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Grid Supporting VSCs in Power Systems with
Varying Inertia and Short-Circuit Capacity

George S. Misyris, Student Member, IEEE, Jeanne A. Mermet-Guyennet, Student Member, IEEE,
Spyros Chatzivasileiadis, Senior Member, IEEE, and Tilman Weckesser, Member, IEEE

Abstract—Voltage Source Converters (VSCs) can offer various
control strategies to enable realization of the vision of a “Global
Grid”. With the increasing penetration of renewable energy
sources, it is becoming more frequent for VSCs to be required
to provide active and reactive power regulation. In this paper,
a model of a grid-supporting VSC connected to a weak AC
grid with low Short Circuit Capacity (SCC) and low inertia is
presented. The impact of SCC and inertia is then illustrated by
means of small-signal stability, H2 norm and large-disturbance
analysis.

Index Terms—High Voltage Direct Current (HVDC), stability
analysis, Grid-Supporting Voltage Source Converter, weak AC
grid, varying inertia.

I. INTRODUCTION
Due to national and global climate targets aiming at reduc-

ing the emission of greenhouse gases [1], Renewable Energy
Sources (RES) progressively replace conventional generation
based on fossil fuels. Increased penetration of RES adds signif-
icant uncertainty to the dynamic behaviour of power systems.
This originates from the fluctuating nature of resources such
as wind and solar as well as from the fact that RES are
often connected through power electronics to the grid. As
a result, system parameters such as inertia and Short-Circuit
Capacity (SCC) will vary greatly over time, which will affect
the strength and stability of (Alternating Current) AC [2].

Additionally, High Voltage Direct Current (HVDC) connec-
tions make their way against installation of new AC lines [3].
These HVDC connections are based either on Line Commu-
tated Converters (LCCs) or Voltage Source Converters (VSCs)
[4]. However, VSCs have been gaining momentum, because
of their flexibility and control capabilities [5]. Consequently,
they are ideally suited to integrate the growing capacity of
RES being installed.

To ensure stable grid operation in the absence of con-
ventional generators, grid-connected VSCs should participate
in the regulation of the AC grid voltage and frequency, by
controlling the active and reactive power delivered to the grid.
These VSCs are classified as grid-supporting converters and
their outer controllers are commonly equipped with droop
control algorithms (P/f and Q/V droop characteristic) to
avoid communication-based solutions [6].

By taking advantage of the ability of power electronics
to respond fast using a P-f droop characteristic for HVDC-
VSC interconnections becomes a feasible solution to provide
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frequency support in AC systems with low inertia. It has been
demonstrated that this is an efficient approach for reducing the
maximum frequency deviation in such systems [7], [8]. In [7],
a review of supplementary local control strategies for VSC-
HVDC for low-inertia and islanded systems is presented. In
[9], In [8], a frequency control scheme for VSCs, which are
part of an HVDC grid connecting asynchronous AC systems,
is proposed. In these studies, time domain simulations were
used to verify the impact of the P − f droop characteristic of
the VSC on frequency stability. However, by time domain sim-
ulation analysis, it does not become analytically evident, how
the VSC control gains contribute to AC frequency regulation.
As indicated in [10], H2 system norm can be incorporated
to provide a measure of the magnitude of the system output
in response to a disturbance. Therefore, in this work the H2-
norm is considered as a performance metric to validate the
impact of the VSC control parameters on inertial and primary
frequency response.

Apart from low inertia, the system can be subject to low
SCC, which is dependent on the system strength. In [11],
the small-signal stability of a VSC connected to weak AC
system is studied, where the results show that the maximum
power transfer capability of the VSC-HVDC converter is
affected by the PLL gains. In [12], the authors propose a
grid synchronization mechanism by introducing an impedance-
conditioning term in the Phase Locked Loop (PLL), to increase
the range of stable power transfer of VSCs, which operate
in weak grids. Furthermore, in [5], an investigation of the
stability of VSC connected subject to low SCC is performed,
where the impact of the various control parameters on system
stability and maximum stable power transfer of VSC are
studied. In the aforementioned work, VSCs operate in a grid-
feeding mode, where the active and reactive power injected to
the grid are kept constant.

