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For thousands of years the yeast Saccharomyces cerevisiae has served as a cell 
factory for the production of bread, beer, and wine. In more recent years, this 
yeast has also served as a cell factory for producing many different fuels, 
chemicals, food ingredients and pharmaceuticals. S. cerevisiae, however, has also 
served as a very important model organism for studying eukaryal biology, and 
even today many new discoveries, important for the treatment of human 
diseases, are made using this yeast as a model organism. Here I will provide a 
brief review of the use of S. cerevisiae as a model organism for studying eukaryal 
biology, its use as a cell factory, and how advances in systems biology underpins 
developments in both these areas. 
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Graphical Abstract 

2-3 sentence summary: 
Through engineering yeast metabolism it is possible to produce many different 
molecules finding applications as biofuels, chemicals and pharmaceuticals. Relying on 
the extensive knowledge base of yeast, due to its many years of use as a model 
organism, assist in improving new design strategies, but also advancement in systems 
biology has enabled improved design of efficient cell factories.  

 

1. Introduction 

The first beers were probably produced in China around 7.000 BCE and in 
Mesopotamia and Egypt around 3.500-3.100 BCE (1). However, there are strong 
indications that yeast was already used 10.000 BCE to raise bread (2). Through 
thousands years of development, yeast became domesticated for improved use in the 
production of bread, beer and wine. It was, however, first in the 19th century that the 
French researcher Louis Pasteur demonstrated that the formation of alcohol in beer 
and wine production was not a spontaneous chemical conversion process, but required 
living cells. This enabled the Danish researcher Emil Christian Hansen, working at the 
Carlsberg Laboratory, to be the first to isolate yeast responsible for beer fermentation, 
allowing the Carlsberg brewery to significantly improve the quality of their beer 
production (3). Research carried out at the Carlsberg Laboratory played an important 
role in establishing fundamental research on yeast, as well as on many other aspects 
related to beer production. It subsequently played an instrumental role in establishing 
the role of yeast as a model organism for studying eukaryal cells.  

The original yeast species isolated by Hansen was Saccharomyces carlsbergensis, 
also known as lager yeast, which was later renamed as S. pastorianus that was 
recently shown to be a hybrid between S. cerevisiae and S. eubayanus (2). The 
approach for isolation of yeast species, developed by Hansen, was rapidly 
implemented resulting in the isolation of S. cerevisiae, now known as Baker’s yeast, 
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which today is by far the most dominantly used yeast species in fundamental studies 
and as a cell factory. For this reason, even though other yeast species are applied as 
cell factories and as model organisms, the term “yeast” often implies referral to S. 
cerevisiae and throughout this review yeast will therefore refer mainly to this species. 
Despite many years of domestication of S. cerevisiae, sequencing of 1,011 strains has 
shown that there is relatively small genomic variability between wild strains and 
strains used for the production of bread and various fermented beverages (4), probably 
due to this yeast’s natural habitat being associated with production of fermented 
beverages, e.g. on grapes. Furthermore, genome analysis points to a single “out-of-
China” origin for S. cerevisiae (4). 

Here I will review the use of S. cerevisiae as a model organism and as a cell factory. I 
will further argue how systems biology has been pioneered using yeast, and how 
developments in systems biology of this organism has underpinned the continuous use 
of yeast as a model organism and an even wider use of it as a cell factory in the future. 

