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Three-dimensional iron sulfide-carbon interlocked graphene 
composites for high-performance sodium-ion storage  

Wei Huang,a, b  Hongyu Sun,c  Huihui Shangguan,a  Xianyi Cao, b  Xinxin Xiao,d  Fei Shen,b  Kristian 
Mølhave, c Lijie Ci,a  Pengchao Si *a and Jingdong Zhang *b 

Three-dimensional (3D) carbon-wrapped iron sulfide interlocked graphene (Fe7S8@C-G) composites for high-performance 

sodium-ion storage are designed and produced through electrostatic interaction and subsequent sulfurization. The iron-

based metal-organic frameworks (MOFs, MIL-88-Fe) interact with graphene oxide sheets to form 3D networks, and 

carbon-wrapped iron sulfide (Fe7S8@C) nanoparticles with high individual-particle conductivity are prepared following a 

sulfurization process, surrounded by interlocked graphene sheets to enhance the interparticle conductivity. The prepared 

Fe7S8@C-G composites not only have the improved individual-particle and interparticle conductivity to shorten 

electron/ion diffusion pathways, but also have the enhanced structural stability to prevent the aggregation of active 

materials and buffer large volume charges during sodiation / desodiation. As a sodium-ion storage material, the Fe7S8@C-

G composites exhibit a reversible capacity of 449 mA h g-1 at 500 mA g-1 after 150 cycles and a retention capacity of 306 

mA h g-1 under a current density of 2000 mA g-1. The crucial factors related to the structural changes and stability during 

cycles have been further investigated. These results demonstrate that the high-performance sodium-ion storage 

properties are mainly attributed to the unique designed three-dimensional configuration. 

 

Introduction 

The increasing demand for electrical energy storage devices brings 

great chances and challenges for the secondary battery technology. 

Lithium ion batteries (LIBs) have been commercialized and widely 

used for portable electronics since 1990s.1-5 However, high cost and 

scarce lithium resources hinder their applications for large-scale 

energy storage. As an alternative, sodium ion batteries (SIBs) have 

attracted significant attention over the past five years due to earth-

abundance and lower cost of sodium. On the other hand, 

unsatisfied sodium-ion storage performances were found in SIBs, in 

contrast to LIBs, which is mainly caused by the obvious ionic size 

difference (1.02 Å for Na+ vs. 0.76 Å for Li+). Particularly, the large 

size of Na+ leads to sluggish ion diffusion kinetics and more 

pronounced volume changes of electrode materials during 

sodiation / desodiation cycles, resulting in low capacities and 

inferior cycling stability.6-11 Thanks to the similar electrochemical 

properties of Na+ and Li+, the well-established design principles of 

LIBs electrode materials can be transferred to SIB studies.10,11 For 

example, nanostructured electrode materials possessing high 

surface areas  are favorable for increasing the contact between 

electrodes and electrolyte, accommodating the large volume 

changes during cycles. Further incorporating conductive agents 

(carbon nanotube, graphene, etc) with the active materials can 

improve the electrical and ionic conductivity, which is crucial for 

applications in high-rate cycles.10,12  

Transition metal sulfides (TMSs) have attracted tremendous 

interest for SIBs due to the large theoretical capacity (> 400 mA h g-

1) and ease of scale-up production.10,12-15 Iron sulfides (FexSy) have 

been recently studied as electrode materials of SIBs.16-26 High 

theoretical capacity and low cost make them very competitive 

compared to other TMSs. The intrinsic shortcomings in FexSy 

electrodes, including low electrical conductivity, serious volume 

expansion and sluggish Na+ diffusion kinetics during cycles, can be 

overcome by rational structural and compositional design to 

achieve high-performance sodium-ion storage. For example, Chen 

et al. reported FeS2 microspheres anchored on graphene aerogel 

with enhanced sodium storage properties, which were attributed to 

the synergetic effects of FeS2 microspheres and high electrical 

conductivity of graphene.25 Sun and co-workers fabricated carbon 

nanotube (CNT)-encapsulated Fe1-xS composite, which provided 

high conductivity paths for electrons/ions and the combined merits 
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of iron sulfide and CNTs, leading to promising capability for SIBs.26 

