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Experimental Study on Methane Production from Hydrate-Bearing 

Sandstone by Flue Gas Swapping  

 
Liang Mu and Nicolas von Solms* 

Department of Chemical and Biochemical Engineering, Center for Energy Resource Engineering 

(CERE), Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark 

Abstract: 

Methane recovery from artificial hydrate-bearing sandstones by simulated flue gas swapping was 

tested using a core flooding experimental setup. Seven groups of experiments were conducted to 

investigate the effect of hydrate saturation as well as the initial porosity and permeability of 

sandstones on methane production and carbon dioxide capture. The results show that the CH4 

recovery efficiency and the amount of CO2 captured increase with the increase of hydrate saturation 

at the same initial porosity and permeability of sandstone. The highest CH4 recovery obtained is 

51.6% and 99.4% of CO2 in simulated flue gas is sequestered in the hydrate phase after swapping at 

9.2 MPa and 277.15 K. Hydrate saturation was 82.5% and the initial porosity and permeability of 

sandstone are 25.1% and 49 mD, respectively. With the increase of initial porosity and permeability 

of sandstone, the CH4 recovery efficiency and the amount of CO2 captured increase when other 
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conditions (the hydrate saturation and reaction time) are similar. For investigating the CH4-flue gas 

swapping mechanism, a micro-differential scanning calorimetry was used to test the heat changes in 

the whole reaction. No noticeable endothermic or exothermic phenomenon was detected in the CH4-

flue gas swapping, which indicates that CH4 hydrate would form mixed hydrates directly instead of 

going through a dissociation and reformation process. Based on the observed experimental results, a 

CH4-flue gas swapping mechanism is proposed and the reaction process is found to be essentially 

controlled by mass transfer. 

 

1. Introduction 

    Gas hydrates are ice-like crystalline compounds in which guest molecules (such as CH4, CO2, N2) 

are closed in cages formed by hydrogen-bonded water molecules under favorable thermodynamic 

conditions of low temperature and high pressure. Although the hydrate cage lattice can be combined 

in various ways, only three main types of structures are found in nature: structure I (sI), structure II 

(sII), and structure H (sH).1 Gas hydrate formation is regarded as a serious problem in the petroleum 

industry since it can induce plugging in pipeline transportation and cause enormous economic 

losses; therefore, numerous studies has been conducted to address this issue.2 On the other hand, 

naturally occurring gas hydrates have been perceived as a promising alternative energy source due 

to their giant storage in offshore sediments and permafrost regions. It has been reported that the 

amount of CH4 stored in gas hydrates is twice the amount of carbon found in all fossil fuels 

worldwide.3-5 

How to safely and efficiently recover CH4 from natural gas hydrates remains a pressing challenge, 

in recent years, CH4-CO2 swapping has been seen as a potential approach which has certain 

advantages over other technologies that derive from conventional oil and gas industry to be used for 

gas hydrate exploitation, such as thermal stimulation,6-11 depressurization,12-17 chemical inhibitor 
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stimulation.18-19 Because this method is a non-destructive way of substituting CH4 molecules in the 

hydrate cage with CO2 molecules, a geological event can be avoided during production. In addition, 

the direct use of flue gas (around 20 mol% CO2 and 80 mol % N2) instead of pure CO2 can 

significantly enhance CH4 recovery and save extra CO2 separation cost before injection.20  For 

investigating the CH4-flue gas swapping mechanism, researchers have conducted their studies from 

thermodynamic,21-23 microscopic,24-26 and kinetic perspectives.27-30 Lee et al.20,31-33 did a series of 

studies on CH4-flue gas swapping, where they found that the maximum CH4 recovery efficiency 

achieved are 84% and 90%, respectively, for sI and sII or sH gas hydrate. In addition, the first field 

test by swapping was conducted on Alaska North Slope in 2012: CH4 was successfully produced 

several days after injecting flue gas into the hydrate-bearing sandstones.34-36 However, it is 

necessary to further investigate the CH4-flue gas swapping before proceeding with large-scale 

commercial exploitation using this technology, because the CH4 productivity is affected by many 

factors such as the hydrate saturation, the mass and heat transfer properties of the hydrate-bearing 

sediments, as well as the swapping reaction rate. 

