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ABSTRACT: Picric acid (PA) is a severe environmental and 
security risk due to its unstable, toxic and explosive proper-
ties. It is also challenging to detect in trace amounts and in-
situ because of its highly acidic and anionic character. Here 
we assess sensing of PA under non-laboratory conditions 
using surface-enhanced Raman scattering (SERS) silver na-
nopillar substrates and hand-held Raman spectroscopy 
equipment. The advancing elasto-capillarity effects are ex-
plained by molecular dynamics simulations. We obtain a 
SERS PA detection limit on the order of 20 ppt, correspond-
ing attomole amounts, which together with the simple analy-
sis methodology demonstrates that the presented approach 
is highly competitive for ultrasensitive analysis in the field. 

Picric acid (PA) or 2,4,6-trinitrophenol (TNP), is an old 
and well-known high explosive but mounting security con-
cerns has led to a renewed interest and an outburst of publi-
cations, for example.1 PA is highly unstable, in addition to 
being toxic and cancerous and, therefore, a serious security 
liability.1a-v There is an urgent need for highly sensitive PA 
sensors for water samples since large amounts has been 
released from industrial use, leading to accumulation in 
rivers, lakes and ground water.1a-v The marketing and use of 
some explosive precursors has recently been regulated within 

the European Union (EU No 98/2013) to prevent illicit manu-
facture. However, some explosives, including PA, can still be 
synthesized from freely available chemicals. PA is a solid 
with low vapour pressure and a relatively high water solubili-
ty (12.7 g/l), which makes it difficult to detect in vapour 
phase at ambient temperatures. PA present as dust is classi-
fied as a sensitizing substance and has recently been assigned 
a new low permissible exposure limit (0.1 mg/m3 8 hr TWA). 
To this end, robust, sensitive and selective PA detection 
methods needs to be developed, both to avert terrorist 
threats as well as for monitoring environmental pollution. 1 

Most recent works on PA have dealt with the issue of trace 
detection and sensing, in particular based on fluorescence 
techniques. 1  Surface-enhanced Raman scattering (SERS) 
spectroscopy is widely recognized as an ultrasensitive meth-
od to detect e.g. biomolecules2 and explosives,3 and in par-
ticular conjugated nitro-explosives such as TNT and PA.3b 
Despite this, the first SERS studies of PA appeared only re-
cently.3e, 4 5 For example, Stewart et al. 5  demonstrated a 
detection limit of 20 µM PA on positively charged Ag nano-
particles and pointed out the difficulty of measuring anions, 
such as PA, on SERS active gold or silver due to the negative 
zeta potential of these metals. The lowest SERS detection 
limit for PA, 0.46 µM using a hybrid silver- magnetite detec-
tion scheme, was reported recently.4 



 

We have recently reported that gold-on-silicon nanopillar 
SERS substrates exhibit extraordinary properties for detect-
ing the nerve gases VX and Tabun.6 We here use similar 
substrates in which the Au has been replaced by silver. This 
type 

 
Figure 1.  Tilted SEM image of the silver nanopillar 
SERS substrates used in this study. Inset shows the substrate 
at an evaporated droplet interface, where the droplet has 
generated clustering to the right. 
of substrate has been described previously7 and further op-
timized.8 Briefly, the samples consist of a Si-nanopillar base 
substrate, obtained through reactive ion etching, covered by 
225 nm evaporated Ag. The resulting “nano-forest”9 of flexi-
ble Ag nanopillars, shown in Figure 1, turned out to be less 
hydrophobic than the gold substrates. Hence, it was easier to 
place and hold small water based droplets on them with 
good precision. The droplets almost immediately adhered, 
similar to the Au-nanopillar case, with high contact angles 
(120 – 140o) characteristic of hydrophobic surfaces. If a drop-
let is placed on a substrate and left to evaporate, elasto-
capillary forces pulls the nanopillars together, resulting in 
SERS hot-spot clusters.6 This is illustrated by the SEM image 
inset in Figure 1, which shows the edge between a pristine 
surface region and a region where a droplet containing a low 
concentration of PA (0.4 ppb) has dried out. Similar hot-spot 
generating clustering has been observed previously on sever-
al gold and silver substrates, e.g. in.10 The clustering effect 
also creates a macroscopically visible spot on the substrates 
(ca. 1.5 mm diameter from a 2 µl droplet). Such spots can be 
clearly seen on silver-based substrates under normal lighting 
conditions, whereas Au-substrates require very bright light. 
Figure 2 illustrates how we used a handheld Raman instru-
ment (Serstech 100 Indicator) to measure SERS from PA 
(molecular model in Fig. 2 inset) on the Ag nanopillar sub-
strates. Rapid droplet adhesion, clearly visible drying stains 
and the possibility to perform handheld measurements is 
clearly a powerful and convenient combination for SERS 
analysis in the field and outside dedicated laboratories. 

