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Abstract

In biotherapeutic protein research, an estimation of the studied protein’s thermal stability is one
of the important steps that determine developability as a function of solvent conditions.
Differential Scanning Fluorimetry (DSF) can be applied to measure thermal stability. Label-free DSF
measures amino acid fluorescence as a function of temperature, where conformational changes
induce observable peak deformation, yielding apparent melting temperatures. The estimation of
the stability parameters can be hindered in the case of multidomain, multimeric or aggregating
proteins when multiple transitions partially coincide. These overlapping protein unfolding
transitions are hard to evaluate by the conventional methodology, as peak maxima are shifted by
convolution. We show how non-linear curve fitting of intrinsic fluorescence DSF can deconvolute
highly overlapping transitions in formulation screening in a semi-automated process. The
proposed methodology relies on synchronous, constrained fits of the fluorescence intensity, ratio
and their derivatives, by combining linear baselines with generalized logistic transition functions.
The proposed algorithm is applied to data from three proteins; a single transition, a double
separated transition and a double overlapping transition. Extracted thermal stability parameters;
apparent melting temperatures T, ;, T, » and melting onset temperature T, ., are obtained
and compared with reference software analysis. The fits show R = 0.94 for single and R” = 0.88 for
separated transitions. Obtaining values and trends for T ., in a well-described and automated
way, will aid protein scientist to better evaluate the thermal stability of proteins.
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1. Introduction

High-throughput thermal stability screening is an important, but challenging task that examines
protein stability in solution using various techniques — aiding further development of
biotherapeutics.[1, 2] For instance, in formulations screening, a protein is formulated under various
conditions {i.e. pH salts, excipients and/or surfactants) in order to find the combination that yields
high protein stability. The stability of these formulations is essential to retain the efficacy and safety
of the drug after its production, fill-finish, storage, shipping and handling. One of the important
characteristics for the stability of biotherapeutic proteins is their conformational stability in
solution.[3] The propensity of a protein to partially unfold, even at relatively low temperatures or
relatively low denaturant concentrations, indicates unfavorable biophysical properties, as protein
unfolding often leads to aggregation and loss of functionality.[4] Moreover, the formation of large
aggregates and subvisible particles may lead to immunogenicity of the drug substance.[5, 6]
Screening for the optimal formulation involves assessment of several protein stability indicators,
such as the denaturation or melting temperature, denoted as T; or T,,, and the Gibbs free energy of
unfolding, AG.

Differential scanning fluorimetry (DSF) can be employed to assess protein thermal stability. DSF was
developed as an extrinsic dye-based method, which probes solvent-exposed hydrophobic patches
during thermal unfolding. The extrinsic dye binds to these patches and can subsequentially be
characterized by the change in its fluorescence properties. [7, 8] Intrinsic fluorescence DSF,
sometimes referred to by device manufacturers as nanoDSF™ or nDSF, is a relatively novel technique
that utilizes the native protein fluorescence peak to measure protein unfolding. Thermal unfolding
induces structural changes, where the solvent exposure of amino acids that are buried in the
hydrophobic protein core causes detectable differences in the intrinsic protein fluorescence
emission spectra. IF DSF monitors the emission intensity as a function of temperature at a set
excitation wavelength. The observed native protein fluorescent spectrum consists of contributions
from phenylalanine, tyrosine and tryptophan.[9] Folded proteins generally show only fluorescence in
the tryptophan [290 - 450 nm] or tyrosine [280 - 340 nm] peak range. The excitation spectrum of
tyrosine is similar to that of tryptophan. However, tyrosine residues have lower absorption
coefficients, a lower quantum vyield, and the emission at a lower wavelength causes Férster
resonance energy transfer (FRET) to the tryptophan residues.[10-12] It therefor is only feasible to
study tyrosine fluorescence peak changes when very few or no tryptophan residues are present.
Generally, to reduce the influence of tyrosine, an excitation wavelength between 285 nm and 300
nm can be used.[13] This focusses on the well described native tryptophan fluorescence peak, and
peak changes are associated with unfolding of the tryptophan-containing domains. In a typical
application of nanoDSF™, the changes of the fluorescence peak are monitored by simultaneously
measuring at two different emission wavelengths, namely 330 and 350 nm.[14]

Some complex proteins, such as monoclonal antibodies, have multiple domains and their unfolding
can be characterized by intrinsic fluorescence DSF.[13] The advantage of this technique lies in the
small quantities used and ease of sample preparation, as no dyes are added. Additionally, the
potential effects of these dyes on the protein stability are nullified. The downsides of using native
fluorescence are a decrease in fluorescence signal with increasing temperature, as well as an

influence of solvent conditions on protein peak shape, intensity and intensity decline.[15, 16]



The analysis of thermal protein unfolding using IF DSF data is based on the temperature dependent
shift in fluorescence, as characterized by the ratio between the intensities at the two emission
wavelengths. The protein thermal stability is further characterized as apparent melting temperature
Ty, at the maximum in the first derivative of the ratio.[13] However, difficulties with data analysis
occur when protein unfolding steps are overlapping, and slopes in the fluorescent ratio merge.
Additionally, evaluating transitions from the fluorescence intensity ratio alone can result in biases in
some cases.[17] It should be noted that apparent T, values were correlated to the true T, values
obtained by differential scanning calorimetry (DSC) [8, 18, 19]. However, in the IF DSF experiments
presented here, the reversibility of the transition is not studied, therefore the term T, is used to
indicate apparent melting temperature. Additionally, the onset temperature of the investigated
thermal protein unfolding, here denoted as Tys¢¢, is of particular interest.

This study proposes a curve fitting method based on protein states and the fluorescence intensities
observed to deconvolute unfolding transitions. The model is validated by comparing the non-linear
fitting approach to conventional analysis reference values of both a single, and a double (baseline
separated) unfolding transition. We then apply our methodology to an IgG1 type mAb, PPI-03, that

shows increasing transition overlap with increasing formulation pH, as illustrated in Figure 1.
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Figure 1. PPI-03 fluorescence ratio (left) and its derivative (right) for formulations at 70 mM NaCl at various pHs. The first
transition shifts to a higher temperature at higher pH, indicating higher thermal stability. At high pH the two transitions
overlap more strongly, making an estimation of both apparent T,, values more difficult. Indicated are the pre-transition
region, the transition region containing two ratio shifts, and the post-transition region.

