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Summary

Increase of sedentary behaviour and obesity has been on the rise for a score of years or
more, despite public information campaigns and even the incursion of the latest fad,
fitness trackers. The latter were by industry heralded as life–changers that by simple
mechanisms would change the behaviour of the wearer to be more active and more
healthy. Studies have since shown that they may have an initial positive effect on
activity levels and reduced weight, but that it quickly falters and people stop using the
trackers altogether. A reoccurring observation seem to be a misunderstanding of what
drives human motivation and what it takes to change human behaviour with respect
to physical activity. Being reminded of your weight or steps taken throughout the day,
is for most people but a mere observation, not an intervention. This misunderstanding,
or naïvety, probably stems from conclusions that are drawn from data that are too
thin to support them. We propose a paradigm that relies on massive amounts of data,
pervasively sampled from smartphones.
We show that smartphone data is able to estimate plausible intervention effects from
a randomized controlled trial, and through higher sampling frequency and additional
modalities, is able to break up the estimated effects into contextual pieces that can be
used to better understand behavioural aspects. We further show that by using a model
that adapts to each individual, we can predict a persons total energy expenditure
accurately from the same data.
A novel model to recognise human activity semi–supervised and from multiple datasets,
is presented. The model combines convolutional neural networks to extract hierarchical
features and recurrent neural networks to model temporal dependencies. This is
combined with recent developments in domain adaptation where domain separation is
penalised through adversarial training of an auxiliary classifier.
Lastly a model is presented that fully unsupervised is able to learn latent states that
naturally decompose into static and dynamic representations. The static represen-
tations are learnt as a function that maps a high–dimensional observation into a
low–dimensional code that is dependent on a structured prior distribution that governs
the dynamical system.
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Resume

Der er sket en stigning i stillesiddende adfærd og fedme de sidste 20 år, på trods
af offentlige kampagner og udbredelsen af den seneste teknologi, fitness trackere.
Sidstnævnte blev af industrien udråbt til at have livsstilsændrende egenskaber og
kunne med simple metoder gøre brugeren til et mere aktivt og sundere menneske.
Studier har vist, at selvom de har en umiddelbar positiv effekt på fysisk aktivitet
og reduceret kropsvægt, så svinder effekten hurtigt igen og folk stopper med bruge
trackerne. En gentagen observation er misforståelsen af hvad der driver motivation
og hvad der kræves for at ændre menneskelig adfærd med hensyn til fysisk aktivitet.
At blive mindet om ens vægt eller hvor mange skridt man tager i løbet af dagen,
er for de fleste bare en observation, ikke en intervention. Misforståelsen stammer
sandsynligvis fra konklusioner der er draget på et grundlag af for tyndt data. Vi
foreslår et paradigme der baseres på store mængder data, som er opsamlet ubemærket
gennem smartphones.
Vi viser at smartphone data kan estimere plausible interventionseffekter fra et ran-
domiseret kontrolleret forsøg og med højere sampling frekvens og flere modaliteter,
kan opdele effekterne i kontekstuelle dele, der kan bruges til bedre at forstå aspekter af
menneskelig adfærd. Vi viser yderligere at vi med samme data kan bruge en personligt
kalibreret model til at estimere totalt energiforbrug.
En ny model til klassificering af fysisk aktivitet fra delvist annoteret data fra flere
kilder er desuden præsenteret. Modellen bruger dybe neurale netværk til udtrække at
hierarkiske repræsentationer og modellere den temporale udvikling i tidsserien. Det er
kombineret med nylig udvikling indenfor domæne adaptation hvor domæne separering
er straffet ved "adversarial" træning af en ekstra klassificerings opgave.
Vi præsenterer til sidst en model der uden brug af annotering kan lære latente
underrum der naturlig dekomponerer i statiske og dynamiske repræsentationer. Den
statiske repræsentation er lært som en funktion der transformerer en høj–dimensionel
observation ned i et lav–dimensionelt rum, der er afhængigt af en struktureret a priori
sandsynlighedsfordeling, som styrer det dynamiske system.
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Preface

This thesis was prepared at the Section for Cognitive Systems, Department of Applied
Mathematics and Computer Science at the Technical University of Denmark in
fulfillment of the requirements for acquiring a Ph.D. degree in engineering.
The thesis consist of a summary report and a collection of three papers: one conference
paper and two submitted journal papers. The work was conducted from March 2015
to August 2018

Kongens Lyngby, August 19, 2018

Simon Kamronn
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CHAPTER1
Introduction

1.1 Motivations
"Sitting is the new smoking" and while the associated risks of too little physical
activity are widely known (Patel et al., 2010), the obesity pandemic is ever-increasing
(Badimon et al., 2017). A recent survey on the Danish health announced that 51% of
the population are now overweight (up from 46.8% in 2010) and 16.8% are obese. Not
including associated non-communicable diseases such as diabetes and cardiovascular
diseases (Ding et al., 2016), obesity is estimated to incur a cost of 12.2 billion Danish
kroner annually in healthcare and lost production (Jensen et al., 2018).
Excess weight is due to an imbalance between physical activity and dietary intake
(Maher et al., 2013). Accordingly, the survey reports increased unhealthy eating
habits (13.3% in 2010 to 15.9% in 2017) and a lack of physical activity. The World
Health Organisation (WHO) recommendation of at least 150 minutes of moderate
or 75 minutes of vigorous weekly activity are only met by 71.2% of the population
and almost 60% are sedentary more than 8 hours a day. Of the ones not meeting
the WHO recommendation, 71% wants to be more active. Engaging the inactive and
overweight in regular physical activity is an obvious way to reduce overweight and
obesity, but how to motivate a sustained increase, is still largely an open question.
Adherence to structured exercise programs generally deteriorates quickly (Seefeldt
et al., 2002) and it has been found that individuals participating in a 6-week physical
activity program relapsed into pre-program behaviour after 20 weeks (Gomersall et al.,
2015). Integrating habitual physical activity is difficult as time usage needs to be
allocated from existing habits. Habits that may be stronger or more alluring even
after a long period. To sustain long-term changes it may be beneficial to be critical
about what kind of activities that are displaced by an exercise program. Substituting
passive transport with active transport (e.g. biking to work (Mytton et al., 2016))
will for example displace other activities to a lesser degree (Gomersall et al., 2015).
However, only a small percentage of modern civilisation are able or willing to change
mode of transportation so leisure time exercise is still the more important determinant
of an active lifestyle. As the forces of old habits and hedonism overcome routines
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learnt in exercise programs as soon as the program has ended, one solution could
be a program that does not end. Internet based (eHealth) interventions have shown
modest but significant effects of increased physical activity (Davies et al., 2012) but
whether the interventions have long-term effects, is still uncertain (Kohl et al., 2013).
Compared to traditional face-to-face interventions, eHealth methods are substantially
cheaper and may have large effects on society, when applied to the scale of populations.
Smartphone based (mHealth) interventions are potentially more effective than eHealth
(Carter et al., 2013) but there is unfortunately no conclusive evidence that smartphone
apps are effective in encouraging physical activity as the literature primarily consist
of underpowered short-term studies (Stuckey et al., 2017; Direito et al., 2017) despite
being a very active research area (Müller et al., 2018a). Future research should
focus on large randomized trials with long-term follow-up and include evidence-based
components, innovative mHealth apps, and accurate physical activity monitoring (Reis
et al., 2016; Lewis et al., 2017).

1.2 Measuring causal effects
Observing how a system responds to an external stimuli is a way to learn how a system
works. Monitoring people is similarly at the heart of understanding humanity; what
characterises certain behaviours and how are they changed. Research in disciplines
concerned with physiological or psychological aspects are built around the paradigm
of changing a single parameter in the life of a group of people and measuring the
response.

If the parameter is independent of the people in the group, it is possible to establish
a causal link between the induced change and the measured response. Ensuring
conditional independence between the people selected and the changed parameter (the
intervention) is difficult as the dependence structure is often complex and impossible
to measure. For this reason another group is formed that does not experience the
intervention, a control group. If the groups are homogenous it is no longer necessary
to ensure conditional independence between the intervention and the people that
are intervened. The difference in the measured responses of the two groups will be
the average causal effect of the intervention. This paradigm is often referred to as a
randomised controlled trial and considered a gold standard in measuring causal effects.

However, a measured effect is only supported within the distribution of personal char-
acteristics that is represented in the group of people, that the effect was measured on.
If an intervention effect is only established on males, it is not necessarily transferable
to females and it could potentially be dangerous to assume so. Uncertainty of an effect
is similarly depended on the number of people in the group and the more varied the
personal characteristics are, the more people are needed to establish the effect of an
intervention with sufficient certainty. To measure a causal effect with certainty that
generalise to everyone therefore requires a lot of people to measure on and preferably
for a long time.
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Figure 1.1: Generative models with varying number of parameters and dependency
structures. Self–dependency is omitted.

1.3 Statistical models of effects
Probabilistic graphical models (Koller and Friedman, 2009) provide a general frame-
work to define statistical relationships and a way to separate model definition from
inference (i.e. parameter estimation). Most models can be expressed as a directed
acyclic graph (DAG) which is built from variables with a dependency structure that
often reflect the generative process that a priori is believed to have generated the
observed data. An example of such a generative process could be the relationship
between step counts from a pedometer and bodyweight measurements,

yi = yi−1 + β0 − β1xi, (1.1)

where y is bodyweight, x is step counts, and i denotes a discrete time index. In this
model it is assumed that the energy intake (β0) and energy expenditure per step (β1)
are constant so that weight gain or loss is entirely dependent on how many steps that
are taken. A graphical representation of this model is illustrated in Figure 1.1(a). If
the data was collected as part of a study inspecting the effects of a new diet, we would
expect the bodyweight, y, to differ between the group receiving the diet and the one
that did not. A random variable should be included in the model to reflect that

yi = yi−1 + β0 − β1xi + τ t[i]. (1.2)

Here τ t[i] models the causal effect of the diet and t[i] indicates whether sample i is
from the group receiving the diet or not (Figure 1.1(b)). Additional knowledge can
be included in the model to make it fit better to the observed data. It could e.g. be
useful to include gender, age, or height, so (1.2) can be expanded to

yi = yi−1 + β0 − β1xi + τ t[i] + αs[i], (1.3)

where αs[i] is a random variable with s levels corresponding to the number of possible
values it can assume, i.e. two if it represents gender. Conditioning on a variable
removes the confounding effect that variable has on the response, y, from the other
parameters in the model. If height or gender are predictive of energy expenditure
and the distribution of these characteristics are imbalanced between the control and
intervention group, the variance explained by those variables would implicitly be
modelled in the estimated intervention effect, τ , which is the case illustrated in Figure
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1.1(c). By including them in the model, that dependency is removed (Figure 1.1(d)).
This type of model is known as a hierarchical Bayesian model if all parameters are
treated as random variables with prior distributions (Wainwright and Jordan, 2008).

