Nanoscale Characterisation of the Adhesion Mechanism in Thin Metal Films for Plasmonic Applications

Heinig, Mario; Todeschini, Matteo; Sukham, Johneph; Malureanu, Radu; Bastos da Silva Fanta, Alice; Jansen, Henri; Wagner, Jakob Birkedal; Kadkhodazadeh, Shima

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Nanoscale Characterisation of the Adhesion Mechanism in Thin Metal Films for Plasmonic Applications

Mario Frederik Heinig*1, Matteo Todeschini1, Johneph Sukham2, Radu Malureanu2, Alice Bastos da Silva Fanta1, Henri Jansen1, Jakob Birkedal Wagner1, Shima Kadkhodazadeh1

1 DTU Danchip/Cen, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
2 Department of Photonics Engineering, Technical University of Denmark, Kgs. Lyngby 2800, Denmark

*E-mail: marhein@dtu.dk

Keywords: adhesion layer, metal thin film.

Deposition of thin metal films on dielectric or semiconductor substrates is central to many technological applications, including plasmonics and microelectronic devices. In this respect, good adhesion between the deposited metal and the underlying substrate is necessary, in order to ensure device integrity and performance. For plasmonic applications, noble metals such as gold and silver are the most popular choices. However, achieving the required characteristics of ultra-thin and ultra-smooth layers for plasmonic waveguides and hyperbolic metamaterials is a challenge. Gold, while more chemically stable than silver, exhibits poor adhesion to underlying substrates, requiring the deposition of a second material in between (adhesion layer), in order to obtain uniform coverage. Here, we investigate the adhesion mechanism between gold and silicon oxide substrates, using the typically chosen Cr and Ti adhesion layers, as well as organosilane adhesion layers. High-resolution transmission electron microscopy (HRTEM), transmission Kikuchi diffraction (TKD) and electron energy-loss spectroscopy (EELS) are used to understand and compare the morphology, nanostructure and chemistry of the thin film structures. The results are examined with respect to the optical properties of the corresponding structures.

Figure 1: HAADF STEM images of a 10 nm Au layer deposited on SiO2 substrate using different adhesion layers in cross-sectional geometry.