2. Yeast as a model organism 

The wide use of yeast as a model organism is clearly demonstrated by the fact alone 
that since 2001 three Nobel Prizes in Physiology or Medicine have been awarded 
based on classical forward genetics using this organism (5). Hartwell, Nurse and Hunt 
were awarded the prize in 2001 “for their discoveries of key regulators of the cell 
cycle”. Leland Hartwell worked with S. cerevisiae, whilst Paul Nurse worked with 
Schizosaccharomyces pombe (fission yeast), another widely used model yeast, and 
Tim Hunt used sea urchin eggs in his cell cycle studies. In 2013 the prize was 
awarded to Rothman, Scheckman and Südhof “for their ground-breaking work on cell 
membrane vesicle trafficking”, with Randy Scheckman using yeast in his studies for 
identifying many key components of the protein secretory pathway; a pathway that 
today is exploited for the production of recombinant proteins for pharmaceuticals, 
establishing a billion dollar industry (6). In 2016, Yoshinori Ohsumi received the 
Nobel Prize for “his discoveries of the mechanisms for autophagy”, wherein 
practically all his ground-breaking work was accomplished using yeast as the model 
system, which he later confirmed to be conserved in higher eukaryal cells. Many other 
Nobel Prizes have also been given to researchers who used yeast as model system in 
their research work (5). Among these are Günther Blobel in 1999 (Physiology or 
Medicine) for the discovery that proteins have intrinsic signals which govern their 
transport and localization in the cell, Jack Szostak and Elizabeth Blackburn in 2009 
(Physiology or Medicine) for their discovery of how chromosomes are protected by 
telomeres and the enzyme telomerase, Roger Kornberg in 2006 (Chemistry) for his 
studies of the molecular basis of eukaryotic transcription (much based on studying the 
GAL-regulon in yeast), Osamu Shimomura, Martin Chalfie and Roger Y. Tsien in 
2008 (Chemistry) for the discovery and development of the green fluorescent protein 
where expression in yeast was instrumental for their work, Aaron Ciechanover, 
Avram Hershko and Irwin Rose in 2004 (Chemistry) for the discovery of ubiquitin-
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mediated protein degradation. In many of these cases classical biochemistry studies 
were combined with the power of classical yeast genetics (7), methods which remain 
in use today and which are increasingly being applied in a high-throughput fashion. 

The success of using yeast as a model organism is due to the high degree of 
conservation of many key cellular processes between yeast and human cells, e.g. 
autophagy, protein translocation and secretion, endoplasmic reticulum associated 
protein degradation, heat shock, and protein folding and chaperone functions. At the 
gene level there is also a high degree of conservation, as 47% of 414 essential yeast 
genes with a 1:1 human ortholog can be replaced by their human orthologs (8). 
Finally, conservation of many key signal transduction processes between yeast and 
human is indicative of conserved protein-protein interactions, regulation hierarchies, 
and signal cross-talk. Prominent examples are Snf1 and Tor1/Tor2, which are two 
dominant regulators of metabolism, protein synthesis and cell proliferation (Fig. 1). 
The energy sensor Snf1, in humans called AMP activated kinase (AMPK), was first 
discovered in yeast for controlling the use of alternative carbon sources such as 
sucrose, maltose and galactose (Snf1 stands for sucrose non-fermenting) (9), a control 
which it exerts through repression of the transcription factor Mig1. Later Snf1 was 
also found to control the use of non-fermentative carbon sources such as ethanol and 
glycerol, through activation of the transcription factors Cat8 and Adr1 (Fig. 1). 
AMPK (Snf1) is highly conserved in the eukaryal Kingdom and its regulatory 
repertoire includes both activation of energy generation, i.e. glycolysis, alternative 
carbon source utilization, and β-oxidation, and repression of energy expenditure, i.e. 
amino acid biosynthesis, lipid biosynthesis, and protein translation. A number of 
studies as well as systems biology analysis of a snf1 mutant have shown these roles to 
also be conserved in yeast (10) (Fig. 1). Furthermore, as an energy sensor Snf1 is also 
able to activate multiple stress response pathways via the transcription factors Msn2 
and Msn4 (Fig. 1). 

Snf1 interacts closely with another protein kinase Tor (target of rapamycin), which 
has two paralogs in yeast, Tor1 and Tor2. Complexes centered around these kinases, 
TORC1 and TORC2, exert different functions in yeast, but combined, they have the 
same function as the TORC1 complex in human cells, despite only TORC1 in yeast 
being sensitive to rapamycin. The Tor-complexes sense nutrients, in particular, the 
level of nitrogen sources, and activates a number of processes required for cell 
proliferation such as stimulating protein biosynthesis, ribosome biogenesis, meiosis 
and cell cycling, while repressing processes such as autophagy, retrograde response, 
stress response and nitrogen catabolite repression (Fig. 1). In human cells, there is 
cross talk between Snf1 and Tor (Fig. 1), a feat that does not seem to be conserved in 
yeast (11), even though many of the same processes regulated by Tor are found to be 
the same in human and yeast cells (11).  

Sir2 (SIRT1 in humans) is another important sensor for the cellular metabolic state 
first characterized in yeast. This enzyme deacetylates DNA and proteins using NAD+ 
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as a substrate, and hereby becomes a sensor of redox levels in the cell. In human cells 
SIRT1 has also been found to activate AMPK via its upstream protein kinases, but 
this connection has so far not been confirmed in yeast.  

