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Abstract

This paper presents an investigation into the ultimate behavior of a recently developed design for

keyed shear connections. The influence of the key depth on the failure mode and ductility of the

connection has been studied by push-off tests. The tests showed that connections with larger key

indentations failed by complete key cut-off. In contrast, connections with smaller key indenta-

tions were more prone to suffer local crushing failure at the key corners. The local key corner

crushing has an effect on the load-displacement response, which is relatively more ductile. In

addition to the tests, the paper also presents lower bound modeling of the load carrying capacity

of the connections. The main purpose of the lower bound model is to supplement an already pub-

lished upper bound model of the same problem and thereby provide a more complete theoretical

basis for practical design. The two models display the same overall tendencies although identical

results are not possible to obtain, due to differences in the basic assumptions usually made for

upper and lower bound analysis of connections. It is found that the test results, consistent with

the extremum theorems of plasticity, are all lying within the gap between the upper and the lower

bound solution. The obtained results finally lead to a discussion of how the two models can be

used in practice. The primary merit of the upper bound model lies in its simplicity (a closed-

form equation). On the other hand, the lower bound model provides safe results, but is more

complicated to apply. It is therefore argued that the upper bound model may be used in cases,

where calibration with tests has been carried out. The lower bound model should be applied in

situations, where the design deviates significantly from the configurations of the available tests.

Keywords: Keyed Shear Connections, Precast Concrete, Push-off Tests, Rigid-Plasticity, Lower

Bound Solutions

1. Introduction

A new design for keyed shear connections between precast wall elements has recently been

proposed and the structural performance has been experimentally investigated [1]. The concep-

tual layout of the design can be seen in Figure 1. Unlike the conventional solution, where the

overlapping U-bars are looped in the horizontal plane [2, 3], this new layout consists of U-bars

looped in vertical planes. The solution contains double T-headed bars (lacer bars) placed perpen-

dicular to the plane of the wall elements to ensure efficient transfer of tension between the U-bars

[4]. It is also possible to add a vertical locking bar similar to the conventional design of keyed

shear connections. As shown in [1], the new design has a much more ductile shear behavior than
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the conventional solution and can in addition be more construction-friendly in case of vertically

lowered panels. Thus, the new design has the potential to be used in e.g. high-rise buildings in

cases where in-situ walls are replaced by precast concrete elements.

σc

V V
Precast
element

Horizontal section

Vertical
section

Vertical
locking bar

Strut
action

Mortar grout

(a)

Horizontal section

Lacer bar

Vertical section

U-bar loop

(b)

Figure 1: (a) Shear connection between RC precast wall elements and (b) conceptual design of new connection solution

(illustrations from [4])

The experimental results reported in [1] showed that the geometry of the shear keys, and in

particular the depth of the keys, plays an important role for the ductility of the connection. In

addition, the ability of the U-bars to develop yielding is decisive for a desirable behavior of the

connection in the ultimate limit state. Inspired by experimental observations, rigid-plastic upper

bound solutions have been developed for prediction of the capacity of the connection [1].

The aim of this paper is twofold. First and foremost, there is a need for additional tests to explore

the behavior of the new design and in details study the influence of the key depth. Therefore,

an in-depth experimental investigation of the failure of the shear keys has been carried out. To

widen the experimental database (not only with respect to the number of tests but also with re-

spect to parameter variations) U-bar diameters smaller than those used in the first test campaign

have been investigated. Secondly, from an analytical point of view, there is a need to establish

lower bound solutions for the shear capacity of the connections in order to evaluate the already

developed upper bound solutions [1]. The set of solutions can be used to bracket the theoretically

exact solution from below and above, which is extremely useful for practice.

For looped connections, upper bound solutions are relatively straight forward to establish when

based on observed failure modes [1, 5, 6], while optimal lower bound solutions are more difficult

to develop. Simple lower bound solutions for keyed shear connections have e.g. been proposed

by Christoffersen [7] and further developed in Nielsen and Hoang [8]. However, the models con-
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Table 1: Specifications of the test specimens, including material properties

No. fc [MPa] Lk [mm] Ak [mm2] dk [mm] As [mm2] VFP [kN]

D10 A 44.6 120 24000 10 113 448.56

B 44.6 120 24000 10 113 448.62

D12 A 44.6 120 24000 12 113 471.74

B 44.6 120 24000 12 113 496.36

D14 A 44.6 120 24000 14 113 510.91

B 44.6 120 24000 14 113 519.16

D16 A 44.6 120 24000 16 113 543.30

B 44.6 120 24000 16 113 541.57

D18 A 42.0 120 24000 18 113 540.73

B 42.0 120 24000 18 113 537.50

D20 A 42.0 120 24000 20 113 526.62

B 42.0 120 24000 20 113 517.03

fc refers to the compressive strength of the grout measured on φ100x200 mm cylinders

As describes the reinforcement area per loop connection, i.e. 4
π

4
φ2

tain only single uniaxial strut action and are in many cases too conservative. Recently, Herfelt et

al. [9] presented a numerical framework for obtaining optimal lower bound solutions based on

finite element limit analysis (FELA). The numerical tool calculates the optimal stress distribution

and the corresponding failure mechanism in the joint mortar. In this paper the results obtained

by FELA will be used as inspiration to establish analytical lower bound solutions.