In previous work, we performed preliminarily investigations to ascertain the swapping behavior 

of CH4 hydrate-bearing sandstone by injecting pure CO2 and (CO2+N2) binary mixtures with 

different compositions using a core flooding experimental apparatus. Around 46% of CH4 was 

produced from its hydrate phase after swapping with (CO2+N2) for 342 hours, the CH4 recovery 

efficiency is lower than stoichimetric.37 For the hydrate-bearing sandstones, the CH4-flue gas 

swapping is significantly different from that in bulk phase. The CH4-CO2 swapping method adopted 

in our previous study was limited by CO2 concentration where the residual free CH4 (which is used 

to keep the CH4 hydrate from dissociation) decreased the reaction driving force. In this study, this 

limitation was addressed by performing experiments where firstly the flue gas is injected 

continuously into the reactor to purge the free methane at a constant pressure and then pressurize it 
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to a certain value to start the swapping reaction at a high driving force. Since the exchange 

performance is sensitive to the mass transfer properties of hydrate-bearing sandstones, this work 

mainly focuses on how the porosity and permeability of sandstone affect the CH4 recovery in the 

CH4-flue gas swapping. The results can provide basic research information for natural gas hydrates 

exploitation by flue gas swapping. 

 

2. Experimental Section  

2.1. Apparatus. 

 

Figure 1. Schematic diagram of the experimental apparatus: RTD, resistance thermocouple detector; DPT, 

differential pressure transducer; and DAS, data acquisition system. 

 

 This study examined the CH4 recovery from hydrate-bearing sandstones by injecting simulated 

flue gas. A schematic diagram of the experimental setup is shown in Figure 1. The principal parts of 

the setup are two core holder cylinders with an effective volume of 500 cm3 each, and the maximum 
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working pressure is 20 MPa. The two core holders are installed in a cooling bath in which a 

secondary platinum resistance thermometer (type-Pt 100) was used to monitor the temperature. The 

CH4 and flue gas can be injected into the reactor from the injection cylinders with an electrical 

ISCO pump. When the swapping reaction was finished, the equilibrium gas can be released through 

two back-pressure regulators into two gas collection cylinders. The changes of pressure and 

temperature were collected by the pressure and temperature transducers and recorded in computer. 

A detailed introduction of the apparatus can be found in our previous publication.37 

 

2.2. Materials. 

CH4 (99.99%), CO2 (99.99%) and N2 (99.99%) were purchased from AGA Gas Company. The 

simulated flue gas containing CO2 (19.2 mol%) and N2 (80.8 mol%) was prepared by us, the 

composition of gas mixtures was analyzed by an Agilent gas chromatograph (GC 7890A). NaCl 

solution (3.35 wt%) was made in the laboratory. The characteristics of sandstones (originated from 

Germany) are listed in Table 1. 

 

Table 1. Physical Properties of Sandstones used in This Study 

Sandstone 
Diameter 

(cm) 

Length 

(cm) 

Dry weight 

(g) 

Dg  

(g·cm-3) 

Db  

(g·cm-3) 

Porosity 

(%) 

Permeability 

(mD) 

A 2.55 7.77 73.76 2.48 1.86 25.1 49 

B 2.55 7.77 79.22 2.56 2.00 22.0 44 

C 2.55 7.77 82.70 2.57 2.08 19.1 37 

D 2.55 7.77 85.03 2.60 2.15 17.5 31 

*Dg and Db are the grain density and bulk density, respectively. The porosity and permeability are 

measured by a steady state gas permeameter and porosimeter, the permeability reported here is Klinkenberg 

permeability. 