Most of these studies focused on the combination of FexSy and 

conductive agents with  less efforts on synergetic effects, including 

tailoring the spatial organization of FexSy and conductive agents 

(interparticle conductivity) as well as FexSy individual-particle 

conductivity. Therefore, the enhanced electrode materials can be 

designed by taking advantage of three-dimensional hierarchical 

architecture to wrap FexSy tightly with conductive agents to assist 

the individual-particle conductivity, with uniformly separated 

nanoparticles that are interconnected with conductive agents to 

promote the interparticle conductivity and buffer the volume 

charges during cycles. Thus promotes the sodium-ion storage in 

high current density and rate.  

Metal-organic frameworks (MOFs) are a class of crystalline porous 

materials composed of metal units and organic linkers. MOFs are 

promising precursors to construct the carbon coated metal-based 

composites with enhanced individual-particle conductivity for 

electrocatalysis and energy storage.27-30 Moreover, graphene 

sheets, which have large surface area, high electrical conductivity 

and excellent mechanical properties,31-33 interconnecting individual 

MOFs derived nanoparticles can enhance interparticle conductivity 

and accommodate large volume charges during cycles. However, 

the combination of MOFs and graphene is easily aggregate and lead 

to inhomogeneous modification during the preparation process. Li 

et al. reported an electrostatic interaction approach using 

functionalized carbon spheres as nano-spacers to separate 

graphene sheets for enhanced supercapacitor performance.34 Only 

a few studies focus on three-dimensional hierarchical architecture 

between MOFs derived composites and graphene for energy 

storage devices.35, 36 It is a challenge to construct homogeneously 

distributed active materials in graphene matrix. 

Herein, we have designed three-dimensional (3D) iron sulfide-

carbon interlocked graphene (Fe7S8@C-G) composites for high-

performance sodium-ion storage via electrostatic interaction and 

subsequent sulfurization. The positive-charge modified iron-based 

MOFs (MIL-88-Fe) firstly interacted with negative-charge graphene 

oxide sheets to form three-dimensional networks. By the 

subsequent sulfurization, MIL-88-Fe transformed to carbon-

wrapped iron sulfide (Fe7S8@C) nanoparticles to support high 

individual-particle conductivity, with interlocked graphene oxide 

(GO) sheets became graphene sheets to assist the interparticle 

conductivity, generating the Fe7S8@C-G composites with the 

inheritance of original three-dimensional structure. The three-

dimensional networks improve the individual-particle and 

interparticle conductivity to facilitate the transportation of electron 

and ion, as well as enhance the structural stability to prevent the 

aggregation of active materials and buffer large volume charges 

during sodiation / desodiation. The enhanced sodium storage 

properties of the Fe7S8@C-G electrodes with designed three-

dimensional architecture are further investigated under 

electrochemical measurements. 

Experimental section 

Chemicals 

Graphene oxide (GO) was synthesized by a modified Hummers’ 

method.34 Iron chloride hexahydrate (FeCl3·6H2O, 99%), 

terephthalic acid (C8H6O4, 99%), N, N-Dimethylformamide (DMF, 

99.5%), tris (hydroxymethyl) aminomethane (≥ 99.8%), poly 

(diallyldimethylammonium chloride) (PDDA, MW < 100,000, 35 

wt%), sodium chloride (NaCl, 99.5%) were obtained from Aladdin, 

China. Sulfur powder was purchased from Shanghai Macklin 

Biochemical Co., Ltd, China. All chemicals were used as received 

without further purification. 

 

Synthesis of Fe7S8@C-G composites.  