Compared to the single strut solution [7], the following numerical and analytical models uti-

lize combinations of struts with different inclinations to optimize the theoretical load carrying

capacity. In addition, the ability of the grout-to-panel interface to transfer shear stresses is uti-

lized which eventually leads to non-hydrostatic biaxial stress conditions in the nodal zones. The

stresses in the nodal zones at the key corners are modeled by use of the concept of homogeneous

stress fields. The concept was treated e.g. in Refs. [10–12].

2. Experimental program

The experimental program comprised 12 push-off specimens with identical loop configura-

tion and with a variation of the key depth, dk, from 10 mm to 20 mm. Compared to the first

test campaign [1], this program used U-bars with a diameter of 6 mm instead of 8 mm and the

shear keys in all specimens had a height equal to the thickness of the precast element, i.e. hk = t,

which enabled identification of the local failure of the individual shear keys by use of digital

image correlation (DIC). The general geometry of the test specimens can be seen in Figure 2 and

the material properties are given in Tables 1 and 2. The specimen identification refers to the depth

of the shear keys (e.g. D10 designates a key depth of dk = 10 mm). Each design was replicated

twice, denoted A and B. The connections were grouted with a mortar with a maximum aggregate

size of 4 mm and a vertical locking bar was included to minimize the extent of diagonal cracking

between the shear keys. The U-bar loops were designed according to Refs. [4, 6] to transfer the

full yield force of the U-bars.
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Figure 2: General layout of push-off test specimens (illustration from [1])

Table 2: Material properties and geometric values

Description Symbol

U-bar diameter φ 6 mm

Yield strength of U-bar fy 517 MPa

Lacer bar diameter φLacer 12 mm

Yield strength of lacer bar fy,Lacer 552 MPa

Internal bend diameter of loops D 45 mm

Width of Joint b 80 mm

Distance between loops s 300 mm

Inclination of key corner θk arctan 1
2

Total length of joint L 1280 mm

Max aggregate size in mortar dmax 4 mm

Diameter of locking bar φL 12 mm

Yield strength of locking bar fyL 599 MPa

Panel thickness t 200 mm

Strength of precast panels fc,element 58.2 MPa

4



0 5 10 15
0

100

200

300

400

500

600

Measured longitudinal displacement [mm]

F
o
rc
e
[k
N
]

 

 

D10 B
D12 A
D14 B
D16 BFailure mode

(a) Smaller key depths, failure by key corner shearing
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(b) Larger key depths, failure by complete key shearing

Figure 3: Experimentally recorded load-displacement curves

2.1. Test results

Figure 3 shows examples of typical tested load-displacement relationships. The depicted dis-

placements correspond to relative longitudinal displacements between the two precast elements,

measured at both ends of the connection and averaged. The figure shows two different behaviors

depending on the failure mode of the shear keys. The plots in Figure 3(a) are the results of spec-

imens with smaller key depths (dk = 10-16 mm) where failure took place as a local shearing of

the key corners (as illustrated in the graph). For larger key depths (dk = 16-20 mm), complete

shearing of the shear keys governed the first peak load, which leads to the load-displacement

characteristics shown in Figure 3(b).

The transition from key corner shearing to complete key shearing was dependent on a number

of factors, including the geometry of the shear keys, the material properties of the mortar, and the

strength of the reinforcement. From post-test examinations it was found that specimens with dk =

16 mm could fail both by local key corner shearing (D16B) and by complete failure of the shear

key (D16A). This indicates that the theoretical transition between the two failure modes for this

particular test series takes place at approximately this key depth. The load-displacement rela-

tionships of D16A and D16B are both shown in Figure 3. It was found that both had comparable

first peak loads, VFP (see Table 1). However, the residual load level after first peak was higher

for specimen D16B which experienced key corner shearing. This was a general observation that

specimens suffering local key corner shearing had a more ductile load-displacement relationship

(i.e. residual load level closer to first peak load). In contrast to this, a relatively larger drop of the

load immediately after first peak was observed for all the specimens, which failed by complete

key shearing. Both types of failure were accompanied by development of diagonal cracks in the

grout. Figure 4 shows examples of local failure of the keys in combination with diagonal cracks

which formed the global failure mechanism. Post-test examinations also showed large plastic de-

formations in the U-bars. This observation confirms that the design of the loop connection (i.e.

the overlapping length, the diameter of lacer bar and the internal bend diameter of the U-bars)

did enable transfer of the yield capacity of the U-bars through the overlap.

It was generally observed that the first peak load, VFP, increased with increasing key depth

until complete shearing of the keys becomes the critical failure mode. Then VFP remained prac-
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(a) Specimen D10 A - key corner shearing

(b) Specimen D20 A - complete key shearing

Figure 4: Identification of failure modes just after first peak load by use of digital image correlation

tically constant and independent of a further increase of the key depth, cf. Table 1. The residual

load level after first peak appeared somewhat constant within the two types of failure and must

thereby be related to the layout and the properties of the loop reinforcement, which were kept

constant in this study.

Based on the experimental results, it seems that connections in practice should be designed to

be governed by local shearing of the key corners, as this minimizes the difference between first

peak load and the residual load level.

3. Rigid-plastic analysis

The first peak load, VFP, can be estimated by use of upper or lower bound models assuming

rigid-plastic material behavior. Rigid-plastic modeling can also be used to obtain an estimate

of the inelastic load-displacement curve. This, however, requires a second order plastic analysis

where change of geometry and large displacements are taken into account [13–16].

