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For	 more	 than	 a	 century,	 materials	 scientists	 have	 accumulated	 experimental	
data	 about	 materials	 like	 their	 crystal	 structure	 or	 thermal,	 electronic	 and	
mechanical	properties.	These	data	have	been	a	corner	stone	in	the	development,	
selection,	and	design	of	materials	[1].		
	
Over	 the	 past	 decade	more	 than	 a	 handful	 of	 computational	 databases	 storing	
materials	 properties	 obtained	 by	 quantum	 mechanical	 calculations	 have	 been	
established.	They	are	mostly	based	on	Density	Functional	Theory	(DFT),	which	
calculates	 the	 electronic	 structure	 of	 a	 material	 and	 thereby	 provides	 atomic-
scale	 information	 about	 its	 properties.	 The	 calculations	 are	 much	 faster	 and	
cheaper	 to	 perform	 than	 experiments,	 and	 in	 some	 cases	 with	 comparable	
accuracy.	Some	of	the	larger	repositories	containing	together	more	than	a	million	
material	entries	are	 the	Materials	Project	 [2],	 the	Automatic	Flow	for	Materials	
Discovery	 [3],	 the	 Open	 Quantum	Materials	 Database	 [4],	 the	 Novel	 Materials	
Discovery	 Repository	 [5],	 the	 CatApp	 database	 [6],	 and	 the	 Computational	
Materials	Repository	[7].	All	of	 these	have	web-interfaces	providing	free	access	
to	the	data.	
	
The	 computational	 databases	
supplement	 the	 experimental	
ones	 (as	 for	 example	 the	
Inorganic	 Crystal	 Structure	
Database	 [8])	 by	 providing	
additional	 systematic	
information	 about	 materials.	
Maybe	 even	 more	 interestingly,	
they	 provide	 information	 about	
materials	which	have	never	been	
synthesized	 by	 Nature	 or	 in	 a	
laboratory,	 but	 where	 the	
properties	can	still	be	calculated.	
The	databases	 therefore	provide	
a	 playground	 for	 exploration	 of	
new	materials.		
	

Figure	1:	The	number	of	DFT	calculations	in	the	NOMAD	
repository	from	December	2014	until	April	2016.	The	
large	jumps	in	October/November	2015	and	February	
2016	are	due	to	inclusion	of	data	from	the	AFLOWLIB	
and	OQMD	repositories,	respectively.	

	



A	 popular	 application	 of	 DFT	 databases	 is	 thermodynamic	 stability	 analysis,	
where	 for	 a	 given	 combination	 of	 chemical	 elements	 stable	 compositions	 and	
structures	at	low	temperatures	are	identified.	This	feature	is	available	in	most	of	
the	major	databases	and	is	for	example	used	as	a	first	check	of	the	stability	of	a	
given	 hypothetical	 material	 composition.	 Combining	 the	 computed	 data	 with	
experimental	 data	 about	 the	 free	 energy	 of	 dissolution	 makes	 it	 possible	 to	
extend	this	analysis	to	Pourbaix	diagrams,	where	the	stability	is	mapped	out	as	a	
function	of	pH	and	applied	potential	[9,	10].	
	
The	databases	are	steadily	growing	in	size	both	because	of	systematic	inclusion	
of	 new	 crystal	 structures	 and	 compositions,	 and	 because	 computational	
screening	 studies	 aimed	 at	 identifying	 useful	 materials	 within	 for	 example	
batteries	 or	 solar	 energy,	 contribute	 with	 new	 materials.	 In	 the	 future	 many	
materials	screening	projects	can	be	expected	to	take	their	starting	point	directly	
in	the	computational	materials	databases.	
	
The	 further	 development	 of	 computational	 materials	 databases	 in	 order	 to	
improve	 their	 quality	 and	 their	 applicability	 for	 materials	 science	 and	 design	
involves	a	number	of	opportunities	and	challenges.	Here	we	discuss	a	few	of	the	
important	ones.	
	
Data	representation:	
Computed	 materials	 data	 have	 the	 advantage	 compared	 to	 experimental	 data	
that	 they	 are	 very	 well	 defined	 and	 easy	 to	 reproduce.	 A	 DFT	 calculation	 is	
specified	 by	 the	 atomic	 numbers	 and	 positions	 of	 all	 the	 atoms	 plus	 a	 few	
additional	parameters	to	describe	the	approximations	being	made.	In	practice	it	
may	be	 a	 challenge	 though	 to	 label	 the	 computed	materials	 in	 a	way,	which	 is	
both	useful	and	sufficiently	unique	for	the	user.	For	example,	when	should	two	
calculations	 be	 considered	 describing	 the	 same	material	 in	 a	 particular	 phase	
when	the	atomic	positions	are	not	exactly	the	same?	
	
