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ABSTRACT

Stated preferences surveys are most commonly used to provide behavioral insights on 
hypothetical travel scenarios such as new transportation services or attribute ranges beyond those 
observed in existing conditions. When designing SP surveys, considerable care is needed to 
balance the statistical objectives with the realism of the experiment. This paper presents an 
innovative method for smartphone-based stated preferences (SP) surveys leveraging state-of-the-
art smartphone-based survey platforms and their revealed preferences sensing capabilities. A 
random experimental design generates context-aware SP profiles using user specific 
socioeconomic characteristics and past travel data along with relevant web data for scenario 
generation. The generated choice tasks are automatically validated to reduce the number of 
dominant or inferior alternatives in real-time, then validated using Monte-Carlo simulations 
offline. In this paper we focus our attention on mode choice and design an experiment that 
considers a wide range of possible existing mode alternatives along with a new alternative on-
demand mobility service that does not exist in real life. This experiment is then used to collect 
SP data or a sample of 224 respondents in the Greater Boston Area. A discrete mode choice 
model is estimated to illustrate the benefit of the proposed method in capturing current context-
specific preferences in response to the new scenario.

Keywords: Stated preferences; smartphone; mode choice; context-aware; random design; travel 
behavior.
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1. INTRODUCTION

The pervasiveness of smartphones coupled with developments in information and communication 
technologies (ICT) and enhanced computing performance has paved the way for shifting towards 
“smart mobility”. Smart mobility is one of the main pillars of smart cities (Giffinger et al., 2007). 
It is defined as a combination of improved accessibility, availability of ICT, exploration of new 
data sources and analytics, and modern sustainable and efficient transportation systems.  Indeed, 
technology has not only been changing the transportation systems in our cities, but also influencing 
the way transportation surveys are conducted. The popularity of location-enabled devices has 
greatly expanded transportation data collection options (Susilo et al., 2016). Along with location-
based big-data collection for aggregate mobility patterns (Cottrill et al., 2015; Jiang et al. 2017), 
smartphones have also been used to collect detailed travel diaries (Cottrill et al., 2013; Susilo et 
al., 2016; Zhao et al., 2015b) in a cheap and non-intrusive manner (Prelipcean et al., 2015). While 
these technologies have been well established in collecting trip diaries - or revealed preferences 
(RP) data, they have not yet been utilized in the collection of mobility related stated preferences 
(SP) data.

SP data are hypothetically created choice situations in which the researcher has the freedom to 
define the tradeoffs faced by the respondent (Ben-Akiva et al., 2016; Walker et al., 2015). SP 
methods were first introduced by Thurstone (1931), who proposed experiments of the form “eight 
hats and eight pairs of shoes versus six hats and ___ pairs of shoes”. In the context of 
transportation, SP surveys are used to analyze hypothetical scenarios, such as testing attribute 
ranges beyond those observed in RP data or to infer preferences towards new modes and services.

When designing SP surveys, considerable care is needed to balance the statistical objectives with 
the realism of the experiment (Ben-Akiva et al., 2016). The statistical objectives involve 
identifying parameter estimates consistently and with low standard errors. The realism of 
experiments involves accounting for market, personal, or contextual constraints, and presenting 
alternatives in the same way as their market framing. These objectives can be met by designing 
context-aware SP surveys, which pertain to a specific context already faced by the respondent. For 
example, a transportation mode SP survey would refer to a trip performed by the respondent, but 
present different alternatives and attributes from those originally experienced by this respondent. 

This paper presents a generic method for context-aware SP surveys leveraging state-of-the-art 
smartphone-based RP methods, and presents its application to mode choice of future smart 
mobility solutions. The context is coming from the observed RP data, e.g., weekly activity pattern 
or a selected trip for a given day, together with user specific information, e.g., vehicle ownership, 
usage of car/bike sharing services, etc. In addition to the direct information obtained from the user, 
we collect external contextual data such as the available activity or transportation alternatives for 
the user through online sources. The experimental design uses this context in order to generate SP 
choice experiments with reasonable alternatives and attributes. By accounting for the trip context 
(e.g. user-specific considerations, and trip-specific constraints) and using smartphone data, this 
method overcomes several limitations associated with traditional SP surveys related to data 
quality, realism, and user experience. This methodology can also be used to estimate preferences 
towards new mobility solutions which then can be used for the design and operation of these 
solutions. 
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The remainder of this paper is organized as follows: section 2 presents a brief literature review on 
prompted recall surveys, context-aware SP surveys, and survey design. Section 3 provides an 
overview of our proposed system architecture and outlines the methodology of SP data collection. 
Section 4 presents its application to a case study on FMOD (Future Mobility on Demand). Section 
5 presents a discussion of the contributions and limitations of the proposed method. Finally, 
Section 6 presents future research directions and concludes the paper.

2. LITERATURE REVIEW

Our proposed SP method subsumes the advantages of prompted recall SP surveys and 
smartphone-based, context-aware surveys in order to generate more realistic SP choice tasks. 
The following sections provide a brief background of prompted recall surveys, context-aware 
surveys, and SP design methods.

2.1.  Prompted Recall SP Surveys

The main limitation of SP surveys is that they only record choices made in hypothetical 
scenarios (Fifer et al., 2014). This can result in different types of biases such as inattentiveness, 
attribute nonattendance, and incongruity with actual (revealed preferences) behavior. For 
example, different studies have indicated that respondents’ willingness to pay tends to be higher 
in SP surveys than in RP (Fifer et al., 2014; Murphy et al., 2005). 

A diverse body of literature suggests different approaches for addressing these biases. “Pivoting” 
is one such example whereby the attributes in the SP experiment are created by changing the 
attributes of the chosen RP alternative (Hensher, 2004; 2006; 2008; Train and Wilson, 2008). 
Rose et al. (2008) analyzed different strategies for designing statistically efficient SP 
experiments where the attributes of alternatives are pivoted off reference alternatives. Hess and 
Rose (2009) argue that theories derived in behavioral and cognitive psychology and economics 
support approaches that relate SP experiments to individual specific experiences and perceptions, 
such as those obtained from a reference alternative.

When respondents are asked about their previous trips, considerable attention is needed for 
choosing the reference trip for the SP. Fifer et al. (2011) argue that using a 'typical' trip as a 
reference is problematic because people recall their trip details very poorly. In addition, this might 
also result in under-sampling some activities (e.g. recreational activities) as most people tend to 
choose work or education trips. For example, Zhao et al. (2015a) found that survey respondents 
tend to under-report short trips. One approach to deal with this issue involves asking people about 
their “last trip” (Train and Wilson, 2008). Another approach is to use user-specific GPS data, and 
then choose a trip randomly from the user’s observed trips. GPS data has been used by Fifer et al. 
(2011) in order to study how motorists would react to a distance-based charging system that 
incorporates the risk of driving (which is a function of the distance travelled, night-time travel, and 
speeding), and by Matyas and Kamargianni (2017) who conducted an SP experiment to analyze 
the demand for mobility-as-a-service (MaaS) plans.
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2.2.  Web and Mobile Based Surveys

Web- and mobile-based SP surveys have become increasingly popular as they allow researchers 
to better describe the setting or context to respondents. Unlike the traditional paper-and-pencil 
questionnaires, web-based surveys can easily integrate visual and auditory effects which can 
provide more accurate descriptions of attributes. Smartphone based survey platforms have been 
developed to collect trip and activity diaries such as Future Mobility Sensing (FMS) (Cotrill et al., 
2013; Zhao et al., 2015), the SITSS (Smartphone-based Individual Travel Survey System) (Safi et 
al., 2015), MEILI (Prelipcean et al., 2018; Susilo et al., 2016), UbiActive (Fan et al., 2013), 
rMOVE (Resource Systems Group, 2015), and others. These platforms have been mainly used to 
collect RP data.

