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Abstract: 

     The swapping of methane with carbon dioxide in hydrate has been proposed as a potential 

strategy for geologic sequestration of carbon dioxide and production of methane from natural 

hydrate deposits. However, this strategy requires a better understanding of the thermodynamic 

characteristics of CH4 and CO2 hydrate as well as (CH4+CO2) or (CH4+CO2+N2) mixed hydrates 
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(since (CO2+N2) gas mixture is often used as the swapping gas), along with the thermal physics 

property changes during gas exchange. In this study, a high pressure micro-differential scanning 

calorimetry (HP μ-DSC) was performed on synthesized gas hydrates to investigate the dissociation 

behavior of various hydrates. The hydrate dissociation enthalpies were determined by both μ-DSC 

measurement and Clapeyron equation. For the single guest molecule hydrate system, the average 

dissociation enthalpies of CH4 hydrate and CO2 hydrate measured by integrating the endothermic 

peak area are 55.04 kJ·mol-1 and 58.95 kJ·mol-1, respectively, which are very close to the values 

calculated by Clapeyron equation. However, in the multicomponent guest hydrates system, the μ-

DSC measured dissociation enthalpies of the (CH4+CO2) binary hydrates and (CH4+CO2+N2) 

ternary hydrates are a little higher than that of Clapeyron equation, it was found that their 

dissociation enthalpies locate between the limiting values of pure CH4 hydrate and CO2 hydrate, 

increasing with the mole fraction of CO2 in hydrate phase. By monitoring the heat flow changes 

with the μ-DSC apparatus, it showed that there was no noticeable dissociation or formation process 

of hydrate occurring in the CH4-CO2/(CO2+N2) swapping, which indicates that most CH4 hydrate 

forms (CH4+CO2) or (CH4+CO2+N2) mixed hydrates directly instead of dissociating into liquid 

water or ice first. The dissociation equilibrium data obtained from the endothermic thermograms of 

the mixed hydrates after CO2 and (CO2+N2) swapping demonstrates that about 66% and 85% of 

CH4 in hydrate phase are replaced, respectively. 

 

1. Introduction 

 

      Gas hydrates are ice-like crystalline compounds composed of cages formed by hydrogen-

bonded water molecules which encapsulate small guest molecules, such as light hydrocarbons and 

carbon dioxide, under high pressure and low temperature conditions [1]. Depending on the size and 



shape of guest molecules, there are three different structures of clathrate hydrates: structure I (sI), 

structure II (sII) and structure H (sH). Gas hydrates are non-stoichiometric compounds and on a 

mole basis, methane hydrate consists of 85.69(± 0.14)% water and 14.31(± 0.14)% methane [2]. 

This results in the physical and thermal properties of hydrates are similar to that of ice with some 

exceptions. For instance, William et al. [3] found that methane hydrate is over twenty times stronger 

than ice at the same conditions of temperature and strain rate, and John et al. [4] believed that the 

thermal conductivity of hydrate is about four times lower than that of ice.  

     Large quantities of natural gas hydrates, which are primarily composed of CH4, are found in 

permafrost regions and deep ocean sediments, and they are regarded as a promising energy resource 

in the future [5-10]. Recent years, the CH4-CO2 swapping in naturally occurring gas hydrates has 

been suggested as an attractive method of both CH4 recovery and CO2 sequestration [11-18]. The 

swapping of CH4 with CO2 from its hydrate phase is a thermodynamically spontaneous reaction [19] 

and does not accompany the potential geo-mechanical hazards that might occur during hydrate 

exploitation process [20]. Using swapping technology for the purpose of methane gas recovery and 

CO2 geologic storage requires a better understanding of the thermodynamic properties of CH4 and 

CO2 hydrates. The dissociation enthalpy of (CH4+CO2) binary hydrate is a key parameter in 

predicting the process on a reservoir scale because considerable latent heat might be generated or 

absorbed in swapping. Some dissociation equilibrium data for gas hydrates have been reported in 

the literature and are well summarized by Sloan [1]. Kwon et al [21] investigated the thermal 

dissociation behavior of (CH4+CO2) binary mixed hydrates in a rigid-walled high-pressure reaction 

vessel. They analyzed the compositions changes in vapor phase and hydrate phase during 

dissociation based on gas chromatography measurements, calculated the dissociation enthalpy of 

(CH4+CO2) mixed hydrate by fitting Clausius-Clapeyron equation to the pressure-temperature trace 

of a dissociation test. Since the classical thermodynamic methods of phase equilibrium require a 



considerable time for accurate experimental results, some researchers explored other measurement 

techniques. In 1980s, Handa [22-24] measured the compositions, dissociation enthalpies and heat 

capacities of hydrates of methane, propane, ethane, isobutene and natural gas hydrates over a wide 

range of temperatures (85-270 K) using a Calvet calorimeter. Recent years, differential scanning 

calorimetry (DSC) is broadly used for the characterization of phase change as a rapid and sensitive 

technique. Some researchers [25-27] compared DSC results of hydrates with phase equilibrium data 

obtained using a more classical technique, such as measurements of pressure variation vs. 

temperature at constant volume (PVT), demonstrating the validity of this application. Gupta et al 

[28] measured methane hydrate dissociation heat from 5.5 to 19.3 MPa using a DSC apparatus. 