The non-linear curve fitting is based on simultaneous fitting of fluorescence intensities, the ratio
between them and the derivative of these curves. We employ a theoretical transition model with a
three-state fit and extract valued formulation characteristics (T,,ser and Ty,) for both transitions,

with prospected extensions to other fluorescence-based methods.

1.1 Terms
Table 1: Throughout the paper various terms are used, for consistency the following are defined:
T Temperature.
Jo] Protein state as folded {j = 1), intermediate (j = 2) and unfolded state (j = 3).
s.J—1 Transition s, for /] — 1 transitions.
A Observed emission wavelength - 330 nm or 350 nm.

Total observed fluorescence intensity I;, and the pure state contribution I ; of

state j.




oft Fraction of proteins in state j, represented for all states /, summing to 1.
. Penalty vector k, used to regulate the importance of the obtained data fits in the
x optimization function.
- Weight vector W is used to downweigh the edges of the data, i.e. at the lowest
v and highest temperature.
Fitting parameter p, encompasses the baseline parameters by, y for an N*
p order polynomial fit at emission wavelengths A, and all transition parameters 4,
B; and vg.
fa Fit of fluorescence intensity I; at emission wavelength A.
Apparent melting temperature of transition s. Other conventional denotations
Tn,s are Ty s or T%‘S.
SSE Weighted sum of squared errors of prediction.
R? Squared correlation coefficient
RMSE Root-mean-squared error

2. Materials and methods

2.1. Materials and experimental screening
The protein formulation screening data is a full factorial design, with 24 combinations of pH and
ionic strength, as part of a large screening effort. PPI-03 and PPI-13 are monoclonal antibodies and
PPI-30 is interferon alpha-2a (IFN-a 2a).
Interferon alpha-2a is a single domain protein containing 165 amino acids and two disulfide
bridges.[20, 21]
Both the model monoclonal antibodies (mAb), PPI-03 and PPI-13, belong to the human IgG1
subclass. The mAbs are multidomain Y-shaped proteins composed of four polypeptide chains, which
are grouped into different domains, two identical F.,, domains and one F. domain. Monoclonal
antibody derived products are an important factor in the treatment of immunological disorders, and
have a major contribution in biotherapeutics, many of which are in the process of development.
Thermal unfoldingbehavior interpretation of mAbs becomes complex due to its multidomain nature
- although it has been observed that mAbs unfolds in multiple steps. Lowest Ty, ; peak usually
corresponds to C,2 domain followed by the Fy, and sequentially unfolding of the C,3 domain at

higher temperature Ty, ».[22]

2.1.1. Bulk solutions
The PPI-03 bulk solution contained 46.4 mg/ml protein in 25 mM histidine and 205 mM (7%) sucrose
at pH 6.0 and had a molecular weight of 145 kDa. The PPI-13 bulk solution contained 48.9 mg/ml of
protein in 20 mM succinate, 95 mM arginine, 180 mM mannitol and 20 mM NaCl at pH 6.0 and has a
molecular weight of 149 kDa. The PPI-30 bulk solution contained 1.35 mg/ml protein in 25 mM
ammonium acetate and 120 mM NaCl at pH 5.0, and has a molecular weight of ~20 kDa. All bulk
solutions were free of surfactants.

2.1.2. Formulation procedures
Each protein was formulated in 24 conditions as a full factorial design across eight different pH

values (5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 9.0) and three different ionic strengths {0 mM, 70 mM and 140
mM NaCl concentration). In other words, a design with eight levels in one mode, and three in the



other. The reason for choosing such a comprehensive design was to ensure that good formulation
conditions were covered for all proteins. Chemicals used for formulations are L-histidine (J.T.Baker®),
L-histidine monohydrochloride (J.T.Baker®), Trizma® base (Sigma-Aldrich®), Trizma® hydrochloride
(Sigma-Aldrich®) and sodium chloride (Sigma-Aldrich®). The differences in the formulations are
because the measurements were performed at two different laboratories, and the samples were
formulated using two procedures.

For PPI-03, and first the PPI-13 & PPI-30 lab-replicates; Slide-A-Lyzer™ dialysis cassettes (Thermo
Fisher Scientific®) were used for dialyses of each protein in 10 mM histidine buffer at pH 5.5,710 mM
histidine buffer at pH 7.0 and 10 mM tris buffer at pH 8.5. A buffer exchange was performed after
two and four hours, ensuring a dilution of at least 200 times the sample volume. Each dialysis was
continued overnight at cold temperature (4 °C). The protein concentration after dialysis was
measured using NanoDrop™ 8000 Spectrophotometer using the respective extinction coefficients at
280 nm and then a protein stock solution with a concentration of 20 mg/ml was made by dilution
with the dialysis buffers. The final formulations screened were obtained by a 1:20 dilution of the
protein stock solution into the respective buffers for the proteins to be tested at a uniform
concentration of 1 mg/ml across all samples. The protein stock solutionin 10 mM histidine at pH 5.5
served as a stock solution for all formulations in pH 5.0, 5.5 and 6.0, the protein stock solution in 10
mM histidine at pH 7.0 served as a stock solution for all formulations in pH 6.5, 7.0 and 7.5 and the
protein stock solution in 10 mM tris at pH 8.5 served as a stock solution for all formulations in pH 8.0
and 9.0. The pH of the final samples was checked and adjusted where necessary. PPI-30 was up

concentrated to 30 mg/ml before dialysis and then dialyzed as described.