On the other hand, several web-based surveys have been recently used to collect SP data for new 
modes and services. For example, Choudhury et al. (2018) investigated the acceptability of three 
new and emerging smart mobility options (one way car rental, shared taxi, and park and ride with 
school bus service) and quantified the associated willingness-to-pay values in Lisbon. Similarly, 
Correia and Viegas (2011) used a web-based survey in Lisbon to investigate a new carpooling 
structure in the form of clubs for improving trust among carpoolers. Chebli and Mahmassani 
(2003) used a web-based SP survey to study air travelers’ willingness to adopt new services that 
could help reduce ground access congestion around airports such as transit, rail, and off-airport 
terminals.

The “vividness” or “representational richness” in web-based environments has been shown to 
enhance user attentiveness (Hoffman and Novak, 1996). In terms of SP surveys, Sethurman et al. 
(2005) showed that web-based surveys are superior to the traditional pencil-and-paper surveys in 
terms of consistency and face validity, even though the authors tried to make the two experiments 
(web-based and mail-based) as close as possible. In order to better describe the context, more 
recent studies have integrated video enhancements in SP surveys (Hoffmann et al., 2014; Jensen 
et al., 2017). The effects of videos have been shown to enhance attentiveness (as Jensen et al. 
(2017) reported lower scale parameters when using video effects) and result in more plausible 
results (Hoffmann et al., 2014) as they provide users with a more vivid description of the choice 
setting.

Recently, Cox (2015) developed an SP survey which uses the Future Mobility Sensing (FMS) 
platform (Cottrill et al., 2013; Zhao et al., 2015b) to estimate the demand for new transportation 
modes and services. This web-based survey is context-aware since it refers to a trip that has already 
been performed by the respondent. Cox used data from GPS and external sources to generate 
hypothetical scenarios for a large number of modes using the random design approach. 

Similarly, Matyas and Kamargianni (2017) designed an SP experiment in order to capture the 
decision making process of purchasing mobility-as-a-service (MaaS) products. This experiment 
allows for inferring people’s preferences and willingness to pay for flexibility. Individual-specific 
data is collected using the FMS platform, and users are presented with their current travel patterns 
and the frequency of usage of each transport mode after validating their travel diaries for multiple 
days. The SP survey presents users with four hypothetical MaaS plans, three of which are fixed 
while the fourth allows the user to customize the product. The attributes of the plans include price, 
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transport modes and usage amounts, mode specific features, transferability of the features to the 
next month, and prizes associated with the plans. This SP survey is long term, as it uses the 
respondents’ activity patterns collected over a long period of time.

2.3.  SP Design Methods

Experimental design is a major consideration in SP surveys. The goal is to achieve good 
statistical identification of the model parameters and reduce their standard errors. To achieve 
this, the design needs to allow for a considerable span and linearly independent variation in the 
attribute levels (Ben-Akiva et al., 2016). 

Different design methods have been proposed for SP surveys. The simplest is the full factorial 
design, which generates choice tasks that span all the possible attribute level combinations. 
These designs are orthogonal, as the attributes in different choice tasks are uncorrelated. 
However, the number of choice tasks grows exponentially with the number of attributes which 
makes these designs difficult to implement in practical applications (Rose and Bliemer, 2009). 

The fractional factorial design uses a subset of the full factorial design in order to reduce the 
number of choice situations while maintaining some desired properties of the full factorial design 
such as orthogonality. Another approach is the random design, whereby choice tasks are 
randomly chosen from a full factorial design. This design is easy to implement, and Walker et al. 
(2015) showed that it performs as well as any design especially when it is modified by 
eliminating dominant and inferior alternatives.

Orthogonal designs are optimal for linear models (e.g. linear regression) as they produce 
unbiased estimates with the smallest standard errors. This is because the asymptotic variance-
covariance (AVC) matrix in these models is independent of the values of the parameters. 
However, they are not necessarily efficient for non-linear models, such as discrete choice models 
(Kuhfeld et al., 1994). For example, Bliemer et al. (2017) showed that the presence of dominant 
or inferior alternatives in the design (which are common in orthogonal designs) might result in 
biased parameter estimates. 

Efficient designs can reduce the standard errors of the parameter estimates (and thus the required 
sample size) (Rose and Bliemer, 2009; Walker et al., 2015). These designs aim to maximize the 
information obtained from the SP data and thus reduce the sample size requirements (Rose and 
Bliemer, 2009, Kessels et al., 2011). The goal is to minimize the standard errors of the estimated 
parameters via optimization based on the asymptotic variance–covariance (AVC) matrix (Walker 
et al., 2015), which is a function of the model parameters in discrete choice models. Therefore, 
these designs require priors for the parameter values. Several studies showed that these models 
might not be robust if the priors are misspecified, particularly in the mixed MNL model (Walker 
et al., 2015; Zhu et al., 2017).

Efficient designs were initially developed for Multinomial Logit (MNL) models (Bunch et al., 
1996, Huber and Zwerina, 1996). Extensions were proposed  for Nested Logit (NL) models 
(Bliemer et al., 2009, Goos et al., 2010), cross-sectional Mixed Logit (ML) models, (Sándor and 
Wedel, 2002, Yu et al., 2009), and panel ML models (Bliemer and Rose, 2010, Yu et al., 
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2011). Rose et al. (2008) also introduced an efficient method for pivoting attribute levels around 
a reference alternative. More recently, van Cranenburgh et al. (2018) proposed efficient designs 
that are robust for decision rule uncertainty (such as random regret minimization).

2.4.  Literature Takeaways

The aforementioned studies indicate that prompted recall surveys are widely applied in 
transportation along with pivoting in order to generate context-aware SP choice tasks. In 
addition, context-awareness can be further enhanced using smartphones due to their 
representational richness and sensing capabilities. In this paper, we propose a context-aware SP 
method that subsumes the advantages of prompted recall and smartphone-based SP surveys. 
Following the recommendation of Walker et al. (2015), we utilize a variation of the random 
design in order to construct the SP choice tasks based on RP data, and modify the design to 
remove any dominant or inferior alternatives. 

3. METHODOLOGY

This paper presents a smartphone-based method for trip-based SP surveys which makes it possible 
to accurately analyze the demand for new transportation modes and services and analyze 
hypothetical scenarios. The proposed method can be applied to any activity/trip sensing platform. 
We leverage on the initial concept proposed by Cox (2015) and detail a new formulation along 
with its first deployment, data collection and model estimation. In this section the system 
architecture and the process of generating and validating SP choice tasks are presented. 

3.1.  System Architecture

The proposed SP method leverages RP data in generating profiles. A profile is defined as a 
combination of attribute values and levels for a particular alternative (thus each choice task 
includes multiple profiles). The individual specific context is coming from (1) the observed RP 
data, e.g. sensing data, validated trips/activities for a given day (or even the weekly activity 
pattern); and (2) external contextual data such as the transportation alternatives available to the 
user through online sources. The RP data includes the departure and arrival times, origin and 
destination, trip mode and purpose, and activity duration. These are obtained using a smartphone-
based sensing app. In our application, we use the Future Mobility Sensing (FMS) platform, 
explained in Section 3.2. External contextual is data obtained from a trip planner. Our platform 
uses Google Maps, however, any trip planner can be used in order to obtain the trip data.