1.4 Pervasive sensing
Pervasive, or ubiquitous, are adjectives used to describe things that are widespread
and permeates the surroundings. In western society that is certainly true for the
smartphone which is why it is so powerful as a platform to conduct research on (Raento
et al., 2009; Althoff et al., 2017). Not only is it possible to collect data from thousands of
people worldwide, it is also easier and cheaper to recruit and enroll participants (Chan
et al., 2017). The pervasiveness also serves another purpose, however. Establishing
whether a measured effect is caused by an intervention typically requires everything
else to remain constant. Introducing an instrument to measure the effect can trigger
a psychological response affecting the behaviour that is being measured (Sullivan
and Lachman, 2016). Unless the instrument is part of the intervention it will be
impossible to recover the actual intervention effect. Collecting data on a smartphone
thus has the benefit of not affecting the result as long as the behaviour regarding the
smartphone remains unchanged, thereby offering improved ecological validity (Raento
et al., 2009).

1.5 Outline and contributions
This thesis is structured as a summary of the main results presented in the papers
in the Appendix with some additional background theory on the used methods, and
work that was not included in the papers.
Chapter 2 introduces the randomized controlled trial of which this project has been part
of and the technical aspects in monitoring participants in real–time with smartphones.
Chapter 3 introduces the method of measuring physical activity with smartphones
and presents the main results of the intervention effects which are then compared to
changes in fat–free mass measurements. The second part of the Chapter introduces
a novel method to estimate energy expenditure by combining multiple independent
data sources.
Chapter 4 introduces a method to identify significant locations using a spatio–temporal
clustering algorithm, how to infer the context of these, and their relation to physical
activity. The second part introduces a novel semi–supervised method to classify human
activity from raw accelerometer signals using deep neural networks.
Chapter 5 introduces the Kalman variational auto–encoder, a model that by combining
a structured temporal prior distribution and a variational auto–encoder, is able to
learn disentangled representations of static and dynamic factors. The model is an
efficient simulator that is able to fit high–dimensional complex observations.
Chapter 6 summaries the discoveries, concludes, and highlights some interesting future
directions.



CHAPTER2
The Study

The objective of the study was to investigate the health effects of physical activity
during leisure time and active transport in overweight and obese individuals. The
primary outcomes were metabolic health, cardiovascular health, and energy balance
measured with insulin sensitivity, endogenous thrombin potential, and total body
fat, respectively. In a subgroup it was furthermore the aim to investigate the use of
smartphones to pervasively monitor physical activity and estimate energy expenditure
in different domains of everyday life. It is that subgroup that is the focus of this
thesis. The following sections describe the RCT design, technical aspects of pervasive
smartphone sensing, and some of the challenges discovered during the study.

2.1 Methods
This study has been carried out by the GO–ACTIWE team of which most are residing
at the Biomedical Sciences department, Faculty of Health and Medical Sciences,
University of Copenhagen. The group is lead by professor Bente Stallknecht and
principal investigator Mads Rosenkilde. Group members include doctoral students
Jonas Salling Quist, Martin Bæk Blond, Anne Sofie Gram, and Jonas Winther, and
laboratory scientist Desirée Hornbæk Milling.

2.1.1 Participants
Overweight and obese Caucasians were in the period of November 2013 to October
2015 recruited from the greater Copenhagen area. Inclusion criteria were physical
inactivity, 20-45 years of age, a body mass index from 25 - 35 kg m−2, non-smoking
with a normal plasma glucose (< 6.1 mmol/l) and blood pressure (<140/90 mm Hg).
All the criteria are listed in Table 2.1. Participants were recruited using internet
advertisements (social media, forsøgsperson.dk, etc.) and the local media. Recruits
were screened with an online questionnaire and a rigorous medical examination. The
study was approved by the ethical committee of The Capital Region of Denmark (H-
4-2013-108), registered at the Danish Data Protection Agency and at clinicaltrials.gov
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Inclusion criteria Exclusion criteria

• 20 - 45 years old
• Healthy
• Physically in-active
• Body mass index: 25–35 kg m−2

• Caucasian

• Body fat percentage <
{

32% for women
25% for men

• VO2peak >
{

40ml O2kg−1min−1 for women
45ml O2kg−1min−1 for men

• Fasting plasma glucose > 6.1 mmol/l
• Blood pressure > 140/90 mm Hg
• Abnormal ECG
• Type 2 diabetes
• Pregnancy or planning of pregnancy
• Smoking
• Medicine use

Table 2.1: Inclusion and exclusion criteria.

(identifier: NCT01962259 and NCT01973686) and adhered to the principles of the
Helsinki declaration. Further information is available in Rosenkilde et al. (2017).

2.1.2 Study design
The study was designed as a 6-month randomised controlled trial, which was described
in Section 1.2, with three interventions; an active bicycling commuting group (BIKE)
and two leisure time physical activity (LPTA) groups (MOD, VIG) as well as a
non-exercise control group (CON). The LPTA groups are defined by the exercise
intensities of 50% (MOD) and 70% (VIG) of the peak oxygen uptake (VO2peak)
during exercise. Daily exercise expenditure was prescribed to 320 kcal for women and
420 kcal for men with five sessions per week. Participants were advised to not change
their eating habits and were invited to three test periods at baseline, 3 months, and 6
months where each test period consisted of three test days. A two–week free–living
assessment period followed each test period in which the total energy expenditure
was measured with doubly labelled water (DLW) (Westerterp, 2017) and physical
activity by accelerometry (Actigraph GT3x, Actigraph Corp., Pensacola, Florida,
USA). Participants were told to use a heart rate monitor (RC3 GPS, Polar Electro
Oy, Kempele, Finland) during all exercises and to weigh themselves every day using
a wireless internet-connected bodyweight (WiThings Body Composition WiFi scale,
WiThings Europe,Issy-les-Moulineaux, France).

Doubly Labelled Water
Doubly labelled water is the most accurate method to measure human energy ex-
penditure in free–living scenarios and often the only viable method. It is, however,
rather expensive as the analysis procedure requires highly specialised equipment.
The procedure is as follows: a dose of water labelled with 18O and 2H is given to
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Figure 2.1: Illustration of the process behind the doubly labelled water method to
measure energy expenditure. Borrowed from Westerterp (2017).

a participant whom then samples urine every morning the following two weeks. In
these samples the enrichment of 18O and 2H are assessed with isotope ratio mass
spectrometry to establish the decay rates of the isotopes. The difference of these
rates are a function of CO2 production, as depicted in Figure 2.1, which is directly
correlated with energy expenditure.

2.2 Smartphone

Participants received a smartphone (Nexus 5X, LG Electronics, Seoul, South Korea
or Galaxy S5, Samsung Electronics Ltd., Suwon, South Korea) to which a custom
application had been installed to acquire sensor data. The application was adopted
from previous studies (Aharony et al., 2011; Stopczynski et al., 2014) and extended
with measuring accelerometry (50 Hz sampling frequency) and activity recognition
provided by the internal classifier through the Google Activity Recognition API. The
application furthermore collected GPS-based location (6–min sampling interval), step
count, and display on/off events. A timeline of when the different data modalities
are collected is depicted in Figure 2.2. All data were stored in encrypted SQLite3
databases and uploaded securely to an in–house server when the smartphone had
WiFi access. Participants were instructed to use the smartphone as their primary
device and carry it as often as possible but otherwise not change any routines. An
armband was provided should they want to bring the smartphone when exercising.
Assistance was provided in case of technical issues and a replacement device provided
in case of hardware failure.
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Figure 2.2: Timeline of when the different modalities are collected during the 6 months
study.

2.2.1 Data management
Server-side infrastructure was adopted from a previous study in which it had suc-
cessfully handled smartphone sensing data from 1000 smartphones simultaneously
(Stopczynski et al., 2014). Incoming SQLite files were decrypted and all data except
for accelerometry was put into a MongoDB database. Accelerometry was found to be
too big in size to efficiently handle in a conventional database and therefore stored in
a chunked and compressed format designed for time-series called BColz. Around one
terabyte of smartphone data was collected in the study. All data were kept exclusively
on the servers and computations carried out either through Jupyter Notebooks hosted
on the server or with scripts executed through SSH.

2.2.2 Data processing
Data analysis is an interactive discipline where understanding comes from repeated
manipulation and visualisation. With large amounts of data it quickly becomes
time-consuming to do simple calculations, partly because the data does not fit into
the memory of the computer. To manage out-of-memory computations the Python
library Dask was used as it is built around a lazy computational graph that can
do computations on chunks of data and then aggregate the partial computations.
Statistical analyses were done in probabilistic programming libraries Stan (Carpenter
et al., 2017) or Edward (Tran et al., 2016) depending which library that fitted the
task best. Stan is good for exact inference using sampling methods and Edward is
better when flexibility and scalability is needed. Visualisations are created with Altair
(Vanderplas and Granger, 2018) and Matplotlib (Hunter, 2007).
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2.3 Challenges
It is not without peril that one employs consumer products in research, which was
acknowledged from the beginning of the study, and is a the heart of one question this
project tries to answer: can smartphones be used to predict energy expenditure? And
if so, how accurately. Some margin of relatively big measurement error is tolerated in
this exploratory paradigm and while we a priori can try to reason about a possible
scale, we must ultimately accept the collected measurements as the current limit.

In research it is not uncommon to experience malfunctions and commit errors that
affect the research process in a negative way. Expected errors can be mitigated
by incorporating strict routines in e.g. manual data acquisition and be reduced
by incorporating systematic checks on data integrity in automatic data acquisition
scenarios, such as sampling from smartphone sensors. The latter can, however, present
a major workload and be stressful, and therefore a balance should be found in which
some errors are accepted.

The cohort receiving a smartphone and doubly labelled water is a subgroup of a
larger cohort because the funding for this project was received later. To include as
many participants as possible, the enrollment had to start very quickly which meant
that there was no time for a pilot study to test the equipment. Furthermore, once
enrollment had begun, the study paradigm could not be changed. A pilot study and
subsequent efforts to stablise the software, and perhaps adjust the sampling paradigm,
would probably have made a significant difference to data integrity.

2.3.1 Missing data
A sampling frequency of 50 Hz paints a very clear picture of when data is missing
and in the accelerometry data an observation rate of 30.5% is observed, which is
lower than what was expected. Three patterns emerge when inspecting the data;
blocks of hours are missing for all participants, blocks of days are missing for some,
and all have less data during night time. The latter is not an issue and explainable
with participants turning off the device and perhaps some kind of power preserving
feature of the smartphones. The missing blocks are, however, still unexplained and
the faults may lie in the smartphone, server-side, or both. It is not always that all
modalities are missing which may indicate sensor specific issues on the smartphone.
Most participants experienced issues with insufficient storage when not connected to
WiFi for a prolonged period (days) and some participants had frequently issues with
the application not uploading data, even when connected to WiFi. When storage is
full, no more data is recorded, which may be the reason behind longer gaps.

Specific issues
Software projects normally use version control tools such as git to document code
changes and ensure a local copy is always up–to–date with the latest version. In
this project a part–time programmer unfortunately made an update to the Android
application in which old source code was used. In this particular code, the timestamp
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calculation was wrong, which affected all samples acquired while the error persisted,
which it did for about a week.
After a power outage at the university hosting the server, the harddrive containing
the data was irrecoverably damaged. Fortunately most of the data was backed up in
raw SQLite3 files and the database was reconstructed after a few weeks.

2.3.2 Compliance
As the study relied on natural behaviour regarding smartphone use, it is only neglect
that was monitored for. Though participants agreed to use the smartphone as their
primary, a few stopped using it in the beginning of the study. They where also asked
to carry the smartphone during exercises but a cross-reference with the collected heart
rate data, show that very few chose to do so.