They formed methane hydrate sample ex-situ using granular ice particles and transferred it into the 

DSC cell under liquid nitrogen, subsequently the sample was dissociated by raising the temperature 

above the hydrate equilibrium temperature at a constant pressure. They believed that the measured 

dissociation enthalpy of CH4 hydrate is in agreement with the Clapeyron equation predictions at 

high pressures, while the Clausius-Clapeyron equation predictions have a high relative error. Lee et 

al [29] used a high pressure micro-differential scanning calorimeter (HP μ-DSC) to investigate the 

CH4-CO2 swapping process. Their hydrate dissociation equilibrium data obtained from the 

endothermic thermograms of the replaced gas hydrates indicate that at least 60% of CH4 is 

recoverable after reaction with CO2.  

     In this work, the changes of heat flow in various hydrates dissociation process were investigated 

using a high pressure micro-differential scanning calorimeter apparatus. Our study mainly focus on 

three points: 1, measure the dissociation enthalpies of various gas hydrates accurately, calculate 

them directly from the endothermic peak area integration and indirectly using the Clapeyron 

equation, since there is a significant difference among the published data about that, for instance, 

the dissociation enthalpy of CO2 hydrate which Kamath [30] measured and reported is 80 kJ·mol-1, 



while Qazi [31] believed that it is 53.29 kJ·mol-1; 2, investigate if the CH4 hydrate dissociates while 

the swapping reaction is proceeding, and reveal the influence of an additional guest on the thermal 

behavior of the CH4 hydrate, because it is controversial according to the existing literature reports, 

some researchers believe the CH4 hydrate would dissociate while others insist the hydrate structure 

would not be destroyed; 3, estimate the extent of CO2 and (CO2+N2) swapping and exploring if all 

the CH4 molecules can be recovered by swapping technology. 

 

2. Experimental Section 

2.1. Materials 

     Analytical grade methane (99.99%), carbon dioxide (99.99%), and nitrogen (99.99%) were 

obtained from AGA Gas Company. The gas mixtures were prepared by us and analyzed using a 

Agilent gas chromatograph (7890 A), the molar composition of each gas mixture is listed in Table 1. 

Gas mixture M1 and M2 are used to form binary and ternary hydrates and investigate their 

dissociation behavior, M3 is used for swapping gas. Deionized water was used in the experiment.  

Table 1. The molar compositions (mol%) of gas mixtures M1-M3 used in this work. 

Component M1 M2 M3 

CH4 49.74 28.11  

CO2 50.26 49.86 19.88 

N2  22.03 80.12 

 

2.2. Experimental Apparatus 

 



  

 

Figure 1. Schematic diagram of µ-DSC apparatus: C1, reference cell; C2, sample cell. 

     A high pressure micro-differential scanning calorimeter (HP µ-DSC VII Evo, Setaram Inc., 

France) was used to measure the dissociation temperature and enthalpies of gas hydrates. The µ-

DSC apparatus can be operated in pressure range of 0.1 MPa to 40.0 MPa and at temperatures from 

228.15 K to 393.15 K, it has a resolution of 0.02 µW. The schematic diagram of µ-DSC apparatus 

is shown in Figure 1. The sample cell is made of Hastelloy C276 material to eliminate corrosion or 

contamination, with an internal diameter of 6.4 mm and a useful height equivalent to 19.5 mm for 

the sample. The sample cell is connected to the gas panel where the pressure can be preset to the 

desired value and measured using a pressure transducer with an accuracy of ±0.25% (range: 0 to 

20.0 MPa). Both the reference cell and sample cell are completely surrounded by a calorimetric 

furnace that can be heated or cooled from 0.001 to 1.2 K·min-1 using Peltier cooling/heating. The µ-

DSC setup was calibrated before performing experiments, and its accuracy can be checked against 



reference standard of the calibration substances, i.e, water, naphthalene and n-decane. Table 2 

shows the comparison between the NIST data and the results of temperature and enthalpy 

calibration values, the maximum deviation in the transition temperature and the latent heat from the 

NIST data was 0.18 K and 0.15 J·g-1, respectively. 

 

Table 2 The temperature and enthalpy calibration of µ-DSC apparatus. 

Material 

NIST 

transition 

temperature 

(K) 

NIST 

enthalphy 

(J·g-1) 

DSC 

transition 

temperature 

(K) 

DSC 

enthalphy 

(J·g-1) 

Water 273.15 333.33 273.15 333.31 

Naphthalene 353.38 147.6 353.41 147.45 

N-Decane 244.15  244.33  

                        *NIST stands for National Institute of Standards and Technology. 

  

2.3. Experimental Procedures 

       In the μ-DSC experiment, hydrate nucleation and growth in static system of pure water is 

restricted due to mass transfer limitations and requires a high sub-cooling degree, which would lead 

to ice formation. In order to reduce the mass transfer resistance and achieve a high conversion of 

water to hydrate, the pure water was injected into three capillary tubes (2.3 mm diameter and 0.8 cm 

length) with a micro-syringe. These tubes loaded water were then placed inside the sample cell, 

while the reference cell was empty for the heat flow measurements. Then, the μ-DSC cells and all 

tubes were flushed with the test gas at least three times to remove any residual air. After that, 

methane was injected in the sample and reference cell through the gas panel until the desired 

experimental pressure was reached and temperature program was started. The experiments were 

performed under a constant temperature ramping program as shown in Figure 2, that is, the 

temperature decreased from 293.15 K to 243.15 K at the rate of 0.5 K·min-1, after keeping constant 

for a certain time at 243.15 K, it increased from 243.15 K to 293.15 K at the rate of 0.25 K·min-1. A 



typical thermogram of CH4 hydrate during an experiment is shown in Figure 3. The hydrate or ice 

formation is identified by the exothermic peaks during the cooling cycle of a ramping experiment. 