These are used together with the user’s personal characteristics obtained from the pre-survey, e.g., 
car ownership, usage of car/bike sharing services, etc. The experimental design uses those data in 
order to generate SP choice experiments with reasonable alternatives and attributes. The 
preferences can then be estimated based on both RP and SP data. The proposed concept is 
presented in Figure 1, and the different components are explained in the following sections.
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Figure 1: Smartphone-based SP methodology 

 

From the user’s perspective, the action flow and choice task generation process are explained 
below and presented in Figure 2:

1. Upon registering to the platform, a user’s socio-demographic data as well as attitudes and 
perceptions are collected using the pre-survey. 

2. The app starts to track the user, who then has to validate the activity diaries with trip and 
activity information every day directly on the smartphone app. The sensing platform and trip 
validation are presented in Section 3.2.  

3. After a full day is validated, a trip context (activity, origin/destination, and departure time) is 
selected from the trips that the user has performed as a reference trip. Trip selection is 
explained in Section 3.3. 

4. The alternatives and attributes (e.g., travel times) corresponding to the selected trip context 
are retrieved from the trip planner. 

5. The experimental design presented in Section 3.4 is used to generate SP profiles.
6. The profiles are checked afterwards for realism and internal validity. Validity checks are 

presented in Section 3.6.
7. A choice task is presented based on a selected trip directly in the smartphone platform. The 

user is asked about his/her choice if he/she were to repeat the trip under different hypothetical 
scenarios. Each user is presented with a choice task including multiple alternatives with 
different modes, travel times, costs, waiting times, and other attributes. The user is required 
to choose one of the suggested alternatives (which can also include an option for not making 
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the trip at all). This choice task becomes available to the user as soon as validation for that 
day is completed, however, the user can complete it at any time.

Figure 2: SP data collection process.

3.2.  Sensing Platform and Trip Validation

The sensing platform is needed to collect RP data (activity and trip diaries) for selecting the 
reference trip and obtaining contextual data (e.g. trip purpose, accompanying persons, etc.). In our 
application, we leverage the Future Mobility Sensing (FMS) platform (Cottrill et al., 2013; Zhao 
et al., 2015b). FMS is a smartphone and prompted-recall-based integrated activity-travel survey 
system. It is mainly used to collect RP data in the form of activity diaries which include stop 
locations, durations (start and end time), activities performed, travel modes taken between stops, 
and other information such as travel costs, accompanying persons, etc. As an outcome of this study, 
the FMS platform has been extended to include the SP feature.

Once installed on the smartphone, the app collects location (GPS, WiFi, GSM), accelerometer data 
and other information (e.g. battery level) on a continuous basis. The backend system processes the 
collected data in-real time in order to detect stops and infer the trip mode, travel times and activity 
type using machine learning algorithms. An app interface presents the users with maps showing 
their stop locations and trip trajectories in addition to partially filled activity diaries where they 
can verify and validate their trips and activities periodically. This overcomes the main limitations 
associated with traditional travel surveys such as under-reporting of trips and inaccurate or 
incomplete time, location and route information (Zhao et al., 2015b).

Trip diaries are complemented with a pre-survey which provides socio-demographic data about 
users, such as their age, gender, working status, income, car ownership, bike ownership, and 
others, and is filled out before the smartphone data collection.
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Figure 3 presents screenshots of a sample day trajectory and activity diary validated through the 
sensing platform (these screens were already existing in the FMS platform) and the reference trip 
and SP choice task (these screens were added to this platform as part of this study).  In the SP, the 
user can browse through different tabs showing different categories of alternatives (e.g. transit, 
non-motorized, car, taxi/on-demand, and FMOD tabs). The user can also scroll down to view 
different alternatives listed under a tab. For example, under the transit tab, the user can see “walk 
to transit”, “drive to transit”, and “bike to transit”, and under the FMOD tab, the user can see 
“taxi”, “shared taxi”, and “minibus” alternatives (which are explained in Section 4). Figures 3d, 
3e, and 3f show examples of alternatives under the transit, on-demand, and non-motorized tabs.

This interface was used in the data collection presented in Section 4. It was tested on a smaller 
sample (38 users) in a pilot phase and improved based on this pilot. The SP attributes are presented 
in a way that is similar to how users would see them in real life. For example, travel times are 
presented in minutes, fares are presented in Dollars with two decimal places (which is similar to 
apps such as Uber and Lyft and to transit fares in Boston), and subscription fees are presented as 
whole numbers.

3.3. Reference Trip Selection

For a given validated day, a realized trip recorded in the trip diary is selected by our proposed 
framework for the daily SP experiment. Any validated trip can be selected as long as it satisfies a 
set of pre-defined conditions. These conditions are specific to the research question at hand. 
Currently, a single trip can be selected, or intermediate stops can be dropped in order to form a 
half-tour; the trip or half-tour can be either home-based or non-home based; a minimum trip length 
for a trip to be selected can also be specified in order to avoid long non-commuting trips. In our 
applications, users are presented with one SP choice experiment per day (however, this can also 
be modified).

3.4.  Experimental Design

Profile generation is based on a variation of the random design (whereby constraints are used in 
order to enhance realism and remove dominant and inferior alternatives). This design is found to 
be the most convenient for our application. First, there is a one-to-one correspondence between 
the realized trips and the choice tasks. The attributes of the realized trip can be easily pivoted using 
the random design, and checked for external and internal validity. In addition, this design can 
handle large number of alternatives and attributes (unlike some other designs such as orthogonal 
designs). Finally, previous research has shown that the random design performs relatively well, 
and in the absence of good priors, it might be preferred to efficient designs (Walker et al., 2015; 
Street and Burgess, 2007). Nevertheless, implementing efficient designs on smartphone-based 
platforms is a promising future research direction, as it can build upon the results obtained from 
this paper to produce good priors.

SP profiles are generated on the backend server in real-time. Despite the large number of 
alternatives and attributes, most of the time a choice task is generated and validation checks are 
completed in less than one second.
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a) Day trajectories             b) Trip/activity diary validation      c) Reference trip for SP 

      
    d) SP profiles: non-motorized         e) SP profiles: transit            f) SP profiles: on-demand

Figure 3: Screenshots from the FMS platform in the same order in which the user sees 
them (except for SP tabs where the order of tabs is shuffled).
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3.4.1. Pivoted Alternative Attributes

In our application, profile attributes are generated using random “design parameters” in addition 
to information from Google Maps or the activity diary. After selecting a reference trip from the 
activity diary, the origin, destination, and departure time of that trip are fed into the Google Maps 
API in order to obtain some baseline attributes, such as travel times using different modes and 
transit access and egress times. These attributes are then “pivoted” using random “design 
parameters” in order to construct the attributes shown in the profiles. 

Design parameters are chosen from a pre-defined set of levels. For example, the travel time 
attribute for car is calculated by multiplying the travel time obtained from Google Maps by a design 
parameter, the travel time ratio, with levels of 0.7, 0.85, 0.95, 1.00, 1.05, 1.15, 1.20, or 1.50. This 
means that the pivoted travel time can range between 70% and 150% of the travel time obtained 
from Google Maps for the same trip. A uniform distribution is used such that each level of the 
design parameter has an equal probability of being selected (i.e., the travel time ratio is equally 
likely to be chosen from any of the values above).

Other design parameters represent travel time variability (as a percentage of the total trip time). 
These are used along with the pivoted travel times in order to present users with ranges that reflect 
uncertainty in travel time. For example, the drive alone travel time in a given choice task can range 
between 30 and 35 minutes. Similar design parameters are used to represent uncertainty in taxi 
waiting times and transit headways.

