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Abstract 17 

The mucus layer is believed to play a part in drug permeation across the oral mucosa. Human freeze-18 

dried saliva (HFDS) and porcine gastric mucin (PGM) was evaluated as model for mucus layer per 19 

se or in conjunction with in vitro and ex vivo buccal permeability models.  20 

Four small molecules (nicotine, mannitol, propranolol, caffeine) showed decreased permeability 21 

across mucin dispersions, compared to controls, and a greater effect was seen with HFDS than with 22 

PGM. Permeability of propranolol and caffeine across filter-grown TR146 cells was decreased by the 23 

presence of mucin, whereas no effect was found on nicotine and mannitol. Incubation of porcine 24 

buccal mucosa with mucin dispersions for 24 h compromised the integrity of the tissue, whereas 30 25 

min incubation did not affect tissue integrity. Tissue incubation with mucin dispersions did not 26 

decrease nicotine permeability. For the studied model drugs, it is concluded that mucin dispersions 27 

constitute a minor barrier for drug diffusion compared to the epithelium. 28 

Keywords 29 

Mucus, permeability, barrier, buccal drug delivery, drug diffusion, absorption, small molecules    30 

31 
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Abbreviations 32 

BSA Bovine serum albumin 33 

HBSS Hanks’ balanced salt solution 34 

HFDS Human freeze-dried saliva 35 

Log P Logarithm of partition coefficient 36 

Log D Logarithm of distribution coefficient 37 

MW Molecular weight 38 

Papp Apparent permeability coefficient 39 

PBS Phosphate buffered saline 40 

PGM Porcine gastric mucin 41 

SD Standard deviation 42 

TEER Transepithelial electrical resistance  43 
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1 Introduction 44 

Over the last years the interest in oromucosal drug delivery has increased due to advantages with this 45 

administration route. The harsh environment of the gastrointestinal tract is avoided and hepatic first 46 

pass metabolism is circumvented. Furthermore, the oral cavity is easily accessible for rapid self-47 

administration and the formulation can quickly be removed in case of adverse events [1]. The 48 

epithelial surface of a mucosal membrane is covered by a mucus layer. The mucus layer has multiple 49 

physiological functions such as lubrication, hydration, and tissue protection. Mucus is a complex 50 

viscoelastic network, mainly consisting of water (95-99%) and mucins (1-5%) [2]. Mucins are 51 

glycoproteins which may be susceptible to changes in salt concentration or temperature, which can 52 

affect the mucin network and thereby the barrier properties of the mucus layer. It is believed that drug 53 

permeation through the mucus layer is affected by interactions and entanglement with the mucin 54 

network and by the unstirred water layer that mucus constitutes [3-5]. Mucus could retard drug 55 

diffusion by interacting with the drug and by decreasing diffusion rate due to higher viscosity. 56 

Reversely, mucus may increase solubility of the drug, and consequently increase the drug 57 

concentration adjacent to the epithelium.  58 

Only few oromucosal formulations are on the market, and this may be due to lack of standardized in 59 

vitro methods to evaluate and optimize drug delivery systems [6]. Several models for assessing drug 60 

permeability through oral mucosa are known, however, they lack the mucus layer. Permeability 61 

across excised mucosal tissue can be studied in side-by-side diffusion cells such as modified Ussing 62 

chambers or Franz cells [7]. To the authors’ knowledge it has not been confirmed that the mucus layer 63 

on the epithelium is intact after handling the excised tissue [8]. Filter grown cell cultures, such as 64 

TR146 cells derived from human buccal carcinoma have also been used to model oral mucosa [9, 65 

10]. However, these cells do not produce mucus. Cell cultures that produce a mucus layer, such as 66 

HT29-MTX cells derived from human colon adenocarcinoma, form a single cell layer, and thus are 67 
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not suitable for modeling the oral mucosa, consisting of multiple cell layers [11]. Setups for studying 68 

drug transport across a mucus layer have previously been designed for Ussing chambers [12, 13]. 69 

However, they are either not suitable for liquid mucus or require several preparation steps for each 70 

replicate. Thus, there is a need for a simple setup containing mucus that can be used for high 71 

throughput studies.  72 

Mucin can be obtained from mucus collected by gentle scraping of a mucosal membrane, from saliva, 73 

or from gastric fluid in animals or humans. Porcine gastric mucin (PGM) is commercially available 74 

as a crude mixture of mucin. Despite the gastric origin, PGM is commonly used to mimic mucus in 75 

the oral cavity [14, 15]. However, PGM may differ significantly from mucin found in the human 76 

saliva and on the oral mucosa, due to the difference in species and place of origin [16]. Furthermore, 77 