More than one exothermic peak was observed due to hydrate or ice formation in the three capillaries, 

since the test capillary tubes are separated, a nucleation in one of the tubes will not affect the 

remaining. Subsequently during heating, two endothermic peaks are observed, the first one at 

273.15 K indicates ice melting and the second at 286.15 K represents hydrate dissociation. The 

amount of heat required to dissociate the hydrate sample can be calculated by integrating the 

endothermic peak area. In the investigation of CH4-CO2/(CO2+N2) swapping experiment, CH4 

hydrate sample preparation procedure and temperature decreasing process is the same as above, 

after that the experimental temperature increased to a specified value which keep the hydrate and 

ice in the sample cannot melt and dissociate (at 263.15 K in this study), then the outlet valve was 

opened and free CH4 gas was released until the pressure reached the equilibrium pressure of CH4 

hydrate at the experimental temperature (1.844 MPa at 263.15 K). Subsequently the CO2 or 

(CO2+N2) was injected into the reactor continually, the free gaseous CH4 in the tubes and cells was 

therefore brought out by CO2 or (CO2+N2), it should be noted that the pressure in the reactor was 

maintained at the equilibrium pressure of methane hydrate to make sure that methane hydrate did 

not dissociate during the sweep process. When the composition of CH4 in the reactor was lower 

than 2%, the outlet valve was closed and CO2 or (CO2+N2) gas mixture was injected into the cells 

until the pressure attained a predefined value which is lower than the CO2 or (CO2+N2) liquefaction 

pressures at experimental temperature. Thereafter, the swapping process was assumed to have 

started. Keeping the experimental temperature constant for a long time (at least 24 h) to make sure 

the swapping reaction proceed completely, increasing the temperature to 293.15  K at the rate of 

0.25 K·min-1 to investigate the dissociation behavior of mixed hydrates after swapping. 
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Figure 2. Changes of temperature during the whole cooling-heating cycles. 
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Figure 3. Changes of heat flow during the whole cooling-heating cycles.  



 

 

2.4. Data processing 

 

      In this work, we used two methods to calculate the dissociation enthalpies of hydrates, the first 

is integrating the endothermic peak area through μ-DSC measurement results, and the second is 

calculating them by Clapeyron equation. The following two equations represent the dissociation 

reaction of hydrates to gas and water or ice, respectively: 

M ∙ 𝑛H2O(s) → M(g) + 𝑛H2O(l)                                                (1) 

M ∙ 𝑛H2O(s) → M(g) + 𝑛H2O(s)                                                (2) 

Where M is a hydrate forming gas (or hydrate-forming gas mixture), n is the hydration number. The 

difference in enthalpy between the two reactions is equal to the fusion enthalpy of ice, hence, we 

mainly focus on the dissociation enthalpy based on the reaction of hydrates to gas and liquid water 

in this work. The most sensitive parameter in calculating the enthalpy of hydrate dissociation is the 

mass of reaction water associated with the hydrate and the mass of free water or ice in the sample. 

The accurate amount of free water, mi, can be calculated and confirmed from the endothermic peak 

area of ice melting using an ice melting enthalpy of 333.33 J·g-1: 

𝑚i =
𝑄i

333.33
                                                                       (3) 

Where Qi is the amount of heat which ice melting released, and it can be calculated by integrating 

the endothermic peak area of ice melting. Then the enthalpy of hydrate dissociation per mole of 

producing gas, ∆𝐻𝑑, can be calculated by: 

∆𝐻𝑑 =
𝑄h

𝑚t−𝑚i
×𝑀W × 𝑛                                                        (4) 

Where Qh is the amount of heat absorbed in hydrate dissociation process, and also it can be 

calculated by integrating the endothermic peak area of hydrate dissociation correspondingly, mt is 



the total mass of water in the sample cell, MW is the molar mass of water. Circone et al. [2] showed 

that the hydration number for methane hydrate does not change within the pressure and temperature 

conditions ranged from 1.9 to 9.7 MPa and 263 to 285 K, the average hydrate composition is found 

to be CH4·5.99(± 0.07)H2O, therefore, a hydration number of 6.0 is used here. As for the hydration 

number of the CO2 hydrate and other mixed hydrates, it takes 6.0 in this work according to some 

researchers’ reports [32-34].  

     Clapeyron equation is widely used to obtain enthalpy changes involved in the pure component 

phase transition process. It was suggested by van der Waals and Platteeuw [35] that Clapeyron 

equation could be applied to calculate the dissociation enthalpy of the clathrate hydrate along the 

three phase equilibrium line. The dissociation enthalpy can be calculated from the slope of the three 

phase line and the change in molar volume using the Clapeyron equation for hydrate to water and 

gas reaction by: 

𝑑𝑃

𝑑𝑇
=

∆𝐻𝑑

𝑇∆𝑉
                                                                     (5) 

Where, P and T are the absolute pressure and temperature, ∆𝑉 is the molar volume change due to 

the phase transition from hydrate to water and gas, can be calculated by: 

∆𝑉 = 𝑉G + 𝑛𝑉W − 𝑉H                                                           (6) 

Where, 𝑉G, 𝑉W, 𝑉H are the molar volume of gas, water and hydrate, respectively. The water and gas 

molar volume can be obtained using national institute of standard and technology (NIST) program, 

and VH, 
𝑑𝑃

𝑑𝑇
 can be calculated with Anderson’s method [36,37]. Substituting Equation (6) into the 