The procedure mentioned above results in profiles that carry the same information as those 
generated by the standard random design. However, the attributes are presented to users in a way 
that is easier for them to process. For example, using the random design, the user might be asked 
to recall a reference trip. Afterwards, he/she will be asked about his/her choice if the travel time 
was 15% greater than that of the reference trip and the travel time variability was +/- 10% of the 
total travel time. On the other hand, this method presents the user with a travel time range in 
minutes that is calculated using the same information. Following the same example, and 
assuming that the reference trip is 30 minutes long, the corresponding range is 31-38 mins, and is 
calculated as . Therefore, the presented attributes are consistent (1.15 × 30) ∓ (0.1 × 1.15 × 30)
with the way users perceive them in real life. In addition, this saves mental effort for users in 
estimating the total travel time and travel time variability from the attributes presented in the 
profiles. 

3.4.2. Random Alternative Attributes

It may not be possible for the researcher to obtain all the alternative attributes of the reference trip 
and pivot around these attributes. Therefore, some attributes are constructed using random design 
parameters that directly correspond to attribute levels. For example, the taxi waiting time is equally 
likely to be 2, 5, 8, 10, or 15 minutes, and hence, this attribute is not calculated based on 
information from Google Maps or the activity diary.

Another design parameter might represent the parking cost per hour. For example, the possible 
levels for the hourly parking cost are specified as 0.5, 1.0, 1.5, 3.0, 4.0, or 8.0 US Dollars. In order 
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to calculate the corresponding attribute (total parking cost), the hourly parking rate is multiplied 
by the activity duration (which is obtained from the travel diary). The researcher might choose to 
present the user with the total parking cost or the hourly parking cost, to be consistent with the 
actual market framing of parking costs. Similarly, the user is presented with the fuel cost (gas price 
per gallon), parking cost (per hour or per day), and toll cost separately, and not the total car cost, 
which is also consistent with the way users see these attributes in real life.

3.4.3. Levels of the Design Variables

The levels of design parameters are chosen to guarantee sufficient variability in the data, while 
ensuring realistic attribute ranges. According to Sanko (2001), the researcher’s domain knowledge 
is essential is deciding upon these levels. These levels should have a sufficient range that will 
likely cover the users’ “boundary values”, defined as the points as at which users will trade-off. 
Furthermore, these attribute levels should be close enough to each other, and unequally spaced in 
order to accurately estimate these boundary values (Sanko, 2001). 

3.5.  Basic Alternatives

This section introduces the basic alternatives presented in SP (walking, biking, bike-sharing, drive 
alone, carpooling, car-sharing, taxi, on-demand services, and transit). However, it is important to 
note that the generic SP framework provides flexibility for introducing new alternatives and 
attributes. Section 4 presents an application with a new service that does not exist in real life, 
Future Mobility on Demand (FMOD) (Atasoy et al., 2015). Other potential applications include 
travel advisers (e.g. Xie et al., 2019), automated vehicles (Seshadri et al., 2019), mobility-as-a-
service packages, electric mobility, or personal and active mobility modes.

Considered attributes across all modes are listed in Table 1. Under non-motorized modes, bike-
sharing has additional attributes of access and egress times (as users pick up/drop off bikes at the 
stations), annual subscription, and time-based rental costs. The availability of these modes is 
determined by pre-specified maximum walking and biking distances. Bike availability is 
contingent on bike ownership; however, bike-sharing is always displayed given that maximum 
biking distance is not violated. 

In our SP platform the experimental design explained in Section 3.4 is applied as follows. For 
drive alone and carpool alternatives, the existence of toll and parking costs is randomly decided 
using Boolean design variables. If there is a non-zero parking cost, it is calculated based on the 
activity duration. The experimental design ensures that the drive alone travel time is not greater 
than carpooling travel time. Drive alone availability is determined by car ownership and having a 
valid driving license. If these two conditions are satisfied, the user might also choose carpooling 
“as a driver” or “as a passenger”. Otherwise, only carpooling “as a passenger” is available.

For on-demand services (e.g. Uber, Lyft, etc.), the design ensures that travel time for shared 
alternatives (e.g., UberPool) is never less than that of the private ones (e.g. UberX). They are 
assumed to be always available except car-sharing which necessitates a valid driving license. Note 
that the new mobility service studied in Section 4 (FMOD) is also an on-demand service. For 
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subscription-based services (e.g., car-sharing or bike-sharing), users who are not subscribed to 
these services are presented with annual subscription fees.

Finally, transit modes include bus and train, with walk, bike, or car access (i.e., park-and-ride). 
The number of transfers is randomly determined in a time-based manner, e.g., trips shorter than 
10 minutes have no transfers, those between 10 and 20 minutes may have up to one transfer, and 
trips longer than 20 minutes may have up to two transfers. The fares include a fixed and a distance-
based component for flexibility (e.g., setting the distance-based component to zero results in a flat 
fare). A transit alternative may include bus, train, or a combination of the two. The availability is 
either based on the existing conditions (referring to Google Maps), or defined by the researcher in 
order to test hypothetical scenarios.

For new/non-existing modes (such as the mobility-on-demand application presented in Section 4), 
alternative attributes can be specified as functions of the attributes of existing modes (e.g. car, taxi, 
etc.).

Table 1 Considered attributes across alternatives
Non-motorized Motorized On-demand Transit

Walk Bike Bike-
sharing

Drive 
alone

Carpool Taxi Uber/
Lyft

Car-
sharing

Walking time x

Biking time x x
Waiting time x x
Schedule delay
Access/egress time x x x x x

In-vehicle      
travel time

x x x x x x

Parking time x x

% Bike lane x x

Annual 
subscription cost 

x x

Distance-/time- 
based variable 
cost/fare 

x x x x x

Fuel cost x x
Toll cost x x x
Parking cost x x x
Transfers x
Headway x
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3.6.  Validity Checks

Since SP profiles are generated based on the random experimental design, some combinations of 
attributes might not be realistic to users. For example, walking time in a particular choice task may 
be shorter than biking time. These two attributes are calculated by multiplying the walking/biking 
times obtained from Google Maps by design parameters defined as “travel time ratios”. The latter 
case might occur if the worst biking time ratio and the best walking time ratio are both selected.

In addition, a choice task may include a dominant alternative (i.e. having both its total travel time 
and travel cost better than those of any other alternative) or an inferior alternative (having its travel 
time and cost worse than any other alternative). 

In order to avoid such cases, validity checks are used by defining a set of “flags”, which correspond 
to unrealistic combinations of attributes and dominant/inferior alternatives. Below are some 
examples:

• Drive alone is cheaper than transit.
• Drive alone is cheaper and faster than any other mode.
• Walking is faster than transit, biking, taxi, etc. (except for short trips, e.g., shorter than 1 

km).

Although such cases might still occur in reality, Bliemer et al. (2017) argue that strictly dominant 
alternatives should be avoided in SP surveys because they bias the estimates in logit models.  

Furthermore, some flags correspond to the difference between the maximum and minimum costs 
(or travel times) among all alternatives exceeding a certain threshold.

Different choice tasks are generated until a valid one is found. Ideally, users should be presented 
with choice tasks without any flags. However, this might be difficult to achieve depending on the 
complexity of the experiment. Therefore, a choice task is accepted if the number of flags does not 
exceed a pre-defined threshold. For example, the maximum allowable number of flags cannot 
exceed 2 or 3. Increasing this threshold can result in unrealistic choice tasks (having many 
unrealistic combinations). On the other hand, decreasing this threshold can result in excessive 
running times as the number of generated choice tasks will be very high until a valid one is found. 
Another possible approach is generating several choice tasks (e.g. 1000), and choosing the one 
with the least flags.