MIL-88-Fe crystals were prepared according to our previous 

reported procedure.5 Briefly, terephthalic acid (0.230 g) and 

FeCl3·6H2O (0.374 g) were dissolved in 60 mL DMF, followed with 

hydrothermal reaction at 150 °C for 2 h. After cooling down to room 

temperature, the final products were purified with centrifugation 

and washing with ethanol at least three times. After drying, the 

MIL-88-Fe crystals were obtained. In order to introduce positive 

charge on the MIL-88-Fe crystals surface, NaCl (0.173 g), tris-

(hydroxymethyl) aminomethane (0.363 g) and PDDA (2.149 g) were 

dissolved in 150 mL deionized water, in which MIL-88-Fe crystals 

(0.20 g) were immersed under stirring for 12 h, followed by washing 

with deionized water more than three times to remove the 

redundant PDDA. The decorated MIL-88-Fe crystals with positive 

charge on the surface were mixed with 20 ml GO solution (3 

mg/mL) and stirred for 6 h. After freezing-dry process, MIL-88-

Fe/GO samples were obtained. 

To fabricate Fe7S8@C-G composites, the synthesized MIL-88-Fe/GO 

powder (0.10 g) and sulfur powder (0.40 g) were uniformly mixed, 

annealed at 600 °C for 6 h under Ar atmosphere. The dark powder 

(Fe7S8@C-G) was collected after cooling down to room 

temperature. As a control, Fe7S8@C composites without the 

addition of GO precursor were also synthesized accordingly.5 

 

Materials characterization.  

The crystalline features of the samples were examined by X-ray 

diffraction (XRD, Miniflex 600). Zeta-potential measurements were 

analyzed by Zetasizer Nano ZS (Malvern Instruments). Raman 

spectra were obtained using a Raman spectrometer (Renishaw 

InVia, 633 nm Laser). X-ray photoelectron spectroscopy (XPS) 

analysis was carried out on the substrate of silicon slice with a 

Thermo-Scientific system (Al-Kα radiation, 1484.6 eV). Thermal 

gravimetric analysis (TGA, Mettler-Toledo TGA/SDTA851e Thermo 

Analyzer) was performed in air in a temperature range from room 

temperature to 800 °C with a heating rate of 10 °C min-1. The 

microstructure and composition analysis were characterized via 

scanning electron microscope (SEM, HITACHI SU-70, 15 kV; Quanta 

FEG 200 ESEM, 20 kV), atomic-force microscopy (AFM, Aligent 

Technology, tapping mode, mica sheet for the substrate), and 

transmission electron microscopy (TEM, Tecnai G2 T20, 200 kV). 

 

Electrochemical measurements.  

The working electrodes were composed of the as-prepared active 

materials (70 wt%), super P (20 wt%) and polyvinylidene fluoride 

(PVDF) (10 wt%) mixed in N-methyl-2-pyrrolidone (NMP). The 

batteries (CR 2016 coin-type cell) were assembled in a glove box 

under Ar atmosphere at room temperature, using 1.0 M NaClO4 in 

ethylene carbonate/propylene carbonate (EC: PC =1: 1 wt%) and 5 

wt% fluoroethylene carbonate (FEC) as the electrolyte. Metallic 
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sodium and glass fiber (Whatman, GE Healthcare) were used as the 

counter electrode and separator, respectively. Galvanostatic 

charge/discharge test in a voltage range of 0.01-3.0 V was carried 

out on a Neware-CT-3008 test system (Shenzhen, China). Cyclic 

voltammograms (CVs) in the voltage window of 0.01-3.0 V at a scan 

rate of 0.1 mV s-1 were conducted using a CHI 660E electrochemical 

workstation (Shanghai, China). Electrochemical impedance 

spectroscopy (EIS) in the frequency range of 0.01 to 100 kHz was 

recorded at the open circuit potential (OCP) using a Metrohm 

Autolab instrument. 

Results and discussion 

Structural and component characteristics.  

Fe7S8@C-G composites were synthesized as illustrated in Scheme 1. 