Clapeyron equation, the expression for hydrate dissociation enthalpy is obtained, 

∆𝐻𝑑 = 𝑇 × (𝑉G + 𝑛𝑉W − 𝑉H) ×
𝑑𝑃

𝑑𝑇
                                              (7) 

3. Results and disscusion 

3.1. Onset temperature and enthalpies of hydrate dissociation by μ-DSC measurements 



     A series of μ-DSC measurements were conducted to investigate the dissociation behavior of 

various hydrates. Figure 4, 5, 6 and 7 showed the dissociation thermograms of CH4 hydrate, CO2 

hydrate, M1 binary hydrates and M2 ternary hydrates at different experimental conditions. Since the 

endothermic peak from ice melting is detected at 273.15 K in each experimental run, it hasn’t been 

present in these figures to make sure the peak caused by hydrate dissociation is more clearly. At a 

certain pressure condition, the onset temperature of endothermic peak which is marked in each 

dissociation thermogram, is taken as the hydrate initial dissociation temperature in three phase 

transition process. The heat flow decreases remarkably from the onset temperature point, and it 

consists of water-hydrate-gas three phase until the offset temperature point at which the heat flow 

return its baseline. As we can see from the figures, most dissociation thermograms of pure CH4 or 

CO2 hydrate are smooth and have a single peak detected in each experimental run, however, some 

of the dissociation thermograms of binary or ternary hydrates present a small peak which followed 

close behind the main peak, especially in ternary hydrates system at the higher pressure conditions. 

The reason might be there are more than one guest molecule in binary or ternary hydrates structure 

and the dissociation conditions of hydrate formed by each guest molecule are different, a kind of 

guest molecule escape from the hydrate clathrate would lead to the cage become unstable or 

destroyed and release the other guest molecules. 

 In Figure 8, the hydrate dissociation equilibrium data obtained from the μ-DSC measurements 

are compared with the calculated values by CSMGem model [1]. The CSMGem model results are 

actually the H-L-V three phase equilibrium boundaries in hydrate formation process, and they are 

basically the same as that of the dissociation process [38]. In this study, the CSMGem model results 

are used for dissociation equilibrium boundaries, since we can calculate the hydrate composition for 

binary and ternary hydrates with it. As we can see from Figure 8, the μ-DSC measurements have a 

good agreement with CSMGem model calculations. In addition, it also demonstrated and confirmed 



that the μ-DSC can provide accurate H-L-V equilibrium data for the single or multi guest molecules 

hydrates system. By integrating the endothermic peaks and calculating according to equation (4), 

the dissociation enthalpies of hydrates are obtained and list in Table 3 and 4. The average 

dissociation enthalpy of CH4 hydrate is 55.04 kJ·mol-1 in the range of temperature 275.54-286.35 K 

and pressure 3.163-10.143 MPa, while that of CO2 hydrate is 58.95 kJ·mol-1 in the range of 

temperature 273.54-277.57 K and pressure 1.290-2.114 MPa, which is a litter higher than that of 

CH4 hydrate. As we can see from the results, the dissociation enthalpies of hydrates did not show 

any temperature and pressure dependence in experimental condition. The dissociation enthalpies of 

M1 binary and M2 ternary hydrates are between that of the pure CH4 hydrate and that of the pure 

CO2 hydrate. In addition, it was observed that the dissociation enthalpy of M1 binary hydrates 

increased with the mole fraction of CO2 in hydrate phase, as shown in Figure 9, and this result is 

consistent with Kwon’s [21] investigation and Lee’s [29] study. It has the similar tendency as well 

in the M2 ternary hydrates system, since the mole fraction of N2 in hydrate phase is much lower and 

the dissociation enthalpy is mainly depending on the concentration of CO2 and CH4 in hydrate 

phase. 
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Figure 4. The dissociation thermograms of CH4 hydrate at different pressure conditions. 
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Figure 5. The dissociation thermograms of CO2 hydrate at different pressures. 
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Figure 6. The dissociation thermograms of M1 binary hydrate at different pressures. 

276 278 280 282 284 286 288 290
-5

-4

-3

-2

-1

0

1







H
ea

t 
F

lo
w

 (
m

W
)

Temperature (K)

 2.836 MPa

 3.354 MPa

 4.239 MPa

 5.228 MPa

 6.250 MPa

 7.005 MPa



 



Figure 7. The dissociation thermograms of M2 ternary hydrate at different pressures. 
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Figure 8. Comparison of hydrate dissociation equilibrium data from the μ-DSC measurements and 

CSMGem model calculation. 

Table 3 The μ-DSC measurement results and dissociation enthalpies of pure CH4 and CO2 hydrate. 

Run Tonset (K) P (MPa) mW (mg) 
𝑥I 

(wt%) 
𝑥H 

 (wt%) 
∆𝐻𝑑 

(kJ·mol-1) 

CH4 hydrate 

1 275.54 3.163 2.8 89.36 10.64 55.09 

2 278.16 4.226 2.1 82.60 17.40 54.98 

3 279.60 4.868 2.8 85.93 14.07 55.10 

4 279.83 5.066 2.0 74.76 25.24 54.99 

5 281.25 5.811 2.7 81.61 18.39 55.02 

6 282.82 6.862 3.7 77.88 22.12 55.02 

7 283.72 7.569 3.0 72.70 27.30 54.99 

8 284.63 8.518 2.9 75.39 24.61 54.92 

9 285.22 9.253 2.9 61.66 38.34 54.97 

10 286.35 10.143 2.7 77.97 22.03 55.01 

CO2 hydrate 

11 273.54 1.290 2.1 60.57 39.43 58.96 

12 274.65 1.484 2.7 77.22 22.78 59.01 



13 275.66 1.670 2.3 87.57 12.43 58.76 

14 276.37 1.816 3.4 59.12 40.88 58.97 

15 276.94 1.953 2.0 34.50 65.50 58.95 

16 277.57 2.144 2.1 66.57 33.43 59.08 

 * 𝑥I, 𝑥H are the mass fraction of ice and hydrate phase, respectively, similarly hereinafter. 