The objective of this paper is limited to the calculation of VFP. As mentioned, an upper bound

model has already been established [1]. The model predicts the shear capacity of keyed con-

nections in a satisfactory manner provided that an effectiveness factor, ν, is introduced. The

problem, however, with a pure upper bound approach is that it remains an open question whether

the adopted effectiveness factor, obtained by calibration with tests, to a significant extent also

accounts for the fact, that the developed upper bound model is not necessarily the exact/correct

one. To answer the question and eventually to evaluate the developed upper bound model, lower

bound solutions will be established in the following. This includes both numerical solutions as

well as analytical ones.

4. Numerical lower bound solutions based on finite element limit analysis (FELA)

The main purpose of the performed numerical lower bound calculations is to provide inspi-

ration for the type of stress field to be adopted in an analytical lower bound model. FELA can be

considered as a special case of the finite element method, where a rigid-plastic material model is

assumed. For lower bound solutions, a set of constraints ensure that the equilibrium conditions

and the yield criteria are satisfied, i.e. a statically admissible and safe stress field, while the load

is sought to be maximized. A detailed description of the numerical framework for modeling
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of keyed connections can be found in Herfelt et al. [9] and a summary of the concept is given

in Appendix A. Here only the main assumptions are needed for comparison with the analytical

model.

The relevant parameters for the numerical analysis are the geometry of the shear keys, the me-

chanical degree of transverse reinforcement, interface properties, and the grout properties. Based

on the experimental results the transverse reinforcement degree is determined by the yield force

of the U-bars. In the model, the overlapping loops are simplified as continuous reinforcement

crossing the connection. Moreover, plane stress condition is assumed and the mortar is modeled

as a modified Coulomb material without tensile strength. For the interface between the grout and

the precast concrete, a Coulomb friction criterion is assumed with a friction coefficient, µ = 0.75

(corresponding to smooth casting joints [8, 17]) and a neglectable cohesion. However, friction is

only considered active in the indented areas. The main argument for this is that the normal stress

required to activate friction stems from tension in the transverse reinforcement, which represents

a form of passive confinement in contrast to active confinement from an external normal force.

Hence, since the load is anticipated to be carried mainly by strut action between the shear keys

(when no active normal force is applied), then only the indented areas (which experiences com-

pression from the strut action) can transfer friction. The longitudinal locking bar has not been

included in the numerical model, as it is judged to entail stress fields that, at the current stage,

are too complicated for the initial establishment of analytical lower bound models.

Figure 5 shows the calculated distribution of the smallest principal stress (maximum compressive

stress) in the joint mortar for some specimens from the experimental program. The stress field

is only visualized for the joint mortar, since the precast elements in the experimental program as

well as in the numerical model had over-strength. In the calculations, the strength of the mortar

was taken as fc, according to Table 1. This entails that the effectiveness factor, ν, was chosen as

unity (note that the absolute value of ν is not important when the results are used only to compare

with the analytical solutions).

From the optimized stress distributions, it can be seen that the load transfer mechanism consists

of a combination of compression struts spanning over one or two shear keys, i.e. struts with dif-

ferent inclinations. This type of stress field is obviously more complicated than the single strut

solutions [7]. The numerical results will in the following form the basis for how to choose the

stress field in an analytical lower bound solution and finally the results of the two methods will

be compared.

5. Analytical lower bound solutions

Inspired by the results of FELA, an analytical model for the load carrying capacity of keyed

shear connections will be established. Some simplifications have to be introduced in order to

carry out the analytical calculations. Two basic stress fields are considered, in the following

denoted as Solution 1 and Solution 2, and the contribution from the locking bar is disregarded.

Solution 1 consists of parallel struts spanning over a single shear key (Figure 6). Solution 2

combines struts spanning over one shear key and two shear keys, respectively (Figure 8). The

struts carry uniaxial compression, while the nodal zones are stressed in biaxial compression. A

lower bound for the load carrying capacity will in this context be taken as the larger of the two

solutions. It turns out that Solution 1 is optimal for smaller key depths, whereas Solution 2 is

optimal for larger key depths. For a further increase of the key depth, the load may be carried

almost completely by struts spanning over two shear keys without combination with struts over

7



(a) dk = 10 mm, VFP = 340.5kN

(b) dk = 14 mm, VFP = 404.1kN

(c) dk = 20 mm, VFP = 486.1kN

Figure 5: Distribution of the smallest principal stress (MPa, tension positive) in connections with dk = 10, 14 and 20

mm, obtained by FELA, fc = 42 MPa

a single key, see e.g. Figure 5(c). This is in accordance with the model of Christoffersen [7] (see

also Nielsen and Hoang [8]).