However as mentioned above, it is envisioned that in a future
grid with high penetration from inverter-based generation and
transmission, it will be necessary that VSCs actively support
the grid and, hence, are operated in a grid-supporting mode.
This could be realized by adding P − f and Q − V droop
characteristics, which can affect the stability of the system and
the dynamic limit of the maximum power transfer capability.
An investigation of this is carried out in this work.

The contribution of this paper is to provide a groundwork
for understanding the nonlinear behavior of grid-supporting
VSCs, connected to weak AC grids. The system model, used
in this paper, is an extension of the one presented in [5].
Moreover, constraints on the magnitudes of VSC control gains
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Fig. 1. Test system: VSC and equivalent grid

are defined based on eigenvalue and H2 norm analysis. An
investigation on the dynamic limit for a sudden drop of the
SCC is carried out. At last, the influence of the VSC on the
inertial and primary frequency response is analyzed using H2

norm and time-domain simulations.
This paper is organized as follows: Section II describes

the system state space model of the system. In section III,
a stability analysis of a VSC connected to weak AC system
is performed. Section IV demonstrates the system response to
large disturbances. Conclusions are drawn in Section VI.

II. SYSTEM MODELING

In this section, the VSC control structure is presented, as
well as the equations forming the state space model of the
overall system. The state space representation relates the state
variables, x, and the inputs of the system, u to their derivatives,
ẋ and outputs of the system, y in the form:

ẋ = f(x, u) (1)
y = g(x, u) (2)

where f(x, u) corresponds to the first order non-linear differ-
ential equations of the system, and g(x, u) to the algebraic
equations relating the outputs of the system to its state
variables and inputs.

Fig. 1 shows the study system, i.e. two VSCs in a master-
slave configuration. With this configuration, the DC link
voltage Vdc is assumed to remain constant as it is controlled by
the master VSC. The slave VSC controls the current flowing
through the phase reactor by adjusting the voltage Vm. Fig. 2
demonstrates the inner and outer control loops of the VSC.

The VSC and its components are represented in the dq
frame, whose d-axis is shifted of an angle θpll with the x-
axis of the xy frame, rotating at the speed of the Center
Of Inertia (COI) ωcoi obtained from angular speed of the
generator equivalent. Xeq represents the Thevenin equivalent
reactance of the AC grid. The equivalent reactance Xeq can
be defined as a function of SCC [11]:

Xeq =
V 2
rated

SCC · Prated
(3)

where Vrated and Prated are the rated AC voltage and power
of the VSCs, respectively.

The AC grid is represented by a generator and a load. The
bus corresponding to equivalent grid is considered as an angle
reference. The corresponding equations are summarized below,
all quantities being expressed in per unit, except for the angular
frequencies, in rad/s. It is assumed that the magnitude of E is
equal to 1 p.u. and it is kept constant during the disturbances.

Fig. 2. Test system: VSC control

A. Electromechanical dynamics of AC system
In this section, an equivalent to represent the inertial and

primary frequency response of AC system is implemented
according to [13]. The purpose of the equivalent is to capture
the COI frequency deviation after a power disturbance, with
which the PLL is aligned. Since, a single machine equivalent
is considered, ωcoi=ωg, where ωg corresponds to the frequency
of the equivalent grid. As mentioned in [13], the current
model represents primary frequency control, where power is
dominantly provided by steam turbines. The nominal rotor
speed is ωref = 2π · 50 rad/s. The phase angle θg of the
voltage of the equivalent grid’s generator is such as:

dθg
dt

= ωref∆ωg (4)

where ∆ωg = ωg − ωref . The dynamics of the frequency
deviation in response of a change in electric active power seen
from the equivalent grid are derived from the swing equation:

d∆ωg

dt
=

1

M
(Pmech + Pvsc − Pload) (5)

where Pmech corresponds to the mechanical power input of
the generator and Pvsc is the electrical power of the VSC
received by the generator. The real part of the equivalent grid
impedance is neglected, thus Pvsc = vdid + vqiq = Edid +
Eqiq , where vd, Ed and vq , Eq are the d and q components of
V̄pcc and Ē, respectively. The id and iq variables correspond to
d and q components of the current flowing through the phase
reactor and the equivalent grid impedance. The parameter H
is the system inertia constant given in seconds.