 
Table 4 The μ-DSC measurement results and dissociation enthalpies of binary and ternary hydrates. 

Run Tonset (K) P (MPa) mW (mg) 
xI 

(wt%) 

xH 

(wt%) 

𝐶CH4
H  

(mol%) 

𝐶CO2
H  

(mol%) 

𝐶N2
H  

(mol%) 

∆𝐻𝑑 
(kJ·mol-1) 

M1 binary hydrates 

17 279.90 3.381 2.5 68.28 31.72 35.71 64.29 - 57.47 

18 282.31 4.536 3.0 59.60 40.40 37.22 62.78 - 57.30 

19 283.76 5.459 2.4 46.63 53.37 38.41 61.59 - 57.25 

20 284.54 6.078 2.4 45.00 55.00 39.21 60.79 - 57.19 

21 285.49 6.953 2.3 35.74 64.26 40.38 59.62 - 57.14 

22 286.37 7.935 2.4 42.50 57.50 41.75 58.25 - 57.05 

M2 ternary hydrates 

23 276.98 2.836 3.7 76.95 23.05 22.69 73.59 3.72 57.61 

24 278.39 3.354 3.8 72.62 27.38 23.20 72.91 3.89 57.50 

25 280.25 4.239 4.0 68.70 31.30 24.01 71.83 4.16 57.38 

26 281.84 5.228 4.1 66.15 33.85 24.88 70.66 4.47 57.35 

27 283.10 6.250 4.1 64.03 35.97 25.77 69.44 4.79 57.26 

28 283.84 7.005 4.4 63.61 36.39 26.43 68.54 5.03 57.14 

*𝐶CH4
H ,𝐶CO2

H ,𝐶N2
H  are the mole fraction of CH4, CO2, N2 in hydrate phase, respectively, which were calculated 

with CSMGem model, similarly hereinafter. 
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Figure 9. Dissociation enthalpies of the M2 binary and M3 ternary hydrates with respect to the CO2 

composition in hydrate phase. 

3.2. Dissociation enthalpies of various hydrates calculated with Clapeyron equation. 

     Clapeyron equation relates the enthalpy change of a phase equilibrium reaction to the volumetric 

properties of the reactants and products along the phase boundary, van der Waals [39] pointed out 

that the validity of Clapeyron equation depends on the fact that the reaction in either of Equation (1) 

or (2) is univariant. According to Gibbs phase rule, the number of components and phases in the 

single guest molecule hydrate system are 2 and 3, it is univariant at the three-phase equilibrium 

conditions. Strictly speaking, it is not univariant for the dissociation process of the (CH4+CO2) 

binary and (CH4+CO2+N2) ternary hydrates. However, many researchers calculated the dissociation 

enthalpies of some binary and ternary hydrates using Clausius-Clapeyron equation [40-43], which is 

derived from Clapeyron equation, by treating the multicomponent guest molecules as a single. 

Besides, in their study, they simply assumed that the volume change in hydrate dissociation phase 



transition process is equal to the gas volume, and supposed that the slope of the three-phase 

equilibrium curve is not changing with pressure and temperature. These assumptions lead to a large 

relative error in the predictions even for univariant system, and Gupta et al. [28] has investigated 

and validated it in their research. Hence, here we present the calculation of dissociation enthalpy for 

the single guest hydrate using Clapeyron equations, and tried to estimate the dissociation enthalpy 

of binary and ternary hydrates, they are list in Table 5 and 6, respectively. Table 5 showed the 

predictions of dissociation enthalpy depending on the phase equilibrium data obtained from μ-DSC 

measurements. In this study, the dissociation enthalpy was calculated according to Anderson’s 

method [36,37]. The slope of the three-phase equilibrium curve at any temperature, 
𝑑𝑃

𝑑𝑇
, was 

determined by first developing a polynomial equation, and then differentiating with temperature. 

The volume change from hydrate to gas and water, ∆𝑉, was calculated using ∆𝑉 = 𝑉G + 𝑛𝑉W − 𝑉H 

instead of assuming ∆𝑉 = 𝑉G. This method takes into account the finite volumes of the condensed 

phases, the non-ideality of the vapor phase, and the solubility of carbon dioxide and methane in 

water. As shown in Table 5, the dissociation enthalpies of CH4 hydrate and CO2 hydrate at different 

temperature are very close to μ-DSC measurement results. It also demonstrated that the dissociation 

enthalpies calculation in μ-DSC measurements was accurate. As far as the dissociation enthalpies of 

binary or ternary hydrates system, we calculated them using Clapeyron equation and list in Table 6, 

most of the calculation results are close to μ-DSC measurements with some exceptions, for example, 

the endpoint data have a relative error might because of differentiating in the calculation process, 

we believe the most accurate way is to measure it calorimetrically. 

 

Table 5 The dissociation enthalpy calculation of CH4 and CO2 hydrate with Clapeyron equation. 