PGM has been through processing steps that may alter the properties of the molecules, thus there may 78 

be a need for a mucin source that is more similar to native oromucosal mucus. 79 

Currently, oromucosal drug delivery is more feasible for small molecules, since they can diffuse the 80 

epithelial cell layers more easily than larger molecules. Therefore, four small molecules with different 81 

physicochemical properties were chosen as model drugs for this study; nicotine (MW = 162.2 g/mol; 82 

log D6.8 = 0.30, calculated from log P = 1.43 and pKa = 7.9) [17], mannitol (MW = 182.2 g/mol; log 83 

P = -3.1) [18], propranolol (MW = 259.3 g/mol; log D6.8 = 1.20) [19], and caffeine (MW = 194.2 84 

g/mol; log P = -0.07) [20]. 85 

The aim of this study was to implement a mucin dispersion mimicking the mucus layer into in vitro 86 

and ex vivo permeability models and study the barrier properties of the mucin dispersion using small 87 

molecules. Thus, the permeability of nicotine, mannitol, propranolol and caffeine across a mucin 88 

dispersion, TR146 cells and porcine buccal mucosa was studied. The TR146 cells and the porcine 89 

buccal mucosa were incubated with mucin dispersions prior to the permeability experiments. 90 

Furthermore, the suitability of PGM and human freeze-dried saliva (HFDS) as sources of mucin was 91 
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evaluated. Implementation of a mucus layer will improve the predictability of the currently used 92 

permeability models, and this has to the authors’ knowledge not previously been done. 93 

2 Materials and methods 94 

2.1 Materials 95 

Potassium dihydrogen phosphate, calcium chloride, sodium hydrogen carbonate, sodium chloride and 96 

ortho-Phosphoric acid 85% were purchased from Merck KGaA (Darmstadt, Germany). Sodium 97 

phosphate monobasic anhydrous was obtained from Amresco (Solon, OH, USA). Potassium chloride 98 

was obtained from Riede-de Haën (Seelze, Germany). Hanks’ balanced salt solution (HBSS) (10x), 99 

+CaCl2, +MgCl2 and 7.5% sodium bicarbonate was purchased from Gibco® life technologies (Grand 100 

Island, NY, USA). Nicotine bitartrat dihydrate was kindly donated from Fertin Pharma (Vejle, 101 

Denmark). Pearlitol® 160 (mannitol) was obtained from Roqette Pharma (Lestrem, France). Caffeine 102 

was purchased from VWR (Leuven, Belgium). [14C]-mannitol (57.1 mCi/mmol), [3H]-nicotine (80.4 103 

Ci/mmol), [14C]-caffeine (54.9 mCi/mmol), [3H]-propranolol (18.6 Ci/mmol) and Ultima GoldTM 104 

liquid scintillation fluid were purchased from Perkin Elmer Inc. (Waltham, USA). Falcon 12-well 105 

tissue culture plates and cell culture inserts (polyethylene terephthalate membrane, 0.9cm2 area, 0.4 106 

mm pore size) were obtained from Becton Dickinson Labware (Franklin Lakes, NJ, USA). Bovine 107 

serum albumin (BSA), Mucin from porcine stomach, type II (PGM), (±)-propranolol hydrochloride, 108 

4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), Alcian blue 8GX, MTS-4-fluroescein, 109 

phenazine methosulfate and silicone oil were all purchased from Sigma-Aldrich (St. Louis, MO, 110 

USA). Human freeze-dried saliva (HFDS) from pooled saliva samples (dialyzed and free of minerals) 111 

was kindly donated by the Department of Odontology, University of Copenhagen (Copenhagen, 112 

Denmark). The saliva was centrifuged at 2000 g for 10 min, dialyzed at 5°C for two days and finally 113 

lyophilized. Dialysis tubing visking, cellulose, type 36/32 inch, thickness 0.02 mm, width 44 mm, 114 

MWCO 14,000 was from Carl Roth GmbH + Co. KG (Karlsruhe, Germany). Deionized water was 115 
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collected from Milli-Q water system, SG Ultra Clear 2002 from Evoqua Water Technologies LLC 116 

(Warrendale, PA, USA).  117 

2.2. Methods 118 

2.2.1 Preparation of mucin dispersions 119 

A buffer, named saliva buffer, containing 5 mM KH2PO4, 15 mM KCl, 1 mM CaCl2 and 5 mM 120 

NaHCO3 was prepared and adjusted to pH 6.8 [21]. PGM and HFDS were dispersed in saliva buffer 121 

and exposed to slow stirring at 5°C overnight. The concentrations of mucin varied in the experiments 122 

and are stated in the respective sections below. 123 

2.2.2 Comparison of mucin sources 124 

The mucin sources, PGM and HFDS, were visually compared in dry solid form. Furthermore, the pH 125 

of the two dispersions was measured. The viscosity of PGM and HFDS dispersions (2% w/v) were 126 

determined as described by [22]. Briefly, an AR-G2 plate and cone rheometer (TA instruments-127 

Waters, New Castle, USA) was used with a 40 mm aluminum steel plate in diameter. A gap of 500 128 