First, positive charge was introduced on the surface of MIL-88-Fe 

crystals in a stirred PDDA solution, the zeta potential (29.8±4.42 

mV) of modified MIL-88-Fe crystals solution (Fig.S1 and Table S1) 

confirmed the positive surface charge.37 Due to abundant oxygen-

containing functional group on the surface of GO sheet, which 

displayed negative-charge surface.34 The zeta potential (-46.3±11.2 

mV) of as-prepared GO solution further indicated the negative 

surface charge (Fig.S1 and Table S1). Thus GO sheets tightly 

interlocked with the activated MIL-88-Fe crystals via electrostatic 

interaction. Three-dimensional MIL-88-Fe/GO samples were 

obtained via freezing-dry process. During sulfurization, the iron-

based MOFs (MIL-88-Fe) were transformed to carbon-wrapped iron 

sulfide (Fe7S8@C) nanoparticles to support high individual-particle 

conductivity by sacrificing precursor containing iron units and 

carbon links, with interconnected graphene sheets reduced from 

GO sheets, to enhance the interparticle conductivity and  structural 

stability. The final Fe7S8@C-G composites inherited the original 

three-dimensional configuration.  

The successful synthesis of Fe7S8@C-G composites was firstly 

confirmed by X-ray diffraction (XRD) analysis. The characteristic 

peaks (Fig. 1a) matched well with Fe7S8 phase (JCPDS no. 52-1516), 

the corresponding diffraction peaks fit well with (110), (-221), (221), 

(402), (-623), (225) and (442) planes of pyrrhotite. A broad low-

intensity peak in the range of 24-28° (marked by purple arrow) 

related to the stack of graphene sheets.32,38 The Raman spectra (Fig. 

1b) further indicated the finger-printed signals of graphene. Due to 

D band is associated with the disordered graphite from the defects 

and disorders of structures in carbon materials, G band is attributed 

to the vibration of sp2 hybridized C-C bond.39, 40 The ID/IG ratio of 

Fe7S8@C-G composites (1.08) was higher than that of MIL-88-Fe/GO 

(1.00) and GO (0.87) due to the improvement of carbonaceous 

defects and disorders of graphitized structures, which was 

attributed to the reduction of GO to graphene sheets and its 

interaction with MIL-88-Fe crystals.33,40 Moreover, the locations of 

D and G bands were 1341.62 & 1598.38 cm-1 for MIL-88-Fe/GO and 

1344.08 & 1600.81 cm-1 for GO, respectively. While, Fe7S8@C-G 

showed red-shifted peaks at 1334.54 cm-1 (D band) and 1594.97 cm-

1 (G band) in comparison to those of MIL-88-Fe/GO and GO, 

indicating the hybrid structure and electronic interaction between 

graphene sheets and Fe7S8@C nanoparticles rather than simply 

physical adsorption.38, 41 

The chemical bonding states of Fe7S8@C-G composites were 

investigated by XPS analysis. All signals originating from expected 

elements (S, C, O and Fe) were obtained in the survey spectrum 

(Fig. S2a). Beside, a small peak at ~400 eV was observed in the 

survey spectrum of Fe7S8@C-G corresponding to N 1s, which is 

attributed to decomposition of the tirs (hydroxymethyl) 

aminomethane and PDDA in the MIL-88-Fe/GO composites after 

the electrostatic interaction.  In the C 1s region (Fig. S2b), the two 

peaks at 284.4 and 285.2 eV corresponded to two kinds of carbon 

bonds (sp2 and sp3 bond).42 Other two peaks at 286.0 and 288.1 eV 

were assigned to the C-O and C=O bonding, respectively.25,43 Peaks 

 

Fig. 1 (a) The XRD pattern of Fe7S8@C-G composites. (b) Raman 

spectra of Fe7S8@C-G and MIL-88-Fe/GO composites. 

 

Scheme 1 Schematic illustration of the synthesis process of Fe7S8@C-G composites. Not drawn to real scale.
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at 161.6, 162.6, 163.5 and 164.8 eV of the S 2p spectrum (Fig. S2c) 

corresponded to S2- and Sn
2-, the other peak at 168.4 eV was 

attributed to oxidized groups (SOx), indicating partial oxidiation in 

the surface of composites and the sulfur doping in the graphene 

sheets.26, 44, 45 Peaks in the Fe 2p spectrum (Fig. S2d) analysed at 

710.9 and 721.5 eV were caused by the Fe2+ of composites, peaks at 

713.9 and 724.3 eV revealed the presence of Fe3+ in the composites, 

indicating the coexistence of Fe2+ and Fe3+ in the iron sulfide.26, 46 

The component of Fe7S8@C-G was determined by TGA (Fig. S3), 

which showed one-step increase and multiple steps for weight loss. 