5.1. Solution 1: Single struts spanning over one shear key

For the purpose of analysis, a l − t coordinate system, referring to the longitudinal and trans-

verse directions of the connection, is defined, see Figure 6. The following relations for the

geometrical parameters shown in Figure 6 are introduced:

tan θk =
e1

dk

(1)

tan θA,1 =
Lk − e

b
(2)

a = e − dk tan θA,1 (3)

In Figure 6(b) the parameter e is an optimization parameter related to the strut width. The

capacity obtained by this solution is governed by either the compressive strength of the strut or

the stress state in the key corner (in the following denoted Triangle I), which can be assessed

as a homogeneous stress field. The stress components for this solution will be calculated in the

following.
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Figure 6: (a) Distribution of struts spanning over a single key (Solution 1) and (b) definition of geometrical parameters

at a key including the nodal zone, Triangle I
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Figure 7: (a) Stresses along boundaries of Triangle I (Solution 1) and (b) resultants of stresses on boundaries
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5.1.1. Local equilibrium conditions for Solution 1

Figure 7(a) depicts the nodal zone (Triangle I) of Solution 1 where each of the three bound-

aries is assumed to be uniformly stressed by normal and shear stresses. The stress field within

the triangle is thus homogeneous. Compressive normal stresses are taken as positive. The stress

resultants on the boundaries act at the centroid of each boundary and are illustrated in Figure

7(b) as forces related to the l − t coordinate system.

The homogeneous stress field (σt, σl, τlt) within Triangle I may be expressed in terms of the

stress resultants shown in Figure 7(b):

σt,I =
Ct,1

(a − e1) hk

(4)

σl,I =

Al,1
a − e1

a
−Cl,1

dk

a − e1

a
hk

(5)

τtl,I =
Cl,1

(a − e1) hk

(6)

The relations between σA,1 and the stress resultants, Al,1 and At,1, are:

Al,1 = σA,1 cos θA,1 sin θA,1hke (7)

At,1 = σA,1 cos2 θA,1hke (8)

From the three equilibrium conditions for the triangular area, the following relations between the

stress resultants can be established:

Al,1 − Cl,1 − Pl,1 = 0 (9)

At,1 − Ct,1 − Pt,1 = 0 (10)

At,1
a − e1

2
−Cl,1

dk

2
−Ct,1

a

2
= 0 (11)

5.2. Solution 2: Combination of struts spanning over one and two shear keys

In this solution, the struts are assumed to span in such a way so that the entire key length, Lk,

is utilized to transfer stresses (compare Figure 8(b) to Figure 6(b)). Similar distributions can be

seen in Figure 5. The inclination of Strut A may also in this case be described by Equation (2).

The inclination of Strut B spanning over two keys is:

tan θB =
s − e

b
(12)

where s is the distance between the shear keys and e describes the same geometrical parameter

as in Solution 1, see Figure 8(b). As indicated in Figure 8(b) the nodal zone in the indented

area has been subdivided into two triangular areas (II and III), which as shown later are stressed

in biaxial compression. To describe the geometry of this zone, the distance e2 is introduced as

follows:

e2 = Lk − (e + dk tan θB) (13)
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Figure 8: (a) Distribution of struts in joint mortar (Solution 2) and (b) geometry at a key for verification of stress transfer

This relation ensures that the above mentioned assumption of stress transfer over the entire in-

dented length, Lk, is fulfilled. In this context, it is assumed that e2 cannot attain negative values,

and to fulfill this, a maximum effective key depth that can be utilized in the model is introduced:

dk,ef = (Lk − e) cot θB (14)

Hence, for larger key depths, the maximum effective key depth, dk,ef, is adopted in the calcula-

tions. This eventually means that by using Solution 2, a capacity higher than that corresponding

to a key depth of dk,ef cannot be obtained. As for Solution 1, the capacity here will also be

governed by either the stress state in the struts or in the triangles.

5.2.1. Local equilibrium conditions for Solution 2

The equilibrium equations for Triangle I in Solution 1 also apply for Solution 2 in which the

outermost shear keys also contain a nodal zone of the same type, see Figure 8(b). In addition,

equilibrium equations for the nodal zone bounding Strut A as well as Strut B, i.e. Triangles II

and III, need to be developed. The stresses and stress resultants acting on the boundaries of

Triangle II and III are illustrated in Figure 9. Triangle III borders on Struts A and B as well as

Triangle II.

The homogeneous stress fields within Triangle II and Triangle III can be expressed in terms of

the stress resultants (by use of equilibrium considerations). These stresses are:
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Figure 9: (a) Stresses along boundaries of Triangles II and III (Solution 2) and (b) resultants of stresses on boundaries

σt,II =
Ct,2

(e + e2 − e1) hk

(15)

σl,II =

Fl

e + e2 − e1

e + e2
−Cl,2

dk

e + e2 − e1

e + e2
hk

(16)

τtl,II =
Cl,2

(e + e2 − e1) hk

(17)

σt,III =
At,2

ehk

(18)

σl,III =

Bl − Fl

e2

e + e2

dk

e

e + e2
hk

(19)

τtl,III =
Al,2

ehk

(20)

The relations between σA,2, σB, and their stress resultants are given by:

Al,2 = σA,2 cos θA,2 sin θA,2ehk (21)

At,2 = σA,2 cos2 θA,2hke (22)

Bl = σB cos θB sin θBhk (Lk − e) (23)

Bt = σB cos2 θBhk (Lk − e) (24)

From the three equilibrium conditions for Triangle III, the following relations are estab-

lished:
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Al,2 + Bl − Fl = 0 (25)

At,2 + Bt − Ft = 0 (26)

σA,2 = σB

cos2 θB (Lk − e)

cos θA,2 sin θA,2dk + cos2 θA,2e2

(27)

In Equation (27), the relationships in (21)-(24) have been used to establish a relation between