µm was selected (630 µL sample) and all the measurements were conducted at 37 °C. A protective 129 

casing, custom made at the Department of Pharmacy, University of Copenhagen (Denmark) was 130 

attached to the fixed heating plate and silicone oil (500 µL) was placed around the sample to prevent 131 

evaporation. The sample was equilibrated for 5 min before measurements were conducted. A steady 132 

state flow test to determine the viscosity was performed (shear rates 0.001-1000 s-1, three consecutive 133 

measurements of 10 s with <5% variance). Four measurements were conducted per decade within a 134 

maximum time for each shear rate of 2 min (discarded if equilibrium was not reached within 2 min). 135 

TA Instruments Rheology Advantage Software (TA Instruments-Waters) was used to generate 136 

rheology data.  137 

2.3 Permeability studies 138 
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2.3.1 Permeability across an isolated mucin dispersion 139 

The new permeability device consisting of a test sample compartment in a tailor-made slider was 140 

developed for the modified Ussing chambers (Physiologic Instruments Inc., San Diego, CA, USA) to 141 

enable drug permeation study through e.g. an isolated mucus layer. 142 

The new permeability device consists of three parts as shown in Fig. 1; a cylinder placed between a 143 

two piece slider. Dialysis membranes were rinsed in cold water and then soaked three times 5 min in 144 

200 mL 100 °C hot water. The prepared dialysis membranes were placed between the slider and the 145 

cylinder (positions shown with A in Fig. 1) and held in place by joining the parts. The mucus 146 

dispersion was then added with a syringe through a small hole in the slider and cylinder. The diffusion 147 

area was 0.50 cm2 and the thickness of the mucin layer (cylinder length) was 6.0 mm. The 148 

composition of the receptor and donor fluid is given in Table 1. The permeability of nicotine, 149 

mannitol, propranolol and caffeine was studied across saliva buffer, 2% (w/v) PGM dispersion or 2% 150 

(w/v) HFDS dispersion. 151 

The study was conducted in modified Ussing chambers as previously described by Holm et al. [23]. 152 

Briefly, 2.0 mL of donor and receptor fluid was added to the respective compartments. Stirring was 153 

ensured by supplying hydrated atmospheric air, and the temperature was kept at 36±1°C. Receptor 154 

samples of 100 µL were taken from the receptor compartment at 5, 10, 20 and 30 min and then every 155 

30 min up to 5 h. From the donor compartment, 100 µL was taken in triplicates at the start and end 156 

of the experiment. After sampling the compartments were replenished. At the end of the experiment 157 

a 100 µL sample was taken from the mucin dispersions or saliva buffer. Drug content was determined 158 

in the dialysis membranes by rinsing off excess drug and placing the dialysis membrane in a 159 

scintillation vial for measurement. 160 

 161 

2.3.2 Permeability across TR146 cells 162 
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The TR146 cell line was provided by Imperial Cancer Research Technology (London, UK) and 163 

cultivated and grown on filters as previously described [24]. On the first day of the experiment filter-164 

grown cells aged 25-27 days were washed on the apical side and the growth medium was changed on 165 

the basolateral side. The cells were incubated on the apical side with 200 µL 4% (w/v) PGM or HFDS 166 

dispersion. Cells incubated with saliva buffer were used as a control. The cells were incubated at 167 

37°C in 5% CO2/95% air at 98% humidity for 24 h.  168 

On the second day of experiment, the initial transepithelial electrical resistance (TEER) was measured 169 

on the control cells (Endohm and voltmeter EVOM from World Precision Instruments (Sarasota, FL, 170 

USA)). The composition of donor and receptor fluids is shown in Table 2. 1600 µL receptor medium 171 

was added to the basolateral side and 220 µL donor solution was added to 200 µL mucin dispersion 172 

or saliva buffer on the apical side. The experiment was conducted at 37°C using a thermostatic 173 

horizontal shaker, 100 rpm, (Edmund Bühler, swip Type KL-2) (Hechingen, Germany). 100 µL 174 

samples were taken from the basolateral side at time 10 min, 30 min, 45 min, 60 min and then every 175 

30 min up to 240 min, and the compartment was replenished with receptor fluid. At 10 min a donor 176 

sample of 20 µL and at 240 min three donor samples of 20 µL were taken. The first samples were 177 

taken at 10 min to allow the donor fluid to mix with the mucin dispersion. After the permeability 178 

experiment the cells were washed twice with HBSS buffer on both apical and basolateral side, TEER 179 

was measured and a MTS-PMS viability test was conducted as described by Eirheim et al. [25].  180 

2.3.2.1 Mucin attachment to cell surfaces 181 

After 24 h incubation the mucin dispersions or saliva buffer was gently removed and the cells were 182 

washed in 0.1 M phosphate buffered saline (PBS) pH 6.8. 200 µL Alcian blue solution (1% (v/v) 183 

Alcian blue and 3% (v/v) acetic acid in water) was added to the apical side and the setup was shaken 184 