 

2.3. Method. 
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2.3.1. Experimental Procedure. 

     The detailed description of experimental procedure has been reported in our previously study,37 

here we briefly introduce it as follows: first, the sandstones were cleaned (with toluene and ethanol) 

and dried, then saturated with brine water and installed into the apparatus. The cooling bath 

temperature was set to 277.15 K, then injecting CH4 to start the reaction. CH4 hydrate formation can 

be identified from a sudden pressure drop as shown in Figure 2. After preparing the hydrate-bearing 

sandstones, the sweep method51 was used to purge the free CH4 then pressurize it to 9.0 MPa with 

flue gas to start the swapping reaction. One thing to note is that, in order to avoid CH4 dissociation 

in this process, the reactor pressure should be always slightly higher than the equilibrium pressure 

of CH4 hydrate at 277.15 K. The flue gas was replenished for improving the CH4 recovery. After 

the swapping experiment was finished, the equilibrium gas was analyzed by GC. Typical pressure 

and temperature changes in the CH4-flue gas swapping was shown in Figure 3. 
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Figure 2. Pressure and temperature changes in CH4 hydrate formation. 
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Figure 3. Pressure and temperature changes in CH4-flue gas swapping. 

2.3.3. Data Processing. 

The mole number of CH4 trapped in hydrate phase (𝑛CH4,H) can be calculated by: 

𝑛CH4,H =
∆𝑃𝑉

𝑍𝑅𝑇
                                                              (1) 

Where ∆P is the pressure changes in CH4 hydrate formation, V is the effective gas phase volume of 

the reactor, Z is the compressibility factor and can be calculated by BWRS equation of state,38 R is 

the universal gas constant, T is the cooling bath temperature. The changes of dissolved gas in water 

phase at different pressures can be calculated by Henry’s law, however, it can be ignored here since 

less water existed in the sandstones. The amount of water converted to hydrate can be calculated 

with a hydrate number 6.0,39 then the corresponding water saturation (Sw), hydrate saturation (SH) 

and gas saturation (SG) can be obtained. Similarly, the mole number of CH4 recovered (𝑛CH4,Re) as 

well as CO2 or N2 captured (𝑛CO2,H, 𝑛N2,H,) in the swapping process can also be determined by 
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equation (1) when obtained the composition of equilibrium gas from GC as well as the pressure 

changes in reaction. The CH4 recovery efficiency is defined as: 

𝑅CH4 =
𝑛CH4,Re

𝑛CH4,H
× 100%                                                   (2) 

The detailed calculation procedure can refer to our previous articles.37 

 

3. Results and discussion 

3.1. Properties of synthesized hydrate-bearing sandstones. 

Based on the location of hydrate layer as well as the free gas and water, there are mainly three 

typical hydrate reservoirs in nature:40 Class 1, hydrate layer located underneath two-phase zone of 

free gas and water; Class 2, hydrate layer formed under one-phase zone of free water (no gas); Class 

3, hydrate layer with no free fluids coexisting. Class 1 is theoretically the most suitable for hydrate 

exploitation, since it is thermodynamically close to the hydrate equilibrium condition. However, the 

CH4-flue gas swapping for the Class 1 and 2 would be not easy because the flue gas will firstly 

form new hydrates with the free water and affect the reaction rate. Therefore, we mainly 

synthesized hydrate samples resembling the situation in Class 3 in this work, focusing on how 

hydrate saturation as well as the initial porosity and permeability of sandstone affect the CH4 

recovery in swapping. The properties of the synthesized hydrate-bearing sandstone samples are 

listed in Table 2, and the sandstones A, B, C and D used here have the same cross-sectional area 

and length. In this study, we prepared the CH4 hydrate-bearing sandstones with different hydrate 

saturations: (i) the higher hydrate saturation case (Run 1, 2, 5, 6, 7), where an annealing process was 

used to improve water conversion. This is done by raising and lowering the experimental 

temperature repeatedly, making sure the gas hydrates experience at least one cycle of dissociation 

and re-formation. The pressure and temperature curves measured during the annealing process in 