For the second cross-lab replicate, PPI-<03 and PPI-13 were dialyzed in 10 mM histidine buffer at pH
6.0 using Slide-A-Lyzer™ dialysis cassettes. Buffer exchange was performed after two and four hours,
ensuring a dilution of at least 200 times the sample volume. The dialysis was continued overnight at
cold temperature (4 °C). The protein concentration after dialysis was measured using NanoDrop™
2000 Spectrophotometer using the respective extinction coefficients at 280 nm and a protein stock
solution with a concentration of 20 mg/ml was prepared by dilution with the dialysis buffer. The final
screening conditions were obtained by a 1:20 dilution into the respective formulation buffers to
achieve a final concentration of 1 mg/ml protein. The pH of the final samples was checked and

adjusted where necessary.

2.2. Intrinsic fluorescence DSF measurements

Measurements of the samples were carried out using two different but identically equipped
Prometheus NT.48 (NanoTemper® Technologies GmbH) instruments for cross-lab accurate
measurements, using a 1 °C/min temperature ramp between 25 and 95 °C. The observed two
emission wavelengths, 330 and 350 nm, are monitored at an excitation wavelength of 280 nm. The
fluorescence is recorded at an average of one measurement per 0.044 °C, or 23 measurements per 1
°C, resulting in up to 1600 data points per emission wavelength.

Each formulation was measured as a technical triplicate. Additionally, PPI-03 and PPI-13 have cross-
laboratory duplicates to evaluate the formulation protocol and cross-laboratory reproducibility,

resulting in a total of 144 measurements for these proteins. For PPI-03 one measurement (pH 7.5,



140 mM NacCl) is not obtained, resulting in 5 replicates. PPI-30 precipitated at pH range 5.5 to 6.5

and therefore no data is obtained within this range, and 45 measurements are obtained for PPI-30.

. . . . . I
The data is preprocessed by calculation of the fluorescence intensity ratio, denote 13&, and the 1%
330

derivate of the ratio and fluorescent signals using the manufacturer’s software (PR.Control v1.12.2,
NanoTemper® Technologies GmbH). For each measurement six curves are obtained, as a function of
temperature: the fluorescence intensity at 330 nm, the smoothed 1% derivative at 330 nm, the
fluorescence intensity at 350 nm, the smoothed 1* derivative at 350 nm, the ratio and the smoothed
1** derivative of the ratio.
2.3. Reference data analysis method

The reference analysis of the data of PPI-30, PPI-03 and PPI-13 was performed using the
manufacturer’s software (PR.Control v1.12.2, NanoTemper® Technologies GmbH), and reference
values for Topnsee, Tim 1, and Ty, , were determined for pH 5, 5.5, 6.0, 6.5, 7.0,.7.5, 8 and 9 at salt
concentrations of 0 mM, 70 mM and 140 mM NaCl, according to the methodology described by
Martin et al. (2014)[23]. A value for T;, , was not obtained for PPI-30, which has one discernable

transition using the reference method.

3. Curve fitting

A three-state model, comprising of the native, intermediate and unfolded state, is applied and each
state is expressed as a relative fraction. This model has been applied by Eftink et al.[11] and by Lazer
et al.[24] to model similar data in isothermal chemical denaturation (ICD) experiments as well as by
Harder et al.[25] for circular dichroism (CD) and ICD experiments. Based on the cited works, the rate

constants for the transitions, k; and k,, and the relative state fractions, ¢, 3, are defined as:
ko

$1 S $2= ¢3 (1)

The observed emission signal intensity [; at wavelength A, is described as the sum of the
contributions from each state’s pure signal I, ; and its fraction.

L=0hab1+ 520+ 03¢ (2)
The observed emission signal intensity can be approached by modelling the signal contributions as a
function of temperature and concentration.

3.2. Baselines

A baseline is approximated for each combination of protein state and monitored wavelength. The
absorption spectra of single-state tryptophan residues do not change with temperature; however,
the guantum yield declines as the non-radiative return of the excited state increases. Signal intensity
I is then proportional to 1/T (K1) according to:[16]

(7)), 1

@)

Which links the slope at the two emission wavelengths as a proportional relative decrease. The

In

(3)

signal I, ;, at emission wavelength A and state j, is modelled as a 1" order polynomial on the

relatively short temperature intervals.

1
L;j(T) = byjo+byjs T = Z bynT" (4)

n=0



The relative decline of the slope, or loss of signal, at any given temperature where the protein is in a
single state should be equal at both emission wavelengths 4. However, at the baseline, multiple
shifted fluorescent amino acid residues or experimental interference in the emission spectrum can
cause small deviations, and a 1-to-1 relationship on the temperature dependent signal loss is not
enforced.
3.3. Transitions

The transitions are modeled using a generalized logistic function, S(T') eq.5, over interval [0,1]. Here
the conversion S is expressed as a function of temperature T, independent of the observed emission
wavelength. The curve is characterized by the transition midpoint A, the logistic growth rate B, and
the asymmetry factor vg. Resulting in three parameters for each transition. When vg = 1.a regular

logistic function is obtained.

s(ry= (1+ eBs(As_T))_Vls {5)
Inclusion of an asymmetry parameter has the advantage that the description of the transition is
flexible towards temperature induced factors that affect the shape of the transition. Introducing
flexibility has drawbacks, both in optimization of the fit and uncertainty in the resulting curves. This
problem is addressed using hard and soft constraints on v, as described in 4.2-4.3.
The fraction of the intermediate state can be expressed as ¢, = S;(T) - (1 —SZ(T)), i.e. as the
amount of native state that has unfolded to theintermediate state minus the amount of
intermediate state that has further unfolded. It follows that ¢; =1 — S;(T) and ¢35 = S;(T) -
$5(T), such as that all the fractions 0 > ¢; ; < 1, and Zf ¢; = 1latanyT, resulting in:

[1 - 51] + [51(1 N Sz)] + [5152] =1 (6)

. . . . 1 .
The value for T, ; can be obtained by equating the transition fraction §; to > corresponding to the

mid-point of the transition. This‘method can be generalized for any transition fraction S;, by
rearranging eg.5 into:

— (-vs)
In(-1 ; S, ) )
S

Eq.7 also allows for the calculation of the transition onset, S; = 4%, or as Tonser,1(0.04)

Ts(ss) = As -

corresponding to 4% conversion of the first transitions, analogous to the traditional methodology.
Combining the baselines and transitions allows us to formulate a fit f; of the observed intensity I, at

emission wavelength A over J states.