σA,2 and σB. Finally, equilibrium requirements for Triangle II lead to:

Fl −Cl,2 − Pl,2 = 0 (28)

Ft −Ct,2 − Pt,2 = 0 (29)

Ft

e + e2 − e1

2
−Cl,2

dk

2
−Ct,2

e + e2

2
= 0 (30)

5.3. Global equilibrium for Solutions 1 and 2

With reference to the test specimen depicted in Figure 2, the global equilibrium conditions

can now be used to establish relations between the external load, V , and the internal stress re-

sultants defined above. In the longitudinal direction, l, the applied load is balanced by the stress

resultants Al,i and Bl stemming from Struts A and B, respectively, where i = 1 for Solution 1 and

i = 2 for Solution 2. The resultant Bl only exists for Solution 2. The relation reads:

nAl,i + (n − 1) Bl = V (31)

where n is the number of shear keys in the connection.

In the transverse direction, where there is no external load, the stress resultants of the struts must

be outbalanced by tension in the transverse U-bar loops crossing the connection. This condition

can be written as follows:

nAt,i + (n − 1) Bt − (n + 1) Asσs = 0 (32)

Where As is the total cross sectional area of transverse reinforcement in one loop connection

and σs is the stress in the reinforcement. Similar to Equation (31), Bt vanishes when applied to

Solution 1. It should be noted that the equation for global moment equilibrium may serve as a

check of the calculated stress distribution in the joint.

5.4. Yield condition for reinforcement

The stresses carried by the U-bars must fulfill:

σs ≤ fy (33)

By utilizing the Equations (32) and (8), the yield condition (Equation (33)), may be reformulated

in terms of the stress carried by Strut A in Solution 1:

σA,1 ≤
n + 1

n

As fy

cos2 θA,1hke
(34)

For Solution 2, Equation (33) may in a similar way be reformulated as a requirement to σB:

σB ≤
(n + 1) As fy

(

tan θA,2dk + e2
)

cos2 θBhk (Lk − e)
(

(n − 1)
(

tan θA,2dk + e2
)

+ ne
) (35)

This requirement in fact also contains the condition for the stress in Strut A, cf. Equation (27).
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5.5. Failure criteria for joint mortar

In the following, the failure criteria adopted in the analytical lower bound model to describe

the joint mortar will be discussed. Distinction is made between zones with uniaxial compression

and zones with biaxial compression. The tensile strength of the mortar is neglected and the

uniaxial compression strength is fc. For Struts Ai and B carrying uniaxial compression, the stress

level is limited to:

σA,i ≤ ν fc, i = 1, 2, ν ≤ 1 (36)

σB ≤ ν fc, ν ≤ 1 (37)

where ν is the effectiveness factor. This factor normally takes into account the material brittleness

as well as the strength reduction due to cracking and tensile strains perpendicular to the struts. It

is argued that in the present lower bound problem, with steep direct strut actions within a narrow

and long strip of mortar, the effect of tensile strains perpendicular to the struts may be neglected.

Hence, ν mainly accounts for the material brittleness. In the following, ν will be taken as unity

when the analytical lower bound model is evaluated against the numerical calculations (because

ν = 1 was used in the numerical calculations). However, when using the analytical lower bound

model to compare with its upper bound counterpart [1] and with test results, a value of ν = 0.89

is adopted as a qualified estimate of the effect of material brittleness. This value is obtained from

the formula, ν = ( fc,0/ fc)1/3 proposed in the fib Model Code [18], with fc,0 = 30 MPa.

Normally, concrete/mortar is identified as a modified Coulomb material, which means that fc
will also be the strength in a biaxial compression field. However, as shown e.g. by Kupfer

et al. [19], the strength of concrete under biaxial compression may be larger than the uniaxial

strength. Furthermore, as the areas with biaxial compression represent nodal zones in the model,

the effectiveness factor can here be taken as ν = 1, also in practice. This means that the failure

criterion for zones with biaxial compression may be expressed as:

σ2 ≤ c fc, c ≥ 1 (38)

where c can be interpreted as a strength enhancement factor and σ2 is the largest principal com-

pressive stress. Test results of Kupfer et al. [19] showed that c depends of the σ2/σ1 − ratio

(c = 1.27 for σ2/σ1 = 2 and c = 1.16 for σ2/σ1 = 1). In the following, c is taken as unity

when the analytical lower bound model is evaluated against the numerical calculations (in order

to be consistent with the assumptions made for the numerical model). However, for comparison

with the upper bound model and with test results, a qualified estimate of c = 1.15 is adopted.

This value is slightly higher than the recommendation of the fib Model Code [18] for biaxially

compressed nodes.

Due to the assumption of zero tensile strength, the following limitation also applies to the biaxi-

ally stressed areas:

σ1 ≥ 0 (39)

5.6. Failure criterion for interface

As an averaged description, the interface between mortar and precast elements with keys

may be categorized as very rough, with a pseudo cohesive resistance and a high pseudo frictional

coefficient (see e.g. Eurocode 2 [20]). However, in a detailed calculation where the geometry

of the keys is taken into account, the mechanical properties of the real interface should be used.