Firstly, the weight increase in the temperature range of 200 to 320 

°C was attributed to partial generation of ferric sulfate.47 Weight 

loss increased dramatically in the temperature ranges of 420-520 °C 

and 540-670 °C, likely due to the conversion of carbon composition 

to CO2 and formation of Fe2O3 from Fe7S8 and FeSO4,5 respectively. 

Thus, TGA curve showed a weight loss of 30.8%, the percentage of 

iron sulfide was calculated to be 80.1% (Fig. S2). 

 

Morphology and microstructure.  

The microstructures of the as-prepared MIL-88-Fe crystals, MIL-88-

Fe/GO composites and Fe7S8@C-G composites were visualized by 

SEM. The MIL-88-Fe crystals without GO had a bipyramid (or spiral) 

structure as shown in Fig. S4, representing 788±93 nm in length and 

544±101 nm in width. After electrostatic interaction with GO 

nanosheets, the generated MIL-88-Fe/GO composites (Fig. 2a) 

showed uniform distribution of MIL-88-Fe crystals interlocked by 

GO nanosheets into a three-dimensional network structure. After 

sulfurization, GO transformed to graphene sheets, and irregular 

Fe7S8@C nanoparticles were generated with the inheritance of the 

morphology and structure of the MIL-88-Fe precursors, leading to 

well-defined and distributed Fe7S8@C nanoparticles with an 

average size in the range of 100-400 nm interconnected with 

graphene sheets. Interestingly, the initial three-dimensional 

network structure simultaneously preserved (Fig. 2b). Energy 

dispersive spectrometry (EDS) typically revealed the presences of 

elemental carbon, oxide, sulfur and iron. The obtained atomic ratio 

of Fe/S of 7:8 further confirmed the formation of Fe7S8 (Fig. S5a). 

Atomic force microscopic (AFM) image of Fe7S8@C-G composites 

(Fig. S5b) distinctly showed the surface micromorphology, 

consistent with the SEM image (Fig. 2b). The existence of uniformly 

distributed Fe7S8@C nanoparticles in a graphene matrix was thus 

well confirmed. 

TEM image showed the dark Fe7S8@C nanoparticles interlocked 

by light silk-shaped graphene sheets (Fig. 2c). High-resolution 

transmission electron microscopic (HRTEM, Fig. 3d and 3e) images 

indicated that Fe7S8 nanoparticles were wrapped by amorphous 

carbon from the carbon links of MIL-88-Fe frameworks, 

interconnected with graphene sheets. Interplanar spacing of the 

lattice (Fig. 3e) was measured as 0.57 nm, in accordance with the 

(110) plane of Fe7S8 (JCPDS no. 52-1516).5,20 The EDS elemental 

mapping images (Fig. 2f-2i) suggested the homogeneous 

distribution of carbon (blue), while in the particles iron (red) and 

sulfur (green) elements, further confirming that Fe7S8@C 

nanoparticles were interconnected by graphene sheets. In contrast, 

the structure of GO-free bipyramid (or spiral) MIL-88-Fe crystals 

transformed upon annealing to core-shell nanorods with thin 

carbon shells (Fig. S6), due to absence of GO in the protocol. Based 

on the structural and morphological characteristics. Fe7S8 

nanoparticles were wrapped by amorphous carbon to maintain the 

high individual-particle conductivity, and homogeneous Fe7S8@C 

nanoparticles interlocked graphene sheets provided excellent 

interparticle conductivity and structural stability, achieving three-

dimensional material design. 

 

Electrochemical behavior and battery performances.  