With a speed droop Rd, and a primary frequency control
similar to the one provided by steam turbines characterized by
time constants Tz and Tp as described in [13], the equivalent
grid mechanical power dynamics can be written as:

dPmech

dt
= − 1

Tp
(Pmech − Pm0)− 1

RdTp
∆ωg

− Tz
2HRdTp

(Pmech − Pload − Pvsc)

(6)
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B. Phase-Locked Loop (PLL)

The VSC is synchronized with the corresponding AC grid
through a PLL and aligned with the COI frequency. The PLL
provides an estimation of the phase angle θpll of the voltage
Vpcc at the Point of Common Coupling (PCC). By adjusting
vq with a PI controller, it aims at aligning the voltage phasor
V̄pcc with the d-axis of the dq rotating frame, so that in the
steady-state ωpll = ωg, vd = Vref and vq = 0. It can hence be
represented by the following equations:

dθpll
dt

= ωpll − ωg (7)

dMω

dt
= Kiωvq (8)

ωpll = Kpωvq +Mω (9)

with Kiω and Kpω the integral and proportional gains of the
PI controller. Mω is the integrator internal state of the PLL
control system.

C. Phase reactor

The relations between the current I , the voltage output of
the VSC Vm and the voltage at the PCC Vpcc in the dq frame
are as follows:

L
did
dt

= ωref

(
ωg

ωref
Liq −Rid + vmd − vd

)
(10)

L
diq
dt

= ωref

(
− ωg

ωref
Lid −Riq + vmq − vq

)
(11)

where L is the inductance and R the resistance of the phase
reactor. The variables vmd and vmq correspond to the d and q
components of voltage V̄m.

D. Inner current control loops

The current controller keeps the currents id and iq to their
references values, irefd and irefq by adjusting the components
of the voltage of the VSC, vmd and vmq (see Fig. 2):

vmd = vd −
ωpll

ωref
Liq +Kp(irefd − id) +Md (12)

vmq = vq +
ωpll

ωref
Lid +Kp(irefq − iq) +Mq (13)

dMd

dt
= Ki(i

ref
d − id),

dMq

dt
= Ki(i

ref
q − iq) (14)

where Kp and Ki are the proportional and integral gains of
the PI controllers, and Md and Mq are the internal states of
the integrators.

E. Outer control loops

The outer control is used to calculate the d- and q-axis
current references, irefd and irefq . In this current control con-
figuration of the VSC, the active current reference irefd is
adjusted to control the active power P injected by the VSC
to its reference Pref . Due to the P − f droop character-
istic, the active power reference is adjusted in response to
a deviation of the PLL frequency ωpll with respect to the
grid frequency, ωg = ωref + ∆ωg, with Kpf the corresponding

frequency droop gain. It should be noted that a deadband is
considered in the range of [49.9, 50.1] Hz, to avoid continuous
changes in the AC frequencies of the interconnected areas.

The reactive current reference irefq aims at keeping the
voltage Vpcc at the PCC to its reference Vref , which is also
adjusted by a V − Q droop control characteristic of gain
Kq. The two control loops are implemented with integral
controllers of gains Kid and Kiq (both positive).

direfd

dt
= Kid (Pref −Kpf(ωpll − ωg)− Pvsc) (15)

direfq

dt
= Kiq (Vpcc − Vref +Kq(Qvsc −Qref)) (16)

where Qvsc = vqid − vdiq and Vpcc =
√
v2d + v2q

F. Final state-space model

Based on the grid equations, the d and q component of the
voltage at the PCC can be written as:

vd = −Xeqiq + E cos(θg − θpll) (17)
vq = Xeqid + E sin(θg − θpll) (18)

where Xeq=Xw||Xs. After elimination of the algebraic equa-
tions describing ωpll, vmd, vmq , vd and vq in the above
equations, we obtain a set of 11 differential equations cor-
responding to the vector of 11 state variables (19).

x = [θpll,Mω , id, iq ,Md,Mq , i
ref
d , irefq ,∆ωg, θg, Pmech] (19)

These differential equations form the state-space representa-
tion and can be expressed in the following way:

dx

dt
= Ax+Buu+Bww (20)

z = Czx (21)

where x is the state vector, w the disturbance vector, u the
input vector and z the output vector. The matrices A, Bu, Bw

are defined based on the differential and algebraic equations
(7)-(18).