J
REDY <¢,- D byl ) (®)

j=1
For brevity, the parameter vector p is defined to contain relevant fitting parameters, [A, B, v, b].
When fitting two wavelengths in a three-state model, p includes 18 parameters. The fit is guided by
constraining and penalizing the parameter space.
The ratio of the fits is obtained from the combination of the fits at different wavelengths, analogue
to the way it is calculated from the observed data.

f@(l’. T) = JM

330 f330(, T) ©)



4.  Optimization algorithm

The curve fitting algorithm aims to find the best values for the fitting parameters p, such that the
fitted curves most closely resemble the data. This is done by minimization of the objective function
(4.1) as a function of p, where the fit is compared to the observed signals and ratio and their
derivatives. Penalization of these various forms is achieved through a penalty vector k, which
regulates the emphasis during fitting. Further optimization is guided by hard (4.2) and soft
constraints (4.3). These constraints aim to limit the search space or penalize off-values, with the goal
of (a) finding a minimum that is physically feasible, (b) speeding up the convergence whilst (c)
avoiding local minima and edge regions in the temperature domain. Practical application of the
model is considered in terms of the computational implementation (4.4), model validation {4.5) and
optimization of applied constraints (4.6).

4.1. Objective function

The objective function is defined as the sum of the squared distances between the fits and the data.
We can calculate the weighted sum of squared errors of prediction (SSE) for each of the six curves

obtained in IF DSF, and independently penalize the SSE in the four data forms: the fluorescence
. . N . 350
intensity spectra, the smoothed 1% derivative of these spectra, the ratio 330 and the smoothed 1%

derivative of the ratio. For each of these forms, we use one of the first four terms of the penalty
term Ky 4. A weight vector, w, is applied to downscale the importance of the edge regions in the
fit. In the optimization of the fits, we define a general minimization problem which includes the soft
constraints.

Shape of the weighted sum of squared error
K

SSEy = garers ) wlh(M — LG (10)

va

Total optimization

argmin Z SSE,, + additional penalties (11)
P

The penalties k¥ and weights W are to be optimized per screening. Typically, with strongly
overlapping transitions; a higher penalty value k is used for the fluorescence ratio and its derivative.
Increasing k leads to a larger SSE for that specific data form, thus putting more emphasis on a
correct fit for that form. Note that it is practical to normalize the penalties by the variance of the
curves, such as that they fall within the same effect-scale.

The weight vector W is chosen before fitting, rescaled to an average weight of 1, and used to
emphasize the data in a specific temperature domain. Suggested W are (1) trapezoid from the edges,
(2) as atrapezoid connecting the maxima of the first derivative of the ratio, or (3) flat, uniformly over
the temperature domain. The edge regions contain the less important features of the data whilst
also causing potential local minima. These local minima are found when fitted transitions that
overlap with the edges are only partially evaluated. Downweighing the edge regions will effectively
emphasize the transition-range or region of interest; this effect is stronger for the maxima-based

trapezoid. The three used shapes of W are plotted in Figure 2.
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Figure 2. Example of normalized Weights W over a chosen temperature interval 40 to 92 °C: Flat, uniform weights (blue),
linearly decreasing towards the edges over 10 °C (red), or linearly decreasing towards the edges from the ratio’s first
derivative maxima (yellow). The weight for temperatures below 40 °C is set to zero for the Edges and Maxima trapezoids.

4.2. Hard constraints
Hard constraints allow for the inclusion of chemical and physical knowledge of our sample and
instrumentation into the model. This information is used to define hard borders for the fitting
parameters, in order to steer the optimization algorithm towards a meaningful local minimum and
away from the edges of the data.
Various hard constraints are imposed on the system. For the baselines a positive intercept b;; > 0
and a negative slope b;, <0 are imposed, to ensure the pure state signals are positive and
decreasing. The transition midpoint A should fall well within the measured interval, and such that
the two transitions are separated. The A, terms are limited to 40°C < A; < A; + 3°C < 4, < 85°C.
The 3°C represents a flexible minimum distance between transition midpoints in order to avoid local
fitting minima where only one transition is described using two transition fits. The transition width
B, a unitless factor, is fixed according to 10 % - 90 % transition around the midpoint with a
minimum width of ~6°C and a maximum width of ~30°C, resulting in 0.15 < B; < 0.6. The
asymmetry factor v is constrained around the symmetry, 0.9 < vg < 1.1, and further penalized (see
section 4.3).

4.3. Penalties k
Next to the hard constraints, which model the physical boundaries of the fit, penalties are used to
guide the fit towards a suitable minimum. The first four terms of the penalties k(;_ 4; are used for
the mixing of the four data forms, and two soft constraints are added as penalties, denoted as k5
and K.
The asymmetry of the fit v, is constrained to allow for small asymmetries around the value of 1,

using a quadratic constraint in the form:

Asymmetry penalty = ks Z] i(vs —1)? (12)

s=

We limit the scope of asymmetry, especially with overlapping functions as the asymmetry and slope
of the baselines is partially confounded, mainly as the baseline of the intermediate state becomes
less defined when the transitions overlap.
Furthermore, a quadratic soft constrain is applied to the relative loss of signal between the
wavelengths at each of the folding states. The protein peak of a single state should only decrease
during the temperature ramp, but deformation is a sign of state change. A small baseline would
offset a direct relationship in the relative slope at the two emission wavelengths. Constraining the
slopes avoids local minima and expedites convergence, whilst retaining flexibility in the

accommodation of sloped baselines.



10

J (ba=3s50j1  ba=330,1 2
Slope penalty = K, Z s — = (13)
j=1 b/1=350,j,0 b/1=330,j,0

The effect of the slope penalty is to strongly promote the tendency for flat baselines in the
derivative of the ratio.