experimental run 2 and 1 are plotted in Figure 4 and 5, respectively, which correspond to two 
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different cases in the annealing process. As shown in Figure 4, the pressures have little difference 

before and after annealing, which suggests no more extra hydrate formed and redistributed in 

experimental run 2. However, Figure 5 shows that the system pressure after the annealing process 

fells to a lower value than before, which indicates more methane molecules trapped in the hydrate 

phase in the case of experimental run 1. It can be seen that the annealing process enhances the 

overall hydrate formation yield. One reason for this may be the inhomogeneous initial hydrate 

distribution in the sandstone where there is an amount of free water remaining unreacted in the first 

hydrate formation process. The annealing process dissociates and reforms the hydrate thereby 

increasing water conversion. In addition, the pressure and temperature curves of Run 5, 6 and 7 are 

more like Figure 4 (which is the case of Run 2), the reason might be that the hydrate saturation of 

sandstones in Run 5, 6 and 7 are basically the same with that in the Run 2. (ii) Experiments were 

also performed with a lower hydrate saturation (Run 3 and 4) case, in which only the initial CH4 

hydrate formation was performed and an annealing was not conducted. 

Table 2. Properties of Synthesized CH4 Hydrate-bearing Sandstones 

Run Sandstone 
Temperature 

(K) 

Pressure* 

(MPa) 

𝑚H2O 

(g) 

𝑛CH4,H 

(mmol) 

𝑆W 

(%) 

𝑆H 

(%) 

𝑆G 

(%) 

1 A 277.15 9.04 7.05 59.6 6.3 82.5 11.2 

2 A 277.15 9.13 7.02 53.0 13.3 73.7 13.0 

3 A 277.15 9.14 7.03 44.5 22.9 61.8 15.3 

4 A 277.15 9.14 7.08 34.7 34.4 48.2 17.4 

5 B 277.15 9.12 7.01 52.3 14.0 72.4 13.6 

6 C 277.15 9.07 6.99 41.0 13.9 72.6 13.5 

7 D 227.15 8.93 6.98 52.4 13.6 72.8 13.6 

                          *The initial pressure after injecting CH4. 
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Figure 4. Pressure and temperature changes during the annealing process in experimental run 2. 
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Figure 5. Pressure and temperature changes during the annealing process in experimental run 1. 
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3.2. The effect of hydrate saturation on the swapping process. 

For studying the swapping behavior of flue gas in CH4 hydrate-bearing sandstones, seven tests 

were conducted and the results are listed in Table 3. In this work, we used the same sandstone (A) 

to form gas hydrate four times to test the influence of hydrate saturation on the CH4 recovery 

efficiency in the swapping process in order to ensure the same initial porosity and permeability. It 

has been reported that Alaska site test is distinguished by a higher hydrate saturation (around 

75%),41 therefore the sample in Run 2 was prepared with similar hydrate saturation. From the 

properties of synthesized methane hydrate-bearing sandstone samples, it can be seen that the low SH 

system has a relatively large amount of free water, and the water saturation in hydrate-bearing 

sandstones samples increases with the decreasing of hydrate saturation. Some researchers29,51 

believe that the excess water in the system can affect the replacement reaction rate and lower the 

mass transfer efficiency since it causes the formation of (CO2+N2) mixed gas hydrates. In our study, 

it was observed that the CH4 recovery efficiency increases with increasing hydrate saturation when 

other experimental conditions are similar, as shown in Figure 6. In addition, the amount of CO2 

captured also increases with increasing hydrate saturation, which suggests that there are more CO2 

molecules replacing CH4 in hydrate cages under high hydrate saturation conditions. The reason for 

the results might be that, there are less free water in the sandstones with a higher hydrate saturation, 

which makes the CO2 molecules can more immediately swap with CH4 molecules in the hydrate 

phase. In the case of lower hydrate saturation sandstones, the CO2 molecules probably first form 

new CO2 hydrate with free water, which would increase the mass transfer resistance to some extent. 