2.3.3 Software
The software adapted from Stopczynski et al. (2014) was designed in a modular way
so that it was easy to add new sensor probes and through a central configuration
file, specify which sensors to sample, and how often. Probes could either be sampled
with a fixed interval, e.g. location every 5 minutes, or adaptively using a hook to
capture broadcasts of new samples, e.g. if another application requests location
updates every second, they are also acquired my our application. For the application
to request a sensor for a new sample, the smartphone has to be awake, which consumes
a lot of power. Accelerometer samples arrive every 20 millisecond, so utilising the
existing framework required the smartphone to be active permanently, which it can
only be for a few hours. The LG Nexus 5 was one of the first smartphones to
include an accelerometer with a first–in–first–out circular buffer in which the most
recent 10.000 samples are stored. By enabling that buffer through the Android
framework, the application could wake up every 6 minutes and read out the entire
buffer of accelerometer samples and go to sleep again, reducing the power consumption
drastically. The buffer has a fixed size which also means that old samples will be
overwritten as new arrive and failing to read the buffer, results in missing data.
On the server–side it proved very difficult to manage these amounts of data as we had
no previous experience doing so and were not equipped with modern infrastructure,
e.g. Spark and Hadoop. The final solution was settled on after many failed attempts
and is not suited to ensure data integrity, but provides fast, parallel processing.

2.3.4 A rant on smartphones
Modern smartphones are in fact full–fledged computers crammed into pocket-sized
containers equipped with huge screens, cameras, fingerprint readers, and various
sensors. If this accomplishment is not enough to awe, then consider the perspective
of the operating system. Hundreds contribute to the Android Open Source project
and it has to support hundreds of different smartphone platforms. This process can
be somewhat controlled but then add all the applications written by programmers



2.3 Challenges 11

of questionable competence competing over the users attention and the smartphones
resources. In this vast space of possible failures it should seem a wonder that anything
works but the answer is simple; error handling. Every second the operating system
handles errors from many background processes and running applications. Users may
not notice unless an application crashes but if the platform is unstable, background
processes may also become so. That is at least an explanation to why this study
experienced a high loss of data. Fortunately the smartphones being produced at the
time of this writing is already much better than those deployed in the study.
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CHAPTER3
Physical Activity &

Energy Expenditure

The many failed attempts to curb the obesity pandemic (Lee et al., 2012) raises
the question of whether behavioural aspects of obesity and physical inactivity are
understood properly. Most research into physical activity is through underpowered
studies with too few participants for too short a time in artificial settings, which
persistently have been shown not to generalise to the real world (Jeran et al., 2016).
To disentangle the myriad of interacting factors governing physical activity, it is time
to move the focus from the individual to population-scale pervasive health (Kohl et al.,
2012; Hallal et al., 2012; Althoff, 2017). Historically, these factors; behavioural, social,
etc., have been difficult to measure and studies have been conducted through self–
reported surveys which are biased and only provide sparse, summarising information.
To fully capture the spectrum of health–related behaviours, a dense sampling scheme
is required, yielding high resolution, multi–modal data from many people over a long
time–span. Mobile phones are presently the only realistic option and have the added
benefit of providing a powerful platform capable of much more than measuring physical
activity (Althoff et al., 2017). With this study we try to move beyond the large body
of existing research that uses dedicated monitors (Evenson et al., 2015; Clawson
et al., 2015), to investigate the potential of the smartphone as a ubiquitous device to
pervasively monitor energy expenditure in free–living, accurately (Maddison et al.,
2017). The pervasiveness of smartphones in the population offers an unparalleled
reach (Campbell et al., 2008) and as the smartphone is already intimately accepted, it
offers an unadulterated view of human behaviour, contrary to introducing a foreign
device (Raento et al., 2009). Section 3.1 will summarise the paper in Appendix A,
particularly the analysis of intervention effects measured by physical activity derived
from the smartphone. Section 3.2 will summarise the paper in Appendix B which
investigates the feasibility of predicting total energy expenditure with smartphones.
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3.1 Physical activity
A perfect measure of physical activity would be the energy expended by muscles but we
are left to deal with what is actually measurable, such as acceleration. Ways to quantify
physical activity based on acceleration equals the number of different devices to measure
it. Actigraph (Actigraph Corp., Pensacola, Florida, USA) popularised the activity
count as a measure of physical activity, which originated from the mechanistic internals
of the first generation devices, and the company has for the sake of consistency tried
to emulate that process in its digital offspring. The precise algorithm is proprietary
and while the individual steps have been largely discovered (Peach et al., 2014),
important details are still undisclosed. This unfortunately muddles analyses based on
activity counts as choices such as the frequency range of a band-pass filter can change
results significantly. With the purpose of being able to compare to Actigraph and
scientific literature, the Actigraph algorithm was in this study approximated using
simultaneously captured data from smartphones and Actigraph.

3.1.1 Quantifying activity in counts
Having a time–series of accelerometer measurements, the objective is to calculate a
value that represents physical activity independent of the person, activity, or any
other circumstantial factors. The algorithm is simply to band–pass filter the signal to
remove noise and then sum the absolute values in bins of one second. Each activity
count is thus a summary of the activity in that second. The vector magnitude (i.e.
root mean square in a euclidean space) is then calculated to remove the directional
component of the triaxial accelerometer. A seemingly easy process to copy but the
choice of band–pass filter and its parameters are very important. To approximate the
activity count function, from smartphone data to Actigraph counts, two approaches
were tried: Bayesian Optimisation and deep neural networks. I’ll shortly describe
each approach but not go into details as neither method worked well and the results
are not used further.

Bayesian Optimisation

Considering the function f(x) we are interested in finding the optimal hyperparameters
from some set X ∈ RD of interest. To do this we can treat f(x) as a probabilistic
model with a prior distribution defined by the Gaussian Process (GP, Rasmussen
(2004)). Using evaluations of f(x) as data we can get the posterior distribution over
functions; the acquisition function a(x). With the acquisition function it is possible
to determine which hyperparameters that are expected to yield the best result and
therefore should be evaluated next. See Snoek et al. (2012) for further details.

This method was used to find the optimal hyperparameters to the aforementioned
simple algorithm to calculate activity counts.
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Parameter Value
Filter type Butterworth
Lower cut off 0.2 Hz
Higher cut off 5 Hz
Order 6

Table 3.1: Activity count algorithm parameters.

Deep neural networks
Deep neural networks are a form of general purpose function approximators that
have proven efficient in fitting models to raw data, i.e. without pre-processing such
as filtering or feature extraction such as calculating summary statistics. A second
of raw accelerometer data, X ∈ R3×50, was given as input to the model that tried
to predict the corresponding activity count from the Actigraph algorithm. Different
neural network architectures were tested in a grid-search. More background theory on
neural networks are provided in Section 4.2.2.

Results
Neither method achieved sufficient accuracy to either 1) calculate Actigraph counts
from raw Actigraph accelerometer data or 2) to estimate Actigraph counts from raw
smartphone accelerometer data. It is a bit surprising that 1) did not work well but 2)
was less likely to succeed as the smartphone is carried in various ways whereas the
Actigraph is mounted on the body. Since it henceforth is only possible to compare
relative values of physical activity from Actigraph and smartphone, the parameters of
the activity count algorithm used for the smartphone data are set to capture human
motion up to a frequency of 5 Hz (Table 3.1).

3.1.2 Pre–processing
Activity counts are computed in intervals of one second, but that resolution is still too
high to efficiently do posterior inference. A suitable resolution was heuristically found
to be intervals of 5 minutes in which the activity counts are summed and the amount
of missing data is averaged. As the weather possibly have an impact on the physical
activity level, hourly precipitation and temperature data at three weather stations
in and around Copenhagen, was acquired from the Danish Meteorological Institute
and mapped to each sample, using time and location. Temporal information (hour,
day, week, month) and information on how many off– and sick–days the participants
experienced in each period of the study, were included together with the baseline
characteristics: age, gender, BMI, VO2peak, education, job status, civil status, and
the type of smartphone.
Participants with less than 50 days containing data were excluded and samples with
90% missing data were treated as completely missing. Treatment of partially and
completely missing data is described further in Appendix A.
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Figure 3.1: Treatment effect of interventions for each intervention in each period
contrasted to control. Period 1 is from baseline to 3 months, 2 is from
3 to 6 months and 3 is after 6 months. Whiskers indicate 95% posterior
intervals. We see a positive effect in period 1 across the board and then
a decline in the second, for the smartphone data. The Actigraph data
show a more varied result with e.g. the opposite development in the MOD
group.

3.1.3 Model definition
With physical activity represented by activity counts we can use a variant of the model
presented in equation (1.3) to estimate the causal intervention effects

yi = µ+ µpres[i] + τ t[i] + αg[i] + βXi + εi, (3.1)

where yi are activity counts, µ is the global intercept, µpres[i] are the subject–specific
pre–treatment means, τ t[i] are the treatment effects, αg[i] are random covariates, β
are regression coefficients for the linear regressors X, and εi ∼ N (0, σ2). The s[i]
notation denotes which participant sample i belongs to, t[i] denotes treatment, and
g[i] denotes group of a particular covariate. In this model we are primarily interested
in τ and the other parts are included to remove confounding effects. The model is
used to estimate intervention effects from both smartphone and Actigraph data with
the only difference that Actigraph data is only from the three free–living periods as
described in Section 2.1.2.

3.1.4 Intervention effects
Estimated intervention effects of each group during each period relative to the control
group are depicted in Figure 3.1. In the effects estimated from the smartphone data
it is observed that the first period exhibit an overall increase in activity, while the
following periods show unchanged or decreased activity levels. Only the vigorous
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group show an increase throughout the experiment and especially after the experiment
is over, in period three. Estimated activity levels based on the Actigraph data are
similar except for the moderate group for which the second period is the most active.
Differences in activity levels are presumably due to the difference in when the data is
from. Smartphone data are acquired continuously and period one therefore includes
data from baseline up until period two whereas the Actigraph is only carried for
a single week in each period. Missing data and how people use their smartphone
may also factor in but are difficult aspects to reason about. Further analysis of the
covariates are provided in Appendix C.

Loss of fat–mass

Change in fat–mass from baseline for each group is depicted in Figure 3.2 where the
fat–mass is represented as a percentage of total bodyweight. All intervention groups
have lost fat–mass during the first period (baseline to 3 months) and maintained
their loss in the second period. Apart from the bicycle group in which activity levels
decreased in the second period, the loss of fat–mass corresponds well with the measured
increase in physical activity. Two sources of bias in the activity estimation may lead
to lower effects than what would be expected from the observed loss of fat–mass: 1)
the acceleration measured while biking is typically very low and not representative of
the physical exertion and 2) the participants tend to leave their smartphone at home
while exercising. The latter point holds particularly for the vigorous group.

Figure 3.2: Change in fat–mass contrast to baseline. An increase in bodyweight is
observed in the control group and a decrease in the rest of the groups
though most significantly in VIG. The change from the first to the second
test period is not significant in any group.
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3.2 Energy expenditure prediction
Energy expenditure (EE) remains difficult to estimate without the use of laborious
methods such as doubly labelled water and indirect calorimetry. Reasons include the
complexity of human physiology that leads to a natural variation across people. EE is
composed of three components; digestion, physical activity, and resting EE, which
means that even if physical activity is correctly measured and converted to EE, a
large part of the total EE still needs to be accounted for. Predicting just the ’active’
part of EE from physical activity measurements is difficult as people move differently,
do different kinds of activities, and have varied body compositions. Body weight is
for example proportional to energy spent during weight bearing activities (Schoeller
and Jefford, 2002) and therefore it would be natural to adjust for body weight in
a regression model of EE, however, resting EE is only dependent on fat–free mass
(Müller et al., 2018b), so not knowing the ratio of fat to fat–free mass will leave a
large part of the variance unexplained. Similarly will not knowing the type of activity
lead to unexplained variance as the relationship between EE and physical activity
depends on the activity type and intensity (Altini et al., 2015).