 

Fig. 1 The key role of Snf1 and Tor1/Tor2 in regulation of yeast metabolism. The lower level 
of proteins are all transcription factors that control expression of genes associated with the 
processes specified in italics. The connections marked in red have not been proven in yeast, 
but have been identified in human cells. 

With the overlap of regulation, and the possible cross talk between Snf1, Tor1/Tor2 
and Sir2, these key regulators clearly play a very important role in maintaining 
metabolic homeostasis in the cell. Conservation of these regulators and their major 
effectors from yeast to human have made yeast research indispensable for 
understanding the fundamental principles in cell biology, and also highly relevant to 
human health and disease. Finally, understanding these nutrient sensing, information 
integration, i.e. sensing energy levels (AMP/ATP ratio), nitrogen levels and the 
NAD+/NADH ratio, and gene expression control mechanisms have enabled rewiring 
of yeast metabolism to over-produce many metabolites, propagating the extensive use 
of yeast as a cell factory and laying the foundations to using yeast as a model 
organism to pioneer the field of systems biology.  

3. Yeast as a cell factory 

With its extensive use in the production of beer and wine, it was natural that S. 
cerevisiae became extended towards use in ethanol production. Ethanol, although 
commonly associated with alcoholic beverages, was also used as a transportation fuel 
in the early days of automobile development. Today, it is by far the most produced 
biofuel, in 2017, bioethanol production in the USA alone being more than 60 billion 
liters, whilst in Brazil it is about 30 billion liters, and in the rest of the World about 15 
billion liters. Due to the wide use of yeast for bioethanol production, the fermentation 
industry has a large preference for this organism as a cell factory also for the 
production of many other fuels and chemicals. Furthermore, it is often the preferred 
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cell factory for the production of food-grade-products due to its long use in the food 
industry. The choice of cell factory does, however, depend on many different factors 
(Table 1), and for diols such as 1,3 propanediol and 1,4 butanediol, both which are 
used as commodity chemicals, the Gram-negative bacteria Escherichia coli has 
historically been the preferred cell factory, due to its ability to attain very high 
production rates and the relatively low toxicity of these compounds (12,13). In Table 
1 I benchmark four widely used cell factories in respect to several important traits a 
cell factory should have. Although it is obvious that there is no single cell factory that 
scores high on all desired traits, S. cerevisiae still often comes out as the preferred cell 
factory, in particular for its production of organic acids as well natural products that 
require expression of plant P450 enzymes.  

For these reasons and its robustness for producing many different chemicals (Table 2), 
S. cerevisiae is often referred to as a so-called platform cell factory (Fig. 2A) (14). 
Many of these chemicals, however, have only been produced in small amounts in the 
laboratory, therefore implementation of an industrial process will usually require 
iterative optimization in strain and fermentation process, through which the titer, rate 
and yield (TRY) of the cell factory are all improved. Improvement of the TRY 
requires extensive engineering of central carbon metabolism, as not only the pathway 
leading to the product of interest has to be optimized, but also the provision of the 
precursor metabolite(s) and co-factors need to be optimized (15). This improvement is 
therefore costly and takes several years (Fig. 2B), e.g. on the order of USD50 millions 
and 5-8 years (15). In particular for commodity type products, such as biofuels and 
platform chemicals used e.g. for polymer production, there are strict requirements on 
the TRY, and generally one has to reach >90% of the theoretical yield of product from 
the substrate to have an economically viable process. This often requires major 
rewiring of central carbon metabolism, such that this is tailored to supply precursor 
metabolite(s) and co-factors that are used in the production pathway. Thus, in order to 
improve the TRY of the sesquiterpene farnesene, for example, that can be used as a 
biofuel as well as in the synthesis of squalene and other valuable chemicals, 
researchers from the biotech company Amyris completely rewired central carbon 
metabolism in order to ensure a high TRY (16). This rewiring involved expression of 
a heterologous phosphoketolase pathway that can convert fructose-6-phosphate or 
xylulose-5-phosphate to acetate-phosphate and erythrose-4-phosphate or 
glyceraldehyde-3-phosphate, respectively (16). Acetyl-phosphate is further converted 
to acetyl-CoA by expression of a heterologous phosphotransacetylase. The 
phosphoketolase pathway subsequently ensures more efficient provision of acetyl-
CoA, a precursor metabolite for sesquiterpene biosynthesis. Several other engineering 
strategies were also implemented by Amyris, resulting in a heavily engineered strain 
with a completely altered central carbon metabolism. Similar rewiring has also been 
performed to obtain high TRYs for free fatty acids (17). These chemicals can be 
hydrogenated to hydrocarbons, which can then be used as biofuels, as well, such 
hydrocarbons can also find applications in cosmetics and nutraceuticals. Through 
combining the expression of a heterologous pathway for provision of acetyl-CoA in 
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the cytosol, i.e. ATP:Citrate Lyase, combined with extensive engineering of central 
carbon metabolism to ensure provision of citrate for this pathway, as well as a 
sufficient amount of NADPH for fatty acid biosynthesis, it was possible to reach 
yields of free fatty acids on glucose amounting to 30% of the maximum theoretical 
yield (13). Furthermore, with cells been engineered to have a high flux towards fatty 
acids, it was possible to abolish ethanol fermentation by deletion of pyruvate 
decarboxylase activity, and thereby convert the cells from being ethanologenic to 
solely being lipogenic. 