Using this design, and unlike the standard random design, not all attribute combinations have an 
equal probability of being chosen. As indicated above, not all of the generated choice tasks are 
accepted; they are evaluated based on pre-specified constraints that increase realism and remove 
dominant/inferior alternatives. In addition, some attribute levels are dependent on others. For 
example, the toll amount is contingent on a Boolean variable indicating whether an alternative 
includes a toll cost or not (if not, then the toll amount is zero 50% of the time). 
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3.7.  Design Validation

The profile generation algorithm is validated using Monte-Carlo simulations to ensure that the data 
can be used in behavioral models. This step simulates data that could be collected using the survey, 
and is done offline prior to deployment. It is needed to prove that the behavioral models estimated 
using the SP choice tasks result in consistent estimates and acceptable confidence intervals. The 
design efficiency can also be assessed analytically using the covariance matrix of the attributes (or 
the D-error), however, the Monte Carlo experiment also allows us to identify other issues such as 
inconsistency (differences between the estimates and the true values of the parameters).

For a sample of trips, choices are simulated using a logit model (or a nested logit model). Different 
attributes are assigned pre-determined coefficients (weights) which are known to the researcher. 
The systematic utilities of all alternatives are then calculated using the assumed coefficients and 
the profile attributes. An extreme value error term is added in order to simulate the total utilities. 
The simulated choices correspond to those with the highest utility among all alternatives. 

Afterwards, a new logit model (or nested logit model) is estimated using the simulated choices in 
order to check whether the true values of the coefficients can be recovered. This procedure enables 
the identification of specific issues in the design such as bias, multicollinearity or insufficient 
variations in attributes which can be fixed accordingly. Model structures other than logit can also 
be used to account for correlations among individuals and alternatives (e.g. probit, mixed logit, 
etc.). 

4. CASE STUDY: FUTURE MOBILITY ON DEMAND

This section presents an application of the SP methodology described above to FMOD, which is 
an app-based service that provides a personalized menu of travel options in real-time from the 
available modes operated by FMOD: taxi, shared-taxi, and minibus (Atasoy et al., 2015). The 
traveler can select one option in the menu for their trip or reject all options. FMOD taxi provides 
door-to-door service in a private vehicle, which is typically the highest priced service. FMOD 
shared-taxi serves multiple passengers in the same vicinity, but travel time may increase due to the 
pick-up and drop-off of other passengers. FMOD minibus runs along fixed routes with fixed stops 
but adapts to passengers’ schedule and typically has the lowest fare. The FMOD operator manages 
the requests and the flexible fleet of vehicles in real-time (in terms of dispatching, passenger-
vehicle matching, routing, etc.), thus conditioning the attributes of the menu offers to its 
operational performance. FMOD is a demand responsive system and provides flexibility to both 
passengers and operators; passengers can choose from a menu that can be optimized in an 
assortment optimization framework to tailor their needs and preferences, while operators can 
allocate their homogeneous vehicle fleet among all three types of services.

Since FMOD is a schedule-based service, users are asked about their preferred arrival or departure 
time window. The user request will preferably be assigned to a vehicle that matches their preferred 
time window. However, this might not be always possible due to the limited fleet size or 
operational costs. This introduces schedule delay, which is defined as the difference between the 
actual pick-up (drop-off) time and the boundary of the preferred departure (arrival) time window.
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In the SP design, FMOD taxi and shared-taxi attributes include waiting time, travel time, fare, and 
schedule delay. Schedule delay is not directly provided to the user and only the estimated pick-up 
and drop-off times are displayed. These may or may not fall within the specified time window. 
Moreover, FMOD minibus has additional attributes of access and egress time. Therefore, the user 
is presented with a departure time from home, arrival time at station, pick-up time, drop-off time, 
and arrival time at the final destination. FMOD is assumed to be always available to users (except 
for very short trips, in which FMOD minibus is not available). It is presented as a separate tab in 
the SP user interface which includes all three services. The FMOD-SP design was validated using 
the Monte Carlo procedure presented in section 3.7.

The SP survey selects home-based half-tours, since the goal is to deploy the estimated mode choice 
model in an activity-based travel demand model (namely the one presented in Lu et al., 2015).

4.1.  Sample Demonstration

An FMOD case study was conducted with a sample of 224 respondents in the Greater Boston 
Area, who completed 908 SP choice tasks. The number of choice tasks per respondent ranged 
between 1 and 11, with an average of 4. The sample was fairly split between males (46%) and 
females (49%), while the remaining 3% refused to reply. Respondents’ ages ranged between 11 
and 69 years, with a mean of 30.7 and a standard deviation of 9.6. Full-time employees accounted 
for 56% of the sample, and students accounted for 30%. The remaining users were either 
unemployed, part-time employees, retired, or self-employed. The mode shares in the RP data are 
presented in Figure 4.

Car
 38%

Walk
 37%

Bike
 9%

Taxi / On-
Demand

 2%

Transit
 14%

Figure 4: Mode shares in the revealed preferences data.

The SP alternatives included driving alone, carpooling, car-sharing, motorcycle, walking, biking, 
bike sharing, transit (with walk, bike, or car access), and on-demand (taxi, private ride hailing, and 
shared ride hailing), in addition to the three FMOD modes. The current SP design resulted in 
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FMOD modes being chosen 24% of the time. Sufficient observations were collected for each 
alternative except for car-sharing and motorcycle (3 and 4 observations respectively). 

In this application, the realism of the experiment was ensured using the experimental design as 
well as the validity checks (see section 3.6.). The maximum allowable number of flags was 
specified to be 2. Nevertheless, we still observed some dominant and inferior alternatives with a 
frequency of 4% and 7%, respectively. By observing the data, we noticed that these correspond 
to special cases (such as short trips, where walking is dominant or driving to transit is inferior). 
Other flags were less likely to occur; for example, car was cheaper than transit in less than 2% of 
the cases, walking was faster than car in less than 2% of the cases, and faster than transit in less 
than 5% of the cases. Other constraints were forced in the experimental design; for example, 
carpooling options were always specified to be slower and less expensive than driving alone, and 
private on-demand and FMOD alternatives were always specified to be faster and more 
expensive than shared alternatives.

4.2.  Model Estimation 

The SP data are used in order to estimate a mode choice model among the existing modes and 
FMOD modes. Since some choice tasks were completed within a very short time (e.g., less than 
10 seconds), some of these might have been filled out at random. Therefore, a latent class model 
is used in order to model two choice protocols: utility maximization and random choice. A binary 
logit model is used to model the (latent) choice protocol. In the case of utility maximization, a 
mixed logit model with random parameters and error terms following the normal or the log-normal 
distribution is used. In the case of random choice, equally likely probabilities are assumed to all 
the available alternatives.

The attributes used in the utility maximization model are cost, travel time (in-vehicle, out-of-
vehicle, and non-motorized travel time), and travel time variability. A dummy variable is included 
in the SP utility equations representing whether the SP mode was chosen in the reference trip or 
not. This variable accounts for the context specific to each trip.