The SERS spectrum in figure 3a from an evaporated 2 µl 
droplet with 20 ppb PA in water show several distinctive 
peaks, of which the major ones are at: 820 and 1332 cm-1 and 
are both related to vibrational modes of the NO2-group.11 In 
table S1 all identified peaks are listed and compared with 
literature SERS and Raman studies,5, 11a and a high correlation 
is seen, especially with the SERS study. Fig. 3b shows the 820 

cm-1 peak at different concentrations of Picric acid (0 – 20 
ppb, averaged spectra, nTot = 22). The measurements were 
acquired as shown in Fig. 2, with experimental parameters: 
785 nm/ 165 mW laser, 2 s acquisition time, 50 µm2 spotsize, 
numerical aperture of the outermost lens was 0.3. A nice 
trend is seen in the calibration curve (Fig. 3c), and as typical-
ly seen in SERS a rapidly declining signal, which as common-
ly, is likely due to hot-spot saturation.12 The lowest explicitly 
measured concentration was 0.04 ppb, and the 2 µl droplet 
equals to a total amount 

 Figure 2. The Raman instrument during handheld 
measurement on a SERS substrate and a molecular model of 
Picric acid. 
 
of 80 femtogram or 350 attomol. From zero level noise (σ) 
and the slope (k) to the 0.04 ppb level the detection limit 
(LOD = 3σ/k)13 were calculated to be 18 ppt (parts per trillion; 
total amount 36 femtogram, 160 attomol), and limit of quan-
tification (LOQ) to 0.06 ppb.For a brief comparison with 
literature, the previously mentioned SERS study showed a 
LOD of 0.46 µM which equals about 110 ppb, i.e. approxi-
mately 3 – 4 orders of magnitude higher. Looking at other 
techniques a very impressive LOD was demonstrated recent-
ly by Malik et al.,1m 7 ppt or 31 pM and the lowest explicitly 
detected PA concentration was 200 pM or 46 ppt, i.e. very 
similar results as in present study (18 ppt and 40 ppt). The 
technique used by Malik et al. was fluorescence quenching 
based, which is by far the most used sensing method for 
Picric acid. Additionally, for our most impressive results 
regarding totally loaded amounts of PA comparing numbers 
are not present in the Malik et al. study. For a brief compari-
son with the in-laboratory gold standard for everything diffi-
cult to measure mass-spectrometry, which quite commonly 
achieves detection limits in the femtogram range, however, 
with a quick overview of literature picogram detection of 
Picric acid was the best to be found.14 
 



 

 
Figure 3. a) Handheld instrument Serstech SERS 
spectrum of Picric acid (2 µl, 20 ppb) and background (red). 
b) Concentration dependence of the 820 cm-1 peak. c) PA 
calibration curve. 

 
Figure 4. Top: profile SEM image of the Ag nanopil-
lar substrates. Illustrated on top is an evaporating water 
droplet. Red panel: MD snapshots of the droplet of PA solu-
tion wetting on Ag pillared surface. Balls with different colors 
were used to denote different type of atoms: Oxygen (red); 

Hydrogen (white); Carbon (grey); Nitrogen (blue); Ag (yel-
low). Left: Initial state; Right: Equilibrium state at 2.0 ns. 
Green panel: clustering of two Ag nanopillars due to the 
elasto-capillarity interactions. Blue panel: MD snapshots of 
evaporation of a droplet of PA solution on Ag nanopillars. 
 

Further insights into the nanofluidics of PA/water droplets 
on Ag nanopillar surfaces were investigated by molecular 
dynamics (MD) simulations.15 MD simulations were carried 
out to study the wetting and evaporation process on an Ag 
nanopillared surface, as shown in Fig. 4. Each Ag nanopillar 
has a height of 4.09 nm and a width of 0.82 nm and the Ag-
Ag interactions are modelled by (EAM) potential.16 5,000 
water molecules and 100 PA molecules were mixed together 
using Packmol.17 Water TIP4P/2005 model was used18 and PA 
was described by the Merck Molecular ForceField.19 The 
temperature of the system was maintained at 300 K using a 
Berendsen thermostat. A timestep of 1.0 fs was used. All the 
MD simulations were performed using LAMMPS.20 We also 
calculated the surface tension of water and PA solution using 
Kirkwood-Buff formula.21 Our MD results show that the 
surface tension for pure water and PA/water solution are 
62.8 and 72.5 mN/m, respectively, i.e. the PA molecules in-
creases the surface tension compared with pure water. 

The droplet of PA solution, with a diameter of about 9.0 
nm, was brought to connect with the pillared surface and 
then started to wet the surface. Due to the elasto-capillary 
interactions22 between the liquid and Ag, the Ag nanopillars 
show bending deformations, as shown in Fig. 4 (Green panel) 
and supporting movie S1. If two nanopillars are close enough, 
they collapse which results in the clustering, as shown in Fig. 
4. After that, the evaporation simulation was conducted, 
starting with the equilibrium state obtained in the simula-
tions of the wetting process, and evaporation evolved as 
shown in Fig. 4 (Blue panel) and movie S2. The procedure for 
evaporation has been described in previous work.23 Also 
shown in previous work is that the evaporation could lead to 
further bending of nanopillars,15 which may enhance the 
clustering of Ag nanopillars. However, we could not observe 
such result in this evaporation case. The reason may be that 
the clustering in the wetting process increases the bending 
stiffness of Ag nanopillars. Nevertheless, these MD simula-
tion results demonstrate that the elasto-capillary effect is 
crucial for the clustering of Ag pillars observed in experi-
ments.   

In conclusion, Picric acid is an interesting molecule in 
many aspects affecting human sustainability and living on 
many levels. Its high acidity and negative charge in most 
natural environments presents analytical challenges, espe-
cially for plasmonic based sensing with gold or silver sub-
strates. We demonstrate the first example of ultra-sensitive 
SERS of Picric acid on bare silver substrates. Particular 
nanofluidics and plasmonics are benefitted from, leading to 
enrichment of PA molecules in SERS hot-spots. Experiments 
and molecular dynamics simulations show that elasto-
capillarity is crucial for these signal accumulating effects. 
With a small and simple hand-held device sensitivity and 
detection is in level with or even better than state of the art 
techniques for Picric acid today, including mass-
spectrometry. Low femtogram detection is achieved from 2 µl 
droplets of 40 ppt Picric acid. 
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