This means that the properties of the formwork have an influence on the failure criterion of
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the interface. Hence, like for the numerical model, the following Coulomb friction criterion is

adopted for the interface:

|τnt | ≤ µσn (40)

where τnt is the shear stress on the boundary of the shear keys and σn is a compressive normal

stress acting on the same boundary, e.g. (σn, τnt) =
(

σt,II , τtl,II

)

. It should be noted that Equation

(40) does not contain a cohesion term. The main argument for neglecting the cohesion is that

smooth formwork was used to cast the reinforced concrete elements for the experimental program

(smooth formwork is commonly used also in practice). Thus any small cohesive resistance in the

interface may have (partly or completely) vanished at the ultimate limit state. The coefficient of

friction will in the following be taken as µ = 0.75, similar to the assumption of the numerical

model. The friction criterion implies that the stress resultants, Cl,i and Ct,i, see Figures 7(b) and

9(b), must fulfill the following condition:

|Cl,i| ≤ µCt,i, i = 1, 2 (41)

For the inclined part of the shear key, the friction criterion, expressed in terms of the resulting

forces, can be established as:
∣

∣

∣

∣

∣

∣

Pl,i sin θk − Pt,i cos θk

Pt,i sin θk + Pl,i cos θk

∣

∣

∣

∣

∣

∣

≤ µ, i = 1, 2 (42)

5.7. Optimization of lower bound solutions

By examining the geometrical and equilibrium conditions of Solution 1 as well as 2, it may

be shown that the problems are indeterminate with two free optimization parameters, namely the

parameter e and one of the statical parameters. The resultant Cl,i will in the following be chosen

as the statical optimization parameter.

If the interface is not utilized to transfer shear stresses, Cl,i will vanish and the solution will

eventually be identical to the single strut solution suggested by Christoffersen [7]. Therefore, to

obtain better solutions, the interface friction must be utilized as much as possible. Hence, Cl,i

should be taken as large as possible. According to Equation (41), this implies:

Cl,i = µCt,i, i = 1, 2 (43)

By choosing the relation given in Equation (43), the only remaining parameter left for optimiza-

tion of the load carrying capacity is e. The optimization is naturally subjected to the strength

constraints established in Sections 5.4 and 5.5. Results are presented in the following.

6. Verification of analytical lower bound solutions

The results obtained by FELA (which are optimal under the assumptions made) will in the

following be used to verify the analytical lower bound solutions. The purpose is to investigate

if the analytical solutions actually capture the main tendencies of the numerical results. Calcu-

lations have been carried out based on the properties and parameters of the test specimens. The

results, in terms of normalized shear stresses versus the key depth, can be seen in Figure 10(a),

where the result of the single strut solution [7] is also shown. The nominal shear stress has been

determined as follows:

τ =
V

nhkLk

(44)
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where V is calculated from Equation (31). The full red curve in Figure 10(a) corresponds to the

upper envelope of Solutions 1 and 2 and represents the optimal results provided by the analytical

lower bound model. It can be seen that Solution 2 applies to larger key depths (dk > 8 mm)

whereas Solution 1 provides better results for smaller key depths. For key depths larger than 13

mm, Triangle I vanishes in Solution 1, as the length a becomes smaller than e1. In this case σA,1

will act only on the inclined part of the key corner, however, as the capacity is less than Solution

2, it is not calculated. Contrary to the single strut solution, the present model actually provides a

significant capacity in the limiting case of dk = 0 mm (i.e. when the design is no longer a keyed

connection). In this case, there is no nodal zone and the compression from the diagonal struts is

transferred through the interface by pure shear-friction. Figure 10(b) depicts the optimal value of

e versus the key depth. At the transition point, the optimal value of e for Solution 1 is different

from that of Solution 2. This underlines that Solution 2 is not to be considered as an extension

of Solution 1, which is also seen in the fact that the transition between the two solutions is not

smooth.

Nevertheless, it is found that the analytical model provides results that are almost identical to the

numerical results obtained by FELA (Figure 10(a)). A small deviation is observed around the

transition between Solution 1 and Solution 2. However, the deviation is insignificant compared

to the overall agreement. This strong correlation shows that the analytical model is close to the

optimal solution. In this context it should be noted that optimality here only refers to the best

results that can be obtained by the assumptions made and not necessary the ’true’ results. Note

further that other geometries and reinforcement degrees may favor other stress fields not captured

by the two developed analytical solutions.

It can be seen in Figure 10(a) that the analytical model as well as FELA estimate a higher capacity

than the single strut solution developed in [7]. This is partly related to the inclusion of friction in

the grout-to-panel interface at the keyed areas.

Figure 11 depicts the stresses of Solution 1 versus the key depth. It can be seen that the max-

imum compressive principal stress, σ2,I , acting in Triangle I is governing in the entire interval

of dk, where Solution 1 is optimal. Moreover it appears that the minor principal stress, σ1,I , is

also compressive and that the stress in Strut A, σA,1, is well below ν fc for all key depths. The

magnitudes of the stresses depicted in Figure 11 indicate a local failure of the key corners (only

Triangle I is critical). This is in agreement with test results for specimens with small key depths.