Table 1 Scoring of traits for four important cell factories 

Traits Escherichia 
coli 

Corynebacterium 
glutamicum 

Saccharomyces 
cerevisiae 

Aspergillus 
niger 

Rate ***** **** *** ** 

Ease of engineering ***** ** ***** * 

Use of biomass as by-
product 

* * ***** * 

Expression of plant 
enzymes1 

** ** **** ***** 

pH tolerance * * **** ***** 

Temperature tolerance ***** **** *** *** 

Salt tolerance *** *** **** **** 

Substrate spectrum **** *** *** ***** 

Robustness2 ** ** ***** ***** 

Knowledge base ***** *** ***** ** 

1 E.g. P450 enzymes often used for the production of plant natural products 

2 Robustness is here defined as a general property associated with being robust at industrial conditions, 
e.g. resistance to phages and other contaminants 
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Fig. 2 Yeast as a cell factory platform. A. Using systems biology and synthetic biology yeast 
metabolism can be engineered to produce a wide range of different chemicals. These range 
from low-value added, but large volume type products such as ethanol and other biofuels to 
high-value added, but low volume type products such as pharmaceuticals. B. Following 
engineering of a strain to produce the molecule of interest, a so-called proof-of-principle 
strain that often can form the basis for patent protection, it is necessary to improve the TRY in 
order to establish an industrial process. This takes time and is costly and new technologies are 
desired to decrease the development time and costs. 

Table 2 Non-exhaustive list of various chemicals produced by yeast 

Chemical class Chemical Application Reference 

Alcohols Ethanol 

Butanol 

Drop in biofuel 

Drop in biofuel and precursor for jet 
fuels 

(18) 

(19,20) 

Alkanes Long chain alkanes 

Short chain alkenes 

Drop in diesel 

Drop in biofuel 

(21) 

(22) 

Fatty acids Oleic acid 

Octanoic acid 

Biofuel and lubricants 

Platform chemical 

(23) 

(24) 

Fatty alcohols Stearyl alcohol Biofuel and lubricants (23) 
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Organic acid 3-OH-propionic acid 

Succinic acid 

Malic acid 

Lactic acid 

Precursor for acrylates 

Platform chemical 

Food preservation 

Polylactic acid 

(25,26) 

(27,28) 

(29) 

(30) 

Aromatics Coumaric acid Platform chemical (31) 

Sesquiterpenes Artemisinic acid 

Bisabolene 

Santalene 

Valencene 

Antimalarial drug 

Drop in jet fuel 

Perfume ingredient 

Perfume ingredient 

(32,33) 

(34) 

(35) 

(36) 

Amino acids Ornithine Dietary supplement (37) 

Flavonoids Naringenin Dietary supplement (38) 

Stilbenoids Resveratrol Dietary supplement (39,40) 

Steroids Hydrocortisone Treatment of inflammation (41) 

Opioids Thebaine & 
Noscapine 

Pain treatment (42,43) 

Enzymes α-Amylase Starch hydrolysis (44,45,46) 

Protein drugs Insulin 

Hormones, vaccines 

Treatment of diabetes 

Diabetes, hepatitis vaccinations 

(47) 

(48) 

Blood proteins Human albumin 

Hemoglobin 

Restoration of blood volume in 
trauma 

Oxygen carrier in artificial blood 

(49) 