(100 rpm) for 5 min. The Alcian blue solution was gently removed and the cells were washed twice 185 

in PBS pH 6.8. The cells were than examined under an Olympus BH2 light microscope (Olympus, 186 
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Tokyo, Japan) and representative pictures were taken with an AxioCam ERc5s (Zeiss, Jena, 187 

Germany). 188 

2.3.3 Permeability across porcine buccal mucosa 189 

Porcine buccal mucosa was obtained from healthy experimental control pigs (approx. 30 kg Danish 190 

Landrace/Yorkshire x Durox (D-LY)). Immediately after euthanization of the pigs the cheeks were 191 

excised using a scalpel and placed in ice cold PBS pH 7.4. Within 3 h the excised cheeks were frozen 192 

in 40% (w/v) glycerol and 20% (w/v) sucrose in PBS pH 7.4, and on the day of experiment the tissue 193 

was thawed as described by Marxen et al. [26]. The buccal mucosa was trimmed with surgical scissors 194 

and sliced to a thickness of 792 µm ± 88 µm (n=36) using a Stadie-Riggs tissue slicer (Thomas 195 

Scientific, Swedesboro, NJ, USA). The buccal mucosa was mounted on slider P2405 from 196 

physiologic instruments Inc. (San Diego, CA, USA) (exposed area 0.40 cm2). The sliders were placed 197 

in the upper compartment of a desiccator, the epithelium facing upwards. The lower compartment of 198 

the desiccator was filled with NaCl saturated water to ensure high humidity. 100 µL saliva buffer, 199 

5% (w/v) PGM or HFDS dispersion was added to the apical surface of the tissue and incubated at 37 200 

°C for 24 h, 30 min or the tissue was used immediately. When incubating for 24 h, the sliders were 201 

placed in PBS pH 7.4 to keep the basolateral side of the tissue moist.  202 

The compositions of the donor and receptor solutions are presented in Table 1. The permeability 203 

experiment was conducted as described in Section 2.3.1, with few changes: After the experiment, the 204 

tissue was dissolved in approximately 1.0 mL concentrated phosphoric acid, heated to 70°C and a 205 

100 µL sample was taken for quantification of the radiolabeled model drugs. 206 

 207 

 208 

2.4 Quantitative analysis 209 
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2 mL Ultima GoldTM liquid scintillation fluid was added to all samples before whirl-mixing. 210 

Quantitative analysis of [3H]-nicotine, [14C]-mannitol, [3H]-propranolol and [14C]-caffeine was 211 

performed by liquid scintigraphy using a Tri-Carb 2910TR Liquid Scintillation Analyzer (Perkin 212 

Elmer, Waltham, MA, USA). 213 

2.5 Data analysis 214 

Accumulated amount (Q, mol) of nicotine, mannitol, propranolol and caffeine appearing in the 215 

receptor compartment was plotted as a function of time (t). Steady state flux (JSS, mol s-1 cm-2) was 216 

calculated as the slope of the linear section of this curve (R2 above 0.99 for isolated mucin layer and 217 

porcine buccal mucosa; R2 above 0.95 for TR146 cells), using Equation 1, where A (cm2) is the area 218 

of diffusion. 219 

 𝐽𝐽𝑆𝑆𝑆𝑆 =  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
∗ 1
𝐴𝐴
  Equation 1 220 

Steady state flux was obtained at different time intervals: Isolated mucin layer (90-210 min); porcine 221 

buccal mucosa (90-300 min); TR146 cells (45-150 min for nicotine and caffeine, 120-240 for 222 

propranolol and mannitol).  223 

The apparent permeability coefficient (Papp) was calculated from Fick’s first law of diffusion (JSS = 224 

Papp∙ΔC). When sink conditions are upheld, Fick’s first law can be simplified to Equation 2, under the 225 

assumption that Cdonor >> Creceptor. Thus Papp (cm s-1) was calculated from Equation 2, where C0,donor 226 

(mol cm-3) is the initial donor concentration.  227 

 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐽𝐽𝑆𝑆𝑆𝑆
𝐶𝐶0,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

     Equation 2 228 

The total recovery (% of initial drug added) of the four model drugs was the sum of the accumulated 229 

drug amount (Q) at the end of the experiment in receptor compartment, donor compartment and drug 230 

amount in isolated mucin dispersion, saliva buffer, or porcine buccal mucosa, respectively.  In the 231 
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cell studies the filter grown TR146 cells were used for viability testing, and thus the drug retained in 232 

cells was not quantified. Due to low recovery of propranolol, an additional experiment was performed 233 

to quantify the amount of propranolol in filter and cells.   234 

2.6 Statistical analysis 235 

Data in this study are presented as means with standard deviations (SD) unless otherwise stated. One-236 

way analysis of variance (ANOVA) followed by Tukey’s multiple comparisons test was used to 237 

determine statistically significant difference between three or more means. An unpaired t-test was 238 

used to compare two means. Both tests were performed assuming equal variance and normal 239 

distribution of data. GraphPad Prism 7 for Windows, from GraphPad Software Inc. (La Jolla, CA, 240 