Run 
Tonset 

(K) 

P 

(MPa) 

𝑑𝑃 𝑑𝑇⁄  

(MPa·K-1) 

VG 

(m3·mol-1) 

Vw 

(m3·mol-1) 

VH 

(m3·mol-1) 

∆V 

(m3·mol-1) 

∆𝐻𝑑 

(kJ·mol-1) 

CH4 hydrate 



1 275.54 3.163 0.316 6.704E-04 1.797E-05 1.343E-04 6.393E-04 55.64 

2 278.16 4.226 0.419 4.954E-04 1.796E-05 1.343E-04 4.646E-04 55.42 

3 279.60 4.868 0.480 4.269E-04 1.796E-05 1.343E-04 3.966E-04 55.48 

4 279.83 5.066 0.522 4.088E-04 1.796E-05 1.343E-04 3.787E-04 55.31 

5 281.25 5.811 0.598 3.532E-04 1.795E-05 1.344E-04 3.235E-04 55.39 

6 282.82 6.862 0.735 2.951E-04 1.795E-05 1.344E-04 2.652E-04 55.16 

7 283.72 7.569 0.823 2.652E-04 1.794E-05 1.344E-04 2.356E-04 55.03 

8 284.63 8.518 0.942 2.328E-04 1.794E-05 1.344E-04 2.034E-04 54.56 

9 285.22 9.253 1.047 2.123E-04 1.793E-05 1.344E-04 1.832E-04 54.11 

10 286.35 10.143 1.152 1.924E-04 1.793E-05 1.344E-04 1.629E-04 54.25 

CO2 hydrate 

11 273.54 1.290 0.153 1.601E-03 1.833E-05 1.389E-04 1.414E-03 59.25 

12 274.65 1.484 0.177 1.377E-03 1.833E-05 1.389E-04 1.212E-03 59.04 

13 275.66 1.670 0.203 1.210E-03 1.835E-05 1.389E-04 1.053E-03 58.79 

14 276.37 1.816 0.223 1.103E-03 1.838E-05 1.389E-04 9.478E-04 58.51 

15 276.94 1.953 0.242 1.027E-03 1.838E-05 1.389E-04 8.808E-04 59.09 

16 277.57 2.144 0.266 9.118E-04 1.838E-05 1.389E-04 7.862E-04 57.50 

 

Table 6 The dissociation enthalpy calculation of binary and ternary hydrates with Clapeyron equation. 

Run 
Tonset 

(K) 

P 

(MPa) 

𝑑𝑃 𝑑𝑇⁄  

(MPa·K-1) 

VG 

(m3·mol-1) 

Vw 

(m3·mol-1) 

VH 

(m3·mol-1) 

∆V 

(m3·mol-1) 

∆𝐻𝑑 

(kJ·mol-1) 

M1 binary hydrates 

17 279.90 3.381 0.398 5.788E-04 1.835E-05 1.389E-04 4.885E-04 54.36 

18 282.31 4.536 0.570 4.090E-04 2.265E-05 1.389E-04 3.487E-04 56.15 

19 283.76 5.459 0.727 3.231E-04 2.265E-05 1.389E-04 2.749E-04 56.68 

20 284.54 6.078 0.840 2.814E-04 2.265E-05 1.389E-04 2.390E-04 57.16 

21 285.49 6.953 1.016 2.344E-04 2.265E-05 1.389E-04 1.986E-04 57.60 

22 286.37 7.935 1.220 1.944E-04 2.265E-05 1.389E-04 1.642E-04 57.40 

M2 ternary hydrates 

23 276.98 2.836 0.343 6.892E-04 1.820E-05 1.389E-04 6.178E-04 58.68 

24 278.39 3.354 0.405 5.666E-04 1.820E-05 1.389E-04 5.026E-04 56.67 

25 280.25 4.239 0.533 4.278E-04 1.820E-05 1.389E-04 3.722E-04 55.60 

26 281.84 5.228 0.718 3.253E-04 1.820E-05 1.389E-04 2.759E-04 55.84 

27 283.10 6.250 0.933 2.526E-04 1.820E-05 1.389E-04 2.076E-04 54.81 

28 283.84 7.005 1.094 2.131E-04 1.861E-05 1.389E-04 1.730E-04 53.71 

 

3.3. Comparison with the dissociation enthalpies in literature. 



     The dissociation enthalpies of various gas hydrates in literature are listed in Table 7. The hydrate 

dissociation enthalpies reflect the magnitude of stabilization due to the interactions between guest 

and host molecules. The guest molecules prevent interaction between opposite water molecules and 

thereby keep the lattice from collapsing, the empty hydrate lattices are thermodynamically unstable. 

In this work, by using of μ-DSC method and Clapeyron equation calculation, the average values of 

CH4 hydrate dissociation enthalpies in the range of temperature 275.54-286.35 K and pressure 

3.163-10.173 MPa are 55.04 and 55.12 kJ·mol-1, respectively, they are very close to the previous 

research results. However, the average value of CO2 hydrate dissociation enthalpies in the range of 

temperature 273.54-277.57 K and pressure 1.290-2.144 MPa, whether the value obtained from μ-

DSC measurements or calculated by Clapeyron equation, are a little higher than Kang’s 

investigation [46], our results are more consistent with Lee’s work [29] and Yoon’s study [45]. For 

(CH4+CO2) binary hydrates system, the dissociation enthalpy is 57.23 kJ·mol-1 which is a little 

lower than the results investigated by Kwon [21] who performed their experiment using a PVT 

method and calculated the dissociation enthalpies from Clausius-Clapeyron equation. As for as the 

dissociation enthalpy of (CH4+CO2+N2) ternary hydrates, there is no relevant data published in 

literature, but it is reasonable that the dissociation enthalpy of 57.37 kJ·mol-1 obtained here, because 

the mole fraction of N2 in hydrate phase are much lower and they basically have the same 

dissociation enthalpies with (CH4+CO2) binary hydrates. 