4.2.1. Model Specification

The choice protocol model is specified as a binary logit that includes socio-demographic 
variables, the choice task number, and the time for completing the choice task divided by the 
number of available alternatives. Age is the only socio-demographic variable that was found to 
be significant. The utility equations are presented in equation 1 below:

𝑈𝑈𝑀 = 𝐴𝑆𝐶𝑈𝑀 + 𝛽𝐴𝑔𝑒 ∗ 𝐴𝑔𝑒 + 𝛽𝐶ℎ𝑜𝑖𝑐𝑒𝑁𝑢𝑚 ∗ 𝐶ℎ𝑜𝑖𝑐𝑒𝑁𝑢𝑚 + 𝛽𝐷𝑢𝑟 ∗
𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
𝑁𝑢𝑚𝐴𝑙𝑡 + 𝜖𝑈𝑀

            (1)𝑈𝑅𝑎𝑛𝑑𝑜𝑚 = 0 + 𝜖𝑅𝑎𝑛𝑑𝑜𝑚
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Where  is the respondent’s age (divided by 100),  is the choice number, 𝐴𝑔𝑒 𝐶ℎ𝑜𝑖𝑐𝑒𝑁𝑢𝑚
Duration is the completion time measured in seconds, and  is the number of available 𝑁𝑢𝑚𝐴𝑙𝑡
alternatives in the choice task.

The utility functions of the utility maximization model are presented in Equation (2). A scale 
parameter is estimated while the cost coefficient is fixed to -1. Therefore, all other parameters are 
in the willingness to pay space (money-metric utility). A higher scale parameter indicates a higher 
explanatory power of the model variables compared to the error component and vice versa. 

The scale parameter and the parameters of all attributes are modeled with inter-personal 
heterogeneity in order to account for the panel nature of the data (since multiple observations are 
available from the same user). Travel time and travel time variability coefficients follow the log-
normal distribution through the exponential form which ensures that all of these parameters are 
negative. Exponentiation is also used for the scale parameter in order to ensure that this parameter 
is positive. The estimated coefficients are the mean and standard deviation of the underlying 
normal distributions (thus, these can take any sign, while the actual parameters maintain their 
correct sign). A full set of alternative specific constants (ASC) is used, ASCTransit is arbitrarily 
normalized to 0. Normally distributed error terms are used to account for correlations among 
alternatives (namely correlations among car modes, transit modes, on-demand modes, FMOD, and 
non-motorized modes). A full set of alternative specific constants (ASC) is used, ASCTransit is 
arbitrarily normalized to 0. 

For car, in-vehicle travel time includes both average travel time and parking time, while for other 
modes it only includes average travel time. Two different in-vehicle travel time coefficients are 
estimated, for drive alone and for other motorized modes. For transit with car access, this includes 
the total in-vehicle travel time in car and in transit. Out-of-vehicle travel time includes access time 
(car modes, transit, and FMOD minibus), egress time (car modes, transit, and FMOD minibus), 
and waiting time (transit, on-demand modes, and FMOD minibus). Non-motorized travel time is 
the travel time for walking or biking modes. Cost is the fare for all modes except for car, which is 
the sum of fuel cost, parking cost and toll cost. In order to obtain similar magnitudes of all 
coefficients, cost is measured in tens of USD. Finally, travel time variability is defined as the 
difference between the maximum and the minimum travel time, divided by their mean.

𝑈𝑖 = exp (Scale)( ‒ 𝐶𝑜𝑠𝑡𝑖 + 𝐴𝑆𝐶𝑖 + exp (𝐵𝐼𝑉𝑇𝑇)𝐼𝑉𝑇𝑇𝑖 + exp (𝐵𝑂𝑉𝑇𝑇)𝑂𝑉𝑇𝑇𝑖 + exp (𝐵𝑁𝑀𝑇𝑇
(2))𝑁𝑀𝑇𝑇𝑖 + exp (𝐵𝑇𝑇𝑉𝐴𝑅)𝑇𝑇𝑉𝐴𝑅𝑖 + 𝐵𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑅𝑃𝑖 + 𝐵𝑍𝑍 + 𝜂𝑖) + 𝜖𝑖

Where:
ΒIVTTCar ~ N(ΒIVTTCar_mean, ΒIVTTCar_std): coefficient for in-vehicle travel time by car
ΒIVTT ~ N(ΒIVTT_mean, ΒIVTT_std): coefficient for in-vehicle travel time by other modes
ΒOVTT ~ N(ΒOVTT_mean, ΒOVTT_std): coefficient for out-of-vehicle travel time
ΒNMTT ~ N(ΒNMTT_mean, ΒNMTT_std): coefficient for non-motorized travel time
ΒTTVAR ~ N(ΒTTVAR_mean, ΒTTVAR_std): coefficient for travel time variability
Βintertia ~ N(Βintertia_mean, Βintertia_std): coefficient for inertia
Scale ~ N(Scalemean, Scalestd): scale parameter
IVTT, OVTT, and NMTT: in-vehicle, out-of-vehicle, and non-motorized travel time 
respectively (min)
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TTVAR: travel time variability (unitless)
COST: travel cost (tens of USD)
RP: a dummy variable indicating whether the SP mode was chosen in the reference trip 
or not

: a vector of individual characteristics and socio-demographics (age, gender, student 𝑍
status, income, and car ownership) with coefficients 𝐵𝑍

): a normally distributed error term to capture correlations among modes.ηi~𝑁(0, 𝜎𝑖
 an iid error component following the extreme value distribution.𝜖𝑖:

4.2.2. Estimation Results

The model was estimated using Maximum Simulated Likelihood (MSL) in Python Biogeme 
(Bierlaire, 2016). Trips exceeding 30 miles were excluded. The estimation results are presented in 
Tables 2 and 3. The model converges with 10,000 random Halton draws of the random parameters. 
Using the same starting values, the model coefficients do not vary significantly when the number 
of draws is increased beyond 10,000 (however, using different starting values sometimes results 
in a different local optimum, with significantly different estimates and a lower log-likelihood). 

The estimation results of the Choice Protocol model are presented in Table 2. The constant is 
positive, indicating that respondents are likely to make a choice according to utility maximization 
rather than at random. However, the coefficient of age is negative, indicating that older respondents 
are more likely to choose at random. The choice task coefficient is also negative, indicating that 
in the later choice tasks, respondents are more likely to choose at random. Finally, duration divided 
by the number of alternatives is positive, indicating that the more time respondents spend per 
alternative, the less likely they are to choose at random. 

Table 2: Estimation results for the choice protocol model.
Parameter Estimate Robust Std err Robust t-test p-value
Constant (UM) 6.84 2.40 2.84 < 0.01
Age -0.133 0.0437 -3.04 < 0.01
Choice Task -0.421 0.253 -1.67 0.100
Duration/NumAlt 0.307 0.162 1.89 0.06

The estimation results of the utility maximization model are presented in Table 3. Significant 
heterogeneity is present in the scale parameter and in all travel time, travel time variability, and 
inertia coefficients. The mean of the inertia coefficient is positive as expected, indicating that 
respondents are more likely to choose the RP chosen mode in the SP choice task. This can be due 
to unobserved constraints associated with that specific trip favoring that mode, but can also capture 
other effects such as justification bias. The standard deviations of on-demand and non-motorized 
modes are significant, indicating strong correlations among the alternatives belonging to these 
groups. The correlations between car modes, FMOD modes, and transit are not significant.