USA) was used for all statistical calculations. P-values below 0.05 were considered statistically 241 

significant. 242 

3 Results and discussion 243 

3.1 Comparison of mucin sources  244 

The mucin sources appeared very different in solid dried forms. PGM is a fine brownish powder 245 

whereas HFDS has a bulky white fibrous structure. The pH of PGM dispersion after stirring overnight 246 

was 4.4 ± 0.3 (n=9) and the pH of HFDS dispersion was 6.6 ± 0.4 (n=9). A t-test showed that the pH 247 

of PGM dispersion was significantly different from pH of the HFDS dispersion, which was expected 248 

since PGM is gastric mucin, and thus originates from an acidic environment, whereas HFDS is 249 

derived from saliva with an average pH of 6.8. In the present studies the mucin dispersions were 250 

adjusted to pH 6.8 to mimic pH in the oral cavity. Mucin contains acidic functional groups, including 251 

sialic acid [27]. Adjusting pH will affect the degree of ionization of the acidic groups, thus a change 252 

in pH will likely affect the interactions between mucin strands, causing enlargement or compaction 253 

of the mucin network. Therefore, it is advantageous to use a mucin-type with an innate pH as close 254 
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to pH 6.8 as possible, thus HFDS would be a more suitable source for mucin used to mimic mucus in 255 

the oral cavity. 256 

The viscosity was determined to compare the shear thinning properties and viscosities of the two 257 

types of mucin dispersion.  258 

 “The viscosity of a mucin dispersion demonstrates the degree of entanglement of mucin, and it is 259 

known that increased viscosity correlates with decreased permeability through the dispersion [28]. 260 

The viscosities as a function of shear rate was determined for a 2% (w/v) PGM dispersion and a 2% 261 

(w/v) HFDS dispersion. The results are presented in Fig. 2. The HFDS dispersion had a higher 262 

viscosity than the PGM dispersion throughout the whole shear rate range (Fig. 2). Furthermore, a 263 

decrease in viscosity with increasing shear rates (shear thinning) was observed for the HFDS 264 

dispersion whereas the PGM dispersion had a constant viscosity at shear rates above 1 s-1. At shear 265 

rates below 1 s-1 several of the measurements on PGM gave negative values and were excluded. It 266 

has been estimated that the movements in the oral cavity during speaking and swallowing correspond 267 

to shear rates of approximately 1-160 s-1 [29, 30]. The rheology measurements of the PGM dispersion 268 

was considered acceptable, since the measurements above 1 s-1 shear rate was consistent, and this is 269 

the range of shear rate of interest in oromucosal drug delivery. It is known that saliva and mucus 270 

exhibit shear thinning properties [29], thus, based on the rheology results presented in Fig. 2 showing 271 

HFDS to exhibit shear thinning unlike PGM, it appeared that HFDS was more similar to native mucus 272 

and saliva. The observed differences may be due to differences between mucin from porcine gastric 273 

fluid and human oral mucin [16]. Before the rheology measurements, pH was adjusted to 6.8, which 274 

may affect protein conformation and interactions [31]. PGM originates from a gastric environment 275 

with pH 1-2, and thus may be more affected by the pH increase compared to HFDS. Furthermore, it 276 

is unknown what processing steps PGM has been subjected to, and the processing may have affected 277 

the mucin molecules in a manner that decreased the gel forming properties. Measures of pH and 278 
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viscosity indicate that the HFDS is a more suitable mucin source than PGM, in terms of mimicking 279 

saliva and the mucus layer in the oral cavity. However, PGM, but not HFDS, is commercially 280 

available.” 281 

 282 

3.2 Permeability studies 283 

3.2.1 Permeability across an isolated mucin dispersion 284 

The Papp was determined for the four model drugs permeating across the 2% (w/v) PGM, 2% (w/v) 285 

HFDS dispersions and the saliva buffer. The results are presented in Fig. 3, and the Papp values are 286 

given in Table 3. The Papp of both nicotine and mannitol across the saliva buffer was significantly 287 

higher than the Papp across the PGM dispersion, which in turn was higher than Papp across the HFDS 288 

dispersion (Fig. 3a and b). The Papp of propranolol across the saliva buffer was significantly higher 289 

than the Papp across the PGM dispersion and the HFDS dispersion. However, no significant difference 290 

was observed between the PGM and the HFDS dispersions (Fig. 3c). For caffeine the Papp across the 291 

saliva buffer and the PGM dispersion was significantly higher than the Papp across the HFDS 292 

dispersion. No significant difference was observed between the PGM dispersion and the saliva buffer 293 