4.4. Algorithm implementation, parameters and initial pg
For a single transition, 11 parameters are fitted, 3 terms are used to describe the transition and 8
baseline terms remain. For the three-state model seven parameters are added; the 3 parameters of
the second transition as well as two parameters for each additional baseline. All 18 fitting
parameters contained in p are fitted simultaneously.
Initial parameters p, are estimated within the hard constraint borders, these initial values are found
to be robust to the quality of the fit. The baseline terms are set by a simple polynomial fit of the
baselines at the edge regions and an average of these are used for the intermediate state.
Additionally, the transitions can be established uniformly for all formulations of a protein, either by
visual inspections of the first derivative of the ratios, or by setting it equidistant in the hard
constraint borders of the A, terms and initiate the remaining transition parameters using B; = 0.4
and vg = 1 for all transitions. An analogous approach is appliedin the case of a single transition.
The MATLAB® Optimization Toolbox® is employed to find the minimum of a constrained nonlinear
multivariable function using Sequential Quadratic Programming (SQP). In SQP an approximation is
made of the Hessian of the cost-function using a quasi-Newton updating method, which defines a
subproblem to be solved by quadratic programming. Iteratively a new Hessian is calculated and
solved until convergence is obtained.[26] This results in fast, global optimization that benefits from a
constrained search space to aid the optimization of the subproblems, and with the added advantage
that the Jacobian and Hessian matrices do not have to be provided. Input parameters p are
normalized to compensate for the different scales, e.g. the expected baseline parameters are ~10*
times larger than B or v,. Using SQP, a three-state fit is typically obtained in less than 5 seconds
(CPU 4 cores, 2.90 GHz).

4.5. Validation
The validity of each fit can be assessed by visual inspection of the fits in the different forms of the
curve, or by analyzing the objective error minimized in the fitting. When visually inspecting the fits,
good characteristics are the consistency of parameter values p within the replicates, and
preservation of trends in fitting parameters in the formulation series. A robust analysis of the
objective function can be obtained from the fitting error or SSE. A standard deviation oggg is
estimated from the SSE obtained. This standard deviation is used to quantify and reject deviant fits,
where an adverse local minimum is found. The optimization procedure and rejection of the incorrect
fits occurred independently from the reference data, such as to mimic applicability conditions and
avoid bias.
After the independent optimization, the fitted models are compared to the reference values in order
to evaluate the applied methodology. We calculate the square of the Pearson correlation coefficient
(R?) and the Root Mean Square Error (RMSE). Values for R? will give an idea about direct
comparability between the predicted and reference values, with R? values [0, 1]. We calculate the
offset as the difference in the means of predicted and reference T,, and T, to show possible
biases between methodologies. This offset value (Tref —’I_"pred) indicates by what measure the

predicted values have to be shifted by their average. The RMSE measures the overall average
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prediction error for the specific data included in the model. Visual evaluation of the results gives
insight into the conservation of the trend, or correlation.
4.6. Optimization of constraints and penalties

Optimization of the penalty vector k relies on the evaluation of the resulting fits and is adjusted in a
step-wise manner. Initial penalties k; , are set as equal, and after inspection of the fits of a subset
of samples, the penalties for data forms that show large misalignments by visual inspection should
be increased. Furthermore, a high penalty for the soft-constraints k5 ¢, related to vs and the
relative slope of the baselines, is initially applied. These penalties are lowered to improve the fit until
overall SSE no longer decreases. However, with strongly overlapping fits the asymmetry should
remain constrained. The initial weight vector, W, can be set to an edge distanced trapezoid.or as a
flat value of 1. Consider using larger edge regions or maxima-based weights with small baselines or
artefacts in the edge regions. A 10 °C edge interval is proposed, which/can be decreased if
transitions occur near the temperature edges. When the baseline at either end of the temperature
range shows non-linear behavior, the data’s temperature range is reduced to achieve a correct linear
baseline estimation. Also, limiting the temperature range reduces the amount of data put into the
fitting algorithm, which greatly reduces computation time. However, when only computation time is
to be considered, removing alternating data points in the baseline region and doubling the weights
of the remaining points will retain baseline estimation whilst reducing the amount of evaluated data.
Adverse local minima are addressed by adjusting hard constraints, typically the minimum distance

between A; and A,, possibly in combination with limitations on their ranges.

5. Results
The results divided into four sections, one for each of the three proteins analyzed, according to
increasing complexity of the problem  (single transition, double transition and overlapped
transitions), and a final section summarizing the results.

5.1. PPI-30: Single transition curves
PPI-30 formulation data:is fitted on the interval 35 °C < T < 95 °C and a w with edge regions of 10
°C is applied. The non-linear curve fitting parameters were calculated using a constraint vector k
which favors the ratio and its derivative.
For the two-state, single transition fit 11 parameters are obtained and the weighted sum of squared
errors of prediction (SSE) is calculated. The SSE limit is set at 3-0g55, which excluded 0 out of 45
samples. Results for the formulations with 0 mM NaCl are consistent with a single transition fit, and

the fit at pH 7.5 with 0 mM NaCl is plotted as an example (Figure 3).
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Figure 3. Two-state fit of PPI-30, at pH 7.5, 0 mM NaCl. The fit was made focusing on minimizing the errors in the ratio and
the derivative of the ratio (in purple).

This two-state model shows a larger fitting error at salt concentrations 70 mM and 140 mM NacCl.
Investigation of the raw data showed that a two-step transition is visible in the raw-fluorescence
channels: An initial major change in fluorescence ratio followed by a large increase in both I357 and
I33¢ (Figure 4, A). The chosen penalties, k; 4, focus on the ratio and its derivative. Only one
transition is fitted, which matches the reference methodology. Samples with 0 mM NaCl show the
same pattern, however, the ratiochange and the increase happen concurrently.