The coefficients of travel time, travel time variability, and the scale parameter are log-normally 
distributed. The estimated mean and standard deviation are for the underlying Normal distribution. 
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The mean of a log-normally distributed variable can be calculated as  where  and exp (μ + σ2/2) μ
 are the mean and variance of the corresponding normal distribution, respectively. Therefore, σ2

we can obtain the mean of the IVTT, OVTT, and NMTT coefficients. As everything is in 
willingness to pay space, the values of IVTT by car, IVTT by all other modes, OVTT, and NMTT 
(in USD/hour) are presented in Table 4. The signs to the mean values of travel times are negative 
because the corresponding coefficients are given negative signs in the utility function. The values 
of travel time are close to those found by Xie et al. (2019), who used the same survey platform to 
collect data from a similar sample of respondents in the Greater Boston Area. In addition, they are 
close to the values obtained by Atasoy et al. (2018) who used a convenience sample of 38 users in 
a pilot of this survey.

The value of time of non-motorized modes is very high, indicating that users are very sensitive to 
travel time by these modes. This is expected, especially because of the cold weather in winter in 
the Greater Boston Area. Except for car, the value of IVTT is the lowest indicating participants 
are more tolerant to IVTT in comparison to NMTT and OVTT, which is reasonable due to the 
comfort of staying in vehicles and the possibility of multi-tasking. On the other hand, the IVTT by 
car is the highest. This could be potentially due to the discomfort associated with driving and the 
inability to multitask. However, it can be due to the fact that people with a higher value of time 
are more likely to drive alone.

The constants of FMOD modes are comparable to those of Uber/Lyft and UberPool/LyftLine, 
and substantially higher than the taxi constant, which might indicate that respondents are willing 
to adopt these services in comparable rates. In addition, the results indicate that respondents with 
high income and young respondents are more likely to use FMOD compared to other market 
segments.

The estimated model accounts for heterogeneity as well as the random response bias. In order to 
justify its complexity, we compare it to an MNL model with the same specification, but without 
heterogeneity in any of the parameters and without the choice protocol model. The results are 
presented in Table 5. Both models achieve convergence as indicated by the low values of the 
final gradient norm. However, the complex model shows an improvement of 26.8 points in the 
log-likelihood over MNL. The likelihood ratio test results in a test statistic of 53.67, which is 
higher than the critical value at the 95% level of confidence with 16 degrees of freedom (26.30). 
This indicates that the estimated model is superior to MNL. It is also important to note that the 
MNL estimates are not realistic; for example, the estimated parameter for walking or biking time 
is positive and very close to zero. This reinforces the importance of accounting for heterogeneity 
as otherwise even biased estimates might be obtained.  
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Table 3: Estimation results for the utility maximization model.
Parameter Estimate Robust Std err Robust t-test p-value
Scale - mean 0.516 0.265 1.94 0.05
Scale - std dev. 1.75 0.400 4.38 < 0.01
IVTT by car - mean -2.51 0.251 -10.01 < 0.01
IVTT by car - std dev. 0.278 0.0826 3.37 < 0.01
IVTT by other modes - mean -3.47 0.213 -16.3 < 0.01
IVTT by other modes - std dev. 0.529 0.0906 5.84 < 0.01
NMTT - mean -2.83 0.176 -16.06 < 0.01
NMTT - std dev. 0.602 0.0635 9.49 < 0.01
OVTT - mean -4.29 0.518 -8.27 < 0.01
OVTT - std dev. 1.67 0.232 7.23 < 0.01
Travel Time Var.- mean -0.251 0.332 -0.760 0.45
Travel Time Var.- std dev. 0.118 0.065 1.82 0.07
Inertia - mean 0.884 0.189 4.67 < 0.01
Inertia - std dev. 0.650 0.317 2.05 0.04
Drive alone constant 0.877 0.446 1.97 0.05
Carpool constant -0.467 0.224 -2.09 0.04
Walk constant 0.876 0.340 2.58 0.01
Bike constant 0.995 0.335 2.97 < 0.01
Bikeshare constant -0.548 0.249 -2.20 0.03
FMOD minibus constant -1.66 0.422 -3.95 < 0.01
FMOD shared taxi constant -1.95 0.529 -3.70 < 0.01
FMOD taxi constant -2.22 0.633 -3.50 < 0.01
Taxi constant -3.23 0.846 -3.82 < 0.01
Uber/Lyft constant -1.90 0.504 -3.76 < 0.01
Uberpool/LyftLine constant -1.75 0.438 -4.00 < 0.01
Driving modes - std dev. 0.0516 0.0768 0.67 0.5
On Demand modes - std dev. 2.16 0.364 5.93 < 0.01
Non-motorized modes - std dev. 0.317 0.0564 5.61 < 0.01
Transit modes - std dev. 0.0623 0.114 0.550 0.58
FMOD modes - std dev. 0.0549 0.0561 0.98 0.33
Age (FMOD) -2.29 0.594 -3.85 < 0.01
Age (Non-motorized) -0.730 0.293 -2.49 0.01
Student (Non-motorized) 0.673 0.352 1.91 0.06
Student (Transit) -0.753 0.427 -1.76 0.08
Income (Driving) 0.705 0.258 2.73 0.01
Income (FMOD) 2.34 0.370 6.31 < 0.01
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Table 4: Estimated values of time.
Mean VOT (USD/hr)

In-vehicle travel time (drive alone) 50.68
In-vehicle travel time (Other modes) 21.47
Non-motorized travel time 42.44
Out-of-vehicle travel time 33.16

Table 5: Summary statistics and comparison to MNL.
Estimated Model Multinomial Logit (MNL)

Number of estimated parameters 40 24
Final log likelihood -636.12 -662.957
Final gradient norm 7.15E-05 4.53E-05
Run time 02h 15:00 min 0:02 sec
Number of draws 10,000 -
Sample size 640

4.2.3. Joint SP/RP Estimation

In this work, the model was estimated using SP data only. However, the RP data might be used in 
order to estimate a joint SP/RP model. An example is presented in Atasoy et al. (2018) whereby a 
joint model is estimated for a pilot sample of 38 respondents. The combined SP/RP model relies 
on the construction of realistic choice sets for each RP observation from such data sources, 
contrarily to the SP experiment where the full choice set is provided by design. Such choice set 
reconstruction requires careful modelling and data (attributes) estimation which can be error prone 
and significantly affect estimation results. In this application, choice sets were obtained from 
Google Maps and from the pre-survey (car and bike ownership). Attributes such as travel times 
and access/egress times were also obtained from Google Maps and parking costs, taxi rates and 
public transportation fares were estimated from public online sources for the Boston/Cambridge 
area. However, some assumptions had to be made in this process both for the choice set (e.g.: 
limited by Google Maps API outputs) and its attributes (such as average transit and taxi waiting 
times) resulting in an unstable estimation procedure. Besides the need for testing such method to 
larger samples, such as the one in this current study, further research is needed to relax the 
limitations found in the choice set generation method proposed in Atasoy et al. (2018).

5. DISCUSSION

This section presents the main contributions and limitations of the proposed SP method.
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5.1.  Methodological Contributions

By accounting for the trip-specific context and using smartphone sensing capabilities, this 
method overcomes several limitations associated with traditional pencil-and-paper surveys in 
terms of data quality and user experience. 

5.1.1. Data Quality

This methodology is context-aware, as the user can easily relate to the RP trip. The SP attributes 
are generated based on the RP attributes together with the user specific and trip specific context, 
which ensures that the values presented to the user are realistic. The random design and the 
validation checks are easy to implement in real-time, and ensure that dominant and inferior 
alternatives are avoided automatically. The user is presented with the exact trip details (such as 
the arrival/departure times, trajectory, and origin/destination) and asked to validate these details 
before completing the choice task. Therefore the context described to the user is very similar to 
his/her real experience for the recalled trip. In terms of modeling, the unobserved context can be 
partially captured by an inertia parameter (similar to the one that was estimated in the application 
presented in Section 4). In addition, other contextual variables specific to the trip can be included 
such as the trip time of day, weather conditions, etc.