(50) 
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Yeast can not naturally use pentoses such as xylose and arabinose as carbon source, 
which is an important trait for a cell factory that should convert lignocellulose into 
e.g. biofuels. There has therefore been much efforts on engineering yeast such that it 
can metabolize xylose and arabinose with the objective of establishing so-called 
second generation bioethanol production. Several different pathways exist for 
catabolism of xylose (51), but the most efficient pathway is using xylose isomerase 
that can convert xylose to xylulose in a single step (52). Xylulose can naturally be 
used as a carbon source by yeast, but the first phosphorylation step has low capacity 
so it is therefore necessary to also over-express xylulose kinase in order to ensure a 
high flux of xylose uptake (53). Xylose is transported into the cell via the hexose 
transporters, and there is therefore competitive inhibition of xylose uptake by glucose. 
In order to overcome this problem and ensure efficient xylose utilization in the 
presence of glucose, the hexose transporters have been engineered to having increased 
affinity towards xylose (54). With these advancements it efficient yeast cell factories 
for conversion of xylose to ethanol have been established and this has laid the 
foundation for industrial scale production of second generation bioethanol. 

4. Systems biology 

Systems biology is based on the use of computational and mathematical models for 
studying biological systems, wherein two different approaches exist (55): 1) top-down 
systems biology, which generally relies on omics data and often integration of these 
data sets with comprehensive network models and multivariate statistical analysis; and 
2) bottom-up systems biology, based on building mathematical models from 
biological knowledge, generally describing sub-systems such as regulons or specific 
pathways. Even though there are many prominent examples wherein bottom-up 
systems biology was used to get new insight into yeast biology (55), there is a 
growing trend towards a wider use of top-down systems biology due to it becoming 
progressively easier to obtain high-quality, quantitative data using omics analysis. In 
the following I will discuss some key examples of omics analysis and mathematical 
modeling that demonstrate how systems biology can assist in acquiring new biological 
knowledge and be used for designing cell factories. 

4.1 Omics analysis 

Omics analysis is defined as the measurement of cellular components and/or their 
interaction in a high-throughput fashion, i.e. such that all (or at least a very large 
fraction of all components) are measured at the same time. Omics analysis was 
pioneered using yeast as a model organism, with the first transcriptome analysis 
performed in this organism using so-called DNA microarrays (56), followed by many 
other types of omics analysis, including proteomics, wherein studies with yeast have 
often been used as a bench mark for new methods (57). Yeast was also used as a 
model to develop methods for global mapping of transcription factor (TF) binding, i.e. 
Chromatin Immuno Precipitation (ChIP)-CHIP (58) and ChIP-seq (59), approaches 
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that today are still widely used for mapping TF binding in human cells. Recently, we 
implemented ChIP-exo for more precise mapping of TF binding, and used this to 
identify the binding of TFs involved in the regulation of lipid metabolism under four 
different environmental conditions (60). Using the higher resolution ChIP-exo, 
combined with the characterization of binding at four different conditions, it was 
possible to identify a large number of new binding targets as well as identify extensive 
binding overlap events for several different TFs on the same promoters, thus pointing 
to there being far more complex transcriptional regulation in yeast than previously 
reported (60). Thus, to identify causal connectivity between TF binding determined by 
ChIP technologies and transcriptional regulation, it is imperative to generate data for 
many more conditions, and possibly including data for a larger number of TFs. 
Nonetheless, with this kind of data at hand it may be possible to use machine learning 
for developing models that describe the role of TFs in gene expression control. Such 
models will be valuable for designing promoters and genetic changes required for 
altering phenotypes, such as genetically rewiring metabolism for high-level 
production of specific chemicals. This may enable design of new strategies for 
altering transcriptional regulation of metabolic pathways, which has been shown to be 
an efficient approach for acquiring new phenotypes such as improved ethanol 
tolerance (61). In fact improving transcriptional regulation has been found to be an 
efficient strategy for metabolic engineering, e.g. as illustrated by use of terminators 
that improves mRNA half-life (62). Detailed models on transcriptional regulation 
obtained from systems biology can therefore directly impact metabolic engineering 
and assist in design of cell factories with improved properties. 

Yeast is probably the microorganism with the largest repository of transcriptome data. 
Most older data were generated using DNA microarrays, whereas RNAseq has 
become the norm today, although good consistency has been proven between the two 
different approaches (63). One main advantage of RNAseq is that it is quantitative, 
and with standards it is now possible to measure >4,000 mRNAs in yeast cells to 
absolute levels (64), with it being found that mRNA copy number per cell generally 
varies across two orders of magnitude, from 1 to 100 per cell. RNAseq is traditionally 
done using next generation sequencing, but recently it was shown possible to use 
nanopore sequencing technology, not only to obtain long DNA sequences required for 
genome assembly, but also for measuring mRNA levels (65). 