The stresses of Solution 2 are plotted in Figure 12. It can be seen that σ1,II = 0 when the key

depth is approximately 4 mm. This stress component in fact becomes negative (i.e. tension) for

lower values of dk, which means that Solution 2 does not provide valid results for smaller key

depths (at least not for the assumed material parameters and geometry considered). Furthermore,

it can be seen that σ2,III is the governing stress component for key depths between 4 mm and

10 mm, while σ2,II is governing for larger key depths. Triangle I vanishes at a key depth of

approximately 21 mm. As σA,2 < ν fc, the stress can be safely transferred without considering a

nodal zone. At a key depth of about 28 mm, the maximum effective depth according to Equation

(14) is introduced and the capacity cannot be increased further beyond this key depth.

Figure 13 shows how the stresses in Struts A and B vary in Solution 2. It can be seen that

σB is larger than σA,2 in the entire interval of key depths. At the transition to the effective key

depth (dk ≈ 28 mm), the stress in Strut B has almost reached the capacity of ν fc, however,

it remains slightly below. These results of course reflect the modeled geometry and adopted

material parameters ν = c = 1.
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Figure 10: (a) Comparison of analytical and numerical lower bound models and (b) the optimal distance e calculated

for Solutions 1 and 2
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Figure 11: Normalized stresses versus key depth in Solution 1, note that c = 1 and ν = 1
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Figure 12: Normalized stresses versus key depth in Solution 2, c = 1
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Figure 13: Variation of σA,2 and σB as function of key depth in Solution 2, ν = 1
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Figure 14: Collapse mechanisms considered in upper bound model, (a) complete key shearing combined with diagonal

yield line and (b) local key corner failure, illustrations from [1]

7. Comparison of analytical lower and upper bound models

In the following, the analytical lower bound model will be compared with the previously

developed upper bound model [1]. It is not expected that the two models lead to identical results

(i.e. a theoretically exact solution) since they are not fully based on the same set of assumptions.

For instance, plane stress condition is assumed in the lower bound model while plane strain con-

dition is imposed in the upper bound model. However, the comparison can be used to evaluate

the tendencies of the two models and in particular the gap between them. Eventually, by com-

parison of both models with test results, a qualified discussion of the effectiveness factor adopted

in the pure upper bound approach [1] can be carried out.

The upper bound model presented in Ref. [1] is based on two basic collapse mechanisms reflect-

ing local key corner failure and complete key shearing, respectively, see Figure 14. The interface

properties between mortar and the precast elements are neglected and the mortar is treated as a

modified Coulomb material with zero tensile strength and with an internal angle of friction taken

as ϕ = 30◦. The assumption of plane strain condition implies that the angle of displacement, α,

due to the normality condition cannot be smaller than ϕ, i.e. α ≥ 30◦. For a detailed derivation of

the upper solution, the reader is referred to [1]. It should be noted that the upper bound solution,

in contrast to the lower bound counterpart, can be formulated as closed-form equations and is

therefore easier to use in practice.

The results of the upper bound and lower bound models can be seen in Figure 15(a). As
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Figure 15: (a) Comparison of upper and lower bound models with test results, (b) stresses in Struts A and B in Solution

2

stated in the previous, ν = 0.89 is adopted for the uniaxial compression struts while ν = 1 and

c = 1.15 are used for the biaxial compression zones in the lower bound model. Such a distinction

between types of stress field can of course not be made in the upper bound model. Therefore,

ν = 0.89 has been used when determining the dissipation in all the yield lines in the upper bound

model. The gap between the upper and the lower bound solutions (Figure 15) is however not

due to the difference in the material parameters. The gap would in fact have been larger, had the

lower bound calculations also been based on ν = 0.89 and c = 1 everywhere. It is mainly the

assumption of plane strain condition versus plane stress condition that has an influence on the

observed gap. In addition, other more sophisticated collapse mechanisms (not yet analyzed) may

lower the upper bound results.

Another discrepancy between the two models should also be pointed out. A closer look

at the two solutions (in Figure 15) in the vicinity of dk = 0 mm reveals that the upper bound

solution is lying below the lower bound solution. This difference has no practical significant but

is apparently inconsistent with the extremum theorems of plasticity. The reason is to be found

in the fact, that the interface is assigned a friction failure criterion, Equation (40), in the lower

bound model while this criterion is ignored in the upper bound calculations. To obtain results

consistent with the extremum theorems, the upper bound calculations should be modified to

include the friction criterion for the interface and at the same time fulfill the normality condition

at the interface. It may in that case be shown, that the upper bound solution will lie above

the lower bound counterpart and that the two solutions will yield exactly the same result at the

limiting case of dk = 0 mm.

In the present calculations, the upper bound model reaches the upper limit (corresponding to

complete key shearing) at dk ≈ 13 mm. This is actually close to dk = 16 mm, which in the test

series corresponds to the transition between the two failure modes. The lower bound Solution 2

on the other hand, reaches an upper limit at dk ≈ 28 mm corresponding to the maximum effective

key depth (Equation (14)). Furthermore, in Solution 2, the Triangle II is critical when dk is

between approximately 9 to 17 mm while Strut B is stressed to ν fc and therefore critical for dk

larger than 17 mm (see Figure 15(b)). For dk > 17 mm, the thickness of Strut B increases with
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increasing dk which explains the increase of the capacity for dk between 17 and 28 mm. As seen

in Figure 15(b), Strut A of Solution 2 is at no point critical. The fact that only Strut B is critical

when Solution 2 reaches the upper limit makes it rather difficult to relate the result to a failure

mechanism involving complete key shearing. This simply underlines that Solution 2 (although it

may be optimal subjected to the assumptions made) is still a lower bound and thus a safe model

for the real ultimate behavior of the connection.