In traditional SP surveys, choice tasks are generated based on the same reference trip. On the 
other hand, this methodology allows the researcher to obtain different SP observations from the 
same individual corresponding to different trips. This allows for modeling more complex 
phenomena such as intra-personal heterogeneity (Becker et al., 2018), which is difficult to 
identify using choice tasks filled out in a short time period and corresponding to the same 
reference trip.

Compared to traditional SP surveys, smartphones allow for better and more flexible sampling of 
trips. The researcher is able to impose constraints on trip selection based on the research needs. 
For example, he/she might be interested in short (or long trips), work trips only, or trips 
involving multiple household members in order to study intra-household interactions. 

Since users are presented with one choice task per day, some biases associated with traditional 
SP surveys are minimized. For example, the user’s response in one day is less likely to affect 
his/her responses in the following days. In addition, the “fatigue” bias is reduced as users spend 
less time each day on the single choice task. Finally, since the time required for completing the 
choice task is recorded, it can be used to filter outliers (either directly or using a modeling 
approach similar to the one in Section 4).

5.1.2. User Experience

From the users’ perspective, this methodology reduces the mental burden which is typical in 
traditional SP surveys. Users are presented with profile attributes that are easy for them to 
understand and process as they are based on realized trips and mimic the presentation of these 
attributes in the market (e.g. in the case of app-based services).  Uncertainty is also captured by 
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presenting users with travel time ranges (in minutes) calculated as a percentage of the total travel 
time rather than showing percentages or fixed ranges. 

Finally, users are not constrained by the time at which they have to complete the choice task, as 
the smartphone-based survey is easily accessible at any time. While this might be advantageous 
to users, it might result in inconsistencies depending on the time interval between the reference 
trip and completing the choice task. In our application, half of the respondents completed the 
choice task within the two days of the recalled trip, and 76% completed it within one week. 
Further research can investigate the effect of time between completing the reference trip and 
filling out prompted recall surveys. 

5.2.   Limitations

Although this method overcomes several limitations associated with SP surveys, there are still 
several limitations, most of which are common in SP survey design. 

First, this method relies on design variables which have to be specified by the researcher. As in 
most SP designs, the researcher has to decide on the levels and ranges of these variables.  Thus, 
the design needs to be checked for face validity and internal validity. Therefore, the logical 
checks presented in Sections 3.6 and 3.7 are necessary to ensure that the presented profiles are 
realistic, and that the data can be used in in estimating behavioral models. The interface design 
can also be tested and further enhanced in order to ensure that respondents are not attentive to 
some attributes more than others.

Furthermore, smartphone data might have measurement errors (e.g., in distances and travel times), 
however, these are not problematic for the SP data. First, users are asked to validate their travel 
times beforehand and correct any errors recorded by the phone app. Second, by design, the SP 
attributes are pivoted off the RP attributes which are obtained from the trip planner (e.g., Google 
Maps). In model estimation, the researcher only uses the pivoted SP attributes (and not the initial 
attributes obtained from the trip planner). Nevertheless, these errors might become problematic if 
the researcher estimates a joint SP/RP model using the attributes obtained from travel advisors as 
these might have some measurement errors. 

Another limitation associated with the joint estimation of SP/RP data is that the sensing platform 
does not collect data about the choice and consideration sets of users. Even though choice sets 
are obtained from trip planners such as Google Maps, the user might not consider the same 
available alternatives while making a choice. This issue can be overcome by modeling the 
consideration sets explicitly (e.g., Shocker et al., 1991, Swait and Ben-Akiva, 1987).

As in most RP-based SP surveys, justification bias might be expected as users might be more 
likely to select the alternative they chose in the RP in order to justify their previous choice. 
While this might introduce bias to the estimation results, it can be mitigated by including an 
“inertia” variable in the estimation as in the previous case study. 
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While this smartphone-based data collection method can be easily scalable, such platforms might 
be likely to attract young educated users. Therefore, considerable care is needed for sampling, or 
behavioral models should account for sampling bias. 

5.3.  FMOD Application

This paper presented a novel application to a non-existing transportation service, FMOD, which 
has been studied before from the supply/operational side, but not from the demand angle (Atasoy 
et al., 2015). Understanding the factors affecting the demand for FMOD modes is critical for 
operators. First, it allows them to assess the feasibility/profitability of the service. It also allows 
for optimizing the operational aspects (such as fleet size, pricing of different types of services, 
etc.). During operation, it also enables operators to test different policies, such as changes in 
pricing, constraints on maximum waiting times, and allowable route deviations due to pooling 
passengers. Finally, it allows operators to identify potential market segments that are more likely 
to use the service; in our application, the results showed that younger respondents and 
respondents with higher income are more likely to use the service compared to others. 

6. CONCLUSION 

This paper presented a generic method for context-aware SP surveys leveraging state-of-the-art 
smartphone-based RP methods, in addition to an application to mode choice of future smart 
mobility solutions. This method utilizes a random experimental design and is flexible in terms of 
adding new modes or services. The current version includes a variety of modes including non-
motorized modes, on-demand modes, private motorized modes, and transit. In the FMOD case 
study, the estimation of the mode choice model resulted in reasonable values of the model 
parameters and the estimated value of time.

A number of extensions can be considered in future research. Although the context-aware nature 
of our method overcomes common issues with SP surveys such as framing and realism, we might 
still expect some biases such as attribute non-attendance and justification bias. Future research will 
focus on making the SP survey incentive compatible in order to eliminate such biases (Ben-Akiva 
et al., 2016). In addition, smartphone-based SP surveys can be compared to traditional paper-based 
surveys and web-based surveys, and the effects on behavior can be investigated. Future work will 
also focus on parallelization and distributed processing in order to overcome the tradeoff between 
design realism (number of allowable flags) and the time needed to generate a valid choice task.

While this paper presented an application to FMOD, similar context-based SP surveys were 
deployed in Singapore and in the Greater Boston Area (GBA). In Singapore, data was collected 
on automated mobility on demand (AMOD) from a sample of 350 respondents who completed 
more than 2500 choice tasks. A similar SP survey was implemented in GBA where 1155 choice 
tasks were completed by 183 respondents to collect data for an app (Tripod) that incentivizes users 
to switch towards energy efficient travel choices. 

The information obtained from the pre-survey allows for developing behaviorally rich demand 
models that do not only model choices from the SP menu, but also other choices such as 
subscriptions to app-based services and using these services for a particular trip. Xie et al. (2019) 
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propose a framework for estimating demand for new transportation surveys using pre-survey, SP, 
and post-survey data whereby a nested structure is proposed for different models including (1) an 
app subscription model which predicts whether an individual will subscribe to the new service or 
not, (2) an app usage model, which predicts whether the individual will access the service 
(conditional on subscription), and (3) a model predicting the user’s mode choice from the menu 
presented in the app.

Finally, the current version of the SP survey is trip-based; it considers half-tours only. Ongoing 
research is focusing on activity-based SP where travelers can be presented with alternatives for 
their entire travel and activity pattern. One of the initial attempts focusing on travel patterns was 
in the context of mobility-as-a-service packages (Matyas and Kamargianni, 2017) described in 
Section 2.2. Such research stream can further shed light into higher level individual context in 
fundamental travel decisions, at the reach of a smartphone.
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