Proteomics is an area that has advanced significantly in recent years. With state-of-the 
art proteomics it is now possible to measure >2,500 proteins in yeast with a false 
discovery rate of <1% (49). Furthermore, using standards it is possible to measure 
absolute levels of >2,000 proteins in yeast cells (64). Combining such data with 
quantitative mRNA data at 10 different environmental conditions enabled 
identification of strong linear relationships between protein and mRNA levels for 202 
genes (64). However, the slope of these relationships varied for individual proteins, 
pointing to large variations in translation rate (protein degradation was also quantified 
but found not to be an effector). This variation can explain the general poor 
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correlation between mRNA and protein levels reported in several studies, but clearly 
if more data can be obtained, the relationship between transcript and protein 
abundance for each gene can be established for each gene/protein making it possible 
to use mRNA levels to predict protein levels in the future. 

The metabolome is generally the hardest to capture and measure in a quantitative 
fashion. This is due to two factors: 1) the very rapid turnover of intracellular 
metabolites, which requires rapid quenching and extraction of the metabolites (66); 
and 2) the large chemical diversity of intracellular metabolites, which will require the 
use of several different analytical methods for their measurements (67). Sauer and co-
workers recently presented a very elegant method to overcome the second issue, 
namely through the use of non-targeted metabolomics using direct injection mass 
spectrometry (68). They used this approach for performing metabolome analysis of an 
E. coli single knockout collection with the objective to annotate gene function. Even 
though this non-targeted metabolomics approach has not yet been applied for analysis 
in yeast, it could easily be combined with one of the traditionally used quenching and 
extraction methods developed for this organism (66). Another complication with 
analyzing metabolomics data is that metabolite concentrations are a function of both 
protein levels and kinetics of the individual enzymes, and generally there is little 
knowledge about the in vivo kinetic properties of the enzymes. Using targeted analysis 
of amino acids in a large gene deletion library it was possible to identify genes having 
similar function, and further link these to specific regulators such as TORC1 (69). In 
another recent study from the same group, machine learning was used to correctly 
predict the yeast metabolome from quantitative proteomics data in several kinase 
knockout strains (70). This study clearly shows how machine learning can be a 
powerful tool for integrative analysis of multi-omics data, and with the accumulation 
of datasets with increasing size and complexity machine learning techniques are likely 
going to play an increasingly important role in assisting with analysis and extraction 
of biological information.  

4.2 Mathematical modeling of yeast 

Mathematical models play a central role in engineering where they are used for 
capturing information in a very concise way, and if the models have good predictive 
capabilities they can be used for the design of complex systems. Mathematical models 
are also used in natural sciences to extract information, for examples laws of nature in 
physics or parameters of certain biological processes, e.g. the Michaelis-Menten 
kinetics to describe the action of enzymes. With the introduction of molecular 
biology, it also became the standard to summarize key findings in cartoon models, as 
exemplified by the lac-operon. However, due to the complexity of metabolism and 
other cellular function together with the accumulation of knowledge such models 
become increasingly complex, and do not account sufficiently for quantitative 
information. There has therefore been an increasing interest to develop mathematical 
models that quantitatively describe different cellular processes. These models range 
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from simple kinetic models that describe the interactions of a few components, to 
comprehensive single cell models, e.g. a very detailed model developed for E. coli 
(71). However, with an increasing amount of data, empirical models are also being 
used more often, e.g. neural network models and other type of models integrated into 
machine learning algorithms, although here it is often difficult to extract new 
mechanistic knowledge. Most models fall into one of two categories: 1) kinetic 
models and 2) flux balance models. 

4.2.1 Kinetic models 

Kinetic models are generally so-called bottom-up models wherein the system is 
described with a set of variables, e.g. proteins and metabolites, and the interactions of 
these variables is described by a set of reactions or processes for which rate equations 
are defined. Often these rate equations take an empirical form, e.g. Michaelis-Menten 
kinetics for enzyme catalyzed reactions, resulting in a set of parameters that needs to 
be estimated before the model can be used for simulation purposes. If the model 
describes molecular mechanisms, the parameters can sometimes be taken from the 
literature, but most often they have to be estimated through fitting the model to 
experimental data. The model is therefore first truly evaluated when the model has 
been compared with an independent set of experimental data. Many different kinetic 
models have been developed in the area of yeast systems biology, although most have 
currently been used to study and predict metabolism.  