Moreover, the input vector u contains the variables that
can be used to control the system. The disturbance vector w
consists of the variables that can not be used for controlling
the system. At last, the vector z includes the variables that can
be observed and be used by the controller. The vectors u, w
and z are given by:

u = [Pref , Vref , Pm0, Qref ], w = [Pload], z = [∆ωg] (22)

III. SMALL-SIGNAL STABILITY ANALYSIS OF VSC
CONNECTED TO WEAK AC SYSTEM

The system shown in Fig. 1 was used for the stability analy-
sis and validation. A linearization of the system of differential-
algebraic equations is performed. The control parameters used
for model validation are tuned according to [5] and shown in
Table I. For the stability analysis the equivalent grid impedance
is equal to Xeq = Xw = 2 p.u..
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TABLE I
CONTROL AND SYSTEM PARAMETERS

Parameter Value Parameter Value Parameter Value
R 0.01 L 0.2 M 8
Kp 0.2574 Ki 57.3 Rd 0.08
Kpi 20 Kvi 15 Tz 1.2
Kpω 200 Kiω 10000 Tp 6.8
Kpf 10 Kq 0.2 Pload 20
Pm0 23.51 Pref 0.49 Qref 0.4005
Vref 1 Xw 2 Xs 0.222
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Fig. 3. Impact of gains on the H2 norm of Gzw(s)

A. Impact of VSC control gains on inertial and primary
frequency response

To investigate the impact of VSC control gains on inertial
and primary frequency response, the transfer function Gzw(s)
is considered, which is relating a mismatch in active power to
speed deviation ∆ωg

.

Gzw(s) =
∆ωg

∆Pload
= Cz(sI −A)−1Bw (23)

where Cz is a matrix mapping the speed deviation of the
generator equivalent. The matrices A and Bw (see (20)) are
extracted by linearizing the system around an equilibrium. As
defined in [10], the H2 system norm is used as a performance
metric, to measure the impact of the control gains on the
AC frequency deviation. H2 system norm takes the form
of an input-output gain, which gives a measure of the total
energy of the output after an instantaneous change of the
input. Considering Gzw(s), the H2 norm shows how much
the rotor speed deviates from its reference value after a load
disturbance ∆Pload. Among the control gains, the frequency
droop gain Kpf and the control gain of active power loop Kpi

are the ones that determine the speed response of the VSC to
a power imbalance [8]. To evaluate the impact of the gains,
two scenarios are considered:

• Scenario 1, H = 4 s, Rd = 0.08
• Scenario 2, H = 1.5 s, Rd = 0.16

As shown in Fig. 3, both the active power loop and
frequency droop gain (Kpi and Kpf ) affect the energy of
the frequency signal to a load disturbance. Increase of the
frequency droop gain, decreases the H2 norm significantly. As
a result, for larger values of the frequency droop, the maximum
frequency deviation will be smaller after a change of the load.
However, large values of Kpf can cause frequency instability
for different primary frequency control schemes (hydro) [14],
create large frequency dip in the other AC-system and lead to
undesired dip of the DC voltage. Thus, large values for Kpf

gain should be avoided.
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pf
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Fig. 4. Effect on system eigenvalues when varying Kpf
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K
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Fig. 5. Effect on dominant system eigenvalues when varying Kq