Many of these components of variance are specific to the individual and therefore
avoidable when doing individual–level model calibration. This is a complicated
procedure, however, as it entails exact measurement of EE by calorimetry. In this
study the primary goal is to establish how well the smartphone can predict EE, so
while we do calibrate to the individual, it is acknowledged that the procedure is not
directly applicable to the general population, yet.

3.2.1 Individual–level calibration
We are interested in estimating a function that predicts energy expenditure from
physical activity measured by the smartphone, but alas, DLW samples are sparse
as they are summarised over a long interval (14 days) and expensive to acquire.
This means that a model that is able to adjust to each participant will be over–
parameterised and severely overfit to the training data if estimated directly from the
DLW measurements. The dataset at hand, however, contains an additional modality
that may be used as a mediator between physical activity and energy expenditure:
heart rate (HR). A mediator enables the use of additional data by decomposing the
model into two parts as depicted in Figure 3.3.

Heart rate prediction

In each exercise session the participants are required to wear a Polar HR monitor
and are asked to also carry their smartphone. These data are independent of the EE
measurements and may therefore be used to estimate a function that predicts HR
from physical activity

zim ∼ N (βi1 + βi2xim, σ2
z), σ2

z ∼ N (0, 1), (3.2)
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Figure 3.3: Individually calibrated model of energy expenditure prediction. Inference
and prediction steps are separated as the data used for each of the models
are different.

where z denotes HR, x denotes physical activity, and β are the regression parameters.
Priors on the parameters are given by

βi1 ∼ N (β1, 0.1), β1 ∼ N (0, 1) (3.3)
βi2 ∼ N (β2, 0.1), β2 ∼ N (1, 1), (3.4)

which motivates regularisation towards similar coefficients across participants. Coeffi-
cients are partially pooled through the prior which has the practical implication that
statistical power is borrowed from parameters with low variance by parameters with
high variance.

Energy expenditure prediction
Three VO2peak tests are conducted during the study for each participant and in these
a linear relationship between HR and EE is estimated. That means we can use these
estimated parameters in a model estimating EE

yi ∼ N
(

M∑
m=1

(αi1 + αi2zim), σ2
y

)
, σ2

y ∼ N (0, 1), (3.5)

where yi denotes EE for participant i and α are the parameters estimated from the
VO2peak test. The sum is from having multiple HR for each EE measurement.
The combined model is able estimate EE from physical activity and have parameters
that are calibrated to each participant without overfitting to the data we are trying
to predict.
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Renormalising parameters
All data are normalised to improve exploration of the sampling algorithm but as the
data used for inference of α and β is not the same, the normalisation is not the same
either and the output of (3.2) is not directly applicable in (3.5). α is therefore scaled
by

α̂1 = α1 + α2min(z)−min(y)
max(y)−min(y) , α̂2 = α2

max(z)−min(z)
max(y)−min(y) . (3.6)

3.2.2 Baseline model
A baseline model is used to evaluate how well a simpler approach without heart rate as
a mediator, is able to generalise. The model is a simple regression of physical activity
on EE with correction for confounding covariates: gender, age, weight, and fat mass.
The model is defined as

yi ∼ N
(
βi1 + βi2Xi, σ2

y

)
, σ2

y ∼ N (0, 1), (3.7)

where y represents EE, X contains both physical activity and covariates, and β are the
parameters. The prior on β2 is a multivariate normal distribution that is able to model
correlation between the covariates. Evaluation in done with leave–one–participant–out
cross–validation using mean absolute error (MAE). This is important to test whether
the model is able to generalise to unseen people. To test the calibration effect of each
covariate, a total of five models are evaluated – from zero to all covariates.

3.2.3 Results
Baseline
Without proper calibration, the prediction of EE is very poor, as observed in Table
3.2, though comparable to multi–sensor consumer monitors (Chowdhury et al., 2017).
The model improves by adjusting for known covariates and is best when all data
is included. The best model result correspond to an error of 28.8% relative to the
average total energy expenditure.

Covariate Activity +Gender +Age +Weight +Fat mass
LOO–CV MAE 1051 878 778 903 729

Table 3.2: Leave–one–subject–out cross–validation (LOO–CV) mean absolute error
(MAE) for five baseline models where each column includes one additional
covariate. Results are in kcal/day.

Individual calibration
Prediction of the mediator, HR, is unbiased, positive, and strongly correlated to the
measured (r=0.86, P < 0.001) as illustrated in Figure 3.4. The predicted EE is also
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positive and strongly correlated to the measured (r=0.84, P < 0.001) with a MAE
of 242 kcal/day, though slightly negatively biased (-52 kcal/day, ≈ 2.1% of average
response) and with a standard deviation of 297 kcal/day of the residuals. The reported
MAE correspond to an error of 9.6% relative to the average total energy expenditure.
The chart in Figure 3.5 show the predicted against the measured EE where the colors
correspond to intervention group and size of the dots correspond to prediction error.

(a) Prediction (b) Bland-Altman

Figure 3.4: Heart rate regression. In (a) it is shown that heart rate is predicted
accurately from smartphone activity counts and in (b) that the residuals
are close to normal without bias.
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Figure 3.5: Predicted and measured energy expenditure. Each sample corresponds to
data over a full DLW period, i.e. multiple days and the size corresponds
to the error. The shaded area is the 95% bootstrapped confidence interval.



CHAPTER4
Domains & Activities

In Section 3.1 it was shown that the smartphone is able to measure physical activity on
a scale that is consistent with the loss of fat–free mass and in Section 3.2 it was shown
that the smartphone is able to predict total energy expenditure with individual–level
calibration. As the smartphone provides additional modalities, particularly location
and the derived activity recognition, we can decompose the intervention effect in these
contextual directions. Namely, what contextual meaning does a certain location carry
and which activities drive an individuals’ physical activity. The following sections
describe how to infer meaningful locations from GPS data, how the physical activity
is distributed among these, and how to predict human activity with a semi–supervised
neural network.

4.1 Domains
Domain is an important determinant of understanding behavioural aspects of physical
activity. When trying to understand physical activity over a long duration in everyday
life settings, important questions include: when and where is the most energy spent
and what effect does an intervention have on the distribution of expenditure between
domains, e.g. does an increase in one lead to a decrease, a compensation, in another?

4.1.1 Stop locations and paths
Locations measured by a Global Positioning System (GPS) sensor are provided in
terms of longitude and latitude and have on their own little meaning. To give locations
meaning it is useful to infer spatial clusters which indicate that an individual spend
time there. A density–based spatial clustering algorithm (DBSCAN, Ester et al.
(1996)) is used to find areas of high sample density in the two dimensional spatial
domain. In Figure 4.1 a delaunay tessellations of the location samples illustrate the
density of samples in this study. A bright color indicates high sample density and
from Figure 4.1(a) it is clear that the participants spent most time in the north–
eastern parts of Zealand. When concentrating on this area as in Figure 4.1(b), a
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(a) Denmark

(b) Greater Copenhagen

Figure 4.1: Delaunay tessellations of all location samples in the study to provide an
overview of the sample density and range.
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more detailed tessellation show the outline of large roads and that Copenhagen is
particularly well–visited. GPS samples are in general accurate up to 8 meters outdoors
but the uncertainty can go up to 100 meters indoor (Zandbergen and Barbeau, 2011).
The scale parameter of the kernel in DBSCAN is therefore set to 150 meters to allow
for some leeway. Each location sample also contains temporal information which
can be used to refine the accuracy of detected clusters. As we are only interested
in clusters in which an individual spends time, a cluster is only defined as such if
multiple consecutive location samples fall within the boundaries during a 15 minute
window (Cuttone et al., 2014). When labelling the samples in the spatio–temporal
domain it is useful to characterise those that fall within a cluster as stops and those
that do not, as paths.

4.1.2 Domain inference
Circadian and societal rhythms emerges as clear patterns when visualising the amount
of time spent in the individual clusters, decomposed into the hour of the day or the day
of the week as in Figure 4.2. With clear enough patterns we can establish home and
work, if the latter is stationary, and the remaining clusters as leisure. Time between
clusters are naturally defined as travelling and times for which no location sample is
available, are unknown. This procedure is manual but could easily be automated with
a bit more background knowledge of the participants.

Figure 4.2: Time spent in the top five clusters decomposed into time–units. The
y–axes are in hours and the x–axis is mentioned in the subplot titles. This
figure illustrates the different ways in which identified clusters can be
analysed just by summing over different temporal slices.
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Figure 4.3: Effect of domains. These effects are not contrasted to CON and are
therefore not interpretable as causal but can still be interpreted relatively.
Most notably are MOD and VIG more active in the leisure domain
compared to CON and BIKE. In the Actigraph data, the variation is not
as great, probably due to a lower sample size.

4.1.3 Effect of domains
As we also show in the paper in Appendix A, is it straightforward to condition the
intervention effect τ in equation (3.1) on domains to inspect what effect the domains
have on physical activity. The marginal posterior of the intervention effect conditioned
on domain is depicted in Figure 4.3. Note that the estimates are not contrasted to
the control group (CON) and therefore not interpretable as causal effects but may
still be compared internally. The work domain is not included as it was impossible
to establish the correct cluster for too many of the participants and has therefore
been merged into unknown. The unknown clusters are unfortunately dominating the
high–activity samples and it is not clear why, except that few participants are known
to have active jobs (e.g. postman). As explained in Section 2.3.1, singular modalities
are sometimes missing, and in case of missing location samples, the measured activity
ends up in an unknown cluster.
An interesting observation in Figure 4.3 is that MOD and VIG generally have higher
activity levels in the leisure clusters than at home and that this relation is opposite for
CON and BIKE. A possible explanation is a compensatory effect of the intervention
that moves expenditure from one domain to another.

Effect of time in domains
When integrating out the intervention assignment, we get the effect of domains relative
to time, which is depicted in Figure 4.4. Remember that the third period is after the 6
months completion of the study and up to 300 days after the start. While an apparent
increase is observed from the first to the second period, this is not observed in the
intervention effect in Figure 3.1 which is because this is an average over participants
from all interventions as opposed to a contrast to the control group.
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Figure 4.4: Effect of domains over time. Each data point is summed over intervention
groups and therefore not causal. A decrease in home is observed as well
as a general decrease in period 3 when the study has finished.
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4.2 Activity Recognition
Human activity recognition is a research field that spans from binary classification
(active/sedentary) to detecting daily activities, such as drinking and ironing (Chen
et al., 2012; Incel et al., 2013; Reyes Ortiz, 2015; Shoaib et al., 2015). The modality of
choice similarly spans from accelerometers to 3–dimensional depth cameras and any
combination of what may lie between (Aggarwal and Xia, 2014; Twomey et al., 2016).
Applications of activity recognition are many as activity convey information about the
context of an individual. The information may for example be used to intelligently
assist elderly living at home, understand human behaviour, or more generally put;
assist in human-computer interaction.