Table 7 The dissociation enthalpies of various gas hydrates in literature. 

Guest 

Molecule 
∆𝐻𝑑 

(kJ·mol-1) 

Temperature 

(K) 

Pressure 

(MPa) 

Hydration 

Number 
Reference Method 

CH4 54.44±1.45 
280.60-

291.65 
5.5-19.3 6.00 

Gupta et al. 

[28] 
DSC 

 54.19±0.28 85-270.0 3.40±0.10 6.00 Handa [23] Calorimeter 

 56.9 273-286.0 2.0-20.0 - 
Sloan et al. 

[47] 

Clausius-

Clapeyron 

 56.84±0.89 273.15 0.1 6.38 
Kang et al. 

[46] 
DSC 



 51.6 200.78 - 6.00 
Rydzy et al. 

[44] 
Calorimeter 

 52.9±1.3 274-318 2.85-311.12 5.90±0.3 
Anderson 

[37] 
Clapeyron 

 53.81 273.15 - 6.07 
Yoon et al. 

[45] 

Clausius-

Clapeyron 

 54.1±0.2 - - 6.00 
Lee et al. 

[29] 
DSC 

 55.04a,55.12b 
275.54-

286.35 
3.163-10.073 6.00 This work 

DSC+ 
Clapeyron 

CO2 
57.7±1.8-

63.6±1.8 

274.15-

282.15 
1.377-3.858 

6.6±0.3-

5.6±0.3 

Anderson 

[36] 
Clapeyron 

 65.22±1.03 273.15 0.1 7.23 
Kang et al. 

[46] 
DSC 

 57.66 273.15 - 6.21 
Yoon et al. 

[45] 

Clausius-

Clapeyron 

 57.1±0.1 - - 6.30 
Lee et al. 

[29] 
DSC 

 58.95a,58.70b 
273.54-

277.57 
1.290-2.144 6.00 This work 

DSC+ 
Clapeyron 

CH4/CO2 

(0.85:0.15) 
53.4 205.20 - 6.00 

Rydzy et al. 

[44] 
Calorimeter 

CH4/CO2 

(0.29:0.71) 
62.82 

275.15-

279.15 
1.5-2.8 6.00 

Kwon et al. 

[21] 

Clausius-

Clapeyron 

CH4/CO2 

(0.12:0.88) 
56.1±0.1 - - 6.23 

Lee et al. 

[29] 
DSC 

CH4/CO2 

(0.39:0.61) 
57.23a,56.56b 

279.90-

287.07 
3.381-7.935 6.00 This work DSC 

CH4/CO2/N2 

(0.25:0.71:0.

04) 

57.37a,55.89b 
276.98-

283.34 
2.836-7.005 6.00 This work DSC 

* CH4/CO2/N2 indicates the mole ratio of CH4 to CO2 to N2 in hydrate phase, a is the DSC measurement 

value and b is the calculation value by Clapeyron equation. 

 

 

3.4. The swapping process of CH4 hydrate by CO2 and (CO2+N2) 

      In this work, in order to investigate if the CH4 hydrate would dissociate while the swapping 

reaction is proceeding, we used μ-DSC apparatus to monitor the whole CH4-CO2/(CO2+N2) 

swapping process in gas hydrates, because the μ-DSC has a high resolution and any tiny heat 

changes caused by hydrate formation or dissociation can be detected. For an accurate experimental 

results of the CH4-CO2/(CO2+N2) swapping, it should be keep the sample cell pressure no less than 

the equilibrium pressure at experimental temperature while releasing the free CH4 gas and blowing 

with CO2 or M3, make sure any possible CH4 hydrate dissociation during this process could be 



avoided. Figure 10 shows the heat flow changes in the process of CH4 release and swapping gas 

injection at 263.15 K, it fluctuates and returns to the baseline quickly. Some researchers [15,48] 

reported the CH4-CO2 swapping process in gas hydrates undergoes a solid-liquid-solid transition 

and believed the CH4 hydrate would dissociate and reform. In this study, the swapping reaction 

process last for 24 hours and then increasing experimental temperature to dissociate the hydrate 

sample. Figure 11 shows the thermograms of CH4-CO2/M3 swapping at 263.15 K, as we can see 

from that, there is no noticeable exothermic and endothermic peaks detected within the high 

resolution and sensitivity of μ-DSC, it indicates that the swapping reaction occurs without 

significant hydrate dissociation or formation. This result is consistent with Ersland’s [16] and 

Baldwin’s [49] magnetic resonance imaging (MRI) experiments, in their investigation the free 

water phase was not detected during the CH4-CO2 swapping process. Figure 12 shows the 

dissociation thermograms of CH4 hydrate before swapping and the mixed hydrate after swapping, 

the endothermic peaks from the mixed hydrates have a significant shift with respect to the peak 

formed by pure CH4 hydrate dissociation, it indicates the hydrate composition has a dramatically 

change after swapping.  
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Figure 10. The changes of heat flow in the process of CH4 release and swapping gas injection at 263.15 K. 
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Figure 11. Thermograms of CH4-CO2/M3 swapping process at 263.15 K. 
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Figure 12. Dissociation thermograms of the pure CH4 hydrate before swapping and the mixed hydrates after 

CO2/M3 swapping. 