Regarding the active power loop gain Kpi, it is shown in
Fig. 3, that for Kpi > 20, its impact on the frequency stability
is only slightly improved. Considering the results derived
in [5], accelerating the active power control deteriorates the
small-signal stability of the system. Therefore, an intermediate
value could be considered for the active power loop gain Kpi,
given that the impact on H2 norm is insignificant for higher
values of it. Based on the analysis, a Kpi = 20 is used in the
rest of the paper.
B. Effect of frequency droop

The trajectory of the system eigenvalues when varying the
frequency droop gain is shown in Fig. 4. For this case, the
power operating point is equal to Pref = 0.49 p.u. The value
of Kpf varies in the range of [0, 20]. Increasing the droop
gain improves the small signal stability by moving the system
eigenvalues further to the left half plane. This can be explained
as follows. Following a small disturbance, a change in PCC
angle occurs. The angle starts oscillating, until it reaches a new
equilibrium. By adding frequency droop, the active current id
is quickly adjusted, the oscillations are damped out within
a short time (see also Fig. 6) and the VSC reaches its new
equilibrium. Based on these findings, a Kpf = 10 is used in
the rest of the paper.
C. Effect of Q-V droop characteristic

The root locus of the system eigenvalues, when the volt-
age droop gain increases, is depicted in Fig. 5. The value
of Kq varies in the range of [0, 1]. Unlike the effect of
frequency droop on small-signal stability, when the voltage
droop gain increases, the small-signal stability deteriorates.
For Kq > 0.6531, the system eigenvalues become positive,
thus the system becomes unstable. A large value of Kq results
in prioritization of Q-control after a contingency. The higher
the value of Kq, the larger the voltage depression at post-fault
state becomes. Thus, the maximum power transfer capability
decreases significantly (24). Based on the analysis, an adequate
value for the Q− V droop is Kq = 0.2.
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Fig. 6. Effect on dominant system eigenvalues when Pref increases

D. Effect of operating point

For low SCC, the operating point of the VSC is bounded
by the static stability limit defined by:

P static
max =

VpccE

Xeq
(24)

where Vpcc is the voltage at the PCC, E is the voltage
magnitude of the AC system. The impact of increasing the
Pref of the VSC on the system eigenvalues is depicted in Fig.
6. It can be seen, that as Pref of the VSC increases the system
eigenvalues move towards the right half plane. The real part of
the eigenvalues is negative, when Pref is smaller than P static

max

and become positive for Pref≥0.5 p.u., which results in the
VSC becoming unstable. As shown in Fig. 6, the dynamic
limit of grid-supporting VSC is higher than the one of grid-
feeding. It will be seen later in the paper, that this happens,
because of the additional frequency droop gain.

IV. LARGE DISTURBANCE: CASE STUDIES

A. Case 1 - Tripping of short reactance without fault

The considered disturbance is a line opening without a fault
and occuring at t = 0.2 s. This increases the grid impedance
from Xeq = Xw||Xs = 0.2 p.u. to Xeq = Xw = 2 p.u.. As a
result, the SCC is reduced to 0.5. Depending on the operating
mode of the VSC, the P − f and Q− V droop gains are:

• Grid-supporting: Kpf = 10 and Kq = 0.2
• Grid-feeding: Kpf = 0 and Kq = 0

The VSC, in grid-supporting mode, participates in the regula-
tion of the AC voltage and frequency by controlling the active
and reactive power delivered to the grid. On the other hand,
the VSC, in grid-feeding mode, delivers constant power equal
to Pref to the grid and regulates the reactive power to keep
the terminal voltage equal to Vref .

1) Dynamic limit of maximum power transfer capability of
grid-supporting VSC: The evolution of the VSC active power
can be seen in Fig. 7. As shown in Fig. 6 and mentioned
above, the maximum transfer capability of the VSC, in steady-
state condition, is approximately equal to the steady-state
stability limit (Pref ≈ 0.5 p.u.) defined by (24). However,
in case of a sudden SCC, the maximum transfer capability
of the VSC is determined by the dynamic limit [5]. That
implies that if the pre-fault power operating point is higher
than the dynamic limit, VSC will lose its synchronism and
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Fig. 7. Case 1 - Dynamic limit of maximum power transfer capability of
grid-supporting VSC for Kpf=10
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becomes unstable. This can be explained by the fact that, VSC
prioritizes the active power and tries to restore it to its pre-fault
value. However, due to the voltage dip, the maximum transfer
capability temporarily decreases and instability occurs, due to
the VSC trying to restore active power injection faster than
the voltage is being restored.