(Fig. 3d).    294 

Overall, it appears that the mucin dispersions act as a barrier to drug diffusion, and that HFDS 295 

constitutes a larger barrier than PGM. The diffusion of a drug is dependent on the molecular size of 296 

the drug and the viscosity of the medium. As described in Section 3.1 the viscosity of HFDS was 297 

higher, especially at low shear rates. The mucin dispersions are unstirred in this setup, thus the 298 

difference in viscosity may be an explanation for the decreased permeability found across HFDS. 299 

However, the mucin dispersions are not simply an unstirred water layer as they contain glycoproteins 300 

that potentially interact with the drug molecule. Several studies have shown the ability of mucin to 301 
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interact with a broad range of molecules [32, 33]. A detailed study of interactions between the model 302 

drugs and mucin is beyond the scope of this study. 303 

The cylinder containing the mucus dispersions or the saliva buffer was 6.0 mm thick. The thickness 304 

of the mucus layer in the oral cavity shows regional variations, and has been determined to be 305 

approximately 50 µm in the buccal area [34]. That is approximately 100 times thinner than in this 306 

setup and it is likely that the permeability differences found will be negligible compared to the barrier 307 

exerted by the epithelium.  308 

3.2.2 Permeability across TR146 cells 309 

The TR146 cells were incubated with 4% (w/v) of PGM, 4% (w/v) HFDS dispersion or saliva buffer 310 

for 24 h, before determining Papp of the four model drugs across the cells.  311 

The results are presented in Fig. 4, and the exact values are given in Table 3. No significant difference 312 

was seen between the Papp of nicotine across the cells incubated with saliva buffer, PGM dispersion 313 

and HFDS dispersion (Fig. 4a). The Papp of mannitol across the PGM dispersion was significantly 314 

lower than Papp across the cells incubated with saliva buffer or the HFDS dispersion. However, no 315 

significant difference was seen between Papp of mannitol across the saliva buffer and HFDS dispersion 316 

(Fig. 4b). The Papp of propranolol and caffeine across the PGM and HFDS dispersion was significantly 317 

lower than the Papp across saliva buffer. However, no significant difference was observed between the 318 

PGM and HFDS dispersions (Fig. 4c and d).  319 

The effects from the mucin dispersion on nicotine permeability across an isolated layer (Section 320 

3.2.1), is not confirmed when the TR146 cells are present, indicating that the cell layers constitute a 321 

larger barrier to nicotine, than the one provided by the mucin dispersions. Also the differences found 322 

between HFDS and PGM dispersions, for propranolol and caffeine disappeared, which indicates that 323 

the effect shown with a 6.0 mm mucin dispersion layer is larger than the barrier exerted by the mucus 324 

layer in vivo. Moreover, the findings indicate that certain interactions between the drug molecules 325 
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and mucin did take place, as nicotine appeared less affected by mucin dispersions than the other 326 

model drugs. Papp for propranolol was decreased by 47% and 58% in the presence of PGM and HFDS 327 

dispersions, respectively, suggesting a higher degree of interaction with propranolol compared to the 328 

other model drugs. In accordance with previous findings we found that mucus constituted an 329 

increasing barrier to drug diffusion with increasing lipophilicity of the diffusing drug [11, 35]. This 330 

substantiates the need of a model as the one presented here, to determine whether the mucins affect 331 

the permeability of a drug molecule of interest.  332 

3.2.2.1 Integrity and viability of TR146 cells 333 

Following the permeability study TEER and MTS/PMS tests were used to determine the integrity and 334 

viability, respectively, of the TR146 cell layers. TEER values are an indication of electron transport 335 

particularly via the paracellular pathway. The initial TEER value of the TR146 cells was determined 336 

to be 145±43 Ω cm2 (n=19) after 24 h incubation with saliva buffer. After the 4 h permeability study, 337 

the TEER value for the TR146 cells incubated with PGM dispersion was 339±100 Ω cm2 (n=13), 338 

with HFDS dispersion was 196±31 Ω cm2 (n=11) and with saliva buffer was 157±59 Ω cm2 (n=14). 339 

The TEER value for PGM incubated cells were significantly higher (p<0.05) than the initial TEER 340 

value, and no significant differences were found between HFDS and buffer incubated cells and the 341 

initial TEER value. The initial TEER value of 145 Ω cm2 indicate that the integrity of the TR146 cells 342 

was maintained after 24 h of incubation with saliva buffer, which is supported by Sander et al. who 343 

reported an initial TEER value of 151±38 Ω cm2 (n=119) on filter-grown TR146 cells. Furthermore, 344 

the integrity of the cell layers is not compromised during the permeability study. The TEER values 345 

were increased for the cells incubated with PGM indicating that incubation with mucin dispersions 346 

decreased electron transport. The findings are in line with Pontier et al. who showed that TEER values 347 

were increased after the HT29-MTX cells had intrinsically produced a mucus layer from mucus 348 

secreting goblet cells [36].  349 
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The integrity of the TR146 cell layers was supported by the relatively low Papp of mannitol. Mannitol 350 

is routinely used as a marker for integrity of the cell layers, in particular the paracellular pathway. 351 