Although the reaction with free water can consume a portion of CO2 and increase the amount of 

CO2 capture, it would decrease the concentration of CO2 in gas phase and cannot contribute to 

increasing the CH4 recovery efficiency. Here we obtained the highest recovery efficiency of 51.6% 
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at a hydrate saturation of 82.5%, about 99.4% of CO2 in simulated flue gas is sequestered in the 

hydrate phase after swapping. This result is very close to the result in Lee’s work,27 where they test 

the CH4-flue gas swapping with a one-dimensional reactor and the CH4 recovery efficiency is 49%. 

 

Table 3. Experimental Conditions and Results for CH4-flue gas Swapping 

Run Sandstone 
Temperature 

(K) 

Pressure* 

(MPa) 

𝑛CH4,Re 

(mmol) 

𝑛CO2,H 

(mmol) 

𝑛N2,H 

(mmol) 
𝑅CH4 

1 A 277.15 9.18 30.8 20.4 10.4 51.6 

2 A 277.15 9.08 26.4 19.9 8.6 49.7 

3 A 277.15 9.14 21.0 16.1 6.9 47.1 

4 A 277.15 8.94 16.1 15.4 2.6 46.3 

5 B 277.15 9.05 24.5 19.6 6.6 46.8 

6 C 277.15 8.98 22.4 17.9 5.7 42.9 

7 D 227.15 8.98 21.5 15.9 4.5 41.0 

    * The equilibrium pressure after flue gas swapping. 
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Figure 6. Methane recovery efficiency and the amount of CO2 captured at different hydrate saturation. 
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3.3. The effect of porosity and permeability on the CH4-flue gas swapping process. 

To investigate how the porosity and permeability of sandstone affect the methane production and 

CO2 capture during the swapping reaction, four tests were performed at the condition of identical 

hydrate saturation (around 73%). The porosity of sandstones A, B, C and D used here 

(corresponding to experimental run 2, 5, 6 and 7, respectively) are 25.1%, 22.0%, 19.1% and 17.5%, 

their permeability are 49, 44, 37 and 31 mD, respectively. One thing to note is that the porosity and 

permeability of sandstone in this work refer to that of the original sandstones, since it is difficult to 

measure that of the hydrate-bearing sandstones. Our previous experimental investigation showed 

that the CH4-CO2 swapping reaction process in hydrate bearing sandstones is significantly affected 

by the mass transfer of diffusion and the driving force.37 Since the diffusion efficiency and driving 

force for the swapping reaction mainly depend on the CO2 concentration gradient in the gas and 

hydrate phase, the decreasing CO2 concentration with elapsed time during the swapping process 

would lower the mass transfer efficiency and reaction rate. In view of this situation, the limitations 

in mass transfer and replacement efficiency were addressed by many researchers by injecting 

swapping gas continuously to maintain a high CO2 concentration in the system and keep a constant 

driving force,27 however, this method to some extent would inevitably lead to CO2 emission and 

increase gas recycling and separation cost in field scale production. In this work, we used a batch 

operation method that uses the flue gas to purge the free CH4 before starting each swapping 

experiment, then replenishing the reactor with fresh flue gas once the reaction was assumed to be 

stopped due to lack of a driving force. The swapping process of experimental run 2, 5, 6 and 7 

lasted 240 hours in all, after which the equilibrium gas was sampled and analyzed, the experimental 

results are shown in Figure 7 and 8, respectively. From Figure 7, it can be seen that the CH4 

recovery efficiency and amount of CO2 captured increases with increasing sandstone porosity, 

which indicates that a higher porosity is beneficial to mass transfer and gas production. The effect 
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of permeability on CH4 recovery efficiency and amount of CO2 captured has the same trend. These 

results confirmed that the sandstone’s porosity and permeability are important influence factors in 

CH4-flue gas swapping. Figure 9 compares the CH4 productivity in each experimental run, here it is 

the CH4 average production rate per hour. It can be seen that, methane production rate decreases as 

the permeability decreases (the permeability of sandstones in run 2, 5, 6 and 7 are 49, 44, 37 and 31 

mD, respectively). Especially, run 2, which has the highest permeability, resulted in a methane 

production rate 7.8-22.9% higher than that of runs 5, 6, and 7. In addition, the methane productivity 

also present a decreasing trend with decreasing hydrate saturation (the hydrate saturation of 

sandstones in run 1, 2, 3 and 4 are 82.5%, 73.7%, 61.8% and 48.2%, respectively). 