Fitting a three-state model allows for the fitting of a second transition (Figure 4, B). These fits show
definite improvements both in SSE, SSE spread, and visual inspection of the fits. Analysis of the
fitting-error (3 osgp) excluded 3 of 45 fits. Both the two- and three-state models of PPI-30,
formulated at pH 7.5 and 140 mM NaCl, are shown to illustrate the effect of the increased
complexity of the model (Figure 4).
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Figure 4. Two-state (A) and three-state (B) fits of PPI-30 at pH 7.5, 140 mM Nadl. The two-state model fits the ratio
changes, focusing on peak deformation. The three-state model incorporates the fluorescence intensity to fit a second
transition, this second transition is characterized by increased intensity without an observable shift in the ratio.

The first transition, S;, corresponds to the majority of the ratio change, where the peak is shifted
towards a higher wavelength, resulting in increased f350/f330- The second transition, S,, is an
increase in total peak intensity with only a minor peak shift. This change can only be appreciated by
inspecting the two plots on the left in Figure 4B, where the change in fluorescence intensity is
plotted.

An intermediate state ¢, is fitted through the three-state model (Figure 5).
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Figure 5. Extracted protein fractions ¢, 3 of the fit of PPI-30 at pH 7.5 and 140 mM NaCl, corresponding to the fit depicted
in Figure 48B. (print: Color)

For the three-state fit of PPI-30 the predicted Ty, ; and Tyy50¢, at 4% conversion, are plotted against
the reference values (Figure 6). Predicted T, , values can be found in the supplementary materials,
but cannot be compared directly with references values as only T, ; is obtained by the reference
method. Increasing the ionic strength destabilizes PPI-30 at low_pH, which is observed as a lower
Tonset and Ty, 1. At high pH the effect is reversed, and 70 and 140 mM added NaCl increase stability.
In previous work, it was shown that pH strongly influences the thermal stability of PPI-30.
Additionally, it is shown that increasing the ionic strength has an unfavourable effect on the colloidal
stability of PPI-30 at low pH, causing the protein to aggregate at a lower temperature. The

aggregation of the protein during thermal unfolding will cause a shift of the apparent protein
melting temperature, Ty, 1.[27]

pH pH
s . . . . . —
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Figure 6. PPI-30 three-state fitting results, extracted T, ., predictions versus references values (left) and extracted T, |
predictions versus reference values (right).
5.2. PPI-13: Separated transition curves
Fits for 144 PPI-13 experiments were obtained using a three-state model on the interval 25 °C <
T < 95 °C. A w with an edge region of 10 °C on both sides was used {i.e. in the 25-35°C and the 85-
95°C range). Constraints k were optimal with respects to the fitting error at equally mixed SSE for

the various data forms, and an increased penalty on the derivative of the ratio and asymmetry
factors. Example of a fitted model is depicted in Figure 7.
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Figure 7. Fitted model of PPI-13 pH 6.0, 0 mM NaCl. The plots from left to right are fluorescence intensities, fluorescence
ratio, 1°* derivative of the intensity and 1st derivative of the ratio. (print: Color)

Clear trends are observed in predicted T, ; and T}, , values, with only small deviations in the cross-
lab replicates (Figure 8). Analysis of the fitting-error and cut-off at 3 - ossr excluded 3 of 144 fits. At
0 mM NaCl and low pH (5.0 & 5.5), two outliers can be found. In these cases, the algorithm had
problems distinguishing the first transition as there is little to no change in I35, (Figure 7), which, in
combination with a strong baseline above T, ,, created a local minimum that ignored T;, ;. Overall
the low pH samples yielded relatively high SSE.
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Figure 8. Trends in predicted (a) T,, ; and (b) T,, , values for PPI-13. Noticeable are two outliers, at pH 5.0 and pH 5.5,
showing too high T, 1 values, confirmed by visual inspection of the fit (not shown). The two cross-lab are plotted in order,
the three left-most markers correspond to the first formulation procedure, followed by three replicates from the second
formulation procedure.(print: Color)

Predicted T;,, ; and T,, , are in good agreement with reference values (Figure 9). Extracted Ty 5¢;
values can be found in the supplementary materials.
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Figure 9. Predicted Ty, 1 (left) and Ty, , (right) values for the fits obtained from PP-13. The two low pH outliers also found in
Figure 8 show high values for T,, ;, but fell within the SSE limit. (print: Color)

5.3. PPI-03: Overlapping transition curves
Fits for 144 PPI-03 experiments were obtained by applying the three-state ' model on the interval
25°C < T <95°C. AW with an edge region of 10 °C on both sides was used, similar to PPI-13.
Constraints Kk were optimal with respects to the fitting error around equally mixed SSE for the
various data forms, with an increased penalty on the derivative of the ratio and asymmetry factors.

An example of the fit for highly overlapping transitions; pH 7.5 with 0 mM NaCl, is shown Figure 10.
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Figure 10. Example fit of overlapping of T,, 1 and Ty, 5, as found in PPI-03 at pH 7.5, 0 mM NaCl. (print: Color)

Analysis of the fitting-error showed relatively high SSE values for low pH values, a cut-off at 3 + gggp
is applied, which excludes 3 of 143 fits, the SSE can be found in the supplementary materials.

The remaining fitted parameters and extracted values show good agreement in experimental
triplicates, cross-laboratory duplicates, and with respect to observed trends in both pH and salt
concentration. Clear trends are observed in predicted T,,; and T, , values, with only small

deviations in the cross-lab replicates (Figure 11).
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Figure 11. Predicted T,, ; and Ty, , values for the fits obtained from PPI-03. (print: Color)