Jacobsen et al. showed that mannitol permeability across TR146 cell layers grown for 30 days was 352 

5.2∙10-6 cm/s, and since the mannitol permeability found in this study was between 1.4 and 3.9∙10-6 353 

cm/s (Table 3), the integrity of the cell layers seems to be maintained [24]. 354 

The MTS/PMS assay measures dehydrogenase activity in cells as a measure of cell viability. The 355 

dehydrogenase activity after a 4 h permeability study in TR146 cells incubated with saliva buffer was 356 

assumed to be 100% viable and the cellular viability of the TR146 cells incubated with PGM and 357 

HFDS dispersions were determined relative to the cells incubated with saliva buffer.  According to 358 

Nielsen and Rassing [37], TR146 cells were not sensitive towards pH changes in the range 5.5-9.0, 359 

or to osmolality changes in the range approximately 100-400 mOsm, thus it was assumed that the 360 

saliva buffer would not affect viability of the TR146 cells. After 24 h incubation with mucin 361 

dispersion and a 4 h permeability study the viability in cells exposed to nicotine and mannitol was 362 

106% ± 4% (PGM) and 102% ± 2% (HFDS), and in cells exposed to propranolol and caffeine the 363 

viability was 107% ± 2% (PGM) and 114% ± 21% (HFDS).  364 

MTS/PMS assays are often used to measure cellular toxicity of drugs. However, in this study it was 365 

mainly used as a measure of the impact of incubation with PGM and HFDS dispersions compared to 366 

saliva buffer (control). The selected concentrations of the model drugs have been validated in 367 

previous studies, thus not expected to be toxic for the TR146 cells [10, 17, 38]. In this study the 368 

viability of the cells did not decrease after exposure to the mucin dispersions, compared to incubation 369 

with saliva buffer. The high integrity and viability supports the feasibility of the in vitro TR146 cell 370 

model to study the effect of mucin on drug permeation. 371 

3.2.2.2 Mucin attachment to cell surfaces 372 
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After incubation with mucin dispersions the attachment of mucin to the TR146 cells was qualitatively 373 

examined by staining the cells with Alcian blue dye. Representative images of the stained cells are 374 

presented in Fig. 5. Alcian blue stains the negatively charged groups in mucin at physiological pH 375 

[39]. 376 

The TR146 cells incubated with saliva buffer (Fig. 5, left) showed scattered blue spots on the cell 377 

layer surface. The staining of the TR146 cells incubated with PGM dispersion resembles the cells 378 

incubated with saliva buffer solution. However, a few more densely stained areas were found on the 379 

cells (Fig. 5, middle). The TR146 cells incubated with HFDS dispersion displayed larger stained areas 380 

(Fig. 5, right). The Alcian blue stained cell surfaces clearly indicated a larger amount of mucin 381 

attached to the cell surface when incubating with the HFDS dispersion. The attachment could be due 382 

to interactions between the cell surface and mucin. The small amount of blue stains present on the 383 

TR146 cells incubated with saliva buffer could indicate lack of washing during the staining procedure 384 

or that other glycoproteins attached to the epithelial cell surface interacts with Alcian blue [40]. 385 

3.2.3 Permeability across porcine buccal mucosa  386 

It was attempted to reintroduce a mucus layer to excised porcine buccal mucosa by incubating the 387 

tissue with 5% (w/v) mucin dispersions. Due to limitations in tissue supply only nicotine and mannitol 388 

were studied.  389 

Initially, the tissue was incubated with saliva buffer or PGM for 24 h to allow time for interactions 390 

between cell-bound mucin and mucin from the dispersions. The studies of mannitol (Fig. 6, b) 391 

indicated that the integrity of the porcine buccal mucosa was compromised after 24 h incubation 392 

compared to non-incubated tissue, for which mannitol amount was below the quantification limit (10x 393 

noise/background). The lost integrity after 24 h incubation could be ascribed to hydration of the tissue, 394 

which was further implied by visual swelling of the tissue after 24 h incubation and the permeability 395 

study [41].  396 
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Secondly, porcine buccal mucosa was incubated for only 30 min with mucin dispersions or saliva 397 

buffer. The choice of 30 min was based on previous studies allowing buccal mucosa to equilibrate 398 

for 30 min, prior to the experiment [42]. As expected, after 30 min incubation with PGM, HFDS or 399 

saliva buffer the permeated amount of mannitol was below the quantification limit (Fig.  6b), 400 

indicating that tissue integrity was not compromised. Accordingly, the effect of mucin dispersions on 401 

mannitol permeability across buccal mucosa cannot be determined. 402 

The Papp values of nicotine after different incubation times were not affected by the possible loss of 403 

tissue integrity, hence the Papp values of nicotine after 24 h incubation was not significantly higher 404 

