic activity for CO oxidation. The best catalyst reached 50% conversion at 134 °C, which (under the given reaction conditions) corresponds to a site-time yield of around 22.4 mol CO/mol Co h⁻¹.

4. Experimental

Materials and Reagents: Co(NO₃)₂·6H₂O (>99.9%), 2-methylimidazol (99%), hexadecyltrimethylammonium bromide (CTAB, ≥98%), tetraethyl orthosilicate (TEOS, 99.99% trace metals basis), methanol (HPLC Plus, ≥99.9%), absolute ethanol (≥99.8%).

The detailed synthesis and characterization of all investigated catalysts by XRD, XPS, TEM, and N₂ physisorption analysis are given in the Supporting Information.

Synthesis of metal-organic framework: ZIF-67 was synthesized from two solutions of Co(NO₃)₂·6H₂O and 2-methylimidazol in methanol. The salt solution was added to the ligand solution under vigorous stirring. The stirring was continued for 12 min and then stopped. After 24h, the purple ZIF-67 was then collected by centrifugation, washed with methanol and dried at 80 °C over night.
Synthesis of SiO₂ shell. The synthesis of ZIF-67@SiO₂ was based on a modified literature procedure.[33] In brief, TEOS was added dropwise to a stirred dispersion of ZIF-67 in ethanol, water, 2-methylimidazole and CTAB. After 24 hours, the core-shell material was collected by centrifugation, washed with ethanol and dried at 80 °C over night.

Carbonization and/or calcination. The product was carbonized in a tube furnace under flowing Ar and/or calcined in a muffle furnace in static air. In each process, the catalysts were heated for 2 hours at the desired temperature using a heating ramp of 5 °C/min.

Characterization: The prepared materials were characterized by XRD, N₂ physisorption, TGA, SEM, TEM, STEM and electron tomography. Please see supporting information for all experimental details.

Catalytic tests. The prepared catalysts were tested at atmospheric pressure in a plug flow setup equipped with a quartz fixed-bed reactor, a mass flow controller and an online non-dispersive infrared detector for quantification of CO and CO₂. The fractionated catalyst (20 mg, 180-355 µm) was diluted with quartz (100 mg, 180-355 µm) and loaded into the reactor with two pieces of quartz wool. The catalysts were fractionated to prevent external mass and heat transfer limitations and ensure high reproducibility. All catalysts were tested in a flow of 1% CO in air (50 ml/min) by decreasing the temperature from 300-30°C by 2°C min⁻¹.

Acknowledgements
We thank the Independent Research Fund Denmark (grant no. 5054-00119 and no. 6111-00237) for financial support. Furthermore, we acknowledge David B. Christensen for help with XPS analysis.

References

Highlights

- Zeolitic imidazolate frameworks are promising starting points for synthesis of advanced nanorattle catalysts
- ZIF-67 can serve as both structural template and sacrificial cobalt precursor
- Heat treatments control the three-dimensional distribution of Co₃O₄ nanoparticles
- The dispersion of Co₃O₄ has a large effect on the catalytic activity for CO oxidation