In Section 4.2.2 a novel method to classify activity from raw accelerometer data will be
described. In the initial phase of writing the manuscript describing the model, a nearly
identical method was published in Ordóñez and Roggen (2016) after which publishing
our work seemed moot. We have later extended the model with domain adaptation
and it is that part which is the focus of this section. For a thorough explanation and
rigorous experimentation regarding classification of activities with the presented type
of model, please consult Ordóñez and Roggen (2016) and Hammerla et al. (2016).

4.2.1 Related methods

Bao and Intille (2004) demonstrated the ability of machine learning methods to
classify everyday human activities from an array of worn accelerometers and it was
then shown that a single accelerometer is sufficient to recognise basic activities (e.g.
standing, walking, running) (Ravi et al., 2005). Work that paved the way for detecting
activities with mobile phones (Brezmes et al., 2009; Kwapisz et al., 2011; Wu et al.,
2012). Machine learning approaches applied in activity recognition typically relies on
features extracted from the signal because they are unable to deal with either the
high number of dimensions or noise level in the raw data. Features are hand-crafted
and often rely on expert domain knowledge but in signals that does not offer any
guidelines to what a good feature might look like, summary statistics are typically
used. However, there are no guarantees that relevant information is captured in the
features so learning a feature extractor from the data with a deep neural network can
improve information retention (Plötz et al., 2011). A deep neural network can in fact
discard explicit features entirely by classifying from raw data directly (Zeng et al.,
2014) and in real–time when deployed on a smartphone (Lane and Georgiev, 2015).
Previous methods applying neural networks primarily focus on classifying a single
time–frame of 1–10 seconds of data. Human activity is stationary on a much longer
time–scale so the activity in a time–frame is therefore statistically dependent on the
neighbouring. On the other hand can a transition from one activity to another span
two frames and only by compounding information is that captured. The following
section will describe a neural network model that learns to classify activities from raw
data with a temporal memory to condition on past information.
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4.2.2 Human activity recognition with deep neural networks
Background theory
Deep neural networks refer to the practice of stacking layers of neural networks to
expand flexibility and encode structural information. The purpose is to learn the
function y = f(x; θ) that maps input x to output y by adjusting the parameters θ. To
learn the parameters, gradients of θ with respect to the error signal is backpropagated
through the network (Goodfellow et al., 2016). Three types of architectures are most
often used: dense, convolution, and recurrent.
Dense neural networks are also commonly known as fully–connected (or feed–forward)
as the outputs from all nodes in a layer are connected to all nodes in the next layer,
as inputs.
Convolution architectures are inspired by the filtering operation in signal processing
where a filter is convolved with the signal. Parameters of the filters are learnt to
extract meaningful representations and by stacking multiple convolutional layers, a
hierarchy of increasingly complex representations are constructed (Krizhevsky et al.,
2012). In the domain of human activity, the lower layers may hypothetically learn
to recognise upward or downward motion while higher layers may learn to extract
perpetual motion of a certain frequency.
Recurrent neural networks (RNN) are a family of architectures designed to model
sequences. Instead of just mapping an input to an output, the hidden state of the
network is dependent on itself from an earlier time–step, i.e.

h(t) = f(h(t−1),x(t); θ), (4.1)

which provide the network with an internal memory. Recurrence occurs between
hidden units because the parameters θ are shared between time–steps. The basic
RNN structure can become forgetful after few steps due to vanishing gradients. A
variant of the RNN cell called long short-term memory (LSTM) reduces this problem
by embedding a mechanism to control when the internal state is updated, thereby
extending its memory span (Hochreiter and Schmidhuber, 1997). The output y is
typically modelled with a linear function or dense neural network, i.e. y = f(h(t); φ).
Neural networks can be combined in any imaginable way as long as they remain
differentiable. It is therefore possible to construct models with multiple inputs, models
that contains parallel sub–networks, and even with multiple objective functions, some
of which the following model will demonstrate.

Domain adaptation
Deep neural networks require large amounts of data due to the large number of
parameters in the models or they will overfit to the training data. In activity recognition
it is particularly difficult because of small annotated datasets (Plötz and Guan, 2018)
and when generalising to data from previously unseen people (Bao and Intille, 2004).
The problem is caused by a shift between the training (source) and test (target)
distributions (Shimodaira, 2000) and a solution is therefore to transform the domains
into a common subspace where they have very similar distributions (Ben-David et al.,
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Figure 4.5: Neural network architecture. The input time–series is segmented and
provided to the CNN which output is flatten to a single vector for input
in the Bi–LSTM RNN. A shared representation is learned in a two–layer
dense NN and provided as input in the activity and domain classifiers.

2010). Previous approaches to domain adaptation in activity recognition rely on
transferring knowledge stored in a model pre–trained on the source dataset and then
potentially fine–tuning the model, if any labels are available, in the target domain
(Morales and Roggen, 2016). The rationale being that lower layers of a deep CNN
learns to extract representations that are domain–invariant (Donahue et al., 2014). The
method works reasonably well but also introduces additional tuning issues, e.g. which
layers to re–train in the fine–tuning. An adversarial training method can skip this
two–stage procedure entirely and simultaneously learn representations that are domain–
invariant and predictive of class membership. To be domain–invariant, predictions
based on features from the common subspace must not be able to discriminate
between source and target domains. In neural network models this is readily achieved
by extending the model with an additional domain classifier (Ganin et al., 2016).
While the model is optimised to reduce the error of the label classifier, the error of
the domain classifier is maximized. This encourages the model to learn a shared
representation that is domain–invariant but still able to classify activities. The method
can be used semi– or unsupervised and is used in this project to strengthen the label
classifier with external datasets.

Model definition
Activities are composites of motions that manifests as sequences of increasing and
decreasing acceleration when measured with a tri–axial accelerometer. Not very
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Dataset Samples Activities
iDASH (Wu et al., 2012) 3174 walking, jogging, stairs, step
UCI HAR (Anguita et al., 2013) 5272 walking, upstairs, downstairs, sit-

ting, standing, laying
UCI mHealth (Baños et al., 2012) 4859 walking, jogging, stairs, cycling,

running, jump
WIDSM (Kwapisz et al., 2011) 10982 walking, jogging, sitting, stand-

ing, upstairs, downstairs

Table 4.1: External datasets with annotated activities used to test the model.

different from images which are composed of two–dimensional gradients of pixel
intensity. Similar to how Gabor filters are able to extract local patterns such as edges
in images, is it imaginable that a finite set of filters are able to identify acceleration
patterns generated by human motion. Convolutional neural networks are used to learn
these representations directly from the raw data. As motions are composed of several
primitives, increasingly complex representations are learned by stacking multiple layers.
The output from the first convolutional layer is therefore used as input to another
and in this model two layers are used. A ’maximum pooling’ operation is done to the
output of each layer to reduce temporal dimensionality. It is done by only keeping the
maximal of every two neighbouring values, thereby reducing dimensionality to half.

A sequence of N samples may contain several motions that make up some activity.
Partitioning the sequence into K segments and applying the deep convolutional neural
network to each segment, the model learns to extract a representation of the set of
motions (or lack thereof) within a segment. This is illustrated in Figure 4.5 as going
from Input to Convolution. The sequence of K representations, or learned features,
are then used as input to a LSTM recurrent neural network that is able to model
the temporal dynamics of activities. A second RNN that processes the sequence in
the opposite direction is added to increase the model flexibility and account for any
variation that may arise due to temporal peculiarities in the data. The RNN thus
becomes bi-directional. The vector of hidden units from the last step in the RNN is
used as input to a two–layer dense neural network with two heads: a label classifier
and a domain classifier. Each classifier is a dense NN composed of two and three
layers, respectively.

Data
External datasets are summarised in Table 4.1. The objective is to leverage the
combination of multiple datasets to predict four basic activities on the GoActiwe
dataset: still, walking, running, biking. As the external data are acquired in different
ways and with different activities, the labels are bucketed and relabelled to the
aforementioned activities as best as possible. Sampling frequency is re–sampled to
50 Hz for all datasets and samples are binned in windows of 5 seconds to represent a
single activity sample.
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Semi-supervised experiment
Efficacy of domain adaptation is measured by classification accuracy on a dataset
with partially observed labels. The scale determines the proportion of labels observed
and ranges from unsupervised (0.0) to supervised (1.0) in steps of 0.1. Each mask is
sampled before training and therefore constant during training. A single dataset (UCI
HAR) was chosen to be the fully observed source and the three others to be target
domains. The domain adaptation task is binary, i.e. single source and target, but it is
possible to extend this method to multiple domains (Zhao et al., 2017).

Inference
The distribution of activities in the data is not uniform and that may skew the classifier
to become better at classifying some activities which will have a detrimental effect
on the underrepresented classes. To counter this effect, the data are sampled with a
uniform distribution over classes during training.
To train the model a variant of stochastic gradient descent with momentum called
Adam is used (Kingma and Ba, 2015). All hyperparameters are fixed for all models.

Results
Classification accuracies on the target domains are listed in Table 4.2 (and illustrated
in Figure 4.6) and on the source domain in Table 4.3 (Figure 4.7). The first rows (0.0)
are the results for the unsupervised case and as expected a quite poor performance
is observed in the target domains whereas a near perfect performance in the source
domain. The target domain classification relies in this case on how similar the signals
are to the source domain, fx in what position is the monitor carried, how are the
activities performed, and so on. The UCI mHealth dataset is apparently very dissimilar,
resulting in worse than random performance. Performance increase significantly across
all datasets with just 10% available labels, however, the results from classification
without domain adaptation listed in Table 4.4 are equally good. The experiment at
hand is apparently too easy for the model to gain anything significant from domain
adaptation and it would therefore make more sense to test the model on a more
demanding problem, fx the experiment detailed in Morales and Roggen (2016).
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Dataset WISDM iDASH mHealth
Observed
0.0 0.280 0.484 0.060
0.1 0.870 0.890 0.711
0.2 0.961 0.895 0.738
0.3 0.964 0.907 0.769
0.4 0.972 0.913 0.772
0.5 0.969 0.920 0.758
0.6 0.971 0.916 0.759
0.7 0.970 0.920 0.761
0.8 0.969 0.920 0.757
0.9 0.963 0.917 0.735
1.0 0.973 0.919 0.767

Table 4.2: Accuracy of domain adaptation on partially observed target datasets.

Dataset WISDM iDASH mHealth
Observed
0.0 0.998 0.995 0.995
0.1 0.972 0.990 0.953
0.2 0.975 0.988 0.948
0.3 0.978 0.985 0.892
0.4 0.927 0.987 0.980
0.5 0.906 0.986 0.956
0.6 0.932 0.972 0.960
0.7 0.871 0.980 0.952
0.8 0.889 0.978 0.967
0.9 0.949 0.974 0.947
1.0 0.912 0.981 0.956

Table 4.3: Accuracy of domain adaptation on fully observed source dataset.

Dataset WISDM iDASH mHealth
Observed
0.0 0.0 0.0 0.0
0.1 0.973 0.867 0.757

Table 4.4: Accuracy on partially observed datasets with no domain adaptation.
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Figure 4.6: Accuracy on target datasets.

Figure 4.7: Accuracy on source datasets.