16 18 20 22 24 26
30

33

36

39

42

45

48

51

 

 CH
4
 recovery efficiency

 The amount of CO
2
 captured

Porosity of sandstone (%)

C
H

4
 r

ec
o

v
er

y
 e

ff
ic

ie
n

cy
 (

%
)

10

12

14

16

18

20

22 T
h

e am
o

u
n

t o
f C

O
2  cap

tu
red

 (m
m

o
l)

 

Figure 7. Methane recovery efficiency and the amount of CO2 captured at different porosity of sandstones. 
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Figure 8. Methane recovery efficiency and the amount of CO2 captured at different permeability of 

sandstones. 
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Figure 9. The average methane production rate in each experimental run. 

3.4. Reaction heat investigation of CH4-flue gas swapping with DSC apparatus. 
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Figure 10. Heat flow changes in brine obtained during methane hydrate formation (A), flue gas swapping 

and dissociation (B). 
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    In this study, it was observed that the reaction rate of CH4-flue gas swapping is low, and we infer 

that the reaction process was mainly controlled by mass transfer, because CO2 molecules would 

diffuse along its concentration gradient in the hydrate-bearing sandstones and penetrate the already 

formed CO2 hydrate outer layer to reach the unreacted CH4 hydrate. For studying whether the heat 

transfer would affect the CH4-flue gas swapping, a micro differential scanning calorimetry (μ-DSC) 

was used to test the whole process. Three capillary tubes loaded with around 3.0 mg salt water (3.35 

wt% NaCl) were placed inside the sample cell, the temperature procedure as follows: first, cooling 

from 298.15 K to 243.15 K at 0.5 K·min-1, then keeping constant at 243.15 K for 5 hours after 

which heating from 243.15 K to 263.15 K at 0.25 K·min-1, subsequently, injecting flue gas and 

keeping constant at 263.15 K for 24 hours after that heating to 293.15 K at 0.25 K·min-1 to 

dissociate the hydrate. The specific operation of μ-DSC experiments can refer to our previous 

study.42 One thing to note is that, in order to prevent hydrate dissociation when releasing the free 

CH4 gas and injecting with flue gas, the sample cell pressure should be maintained slightly higher 

than the hydrate equilibrium pressure at 263.15 K. Figure 10 shows the heat flow curves in CH4 

hydrate formation, flue gas swapping and hydrate dissociation at 9.0 MPa. The three exothermic 

peaks in cooling cycle indicated CH4 hydrate formation (Figure 10 A), the reason of forming more 

than one exothermic peak might be that the capillary tubes are separated and the nucleation cannot 

affect each other. The endothermic peak at 273.15 K in heating cycle suggests ice melting and 

another denotes hydrate dissociation. No peaks detected in the CH4-flue gas swapping and the heat 

flow changes are constant, which demonstrated the CH4-flue gas swapping proceeds without 

significant exothermic or endothermic phenomenon. It can be inferred that the CH4 hydrate 

structure might not be completely destroyed or collapsed in the CH4-flue gas swapping, and CO2 

molecules are likely to take the place of CH4 molecules in a peaceful way in the hydrate cage. In 

heating cycle, the endothermic peak of the mixed hydrates after swapping present a distinct shift 
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with that of pure CH4 hydrate, which suggests the hydrate phase composition has changed 

remarkably. The reason might be CO2 molecules have already replaced a portion of CH4 molecules 

in hydrate cage and formed (CO2+CH4) mixed hydrates, the new formed hydrates showed different 

dissociation temperature and endothermic peak position at the same pressure and heating rate. 