For IgG1 antibodies, T, unfolding is strongly associated with aggregation, and T,,. is an
important measurement as small amounts of partially denatured protein will initiate aggregation[8].
The trends in predicted T, are calculated for PPI-03 (Figure 12, left).-The predicted T,,.; at O
mM NaCl shows a deviating pattern, with apparent miss fitting of samples at pH 6, 0 mM NacCl. This
shows that the proposed method and the reference method determined different T, , and Ty et
values in this case. The applied three-state fit's deconvolution allows for the estimation of T,,¢.¢
without an overlap effect of the second transition. This second transition overlap is stronger at high
pH, as plotted for a subset of samples in Figure 1. The difference between the fitted and reference
onset temperatures (Figure 12, right) therefore does not emulate that of PPI-30 and PPI-13.
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Figure 12. Predicted T, sc¢ for PPI-03. (left) Trends in the formulation series are visible. The two cross-lab triplicates are
plotted in order, the three left-most markers correspond to the first formulation procedure.(right) Reference method Ty st
values are highly deviating. Note that formulation at pH 8 and 9 are in tris buffer, which would explain the deviating T, se¢

at 0 mM NaCl. The triplicate at pH 6, 0 mM NaCl is noted as an outlier, its counterpart laboratory duplicate has been
filtered on the basis of high SSE values. (print: Color)

5.4. Result overview
In Table 2, we have summarized the differences between the suggested novel methodology, and the
existing methodology. In other words, we are looking across all statistics, as have been shown for

PPI-03 in Figure 11 and Figure 12 (right). High correlation coefficients are found for PPI-30 and PPI-

13. For PPI-03, the double transition, the T,,s.; shows poor correlation (R?) with the reference

values, as the transitions highly overlap (Figure 12, right).

Table 2. Summary of the comparisons between the reference values and the fitted models.
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protein  Model o R? RMSE  Offset Reference | R? RMSE  Offset |Reference R? RMSE Offset ‘ Reference
‘states () cutoff {corr. {°c) SDpootea | (corr. {°c) SDpootea {corr. {°C) SDpootea
coef.) coef.) coef.)
PPI-30 2 3 0.962 0.258 -0.020 0.18 0.964 0.691 - 0.390 0.42
PPI-30 3 3 0.940 0.401 -0.233 0.18 0.952 0.779 - 0.340 0.42
PPI-13 3 3 0.887 1.116 -0.273 0.28 0.650 1.046 -0.712 0.32 0.741 1.825 0.583 0.37
PPI-03 3 3 0.822 1.899 -0.465 0.49 0.521 1.846 -1.646 0.23 0.078 5.046 -1.221 0.67

6. Discussion
The proposed methodology has a large number of fitted parameters leading to a large feasible

solution space for the basic fits, f350 and f330, with multiple local minima. A conservative approach

is used with regards to the asymmetry of the fit, in order to avoid fitting sloped =2 baselines as part
330

of the transition. However, a sloped first derivative of the ratio at baseline regions is challenging in
two ways. (1) The prediction of non-pure and intermediate states can overlap with transition slopes,
which hinders accurate estimation of the transition. (2) These slopes are indicative of physical
changes to the sample, such as aggregation, which would also hinder conventional analysis of the
data. In conventional analysis the onset transition temperature is determined by the start of the
transition where the interference is minimal, rather than by the entir.e transition, potentially
yielding better results for more asymmetric transitions. A 1-to-1 relation in the relative decline of the

baselines was attempted in order to reduce the number of fitted parameters in the three-state

I350

model from 18 to 15. It was found that non-linear baselines in the fluorescence ratio could not

330

be fitted, resulting in overall poor optimization of the fits with high values in v;.

The proposed method can take into account three-state unfolding transition. How an extended
version of this method for a four-state unfolding pattern would behave is difficult to state. The
difficulty concerns the expansion of the number of input parameters, the corresponding constraints,
and the computational difficulty and evaluation thereof. However, current data analysis methods for
IF DSF data struggle with overlapping transition states, indicating that it is likely that the extension of
this novel methodology would be a better alternative.

In the proposed fitting model, there is no distinction between the two possible intermediate states:
the order of unfolding steps is set. The distinction between proteins with different unfolded
domains, that is to say with two intermediate states, is not feasible, neither by the proposed non-
linear curve resolution algorithm nor by conventional analysis.

Data artefacts outside of the transition range will lead to high SSE values, even when fitted correctly,
and can also create local, unexpected minima. In both cases a conservative approach would
disregard this data, leading to a remeasurement of triplicates or loss of accuracy.

Optimization of the fitting penalties can be subjective between different formulation series, and
should be considered when comparing different protein formulation series based on trends
obtained. This has become especially clear when both the two- and three-state fit of PPI-30 are
considered.

Opportunities for an analogous, multi-state, non-linear fit model lie with isothermal chemical
denaturation experiments and with extrinsic dye-based DSF experiments. Currently retailed
nanoDSF™ instruments can be outfitted with backscatter detectors to measure particle formation
during the temperature ramp. This additional information could be incorporated into the fit, or used

to evaluate at what fraction aggregation occurs.
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7. Conclusion

The non-linear curve fitting of PPI-30 and PPI-13 formulation screening data yields fitted curves that
closely resemble the measured data. Extracted parameters Tynser, Tin1 and Ty, » values are in
agreement with reference measurements and trends in the formulation data are observed. The non-
linear fits are obtained in an objective, uniform manner that yields robust results after optimization
of the penalties. Assumptions in the proposed method, such as a linear baseline near the transition,
have to be evaluated in order to appropriately apply the method.

The largest benefit of applying the novel method instead of the existing methodology, is for proteins
with highly overlapping transitions. This can be appreciated through the evaluation of the extracted
parameters T, ; and T, , of PPI-03, which has strongly overlapping transitions. The results here
cannot directly be obtained by the traditional method. Correction of the fitting of the second
transition allows for correct evaluation of the T,,., vielding better insight into a critical protein

stability parameter, clearly showing the benefits of the proposed fitting method.
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11. Supplementary Materials.

Al. MATLAB® Implementation example, three-state fit.

B1. Fitting overview PPI-30, two-state fit.
B2. Fitting overview PPI-30, three-state fit.
C1. Fitting overview PPI-13, Three-state fit.

D1. Fitting overview PPI-13, three-state fit.
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Al. MATLAB® Implementation example, three-state fit.

Data definition

% Data vector size.