One seminal model was developed by a team led by Matthias Reuss, who developed a 
detailed kinetic model for yeast glycolysis (72). Besides representing a detailed 
description of the kinetics of all the individual steps of glycolysis, the study was the 
first to provide insight into the rapid response of glycolysis to perturbation. Thus, 
through measurements of glycolytic intermediates with a time resolution of seconds, 
the authors could demonstrate how a new pseudo-steady state was reached for most 
metabolites within a few seconds (at most one minute) following a large change in the 
extracellular glucose concentration (72). This finding strongly supports the concept of 
flux balance analysis (see below), as clearly metabolism rapidly adapts to a new 
condition where there is balancing of all fluxes in and out of each metabolite pool. 

Another milestone kinetic model is the model of Edda Klipp and co-workers, that 
described the high-osmolarity glycerol response pathway, involving the mitogen-
activated protein (MAP) kinase Hog1 (73). Here the authors correctly described how 
yeast cells respond to osmotic shock through modeling of several key processes 
involved in osmo-regulation. This included the MAP-kinase signaling cascade, key 
reactions of central carbon metabolism (including glycerol production), gene 
expression, as well as biophysical processes including water flow across a membrane, 
(73). The model here is particularly impressive as it involves the combination of 
several different modeling modules, enabling isolation of several different cellular 
processes, which are activated to ensure osmo-tolerance by the cell. The model was 
later expanded to cover more metabolic reactions, making it possible to simulate and 
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therefore understand how metabolic flux is rerouted towards glycerol as an osmo-
protectant (74). 

Finally, it is worth mentioning the work of Bas Teusink and co-workers, who in 
several different studies used kinetic models to get insight into the functioning of 
glycolysis. In one early study they demonstrated that this important pathway has a so-
called Turbo design, due to the initial investment of ATP in sugar phosphorylation, 
later capturing ATP in downstream glycolysis (75). Unless there is installed regulation 
of glycolysis this can lead to rapid depletion of ATP if cells are transferred from 
conditions with low sugar concentrations to high sugar concentrations. Yeast has 
evolved to have a “brake” on the initial sugar phosphorylation by hexokinase to 
prevent drainage of ATP. This “brake” is caused by trehalose-6-phosphate (T6P), 
formed from glucose-6-phosphate, and serving as an inhibitor of hexokinase. Using 
this simple kinetic model, Teusink and co-workers could therefore capture the crucial 
role of this regulatory design (64). This important role of T6P can also explain why a 
yeast strain that lacks trehalose-6-phosphate synthase (Tps1) cannot grow when 
glucose is in excess (76). More recently Teusink and co-workers performed a far more 
thorough analysis of the role of Tps1 in controlling glycolysis and growth of yeast at 
high glucose concentrations, and found that yeast may be able to survive without this 
enzyme given the right initial concentration of glycolytic intermediates (77). Due to 
cell heterogeneity, this would allow a sub-population of cells in a culture lacking Tps1 
activity to actually survive and eventually take over the population. Their extensive 
analysis combining detailed mathematical modeling with multi-omics analysis is 
subsequently an excellent example of how systems biology can provide new insight 
into the physiology of yeast (78). 

4.2.2 Flux balance models 

Flux balance analysis (FBA) is a modeling concept that has been extensively used for 
about 30 years (51), and relies on balancing fluxes around metabolites in the model. In 
other words, the sum of fluxes into a metabolite pool equals the sum of fluxes leaving 
this metabolite pool. The resulting balance equations provide a set of constraints on 
the fluxes, and this concept is therefore also often referred to as constraint-based 
analysis (79). Using this concept it is possible to calculate all the metabolic fluxes 
using a few measured fluxes as additional constraints, and often also using an 
objective function. Originally FBA was used for small scale models that captured 
primarily central carbon metabolism but with the introduction of genome-sequences it 
became possible to reconstruct cellular metabolism at the genome-scale, resulting in 
so-called genome-scale metabolic models (GEMs). FBA has been used extensively 
for analysis of yeast metabolism and in 2003 the first GEM was reconstructed for 
yeast (80). This model has been updated in several rounds by different research 
groups and in 2008 this inspired several groups to collaborate and establish a so-called 
consensus GEM for yeast, often referred to as Yeast (81). This consensus GEM has 
subsequently been updated in several rounds (82), and we are currently working on 
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Yeast8, which is made freely available at https://github.com/SysBioChalmers/yeast-
GEM ahead of publication, in order to be a general resource for the yeast community. 
Through having the GEM as a freely available model it will also be possible to 
continuously update the model in a community effort, thereby making the model an 
increasingly valuable resource for capturing information about yeast metabolism. 