Based on our investigation in this study and previous research results in literature,43-48 we infer 

the mechanism on CH4-flue gas swapping as follows: Firstly, the CO2 molecules will destroy the 

stability of methane hydrate structure due to the difference of chemical potential, especially the 

large cages in sI hydrate will be firstly destabilized under the action of CO2 molecules. Some 

researchers believed that the destroyed cages are mainly large (51262) cages, while small (512) cages 

can be maintained for a longer time, because large cages have some unfavorable angles of H2O 

molecules for the planar hexagonal rings.49,50 Secondly, the large cages will distort and the CH4 

molecules trapped inside are released. It should be noted that this process will leave plentiful 

hydrate residual rings which retain most of the hydrogen bonding energy and facilitate the process 

of CO2 molecules being trapped in hydrate cages and enhancing the dynamic process. In addition, 

this is also the reason that we did not observe obvious endothermic and exothermic peaks in the 

process of swapping by μ-DSC test. Finally, the small cages will be unstable and liberate CH4 

molecules while being filled with N2 molecules after most CO2 molecules have been enclosed in the 

large cages. It can be concluded that the CH4-flue gas in hydrate-bearing sandstones is mainly 

influenced by mass transfer since there is no significant heat phenomenon in the swapping process, 

larger porosity and permeability of sandstones will be beneficial to methane production using 

swapping method. However, this doesn’t mean that the factors involving heat transfer is not worth 

considering in the swapping process, Zhao et al.52-54 did a series of studies on CH4 recovery from 

gas hydrate by depressurization, nitrogen injection as well as CO2 swap method, they believed that 

the sensible heat of the reservoir and ambient heat transfer have a significant influence on hydrate 
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dissociation. Therefore, the investigation of mechanism of CH4-flue gas swapping is an on-going 

process of great significance, in which both experimental and simulation studies are necessary in 

the future research. 

 

4. Conclusions 

A core flooding setup was used to test CH4 recovery from artificial hydrate-bearing sandstones by 

injecting simulated flue gas. Seven experimental runs were performed to examine the influence of 

hydrate saturation as well as the initial porosity and permeability of sandstones on methane 

production and carbon dioxide capture. The experimental results indicated that the CH4 recovery 

efficiency and the amount of CO2 captured increase with the increased hydrate saturation at the 

identical initial porosity and permeability of sandstone. The highest CH4 recovery efficiency 

obtained here is 51.6% at 9.2 MPa and 277.15 K under the condition of hydrate saturation of 82.5% 

with the initial porosity and permeability of sandstone are 25.1% and 49 mD, respectively, while 

99.4% of CO2 in simulated flue gas is sequestered in the hydrate phase after swapping. With 

increasing initial porosity and permeability of sandstone, the CH4 recovery efficiency and the 

amount of CO2 captured increase at the same hydrate saturation and reaction time. For exploring the 

swapping mechanism of CH4-flue gas, a high pressure μ-DSC apparatus was used to test the heat 

changes in the whole reaction, no obviously thermal phenomenon were observed in the CH4-flue 

gas swapping, which indicated that CH4 hydrate would form mixed hydrates directly instead of 

undergoing a dissociation and reformation procedure. Based on the observed experimental results, 

the CH4-flue gas swapping mechanism was proposed: firstly, the hydrate cage would be distorted to 

release CH4 molecules, and the hydrate residual cage structure can promote CO2 hydrate nucleation 

and enhance its dynamic process. With the swapping proceeding, the outer layer hydrate slows 

down the mass transfer and CH4-flue gas swapping rate. In addition, the decrease of porosity and 
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permeability of sandstones reduces the diffusion rate of CO2 along concentration gradient from 

outer layer to inner layer, making it more difficult for CO2 molecules to reach the unreacted CH4 

hydrate. It is concluded that the CH4-flue gas swapping process was essentially controlled by mass 

transfer in sandstones.  
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