The sodium-ion storage properties of Fe7S8@C-G and Fe7S8@C 

composites were investigated in a half-cell configuration. CV curves 

of the first five cycles of Fe7S8@C-G composites in a voltage range 

of 0.01–3.0 V with a scanning rate of 0.1 mV s-1 were shown in Fig. 

3a. In the first cathodic scan, three peaks were observed at 1.08, 

0.81 and 0.24 V, respectively. The peak at 1.08 V corresponded to 

the formation of solid electrolyte interface (SEI) film. The peaks at 

0.81 and 0.24 V were attributed to the generation of NaxFeS2 and Fe 

& Na2S, respectively.20, 25, 26 In the initial anodic scan, two peaks 

were observed at 1.42 and 1.85 V arising from the conversion of Fe 

to Na2FeS2 and NaxFeS2.
22, 25, 26 The CVs overlapped well each other 

from the second scan afterwards, which demonstrates a good 

superior electrochemical stability and reversibility during cycles. In 

comparison, the CVs of Fe7S8@C composites (Fig. S7a) gave an 

irreversible decrease, which is due to the decomposition of  active 

materials, revealing the expected instability of Fe7S8@C electrodes 

during  sodiation / desodiation.38 The related sodiation / 

desodiation reaction could be described as following.20,22,25,26 

 

Fig. 2 Morphology and Microscopic Structure: (a) SEM image of 

MIL-88-Fe/GO composites. (b) SEM image of Fe7S8@C-G 

composites. (c) TEM image of Fe7S8@C-G composites. (d, e) 

HRTEM image of Fe7S8@C-G composites. (f-i) EDS elemental 

mapping images of Fe7S8@C-G composites. 

 



Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 5  

Please do not adjust margins 

Please do not adjust margins 

 

Fig. 3b showed the galvanostatic discharge / charge profiles of the 

first three, 10th and 20th cycles of Fe7S8@C-G composites at a 

current density of 100 mA g-1. The distinct voltage slopes in the first 

cycle were consistent with the peaks observed in CVs (Fig. 3a), the 

initial discharge and charge capacity were calculated to be 714 and 

426 mA h g-1, respectively. The relatively low initial Coulombic 

efficiency (60 %) was attributed to the formation of SEI films on the 

surface of active materials and the irreversible partial 

decomposition of the electrolyte.20, 21 After the initial cycle, the 

discharge / charge curves overlapped well with a Coulombic 

efficiency over 94%, indicating a superior cycling stability after 

initial activation. In contrast, the initial discharge and charge 

capacity of Fe7S8@C (Fig. S7b) were 836 and 472 mA h g-1 with a low 

initial Coulombic efficiency of 56%, respectively. Obviously, no 

overlapping curves (Fig. S6b) were observed, revealing a weak 

cycling stability.  

The cycling performance of Fe7S8@C-G and Fe7S8@C composites 

at 100 mA g-1 was shown in Fig. 3c. Fe7S8@C-G delivered a lower 

initial discharge / charge capacity than that of Fe7S8@C, which was 

attributed to the lower percentage of Fe7S8 in Fe7S8@C-G 

composites (80.1 %) than that in Fe7S8@C composites (87 %) due to 

the modification of graphene sheets.5 it was also observed that 

there was a gradual capacity increase for Fe7S8@C-G during cycling 

process. Then, the discharge capacity of Fe7S8@C-G became stable 

at 478 mA h g-1 after 100 cycles, with a capacity retention of 67%. 

The observation is assigned to the long-term activation of electrode 

materials for the structural rearrangement and more active sites for 

sodiation / desodiation would be provided due to the decrease in 

Fe7S8@C particles sizes during cycling process. 5, 26 Besides, the 

flexible graphene sheets effectively prevented the further cracks of 

Fe7S8@C particles, thus maintained superior cycling performance. 