CHAPTER5
Deep latent state

space model

If enough information was available, would it be possible to infer the state of a human
being perfectly (Franklin, 2017)? Simplicity and predictability in human nature is
for example found in the cognitive biases of our minds (Kahneman and Egan, 2011)
and recently in our mobility patterns. Individuals have few places they frequently
visit (González et al., 2008) and though the moving patterns of an individual evolve,
the number of familiar locations is stationary around 25 (Alessandretti et al., 2018),
which may be one reason to why human mobility is up to 93% predictable (Song et al.,
2010). If our whereabouts are so predictable, other aspects of our nature are likely to
be as well. Like how and why we exercise. The aforementioned studies in mobility
required data from thousands of people over long periods before the patterns emerged,
and that may well hold true for exercise as well.
There is no doubt that a persons level of physical activity (or health) is not an
entirely self–contained process, but is constantly affected by external factors, such
as weather conditions, and internal factors, such as mood. Modelling that process
thus requires not just large amounts of longitudinal data, but varied as well. Making
sense of high–dimensional streams of data acquired from many modalities, is not
straightforward and typically requires one of two approaches: 1) engineer features
that capture most of the relevant information and then model the underlying process
with simple statistics, or 2) train a deep neural network that is able to ingest the data
raw and model the process in an end–to–end fashion. Neural networks are powerful in
learning useful representation from data but can be difficult to train, require large
amounts of data, and are hard to interpret. Statistical methods are often quite the
opposite but lack the flexibility of learning structure from data and therefore require
domain expertise. The following sections will present the model introduced in the
paper in Appendix C that combines flexible representation learning with a linear
probabilistic model. Key concepts to understanding the model will be summarised
but focus is on understanding the model on a conceptual level and how it relates to
physical activity.
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zt−1 zt zt+1

at−1 at at+1

ut−1 ut ut+1

Figure 5.1: Graphical model of the linear Gaussian state space model. Filled circle
indicate observed quantities, empty circle indicate latent variables and
the arrows indicate dependence.

5.1 Background theory
5.1.1 State space models
It is not unlikely that a persons physical health can be represented by a latent state zt
to some point in time, t, and that this state lives in a relatively low–dimensional space.
As humans evolve rather slowly, in the absence of death, it is also not unlikely that the
current state is dependent on the previous, as in a first–order Markov process, but with
potential external influence from ut. Linear Gaussian state space models (LGSSM) are
widely used to model this type of process in the case of normally distributed variables

pγt(zt|zt−1,ut) = N (Atzt−1 + Btut,Q). (5.1)

The state zt is then used as a prior to model the observations at,

pγt(at|zt) = N (Ctzt,R), (5.2)

where γt = [At,Bt,Ct] are the transition, control, and emission matrices. Q and R
are covariance matrices of the process and measurement noise. All distributions are
assumed Gaussian and all dependencies linear, which ensures that posterior inference
is analytically tractable. This model is often referred to as the Kalman filter (Kalman
and Others, 1960) and is depicted graphically in Figure 5.1. A thorough explanation
is available in Durbin and Koopman (2012) and Fraccaro (2018).

5.1.2 Variational inference
Bayesian probabilistic models are typically not tractable and therefore require an
approximative inference procedure to estimate unknown parameters. Variational
inference (VI) is a method that is able to approximate high–dimensional posteriors by
factorisation and recasting the problem as an optimisation (Bishop, 2006; Zhang et al.,
2017). Lets assume that we have the joint distribution p(a,x) and we want to find

p(a|x) = p(x|a)p(a)
p(x) (5.3)
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Figure 5.2: Graphical model of the variational auto–encoder. Solid lines denote the
generative model pθ(x|a)pθ(a) and dashed lines denote the variational
approximation qφ(a|x).

where a are latent variables that encode the hidden structure in the data, x, and we are
interested in learning the posterior p(a|x), i.e. the conditional distribution of the hidden
structure given the data. The normalisation term, p(x) =

∫
a
p(x,a), is not tractable to

compute, so instead VI approximates the posterior with a simpler distribution, qφ(a),
which is from some family of parametric distributions, parameterised by the variational
parameters φ. These parameters are optimised by reducing the Kullback–Leibler (KL)
divergence between p(a|x) and qφ(a) which can be computed in closed form when
using Gaussian distributions. The divergence can be formulated as

KL(qφ(a)||p(a|x))) = −Eqφ(a)

[
log p(a|x)

qφ(a)

]
(5.4)

= −Eqφ(a)

[
log p(a,x)

qφ(a) − log p(x)
]

(5.5)

= −Eqφ(a)

[
log p(a,x)

qφ(a)

]
︸ ︷︷ ︸

ELBO

+ log p(x). (5.6)

Notice that the log marginal likelihood, or log normaliser, does not depend on q and
can therefore be removed from the expectation in the second line. In the last line we
have two terms: the negative evidence lower bound (ELBO) and the log marginal
probability of x. As the KL divergence is non–negative, the ELBO represents a lower
bound on log p(x) (hence the name), which is constant for all qφ(a). Therefore will
maximising the ELBO always minimize the KL divergence. Because q typically is
much simpler than p, the posterior approximation will rarely capture the complexity
of the true posterior though. VI is computationally less intensive than exact inference
methods such as MCMC sampling and can be scaled to large datasets with stochastic
VI (Hoffman et al., 2013; Ranganath et al., 2013). In latent variable models, some
stochastic VI methods are still too computationally intensive for very large datasets,
however, as the local latent variables needs to be optimized for each data point.
Amortized variational inference replaces the local variables with global parameters by
learning a function that maps from a data point to the distribution over the latent
variables.
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5.1.3 Variational auto–encoder
The variational auto–encoder is a deep neural network structure used for amortized
inference in deep latent variable models (Kingma and Welling, 2014; Rezende et al.,
2014). Assume we have a generative random process in which a sample in drawn from
the prior distribution a ∼ pθ(a), which typically is a centered isotropic multivariate
Gaussian, and x is generated from the likelihood

pθ(x|a) = N (µ(a),σ(a)) (5.7)

which often is a Gaussian distribution in case of continuous data but other distributions
can be used as well. The likelihood is known as the probabilistic decoder or generative
network and is dependent on the latent variable a through the non–linear functions µ(·)
and σ(·) which are neural networks parameterised by θ. The posterior distribution
p(a|x) is approximated with the amortized variational distribution

qφ(a|x) = N (µ(x),σ(x)) (5.8)

which is dependent on x through µ(·) and σ(·) that are parameterised by φ. This is
known as the probabilistic encoder or inference network. The inference network thus
learns a probabilistic encoding into a potentially low–dimensional space, that contains
as much relevant information as possible. It is this encoding–decoding structure, which
is also seen in Figure 5.2, that is the inspiration for the name. Parameters of the
neural networks are trained simultaneously by maximizing the evidence lower bound
(ELBO) with stochastic gradient descent and by plugging the terms into the ELBO
from equation (5.6) we see that it decomposes into two terms

ELBO = Eqφ(a|x)

[
log pθ(a,x)

qφ(a|x)

]
(5.9)

= Eqφ(a|x)

[
log pθ(x|a)− log qφ(a|x)

pθ(a)

]
(5.10)

= Eqφ(a|x) [log pθ(x|a)]−KL(qφ(a|x)||pθ(a)). (5.11)

Here the first part is a reconstruction term that motivates the encoder to learn a
code with enough information that the decoder can reconstruct the input. The second
part is the KL divergence between the posterior and the prior which regularises the
posterior towards the prior. Random variables are generally not differentiable so to
obtain stochastic gradients of the parameters, a differentiable unbiased estimator of
the ELBO can be obtained by using the reparameterisation trick (Kingma and Welling,
2014; Rezende et al., 2014).

5.2 Kalman variational auto–encoders
Lets step away from monitoring human activity and consider a simpler system for a
moment. Imagine a ball flying through the air. Humans are able to instantly recognise
the ball, its direction, and predict the path it is going to take. This process requires
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Figure 5.3: Graphical model of Kalman variational auto–encoder. Solid lines denotes
the generative network and dashed lines denotes the inference network.

the ability to recognise the ball and an understanding of the system in which the ball
operates, i.e. Newtonian dynamics (Ungerleider and Haxby, 1994). Two independent
cognitive processes. Kalman variational auto–encoders (KVAE) are able to disentangle
these processes into two latent representations, i.e. the object recognition and the
temporal dynamics. Given a video of a moving object, each high–dimensional frame,
xt, is mapped to a low–dimensional code, at, with the probabilistic encoder qφ(a|x).
Since we know that we want to model the dynamics of the ball, we can use that prior
knowledge to inform the model structure. To model the dynamics, all we need to
know about the ball in each frame, is its position. The high–dimensional observation
can therefore be compressed into a two–dimensional latent space, without loss of
information. As illustrated in Figure 5.3, the code at can now act as a pseudo–
observation in the LGSSM and with consecutive encodings of the balls position, the
LGSSM is able to model the underlying dynamical system in zt, that governs the
balls trajectory. Simulation of the future and missing data imputation can be done
cheaply in the latent space z by computing

pθ(zt+1|x1:t,u1:t+1), (5.12)

from which an output can be sampled from the generative model

p(xt+1,at+1|zt+1) = pθ(xt+1|at+1)pγ(at+1|zt+1). (5.13)

All parameters in the model can be learned simultaneously with stochastic gradient
descent by maximisation of the ELBO (Fraccaro et al., 2017).

5.2.1 Modelling non–linear dynamics
Linear state space models are not able to handle non–linearities like the ball hitting a
wall, but we are able to handle these while keeping local linearity by modelling the
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time–varying dynamics of the LGSSM, γt, as a function of the previous encodings,
a0:t−1. We introduce the dynamics parameter network

αt = αt(a0:t−1) (5.14)

which is implemented as a recurrent neural network with a softmax output so αt sum
to one. Instead of learning a single set of dynamics, we learn K different dynamics
{A(k),B(k),C(k)} which are then modulated by αt in each time–step, e.g.

At =
K∑
k=1

α
(k)
t (a0:t−1)A(k). (5.15)

The dynamics in each time–step are thus a weighted sum of the K globally learned
dynamics. If the model observes that the ball hits a wall to time t− 1, it is able to
select the proper dynamics so the ball bounces off the wall to time t.