GEMs together with FBA has been used extensively for studies of yeast metabolism 
as well as for the design of cell factories, e.g. to develop a strain that has succinic acid 
production coupled with growth (27). However, the predictive strength of traditional 
FBA is limited, as the concept does not account for kinetics of individual enzymes, 
and as a result the capacity of each pathway to carry a certain flux is not constrained. 
This can be overcome by adding constraints on the flux through each of the reactions, 
defined by both enzyme kcat and enzyme concentration. An additional constraint on 
the total enzyme pool further improves the prediction. Applying these constraints on a 
relatively simple model, where only enzymes of the central carbon metabolism were 
considered, it was possible to describe the so-called Crabtree effect, i.e. overflow 
towards ethanol when yeast is growing fast at un-restricted glucose concentrations 
(83). The modeling gave new insight into this well studied phenomenon, and showed 
clearly that the Crabtree effect is resulting from a relatively low catalytic efficiency of 
the tricarboxylic acid (TCA) cycle and the respiratory system, and in particular 
pointing to a key role of F1FO-ATP Synthase, a very large enzyme with a relatively 
low kcat (83). This modeling clearly showed that the concept of proteome constraints, 
together with information on catalytic efficiency of individual enzymes in the model 
represents a very powerful approach to simulate metabolism. We therefore expanded 
further this concept to cover all enzymes in the GEM Yeast7.6, referred to as an 
enzyme constrained model (84), i.e. ecYeast7.6. Besides also being able to describe 
the Crabtree effect, this expanded modeling approach, referred to as GECKO, also 
enabled better prediction of growth on different carbon sources as well as the impact 
of different genetic modifications (84). Furthermore, as GECKO is compatible with 
proteomics data, it is suitable for integrative analysis of similar quantitative omics 
data. 

The next step in modeling will naturally be to expand the GECKO modeling concept 
further to account for protein synthesis and translocation to different compartments. 
This is in analogy with the so-called ME (metabolism and protein expression) model 
generated for E. coli (85), now also accounting for differences in kcat values as well as 
protein constraints in different compartments, such as mitochondria, endoplasmic 
reticulum and the plasma membrane. We have already generated such a model and it 
has been shown to have excellent predictive strength (non-published results), referring 
to this type of model as a proteome constrained model, i.e. pcYeast7.6. 
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5. Perspectives 

As it has become easier to perform studies on human cell lines the need for yeast as an 
eukaryal model organism has decreased, but still it has much to offer as a model 
organism. Due to its relatively small genome, relative simplicity in terms of 
regulation, availability of excellent research infrastructures such as the 
Saccharomyces Genome Database, and availability of both gene deletion and over-
expression libraries, yeast is still widely used as a model organism. Furthermore, with 
the development of many new techniques for generating high-throughput data it has 
become possible to generate very large experimental data-sets of high-quality for 
yeast, and these will further advance our understanding of the functioning of an 
eukaryal cell. As discussed, GEMs are beginning to establish themselves as a strong 
platform for performing integrative analysis of such quantitative data and transform 
them into knowledge. Moreover, the GEM modeling concept allows for further 
expansion as discussed, e.g. to consider protein synthesis and translocation, enabling 
these models to capture increasingly greater number of features connected to yeast 
physiology. However, for some processes, e.g. transcriptional regulation, where there 
may be an element of stochasticity as well as epistasis, it may be very difficult, to 
develop traditional mechanistic models. In these cases, it may be necessary to rely on 
machine learning techniques. However, such models may well be combined with 
GEMs, that currently remain the best modeling platform for describing all key cellular 
processes in a single mathematical model. Such a model will be very valuable for 
gaining novel physiological insight as well as for design of efficient cell factories. I 
am therefore confident that also in the future there will be excellent synergy between 
the use of yeast as a model organism for studying eukaryal biology and the use of 
yeast as a cell factory. 
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