Can solubility be used to predict availability? The example of zinc, selenium and manganese in salmon diets

Silva, Marta; Antony Jesu Prabhu, P.; Ørnsrud, Robin; Sele, Veronika; Sloth, Jens Jørgen; Amlund, Heidi

Publication date: 2019

Document Version Publisher's PDF, also known as Version of record


General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
BACKGROUND

- Zinc (Zn), selenium (Se) and manganese (Mn) are naturally present in ingredients of salmon diets [1]. However, the amount present is not always enough to meet the mineral requirements and some compounds in the ingredients can reduce mineral availability [2]. Thus, Zn, Se and Mn are usually supplemented to diets as inorganic or organic forms to ensure that mineral requirements of Atlantic salmon are met. Applying mineral forms with higher availability can reduce the amount of minerals supplemented to the diets. Consequently, there is an increasing interest in investigating the availability of inorganic and organic mineral forms.

- Dietary mineral availability is usually studied in vivo but having an in vitro method for estimating dietary mineral availability can facilitate the evaluation of new feed ingredients and feeds. Minerals from the dietary matrix become soluble before being available for absorption [3]. Therefore, determining the amount of soluble mineral provides some information on mineral availability.

AIMS AND METHODOLOGY

- In this study, correlation of soluble and apparent availability of Zn, Se and Mn was evaluated. For this purpose, estimation of apparent availability and solubility of an inorganic mineral (IM) diet and an organic mineral (OM) diet were performed as following described:

RESULTS

Figure 1. Apparent availability was evaluated in a feeding trial where Atlantic salmon was fed the IM diet and OM diet for 11 days; at the end of this period, faeces were collected; concentration of Zn, Se and Mn in the diets and the faeces were determined by ICP-MS and apparent availability of Zn, Se and Mn estimated.

Figure 2. Flowchart of the in vitro digestion method; the method includes two steps: acidic and alkaline hydrolysis; acidic solution (1 mg mL⁻¹ pepsin in 10 mM HCl); alkaline solution (1 mg mL⁻¹ protease, trypsin and α-chymotrypsin in 100 mM NaOH); the in vitro digestion method was applied to the IM diet and OM diet.

Figure 3. Correlation between solubility (%) and apparent availability (%) of Zn, Se and Mn; IM diet = diet supplemented with inorganic mineral sources (Zn sulphate, selenite and Mn sulphate); OM diet = diet supplemented with organic mineral sources (Zn chelate of glycine, selenomethionine, Mn chelate of glycine); OM/IM-1, OM/IM-2, OM/IM-3 refers to the number of replicates (n=3).

CONCLUSIONS AND FUTURE PERSPECTIVES

- A positive strong correlation between solubility and apparent availability was obtained for Mn but not for Zn or Se.

- Solubility can be used to predict Mn apparent availability but cannot be used to predict Zn or Se apparent availability.

- More feeds will be evaluated, as more data points could lead to stronger correlation for Zn and Se.

- Future work will focus on improving the in vitro digestion method to better estimate mineral availability.

REFERENCES


ACKNOWLEDGEMENTS

This work is part of the project “Apparent availability and requirements of microminerals in salmon” which is funded by the Research Council of Norway (grant no. 244490). The authors thank the technical staff at Skretting ARC (Norway) for feed production. The authors thank the technical staff from the inorganic chemistry laboratory at the Institute of Marine Research for help with chemical analysis.