5.3 Human dynamics and internal states
Abstracting from the example with the ball, we can imagine many dynamical systems
in which the underlying latent state lives on a manifold of much smaller dimensionality
than the observations. Take for example the massive amount of data produced by
cameras and LIDARs in self–driving cars. A single camera may produce a million–
dimensional observation (pixels) many times a second while the state of the vehicle may
be represented in less than ten dimensions. Or the multi–modal and unstructured data
in electronic health records. Consolidating high–dimensional X–ray scans with low–
dimensional, but high–frequency, ECG and unstructured text from the doctors notes,
each with irregular sampling intervals, quickly becomes a major project. Each signal
require domain expertise feature engineering and annotation for most applications.
The Kalman variational auto–encoder is trained unsupervised and therefore only
requires large amounts of time–series data. The probabilistic encoder learns to extract
low–dimensional representations from complex and high–dimensional observations
and the structured time–varying prior distribution, the LGSSM, learns a hidden state
that evolves over time, governed by dynamics learned from the data. If trained on
healthcare data, this trajectory will describe a persons health in as many aspects as
the data spans. If only ECG data from stroke patients is observed, then that is what
the model learns to encode. Once the model has observed sufficient amounts of data,
however, it can be initialised with a small amount of data from a previously unseen
person and then simulate the future. The trajectory of this simulation will tell if there
is an increased risk of stroke.
In a similar scenario, imagine that we are able to acquire continuous streams of
physical activity data from the smartphones of a large part of the population. We
could perhaps learn a ’physical state vector’ that is able to describe the internal
conditions of a person. If additional information is available, e.g. activity type, social
context, weight, or mood, then that can be used to ask counterfactual questions and
simulate potential outcomes. A reduction in activity levels may be traced back to
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its source and we may learn what motivates an individual to be more active. A key
assumption is that humans are similar enough that the model can identify a latent
space in which data from similar persons with similar behaviour, or whatever drives
the generative process, is mapped to the same location in this space.
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CHAPTER6
Conclusions &
Perspectives

Central to this dissertation has been the question of how well smartphones can be used
to measure physical activity and energy expenditure, pervasively. To this question
we demonstrate that not only do they provide a capable platform, the platform is
capable of much more.

The question is not answered in full, however, as the complexity of human physiology
is too vast for the smartphone to provide the solution on its own. At least with the
present state of tools at disposal. It is, for example, not possible to accurately predict
energy expenditure with a simple linear model, which is the most prevalent method,
due to the wide variation between individuals. The reported error of 28.8% (Section
3.2.3) is a lot when considering it is of the total energy expenditure, i.e. including
resting energy expenditure which is the largest component. It should be noted that
these results are specific to the relatively small cohort in this study and are therefore
not necessarily generalisable, which is the crux of all studies. By going through heart
rate as a mediator, a personalised model was obtained, although at the expense of
using professional equipment. It is compelling to divide the inference procedure into
two parts around the mediator, however, as data for the first part is much easier to
acquire compared to the second. That enables continued life–long learning in which
the parameters are updated whenever new data is available. The inference is so simple
that it is even possible to compute on the smartphone. This type of personalisation is
also radically different than normalising for background information such as age and
gender, as the model can be more flexible. The only requirement is that the output
is a regression on heart rate, so if a persons mobility patterns change or a new type
of activity is engaged, a model that continues to learn, can adapt to these changes,
pervasively.

In Chapter 3 we show two things. First, with data from the entire study, the
estimated intervention effects correspond well with the measured loss of fat–mass
and we can use additional modalities to decompose this effect into e.g. domains of
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everyday life. Second, the exact same data can predict total energy expenditure
when used in combination with measurements from a VO2peak test. The two–stage
structure reduces the model complexity from trying to predict energy expenditure
from acceleration measurements, which is difficult to generalise between people and
activities, to predicting heart rate, a much easier problem. Heart rate also depends
heavily on physiological fitness which makes a generic model difficult to create, but
wearables provide measurements of sufficient quality to create a personal model.
Substituting physical activity with energy expenditure in the first result, we effectively
show that smartphones can estimate energy expenditure in everyday life and that
we can decompose it in as many directions as we can measure. Domains, activity,
social context, nearby people, mood, soundscape, etc. This extrapolation is limited in
two aspects, however. We measured total energy expenditure and it is therefore not
obvious how to isolate the energy spent on some activity or in a particular time–span,
and the measured expenditure was an average over two weeks, further complicating
this issue. In cases with zero missing data it should be easier to do this mapping and
in most cases the exact energy spent in a particular exercise is not as important as
the relative expenditure.
Activity recognition was not used in this project to analyse behaviour around activity
levels as the amount of missing data for this modality in particular made inference too
uncertain. Another group published the same model for human activity recognition
as we proposed (Ordóñez and Roggen, 2016), and we therefore decided not to publish
our work, but we did manage to define a model that achieved state–of–the–art and is
general for many time–series applications. Our later addition of domain adaptation
is important as the available datasets in general are small but the variation between
activities and people, big. The presented experiment unfortunately only showed a
small gain in the unsupervised case as the problem was too simple for the model
without adaptation, even with just 10% observed labels. Due to time–constraints, a
new experiment was not possible.
Analysis of how and where energy is expended was from the onset of this study one of
the primary objectives. Especially how, including the type of activity, and the temporal
change herein due to an intervention, provide insight into behavioural mechanisms
that may elucidate what to do if a general increase in energy expenditure is desired.
But the where may in turn be the key to unlock when to provide a gentle nudge so
that the neural autopilot (system one; Kahneman and Egan (2011)) is temporally
disabled and the concious self (system two) can take an active decision to reflect. In a
metaphorical sense, a behavioural ’GPS’ to provide just–in–time adaptive interventions
(Lathia et al., 2014; Nahum-Shani et al., 2015; Pejovic et al., 2015). The cause–effect
relationships needed to create this guide may be discovered in a principled way with
Structural Equation Models (Pearl, 2009) or implicitly modelled in the parameters of
a joint model. Unless interventions are tested systematically, a large amount of data
is required to yield results with sufficient certainty.
The Kalman variational auto–encoder is an attempt to define a model that is geared
to handle the massive amounts of data that we can gather today, but that are often
difficult to annotate and process. Big data often require big models as you either
have unlabelled or unstructured data or with ’small’ models risk finding spurious
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correlations and treat them as casual relations. Instead of placing all our bets on deep
neural networks, we believe in taking advantage of their strengths, such as learning
complex data distributions, and combine them with structured models that provide
interpretability, data efficiency, and a principled way to incorporate prior knowledge.
Models do not become less powerful by removing flexibility, quite contrary do they
become more powerful when providing the correct structure. In Appendix C we show
that the model is able to learn a sensible encoding of a complex observation and
learn the parameters of the underlying dynamical system, but it is still uncertain how
difficult applications to real–world problems will be. Depending on the complexity of
the system that is being modelled, a potentially large amount of data is required.

6.1 Future perspectives
• The model for human activity recognition in Section 4.2 relies on segmenting the
observed time–series into windows and then treat them as individual samples.
Recently an alternative training procedure in which windows of varying length
are randomly sampled from the input, was proposed (Guan and Plötz, 2017).
This approach avoids the issue of selecting an appropriate fixed window length
and the theoretical bias that it may introduce, but as long as the window length
is sufficiently long to cover any activity, it is not obvious that random lengths
are advantageous. Automatic segmentation of the input signal can, however,
be readily be achieved by borrowing methods from the single–shot learning
literature in image segmentation and classification and would be applicable in
both training and prediction (Liu et al., 2016; Chambon et al., 2018).

• Domain adaptation is useful in combining datasets but the same method, adver-
sarial training, can be used to learn representations that are e.g. biometrically
agnostic, which is important in the context of privacy. The flexible structure
of the model in Section 4.2 enables any number of objective functions to be
applied, one of which may encourage the model to learn a representation that
is not able to discriminate between individuals. Another might encourage the
model to learn a representation that does not discriminate gender or race, which
is important in fairness (Barocas and Selbst, 2016; Xie et al., 2017).

• The current model formulation of KVAE includes a recurrent neural network,
the dynamics parameter network (Section 5.2.1), that in each step selects the
most probable out of a set of K parameters, given previous observations. The
RNN is a black box but we could instead imagine a Hidden Markov Model
(HMM) that selects the dynamics of the LGSSM, thereby providing complete
transparency and the ability to analyse the transition dynamics of the HMM
(Ghahramani and Hinton, 2000). Berardi et al. (2018) show that with temporally
dense longitudinal data, the dynamics of the HMM can give a clearer picture
of behavioural differences between interventions. Instead of just analysing
whether physical activity increases after an intervention is started, the transition
dynamics can provide insights into behaviour by looking at the probability of
jumping between states.
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• Most exciting is the potential that will be revealed by truly large scale studies
and the application of advanced models as the one presented in Chapter 5.
Current studies that qualify as large have not gathered multi–modal data and
base their analysis on rather simple methods (Althoff et al., 2017).

6.2 Closing remarks
We set out to investigate how well smartphones would fare as tools in a clinical
trial when used to measure energy expenditure and other modalities available on
the platform. While we experienced significant hurdles along the way, we show that
the smartphone is able to acquire a battery of useful information that is relevant
in many disciplines. The two most important findings are the smartphones ability
to track physical activity and predict energy expenditure, pervasively. Adoption of
smartphones in large scale studies is increasing which means that tools to deploy
experiments and collect data, should become increasingly available and reliable. We
identified some troubling aspects, that other research has identified too, with using
too small cohorts to make general claims from discoveries. And even if a claim is
made within boundaries supported by the data, readers and popular media will too
often disregard these bounding assumptions altogether. Based on these findings we
suggest that pervasive, large scale experiments should become the default setting to
do research, when possible. We acknowledge the difficulty of modelling large amounts
of complex observations and propose a model that is suitable for this task.
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Abstract 
Background: Clinical trials are expensive why it should be a priority to acquire as much data as possible                  
during the trial. The burden on participants and staff is often the limiting factor on the amount of data feasibly                    
acquired, which is why trials may benefit from incorporating the readily available small sensor-packed ubiquitous               
device; the smartphone. 
Objective: The aim of this study was to assess whether a smartphone can assist or replace existing practices in                   
evaluating a physical activity intervention study in overweight sedentary adults. 
Methods: We introduce the smartphone as an additional sensing device in a physical activity intervention study that                 
investigates the effects of active commuting and leisure-time exercise on a range of biological measures. 
Results: We find the smartphone is able to measure multiple modalities ubiquitously over a long duration                
and a hierarchical Bayesian analysis reveal estimates that are well in line with an independent analysis of the                  
biological measures. 
Conclusions: The smartphone has in this study shown that it, while not being without limitations, is able to augment                   
current research methodologies and add value in historically infeasible ways. We can now ask questions that                
factorizes temporally on a minute-scale resolution and conceptually over the domains of everyday life. 
Trial Registration: Clinicaltrials.gov NCT01962259 
 
Keywords: mobile health, rct, smartphone, physical activity 

Introduction 
With more than half of the western population being overweight and nearly a quarter obese [1], the obesity                  
pandemic and the associated non-communicable diseases [2] has become one of modern times biggest challenges               
and is only getting worse. Behavioural aspects of managing body weight by being physically active are largely not                  
understood [3], and sometimes even counter-intuitive [4], why more research using the latest available technology is                
needed [5].  

Before trying to manage body weight we must first monitor and understand the underlying dynamics. In this                 
study we ask what effect active commuting (bicycle) and leisure-time activities have on physical activity in everyday                 
life, when not exercising. Will the extra bouts of exercise be absorbed and decrease activity in other domains,                  
maintaining status quo, or will they inspire and motivate more activity? 
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Conducting a randomized controlled trial (RCT) is typically expensive but also necessary if we want to                
understand systems in which causality is important. It is expensive primarily due to the excessive time spent on                  
compliance and acquiring data (clinical sampling) and even though the sampling is time consuming, it is often only                  
possible to shed light on the big picture questions. Pervasive monitoring can take the analysis to more detailed levels                   
and explore novel directions [6]. Instead of viewing a three months period as one sample, activity tracking using                  
smartphones can break that period into samples of one minute or less. Quantifying energy expenditure in terms of                  
domains, places, and type of activity is simply not feasible in a traditional long-running study but the sensors of                   
smartphones allow us to query these different directions and may provide insights otherwise missed. 