Comparatively, the discharge capacity of Fe7S8@C (Fig. 3c) exhibited 

a value of 229 mA h g-1 after 100 cycles, with a low capacity 

retention of 27%. The capacity loss of Fe7S8@C was attributed to 

Fe7S8 + 4xNa+ + 4xe- → 4NaxFeS2 + 3Fe (1) 

NaxFeS2 + (4-x)Na+ + (4-x)e- → 2Na2S + Fe (2) 

2Na2S + Fe ↔ Na2FeS2 + 2Na+ + 2e- (3) 

Na2FeS2 ↔ NaxFeS2 +  (2-x)Na+ + (2-x)e- (4) 

 

 

Fig. 3 (a) Cyclic voltammograms of the first five cycles for Fe7S8@C-G composites in a voltage range of 0.01–3.0 V with a scanning rate 

of 0.1 mV s-1. (b) Galvanostatic discharge/charge profiles of the first three, 10th and 20th cycles for Fe7S8@C-G composites at a current 

density of 100 mA g-1. (c) Cycling performance of Fe7S8@C-G and Fe7S8@C composites at a current rate of 100 mA g-1. (d) Rate 

capability of Fe7S8@C-G and Fe7S8@C composites at different current densities of 100, 200, 500, 1000, 2000 and 100 mA g-1 with the 

numbers noted in (d). 
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the continuous cracking of Fe7S8@C composites, thin carbon shell 

was not efficient to restrain the pulverization of Fe7S8@C 

composites. Fe7S8@C-G composites (Fig. 3d) registered capacities of 

463, 398, 361, 332, 306 mA h g-1 at current densities of 100, 200, 

500, 1000, 2000 mA g-1. When the current density reduced back to 

100 mA g-1 after 50 cycles, the capacity recovered to 495 mA h g-1 

after 70 cycles. In comparison, Fe7S8@C composite (Fig. 3d) 

displayed capacities of 535, 341, 207, 110, 37 mA h g-1 at current 

densities of 100, 200, 500, 1000, 2000 mA g-1. When the current 

density was set back to 100 mA g-1 after 50 cycles, the capacity only 

retained 323 mA h g-1 after 70 cycles. Clearly, superior rate 

capability of Fe7S8@C-G composites revealed that graphene sheets 

played a crucial role to interlock the individual Fe7S8@C 

nanoparticles for promoting the interparticle conductivity and 

accommodating large volume charges during high-rate cycles. 

Long-term cycling performance of Fe7S8@C-G (Fig. 4a) and 

Fe7S8@C composites (Fig. 4b) at a higher current density of 500 mA 

g-1 were further conducted. Fe7S8@C-G composites delivered a high 

reversible discharge capacity of 449 mA h g-1 after 150 cycles, with a 

Coulombic efficiency of over 96 % after the first three cycles. In 

contrast, the Fe7S8@C composites exhibited a low reversible 

discharge capacity of 81 mA h g-1 after 150 cycles. High-

performance sodium ion storage during high current-density cycles 

was attributed to the three-dimensional material structural design. 

Moreover, the sodium storage properties of the synthesized 

Fe7S8@C-G composites are superior or comparable to recent 

reports on iron sulfides electrodes for SIBs (Table S2). For example, 

Qu and co-workers reported iron sulfide coated by carbon 

layer(Fe7S8/C) composites for sodium storage, which delivered a 

capacity of 352 mA h g-1 at 500 mA g-1 after 100 cycles.23 Yu et al. 

demonstrated FeS@C-carbon cloth (CC) as flexible electrodes for 

sodium storage, which exhibited a capacity of 365 mA h g-1 at 91.35 

mA g-1 after 100 cycles.24 The Fe7S8@C-G composites electrodes 

reported here gave superior electrochemical performance.  

For a better understanding of the promising sodium-ion storage of 

Fe7S8@C-G composites, EIS measurements were carried out. Fig. 4c 

showed the Nyquist impedance plots of Fe7S8@C-G composite and 

Fe7S8@C composites before cycling. In the plots, the medium-

frequency semicircle corresponded to the impedance of charge-

transfer resistance (Rct) between electrode and electrolyte.38, 48 

Lower Rct of Fe7S8@C-G composites than that of Fe7S8@C 

composites was found, thus indicating Fe7S8@C nanoparticles 

interlocked the flexible graphene sheets to construct the high 

conductive three-dimensional networks. In addition, flexible 

graphene sheets served as the linker and electrical conductor to 

interconnect the individual Fe7S8@C nanoparticles for enhanced 

interparticle conductivity, efficiently promoting the charge transfer 

kinetics. Moreover, 5 and 10 cycles coin cell of Fe7S8@C-G 

composites (Fig. 4d) exhibited a smaller Rct than that of fresh, 

respectively. The decrease of semicircles is likely due to the lattice 

 