Data	quality:	
An	 important	 concern	 is	 the	 accuracy	 of	 the	 computed	 data.	 Computational	
materials	 scientists	 apply	 a	 range	 of	 different	 codes	 all	 solving	 the	 same	
fundamental	equations	of	DFT	but	applying	diverse	numerical	approaches.	 In	a	
large	community	effort	it	has	recently	been	shown	that	in	simple	situations,	like	
the	calculation	of	the	equation-of-state	of	elemental	crystals,	agreement	between	
different	 codes	 can	 be	 established	 [11],	 but	more	 complex	material	 properties	
still	 represent	 a	 challenge	 and	 accuracies	 need	 to	 be	 estimated.	 One	 practical	
aspect	 of	 code	 comparison	 is	 that	 different	 codes	 produce	 output	 in	 different	
formats.	 This	 issue	 is	 currently	 addressed	 by	 the	 NOMAD	 project	 [12],	 where	
parsers	 for	 the	 40	most	 popular	 codes	 are	 developed	 to	 obtain	 a	 common	 file	
format.	
At	a	more	 fundamental	 level,	DFT	calculations	require	physical	approximations	
for	 the	 so-called	 exchange-correlation	 energy	 of	 the	 electrons.	 Further	
refinements	of	these	approximations	will	be	necessary	to	increase	the	accuracy	
of	the	calculations,	which	might	be	necessary	depending	on	the	application.	
	
Complex	systems:	



So	far	the	computational	databases	mainly	contain	bulk	solids	 in	simple	crystal	
structures.	One	reason	for	this	is	simply	that	the	calculation	time	grows	quickly	
with	 the	number	 of	 atoms	 in	 the	unit	 cell.	However,	many	material	 properties	
are	in	fact	determined	by	defects	like	vacancies/interstitials,	impurities,	or	grain	
boundaries,	or	by	surfaces.	This	means	that	for	many	applications,	the	materials	
stored	in	the	databases	are	not	directly	relevant.	To	broaden	the	applicability	of	
computational	databases,	more	complex	structures	and	materials	therefore	have	
to	 be	 included,	 but	 as	 complexity	 increases,	 the	 number	 of	 possible	materials	
also	grows	tremendously.	An	example	of	a	first	step	to	systematically	address	the	
more	complicated	situation	of	molecules	reacting	at	surfaces	 is	a	DFT-database	
of	adsorption	energies	[6]	of	relevance	to	heterogeneous	catalysis.	
	
Beyond	DFT:	
There	are	several	materials	properties	or	phenomena	that	lie	beyond	the	present	
capabilities	 of	 DFT.	 These	 include	 the	 description	 of	 electronic	 excitations,	
strongly	 correlated	 systems,	 and	 certain	 transport	 phenomena	where	DFT	 can	
provide	qualitative	estimates	at	best.	There	is	thus	a	need	to	move	beyond	DFT	
to	 study	 for	 example	 light	 absorption	 of	 materials	 for	 photovoltaics	 or	
photocatalysis.	 Different	 corrections	 to	 the	 standard	 DFT	 approaches	 can	 be	
applied,	 but	 the	 best	 calculations	 today	 of	 properties	 like	 electronic	 band	
structures	 or	 optical	 spectra	 are	 based	 on	 many-body	 perturbation	 theory	
applying	 the	 so-called	 GW	 or	 Bethe-Salpeter	 approximations.	 However,	 these	
calculations	are	computationally	much	more	expensive	and	numerically	involved	
than	 DFT	 calculations	 making	 the	 issue	 of	 data	 quality	 and	 consistency	 even	
greater.	 The	 first	 steps	 towards	 establishing	 GW	 databases	 for	 code	
benchmarking	[13]	and	for	the	electronic	structure	of	two-dimensional	materials	
[14]	 have	 recently	 been	 taken.	 However,	 much	 further	 work	 is	 needed	 to	
establish	 consistent	 and	 accurate	 beyond-DFT	 data	 and	 thereby	 open	 up	 new	
opportunities	for	the	computational	databases.	
	
Machine	learning:	
It	 might	 be	 debatable	 whether	 the	 computed	 materials	 databases	 have	 the	
characteristics	(volume,	variety,	velocity)	to	qualify	as	“Big	Data”	[15].	However,	
as	 the	 computational	 databases	 grow,	 new	 possibilities	 for	 investigating	 the	
materials	space	will	certainly	arise.	It	will	be	necessary	to	develop	or	adapt	tools	
from	machine	 learning	 for	searching	and	analyzing	many	millions	of	computed	
materials,	and	it	will	be	possible	to	apply	these	tools	to	learn	new	correlations	or	
structure-property	 relations	 of	 materials.	 Simple	 relations	 of	 this	 type	 are	 an	
integral	part	of	materials	science	and	chemistry.	Examples	include	valence	rules	
and	geometrical	tolerance	factors	for	predicting	chemical	and	structural	stability.	
These	rules	have	emerged	from	empirical	observations	performed	over	decades	
of	 research,	but	when	considering	 large	numbers	of	 computed	materials,	 these	
rules	 can	 be	 systematically	 deduced	 as	 correlations	 in	 the	 data.	 The	 use	 of	
modern	statistical	learning	may	potentially	allow	researchers	to	identify	deeper	
and	more	 complex	 patterns	 in	 the	materials	 space,	 and	 to	 use	 correlations	 to	
accelerate	 the	 prediction	 of	 new	materials	 or	 to	 design	materials	with	 specific	
tailored	properties.	
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Data	for	the	figure:	
	
year_month	 Number	of	DFT	

calculations	
2014-12	 20116	
2015-01	 83278	
2015-02	 92113	
2015-03	 112404	
2015-04	 221405	
2015-05	 345387	
2015-06	 630393	
2015-07	 631439	
2015-08	 631635	
2015-09	 634001	
2015-10	 1235389	
2015-11	 2171584	
2015-12	 2341854	
2016-01	 2346157	
2016-02	 2880312	
2016-03	 3026496	
2016-04	 3026797	
	
	
	