Xm; % Temperature, vector; [ N x 1]
yml; % I330 [ N x 1]
ym2; % I350 [N x 1]
rym; % I350/1330 [N x 11
syml; % 1st derivative I330 [ N-1 x11]
sym2; % 1lst derivative I350 [ N-1 x171]
srym; % 1st derivative I350/1330 [ N-1 x17]

kappa and weight vector

% kappa

kappa = [2 2 1 10 80 2];

% weight vector

clear a;

[~, a(1)] = min(abs(xm - min(xm + 10)));

[~, a(2)] min(abs(xm - max(xm - 10)));

W = [Tinspace(0, 1, a(1l)) ones(l, a(2) - a(l)) Tinspace(l, 0, Tength(xm) - a(2))]1';
clear a;

Fitting function
S =0@(Cs, x) 1./(1 + exp(s(2).* (s(1) - x))).A (1 / s3));

fm = @(p, x) sum((S(p(Ll:3), x).* S(p(4:6), x) * [0 -1 1] + S(p(1:3), x)* ... % Fitted Signal
[-1 101+ [100]) .*[p(7) + p(8 .* x, p(9) + p(10) .* x, p(11) + p(12) .* xI, 2);

fratio = @(p, x) ... % Fitted ratio
sum((s(p(1:3), x) .* s(p(4:6), x) * [0 - 1 1] + s(p(1:3), x) * [- 1 10] + [1001) .* ...
[p(13) + p(14) .* x, p(15) + p(16) .* x, p(17) + p(18) .* x1, 2) ./ ...
sum((s(p(1:3), x) .* s(p(4:6), x) * [0 - 1 1] + s(p(1:3), x) * [-110] + [100]) .* ...
[p(7) + p(8) .* x, p(9) + p(10) .* x, p(1L) + p(12) .* x1, 2);

™
X

@(s) sC:, 1) - Tog(- 1 + 2 A s(C:, 3)) ./ s(C:, 2);
@(s, frac) s(:, 1) - log(- 1 + (1 ./ frac').A s(:, 3)) ./ s(:, 2);

Layout of fitting parameters in p.

% p =[ Al B1 nul A2 B2 nu2

% [b1,1 b1,2 b2,1 b2,2 b3,1 b3,2] ... % 330 nm
% [b1,1 b1,2 b2,1 b2,2 b3,1 b3,2] 1 ; % 350 nm
Objective function

objective = @(p) sum( ...

... % 1 Raw curves

(kappa(l) ./ sum([var(yml) var(ym2)])) .* sum(wW .* ((fm(p(1:12), xm) - yml) .A 2 + ...
(fm(p([1:6 13:18]), xm) - ym2) .A 2))...

+ ... % 2 Ratio

(kappa(2) ./ var(Crym)) .* sum(W .* (((fratio(p, xm)) - (rym)) .A 2)) ....



+ ... % 3 Raw 1st deriv

(kappa(3) ./ sum([var(syml) var(sym2)])) .* sum(W(2:end) .* (diff(fm(p(1:12), xm)

- syml) A2 + (diff(fm(p([1:6 13:18]), xm)) - sym2) .A 2))...

+ ... % 4 Ratio 1st deriv

(kappa(4) ./ (var(srym) * 8)) .* sum(W(2:end) .* ((diff(fratio(p, xm)) - srym) .A 2))
+ ... % Asymmetry penalty.

(kappa(5) * 1e5) * ((p(3) - 1) .A 4 + (p(6) - 1).A 2)

+ ... % SLope penalty

(kappa(6) * 1e5) * (sum((p(8:2:12) ./ p(7:2:12) - p(14:2:18) ./ p(13:2:18)).A 2)));

Initial pO
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p0 = [50, .4, 1, 75, .4, 1, ... % initial guess: values within search space but not critical.

fliplr(polyfit(xm(xm < 45), yml(xm < 45), 1)), ...
(flipTr(polyfit(xm(xm < 45), yml(xm < 45), 1)) +...
flipTr(polyfit(xm(xm > 88), yml(xm > 88), 1))) ./ 2,
fliplr(polyfit(xm(xm > 88), yml(xm > 88), 1)),
fliplr(polyfit(xm(xm < 45), ym2(xm < 45), 1)), ...
(fliplr(polyfit(xm(xm < 45), ym2(xm < 45), 1)) + ...
fliplr(polyfit(xm(xm > 88), ym2(xm > 88), 1))) ./ 2,
fliplr(polyfit(xm(xm > 88), ym2(xm > 88), 1)),];

hard constraints

% Dynamic Constraints: A.*p <= b
A=[100-100 zeros(l, length(p0) - 6)];

D = = 3¢
Aeq = [1;
beq = [1;

% non-dynamic Constraints

% Set the LB tighter, to aid the algorithm in spacing the search grid.

1b = [45 0.15 0.9 65 0.15 0.9 1000 - 200 1000 - 200 1000 - 200 1000 - 200 1000 - 200 1000 -
200];

ub = [70 0.60 1.1 85 0.60 1.1 inf O inf O inf O inf 0 inf O inf 0];

fmincon_opt = optimset(optimset('fmincon'));

fmincon_opt = optimset(fmincon_opt, 'disp', 'iter', 'LargeScale', 'on', 'MaxIter', 4000,
'MaxFunEvals', 4000);
fmincon_opt = optimset(fmincon_opt, 'Algorithm', 'sgp', 'ScaleProblem', 'obj-and-constr');

% For more information you can see

% https://se.mathworks.com/help/optim/ug/fmincon.html

% https://se.mathworks.com/help/optim/ug/choosing-the-algorithm.htm]l
Fitting

popt = fmincon(objective, p0, A, b, Aeq, beq, 1b, ub, [], fmincon_opt);



ACCEPTED MANUSCRIPT
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B1. Fitting overview PPI-30, two-state fit. (print: Color)
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B2. Fitting overview PPI-30, three-state fit. (print: Color)
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C1. Fitting overview PPI-13, Three-state fit. (print: Color)
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The two cross-lab triplicates are plotted in order, the three left-most markers correspond to the first
formulation procedure.



D1. Fitting overview PPI-13, three-state fit. (print: Color)
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