It is important for practical application that the two models (developed independently of each

other) in fact display the same overall tendencies, namely a shear capacity that increases with

increasing key depth until an upper limit has been reached. This improves the reliability of

the results. However, the most correct solution would probably be somewhere between the two

models since in reality, the connection is not in a state of plane strain, nor plane stress, but

somewhere in between. This is clearly seen in the fact that the test results as plotted in Figure

15(a) are all lying in between the results of the upper and lower bound models. Hence, an

important conclusion that can be drawn from the comparison in Figure 15 is that the effectiveness

factor adopted in the pure upper bound approach (see Ref. [1] for details) not only reflects the

material brittleness but also partly contains an empirical reduction to compensate for the ideal

assumption of plane strain. In this context, it is interesting to note that the width, i.e. b shown

in Figure 2, must have an influence on the stress and strain conditions in the connection, but this

parameter is absent in the failure mechanisms based on the plane strain assumption that were

considered in Ref. [1]. Hence, it is reasonable to believe that the effectiveness factor of the

pure upper bound approach also compensates for the influence of b, which is not considered

theoretically. The lower bound model, on the other hand, includes the width, b, as an important

parameter. Still, if the plane stress lower bound solution should be calibrated to fit the test

results (Figure 15), then artificially higher values of ν and c would be required, most probably to

compensate for the triaxial stress state that in reality would develop locally in the joint mortar.

It might be too optimistic to expect that a more correct/realistic solution can be developed which

at the same time is as user-friendly as the closed-form upper bound solution. The upper bound

model will therefore still have preference from a practical point of view, even though it has to

be used in conjunction with an effectiveness factor that not only accounts for the real material

behavior but also functions as an adjustment parameter to compensate for the unsafe nature of

upper bound solutions. Awareness of this is important when applying the upper bound model

to practical cases, which deviate significantly from the experimentally tested configurations. In

such situations, the lower bound model presented in this paper will be useful.

8. Conclusions

This paper presented push-off tests of a recently developed keyed shear connection design

for precast concrete wall elements. The investigation focused on the influence of the key depth

on the failure mode and the load-displacement response of the connections. The experimental

observations include:

• Connections with smaller key depths failed by local key corner shearing while failure by

complete key shearing was observed for connections with larger key depths

• The maximum capacity (first peak load) was related to failure of the keys and increased

with increasing key depth until complete key shearing became the critical failure mode
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• The residual load level (beyond the first peak load) is relatively higher for connections

suffering local key corner shearing

The experimental observations suggest that for practical applications the connection should be

designed to be governed by local key corner crushing as this improves the ductility. In addition

to the experimental results, an analytical lower bound model was developed for prediction of

the first peak capacity. The model was validated with numerical calculations based on finite

element limit analysis. The model differs from existing analytical lower bound solutions for

keyed connections in the following way:

• The load can be carried by a combination of struts spanning over one or two indentations

• Local strength increase at nodal zones and effects of interface friction are accounted for

• The nodal zones can be subjected to non-hydrostatic biaxial stress conditions

The lower bound model shows similar tendencies as a previously developed upper bound model

and the test results fall within the gap between the two solutions. From the comparison, it can

be concluded that the lower bound solution is a safe one due to the assumption of plane stress

condition while the plane strain assumption adopted in the upper bound solution is theoretically

unsafe and must be compensated for by adjustment with test results. This is reflected in the

relatively low effectiveness factor that has to be applied. The upper bound solution should there-

fore only be used for configurations within the range covered by tests. In other cases, the lower

bound model is applicable although it is more complicated to use. In conclusion, it can be stated

that the paper has contributed to a more complete theoretical basis for practical design of keyed

connections.
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Appendix A. Lower bound finite element limit analysis (FELA)

As discussed in Section 4, FELA can be considered as a special case of the general finite

element method, where a rigid-plastic material model is assumed. Unlike the finite element

method, however, FELA is a so-called direct method where the collapse load is determined in a

single step and no incremental procedure is needed. The method is therefore rather efficient and

numerically stable for calculation of the collapse load of structures.

The fundamental idea of the method is to formulate a given limit analysis problem as a convex

optimization problem, where the ultimate load is maximized. In order to obtain a lower bound

solution, the determined stress field must be statically admissible and safe. This is ensured by

a set of linear equality constraints, representing the equilibrium conditions, as well as a set of

convex inequality constraints, representing the convex yield conditions. The general form of the

optimization problem is given below:

maximize λ

subject to BTσ = pλ + p0

f (σi) ≤ 0, i = 1, 2, ...,m

The external load comprises a constant part, p0, and a scalable part, pλ, where λ is the load

factor, which is sought to be maximized. The external load is balanced by the stress field de-

scribed by the vector σ via the linear equilibrium equations, BTσ = pλ + p0, where BT is the

equilibrium matrix. The yield function f (σi) is checked in the m points to ensure a safe stress

field. For concrete, the Mohr-Coulomb yield criterion is commonly used which can be expressed

as conic constraints [21, 22].

The equilibrium matrix, BT , depends on the chosen lower bound finite elements and discretiza-

tion. In this paper, lower bound plane stress elements have been used together with bar and

interface elements, representing the reinforcement and grout-to-panel interfaces of the keyed

joint.
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