 

Fig. 4 The cycle performance of (a) Fe7S8@C-G composites and (b) Fe7S8@C composites at a current rate of 500 mA g-1. (c) Nyquist 

impedance plots of Fe7S8@C-G composites and Fe7S8@C composites before cycling. (d) Nyquist impedance plot of Fe7S8@C-G 

composites (fresh, after 5 and 10 cycles). 
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expansion and surface activation of electrode, greatly enhancing 

the charge transfer kinetics.22, 49 The medium-frequency semicircles 

of Fe7S8@C-G composites after 5 and 10 cycles maintained the low 

charge-transfer resistance, revealing the structural stability for 

stable cycling performance. 

The morphologies of Fe7S8@C and Fe7S8@C-G electrodes after 

100 discharge / charge cycles at 100 mA g-1 were investigated. 

Cracks were observed on the surface of Fe7S8@C electrode (Fig. 

S8a), whereas, no cracking was found on the Fe7S8@C-G electrode 

(Fig. S8b), suggesting the buffering function and operational 

stability of graphene based composite during sodiation / 

desodiation. TEM image (Fig. 5a) further revealed that Fe7S8@C 

electrode materials were pulverized and aggregated seriously after 

100 cycles at 100 mA g-1. In comparison, Fe7S8@C nanoparticles 

interlocked tightly by graphene without pulverization were 

observed in Fig. 5b, further proving the good structural stability of 

Fe7S8@C-G composites for superior cycling performance. These 

features were schematically illustrated in Fig. 5c and 5d. The 

Fe7S8@C electrode (Fig. 5c) exhibited a large volume expansion 

during cycles, thin carbon shell was not sufficient to maintain the 

structural stability, and then caused the cracks and pulverization 

during the long-term sodiation / desodiation, 20, 50 finally leading to 

capacity loss (Fig. 3c). The Fe7S8@C-G electrode (Fig. 5d) exhibited 

good structural ability during cycles, due to that the flexible 

graphene sheets greatly improved the dispersion and interparticle 

conductivity of Fe7S8@C nanoparticles, effectively prevented 

Fe7S8@C nanoparticles from decomposition and aggregation and 

buffered the volume changes during the long-term sodiation / 

desodiation. Thus, such three-dimensional material (Fe7S8@C-G 

composites) enhanced the sodium-ion storage capacity, cycling 

performance and rate capability (Fig. 3c, 3d and 4a).  

Conclusion 

We have successfully developed a 3D iron sulfide-carbon 

interlocked graphene composites (Fe7S8@C-G) by an 

electrostatic interaction strategy, followed with a sulfurization 

process. The iron-based MOFs (MIL-88-Fe) changed into 

carbon-wrapped iron sulfide (Fe7S8@C) nanoparticles to 

support high individual-particle conductivity, with 

interconnected GO sheets reduced into graphene sheets to 

enhance the interparticle conductivity and buffer the large 

volume changes during sodiation / desodiation, generating the 

Fe7S8@C-G composites with the inheritance of original 3D 

structure. Utilized for sodium-ion storage, the 3D networks 

facilitated the transportation of electron / ion, and promoted 

structural stability of electrodes, thus improving the cycling 

performance and rate capability. The prepared Fe7S8@C-G 

composites exhibit a superior reversible capacity of 449 mA h 

g-1 at 500 mA g-1 after 150 cycles and an impressive retention 

capacity of 306 mA h g-1 under the current density of 2000 mA 

g-1. These results demonstrated that the composites can be 

used for high-performance sodium-ion storage, and the 

structural design inspires advances for SIBs. 
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