As it can be seen in Fig. 7, VSC loses syncrhronism
after tripping the short reactance, when the pre-fault power
operating point is equal to the steady-state stability limit
determined by (24). To identify the dynamic limit, the pre-
fault power operating point is gradually decreased. As it is
shown in Fig. 7, the first stable operating point was found to
be Pref = 0.442 p.u..

2) Dynamic limit of maximum power transfer capability of
grid-feeding VSC: The evolution of the VSC active power can
be seen in Fig. 8. As before, to identify the dynamic limit for
the grid-feeding converter, the Pref is gradually decreased. It
can be seen in Fig. 8, that the dynamic limit for the grid-
feeding converter is Pref = 0.384 p.u.. Thus, the dynamic
limit of the grid-feeding VSC is lower.

3) Comparison between grid-supporting and grid-feeding
VSC: Fig. 9 demonstrates a comparison between the grid-
feeding and the grid-supporting scheme, where the initial
operating point is equal to Pref = 0.4 p.u.. The dashed lines
correspond to the grid feeding and the solid to the grid-
supporting.

As shown in Fig. 9a, due to the frequency droop character-
istic of the grid-supporting VSC, the power is reduced to 0.2
p.u. right after the disturbance. That leads to smaller voltage
depression, so that P dyn

max > 0.5 p.u., even after the disturbance.
In the case of the grid-feeding VSC, the voltage depression

is higher (see Fig. 9b), since the VSC tries to inject the initial
Pref to the AC system. As a result, the P dyn

max decreases and
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becomes equal to Pvsc at t = 0.24s, which leads to the grid-
feeding VSC losing synchronism (see Fig. 9c).

B. Case 2 - Power imbalance for lower inertia

The frequency deviation to a power imbalance is inves-
tigated for different levels of inertia. In this case, the grid
impedance is considered equal to Xeq = 0.2 p.u.. An increase
of the load occurs at t = 0.2 s. The considered disturbance is
equal to ∆Pload = 0.05 p.u..

The evolution of the frequency is shown in Fig. 10, where
the two presented scenarios in Section III.A were considered
with and without the droop. The values for Kpi and Kpf are
given in Table I. As it is depicted in Fig. 10, the impact of
the frequency droop is mostly on the maximum frequency
deviation, where it is significantly smaller compared to the
case where the frequency droop is not considered. Although,
the fast reaction of the VSC leads to reduced maximum
frequency deviation, there is no direct contribution to the rate
of change of frequency. As it was expected from Fig. 3, the
frequency droop characteristic of the VSC contributes to the
frequency stability and reduces the frequency deviation.

V. CONCLUSIONS & FUTURE WORK

This paper has investigated the stability of a grid-supporting
VSC connected to a weak AC grid. By means of eigenvalue
analysis, the impact of P −f and Q−V droop characteristics

of the VSC on the system stability is analyzed. Moreover, H2

norm is utilized to demonstrate how the outer loop parameters
affect the AC frequency response. To gain further insight
into the system properties, time domain simulations were
performed for a sudden drop of SCC and a load disturbance.

The main findings are as follows:
1) In case of a grid-supporting VSC, due to the P − f

droop characteristic, the system synchronization can be
preserved for larger disturbances of SCC.

2) The fast reaction of the VSC leads to reduced maxi-
mum frequency deviation. However, there is no direct
contribution to the rate of change of frequency.

3) Unlike the effect of P − f droop, the Q − V droop
characteristic reduces the dynamic limit of maximum
power transfer capability of the VSC.

Future work is intended to investigate the interaction be-
tween the different parameters, characterizing the inertial and
primary frequency control of the AC equivalent, for optimal
tuning of Kpf and Kpi, as well as, the influence of varying
inertia levels on the dynamic limit of the VSCs.
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