than Papp for non-incubated tissue (Fig. 6a). The Papp of nicotine after incubation for 30 min in PGM 405 

dispersion was significantly higher than the Papp found with no incubation, 24 h in both saliva buffer 406 

and PGM dispersion and after 30 min in HFDS dispersion. No significant difference was observed 407 

between any of the other treatments. The significantly higher Papp value after incubation for 30 min 408 

in PGM dispersion could indicate an enhancing effect on nicotine permeability. However, since none 409 

of the findings from Section 3.2.1 and 3.2.2 indicate an enhancing effect of the PGM dispersion this 410 

is believed to be coincidental. 411 

Nicotine is more lipophilic than mannitol and permeates through both the transcellular pathway and 412 

the paracellular pathway [43]. At pH 6.8, 93% of the nicotine will be mono-protonated. However, the 413 

non-ionized form passing via the transcellular pathway contributes more to the apparent permeability 414 

of nicotine than the mono-protonated form following the paracellular pathway [17, 43]. As a result, 415 

the possible decrease in barrier integrity for mannitol has insignificant effect on the permeation of 416 

nicotine, as it predominantly follows the transcellular pathway. 417 

In Section 3.2.1 and Fig. 3 it is shown that PGM and HFDS decreases drug permeation across an 418 

isolated mucin dispersion. This finding was not supported from the results with porcine buccal 419 

mucosa. Except for 30 min incubation with PGM dispersion, which increased nicotine permeability, 420 
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no other treatments significantly affected the permeability of nicotine compared to the permeability 421 

across non-incubated tissue. This could be explained by lack of interactions between the tissue and 422 

the applied mucin. The extent of interaction could be decreased by damage of the mucosal surface 423 

from handling, such as freezing, thawing and slicing of the tissue. Bio-incompatibility between the 424 

tissue and the applied mucin could also affect the degree of interaction. Another possible explanation 425 

for the lack of effect on nicotine permeability could be that the epithelium constitutes a much larger 426 

barrier to nicotine, hence a possible effect from the mucin dispersions become negligible in 427 

comparison.     428 

3.2.4 Total drug recovery 429 

After the permeability studies the total recovery of the four model drugs was determined. The results 430 

are presented in Table 4. For nicotine, mannitol and caffeine the recoveries were acceptable, whereas, 431 

the recovery of propranolol was lower. 432 

The relatively poor recovery for propranolol is likely due to adsorption to the Ussing chamber walls 433 

and cell inserts. It has previously been shown that diazepam, a lipophilic small molecule, adsorbed to 434 

Ussing chamber walls during transport studies [44]. In the cell studies the recovery was initially 435 

measured without adding propranolol content in the filter-grown cells, as these were used in viability 436 

testing; however, the recovery of propranolol was only 56.5% (Table 4). Therefore, an additional 437 

experiment with propranolol was performed, where the propranolol content of the filter and cells was 438 

added to the recovery resulting in a propranolol recovery of 91.4% (Table 4). It is likely that 439 

propranolol, due to its lipophilic nature, was mostly located in the lipophilic cell layers. Other studies 440 

have also shown that approximately 30% of propranolol was located in filter-grown TR146 cells after 441 

a permeability study [24]. 442 

4 Conclusions  443 
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The pH of the HFDS dispersion and its shear thinning properties is more similar to native oral mucus 444 

than PGM, thus HFDS is more suitable for mimicking the mucus layer in the oral cavity.  445 

A new one compartment device has been applied to study drug permeability across an isolated mucin 446 

dispersion or saliva buffer. Four model drugs showed decreased permeability across mucin 447 

dispersions and a greater effect was seen with HFDS than with PGM. The effect on drug permeation 448 

could be caused by differences in viscosity between the mucin dispersions and the saliva buffer or by 449 

interactions between drug molecules and mucin. 450 

TR146 cells were subjected to mucin dispersions 24 h prior to a permeability study. This model may 451 

become a promising in vitro method to study drug permeation across a mucus layer in conjunction 452 

with a multi-layered epithelium. The integrity and viability of the TR146 cells were maintained during 453 

24 h incubation and a subsequent permeability study. Permeability of propranolol and caffeine was 454 

decreased by the presence of mucin, however, this was not shown for nicotine and mannitol. The 455 

HFDS attached to the TR146 cell surface to a higher extent than PGM, however, the strength and 456 

mechanism behind the attachment needs further studies.  457 

Incubation of porcine buccal mucosa with mucin dispersions for 24 h caused compromised integrity 458 

of the tissue. Mannitol permeability across non-incubated tissue and tissue incubated for 30 min was 459 

too low to be quantified. Tissue incubation with mucin dispersions did not decrease nicotine 460 

permeability, indicating that the epithelium constitute the main barrier for nicotine diffusion across 461 

porcine buccal mucosa. Further studies are needed to determine whether it is possible to reintroduce 462 

mucin molecules on the tissue surface. 463 
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