3.5. The estimation of the extent of swapping reaction in the CH4 gas hydrate  

     The phase boundary and dissociation enthalpies of (CH4+CO2) binary hydrates are located 

between that of the pure CH4 hydrate and that of the pure CO2 hydrate, hence it can provide an 

approximate estimation of the CH4-CO2 swapping reaction extent, because the composition of 

mixed hydrates after swapping can be calculated by fitting their dissociation equilibrium data with 

CSMGem model. As for as the mixed hydrates after (CO2+N2) swapping, since the mole fraction of 

N2 in hydrate phase is much lower than that of CO2 and CH4, the extent of swapping can also be 

estimated like that. In this study, the dissociation equilibrium data of mixed hydrates after CO2/M3 

swapping at different pressure was obtained through μ-DSC measurements. As we can see from 

Figure 12, the measured dissociation equilibrium data of mixed hydrates after CO2 swapping have a 



good agreement with the phase boundary which formed by M1 binary hydrates. The composition of 

hydrate phase at different pressure are listed in Table 8, it is found that only about 66% of CH4 in 

hydrate phase has been replaced by CO2 in the swapping reaction, since the CO2 molecules prefer to 

replace CH4 in large cages in hydrate, leaving CH4 in small cages almost intact. This result is in 

accord with Lee’s research [12,17], they estimated the extent of CH4-CO2 swapping is 

approximately 67% from batch type reactions through thermodynamic equilibrium studies and 13C 

NMR spectroscopic analysis. The measured dissociation equilibrium data of mixed hydrate after M3 

swapping at different pressure match well with the hydrate phase boundary which formed by (CO2 

60 mol% + CH4 20 mol% + N2 20 mol%) gas mixture, and it is estimated that about 85% of CH4 in 

hydrate phase has been replaced by M3 in the swapping reaction. This result is pretty close to Lee’s 

[13] investigation of CH4-(CO2+N2) exchange with microscopic experiments, they reported that the 

maximum swapping extent achieved is 84% for sI gas hydrate and confirmed that the preferential 

enclathration of N2 molecules in small 512 cages of structure I hydrates improved the extent of the 

CH4 recovery by 13C NMR and gas composition analyses [50,51]. In addition, the dissociation 

enthalpies of mixed hydrates after CO2/M3 swapping, which are measured by μ-DSC and list in 

Table 8, are a little lower than that of the pure CO2 hydrate and higher than that of the CH4 hydrate. 
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Figure 13. Dissociation equilibrium data of mixed hydrates after CO2 and M3 swapping at different pressure.  

Table 8 The dissociation equilibrium data of mixed hydrates after CO2 and M3 swapping. 

Tonset (K) P (MPa) mW (mg) 
xI 

(wt%) 

xH 

(wt%) 

𝐶CH4
H  

(mol%) 

𝐶CO2
H  

(mol%) 

𝐶N2
H  

(mol%) 

∆𝐻𝑑 
(kJ·mol-1) 

Mixed hydrates after CO2 swapping 

274.61 1.851 3.9 47.46 52.54 33.39 66.61 - 57.45 

275.63 2.065 3.8 67.63 32.37 33.76 66.24 - 57.43 

276.25 2.218 4.2 64.07 35.93 34.01 65.99 - 57.40 

277.12 2.439 4.2 57.96 42.04 34.36 65.64 - 57.38 

277.75 2.625 3.5 52.46 47.54 34.64 65.36 - 57.31 

Mixed hydrates after M3 swapping 

274.62 1.982 3.5 57.26 42.74 14.97 81.99 3.04 57.83 

276.41 2.458 2.9 52.14 47.86 15.42 81.37 3.21 57.76 

277.97 2.968 2.8 49.14 50.86 15.86 80.76 3.38 57.56 

279.36 3.531 3.2 47.44 52.56 16.32 80.12 3.56 57.47 

280.31 4.002 2.2 52.46 47.54 16.69 79.60 3.71 57.35 

 

4. Conclusion 



     The CH4-CO2 swapping in naturally occurring gas hydrates is regarded as an attractive method 

of CH4 recovery and CO2 sequestration. In this study, a μ-DSC apparatus was used to investigate 

the dissociation behavior of various gas hydrates, and it provided reliable measurements of hydrate 

dissociation equilibrium data and enthalpies for the pure and mixed gas hydrates. The μ-DSC 

measured dissociation enthalpies of CH4 hydrate and CO2 hydrate are 55.04 kJ·mol-1 and 58.95 

kJ·mol-1, respectively, which are very close to the calculation results by Clapeyron equation and 

literature values. The dissociation enthalpies of the (CH4+CO2) binary hydrates and (CH4+CO2+N2) 

ternary hydrates were between that of the pure CH4 hydrate and that of the pure CO2 hydrate, 

increasing with the mole fraction of CO2 in hydrate phase. It was found that there was no significant 

dissociation or formation phenomenon of hydrate occurring in the CH4-CO2/(CO2+N2) swapping 

process by investigating the heat flow changes with the μ-DSC apparatus. It indicates that most CH4 

hydrate forms (CH4+CO2) or (CH4+CO2+N2) hydrate directly instead of dissociating into liquid 

water or ice first. The hydrate dissociation equilibrium data obtained from the endothermic 

thermograms of the mixed hydrates indicate that about 66% and 85% of CH4 is replaced after 

reaction with CO2 and (CO2+N2), respectively. 
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