ActiGraph (ActiGraph GT3x, ActiGraph Corp, Florida, USA), the de-facto standard of monitoring physical activity,              
has established its usefulness by being widely adopted and validated, but at least three aspects are in its disfavor. It                    
uses an obsolete and unknown algorithm based on how mechanical activity trackers worked once and by being static                  
is not able to adapt to different activities, e.g. walking or running, or different groups of people, e.g. children, adults,                    
and handicapped, which would enable much more accurate estimates [7]. Secondly, conducting a large scale,               
long-term study quickly becomes cumbersome as the price of acquisition and the personal burden on participants of                 
carrying and maintaining an extra device can be limiting factors in studies. Lastly, and this is for many monitoring                   
methods: the psychological effects of being in a study, and in particular being reminded continually from a device on                   
the hip, can have significant impact on the behaviour that is being studied [5]. Simply by carrying a pedometer, it was                     
found in a systematic review [8], people increase their physical activity by 26.9%. 

Given the dominance of ActiGraph and the many previously established health outcomes based on the device                
[9,10], [11] investigated to what extent Android smartphone based activity sensing correlated with ActiGraph in               
both laboratory and free-living conditions. They found that physical activity estimates from the smartphones were               
highly correlated with estimates from ActiGraph and with one another, and that it mattered little in what position                  
the smartphone was carried. Using a smartphone has several advantages, beyond avoiding to carry an additional                
device. The vast majority already owns a smartphone which makes it a cheap and easy way to deploy scalable, real                    
time, and truly pervasive studies, if it reliably can estimate energy expenditure and activity. It further has the ability                   
to provide feedback to participants [4,12,13], which may be an important component in fighting obesity after                
tracking and understanding it, hereby closing the loop and hopefully guiding us towards more healthy choices. 

We apply the smartphone as a monitoring device in a physical activity intervention study spanning six months                 
with the primary aim of investigating the effects of active commuting and leisure-time activities on physically                
inactive obese participants. Will we be able to measure the effects of interventions based on smartphone sensing                 
data and will they be in accordance with the clinical results?  

Methods 

Participants 
Caucasian, overweight, and physically inactive healthy adults were recruited in the Copenhagen area from November               
2013 to October 2015. Inclusion criteria included age of 20 to 45, body mass index (BMI) from 25 to 35 kg/m2, and a                       
self-reported physically inactive lifestyle. The full list of of criteria are available in [14].  

Study design 
The study design is described in full elsewhere [14] but most importantly it was designed as a randomized                  
controlled trial to test the effectiveness of three interventions on physical activity and one control group. They were                  
prescribed a daily exercise energy expenditure of 320 kcal for women and 420 kcal for men. The four groups are:  
BIKE: bicycle commuting to work 
MOD: leisure time moderate activity (50% of VO2max) 
VIG: leisure time vigorous activity (70% of VO2max) 
CON: The control group was asked to maintain the same lifestyle as prior to the study.  

Clinical sampling 
Participants were asked to attend three different test days at baseline, 3 months, and 6 months where a range of                    
physiological tests were conducted and biological samples acquired. Immediately after the test-days a free-living              
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assessment period (7-14 days) followed in which they were monitored on physical activity (ActiGraph GT3x, 7 days),                 
sleep, diet, and daily energy expenditure through doubly labelled water [15]. They were furthermore required to                
wear a Polar heart rate monitor (RC3 GPS, Polar Electro Oy, Kempele, Finland) every time they exercised and weigh                   
themselves every day of the study using a wireless internet-connected bodyweight (WiThings Body Composition              
WiFi scale, WiThings Europe,Issy-les-Moulineaux, France).  

Pervasive sampling 
A mobile sensing application developed for a previous smartphone sensing study [16] was adopted and configured                
for use in the present study. The application was configured to acquire acceleration (50Hz sampling frequency),                
GPS-based location (6-minute sampling interval), recognized activity through the Google Activity Recognition API,             
step count, and screen on/off status.  

Implementation details 
To accommodate the high sampling rate of the accelerometer without reducing the battery-life of the smartphone,                
samples are ’batched’, i.e., queued in hardware before read and saved to the storage. At the time of the study only                     
two smartphones supported batching, LG Nexus 5 and Samsung S5. The former was chosen as it was successfully                  
used previously [16] but during the enrollment period it was unfortunately decommissioned and Samsung S5 was                
used hereafter. A total of 19 LG and 11 Samsung smartphones are used in the cohort that completed the experiment.  

Missing data 

In an experiment with limited control some level of missing data must be expected. In the present study we also                    
experienced significant missing data. The observed patterns of missingness are not always "random" or explainable.               
For example, during night-time the smartphones may reduce the sampling of the accelerometer, such loss of data                 
may increase variance but not introduce a bias, as the effects can be modeled. In addition data loss occurred during                    
the day with no apparent pattern. In some cases all the modalities are lost, indicating a general failure to record,                    
send, or receive the data, and at other times it is a single modality indicating a failure on the smartphone. If such                      
losses occur without dependence of the outcome variables it can again lead to increased variance but should not                  
introduce a bias. 

Pre-processing 

Activity level calculation 

The primary outcome is the level of physical activity but since that is not a well-defined measure, especially using                   
smartphone sensors, activity counts are used to make the conclusions comparable with ActiGraph results. Activity               
counts are a measure of physical activity within a time span, or more precisely, a motion summary count calculated                   
from the area under the accelerometer curve [7]. In practice this means that the signal is bandpass filtered with a                    
range that preserves as much human motion related acceleration as possible while discarding noise, which is around                 
0.25 - 5Hz. The absolute values are then summed in bins of 1 second. This leaves activity counts for each dimension                     
but can without loss of information be reduced to the vector magnitude count (VMC) which is the euclidean distance                   
spanned by the count vector.  

Domain inference 

Spatial location data is complex and noisy so to reduce complexity we use a simple behavioral cluster representation                  
[17]. We identify 4 different domains for each participant, namely: Home, Leisure, Travelling, and Unknown. Home is                 
manually identified by having the most samples associated and typically active during the evening/night. Travelling               
is identified as being en route between two locations with a sufficiently high average speed. Leisure is identified as                   
samples that are not Home, Work or Travelling. We also wanted to identify when participants were at work but it                    
turned out to be impossible for more than half of the participants due to either too much missing data,                   
unemployment, or a non-stationary work such as postman. For this reason the locations identified as work has been                  
merged into the Unknown category. 

3 



 

Aggregation 

The accelerometer samples at 50Hz and therefore gathers a very large amount of data in six months. To enable                   
statistical analysis all modalities are summarized in 5 minute bins. Continuous data such as the activity count is                  
summed and with categorical data the most frequent category within a bin is used.  

Statistical Analysis 
A long running experiment conducted in the real world in which the participants are left to their own devices will                    
naturally include many confounding factors which are mostly unobservable. Due to the randomized treatment              
assignment we can theoretically ignore all covariates but may be able to detect a weaker signal by including them                   
[18]. Including all covariates and interactions will provide the most flexible model [19]but also a model that is often                   
over-parameterized and non-identifiable why covariates should be chosen carefully [20]. Especially when the             
number of participants is low or covariates are correlated with treatment assignment. In model-based analysis of                
randomized controlled trials the response variable can be approximated with a hierarchical Bayesian model 

 

where is the response, is the intercept, is the subject-specific pre-treatment mean, is the treatment                   

assignment, are random covariates, are regression coefficients, are the linear regressors, and               

. The notation specifies which group, of a particular covariate, that sample i is from. denotes                  

participants and denotes treatment. and the covariates are sum-to-zero contrasted which ensures the               
model is identifiable and the posterior distribution of is thus a measure of the treatment effect. This is a                    
hierarchical Bayesian model when proper prior distributions are placed on the parameters [21] and otherwise               
known as a linear mixed model. The prior both regularizes parameter estimates and shares statistical strength                
between sub-groups in the data through the concept of partial pooling [22].  

Varying effects 

It may be overreaching to assume the treatment effects are constant over the duration of the experiment, and                  
certainly after the experiment is finished, so the treatment effects have been allowed to vary with the natural periods                   
of the study. The intervention is divided into 4 periods; pre-treatment, 0 to 3 months, 3 to 6 months, and after 6                      

months. The pre-treatment period is already modelled in the pre-treatment mean and thus not modelled in the                  
treatment effect. It is further assumed that the effect varies with domain (Home, Leisure, Travelling, Unknown). We                 
thus have a treatment effect partitioned into 4 groups, 3 periods, and 4 domains.  

Controlling covariates 

To control for some of the variability caused by observed baseline variables they are included in the model in the                    
term , also called varying intercepts. Seasonal, weekly, and daily variation are modelled by including the month,                 
weekday, and hour of the day as covariates, i.e. for month a 12-dimensional varying intercept. Each of these have a                    
normally distributed zero-centered prior with standard deviation of 1. We further control for gender (male, female),                
relationship status (single, cohabiting), education (no college, college, grad school), and employment status             
(employed, student). In the analysis of the smartphone data the type of smartphone is also added as varying                  
intercept. These have a normally distributed zero-centered prior with standard deviation of 0.01. 

Linear regressors 

In the linear term we include age, body mass index (BMI), maximal oxygen uptake (VO2max), temperature and                  
rainfall in the vicinity and within the hour of a sample, and the number of sick/off-days they have from the study in a                       
given period. All the coefficients have a normally distributed zero-centered prior with standard deviation of 0.005. 

Missing data 
Because the activity level data is originally on the scale of a second and then summed over a fixed bin size N , if any                        
samples in a bin is missing we get that 
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One way of dealing with the missing samples is treating them as latent variables, or model parameters, but if the bin                     

size is small enough or data is missing at random, we can assume equal observations within the bin, i.e.                    

for any , and thus assume 

   

which scales the regression so we calculate an approximately correct likelihood. To relax this assumption the scaling                 

is itself being scaled with a parameter  for each participant 

   

which enables the model to learn if a particular participant has a behaviour that warrants an even lower scaling. 

Completely missing data 

Often we have no data within the summarized bin and so have to treat the sample as missing to ensure a proper                      

posterior distribution. In these cases we treat the missing sample as a latent variable so that If                  
the amount of observed samples in a bin is less than 10% it is treated as unobserved as well. 

Non-compliance 

Not carrying the smartphone, especially while exercising, is a situation of non-compliance and unfortunately often               
observed in the data. We are able to estimate the compliance at few intervals due to multiple data sources but often                     
we are not. As we observe many instances of non-compliance during the prescribed exercises, which we know due to                   
Polar HR data, all periods containing exercises have been removed from the data and the samples are treated as                   
unobserved, following standard practice [22]. 

Inference 
The model is implemented in the probabilistic programming framework Edward [23] because it enables fast               
inference even when scaling to millions of samples. Relying on variational inference may be less accurate than                 
sampling methods such as Markov Chain Monte Carlo (MCMC). To test this MCMC inference using Stan [24] was                  
carried out for a subset of the data, which showed very similar results to Edward for the same data. To select model                      
architecture, i.e. which covariates to include and how to manage missing data, the model with the highest                 
log-likelihood was selected.  

Results 
Of the 47 recruits receiving a smartphone, 30 participants completed the study. The distribution of participants                
among the interventions are: 6 CON, 7 BIKE, 12 MOD, and 5 VIG. The mean age of participants was 36 years (range:                      
22–45), with 19 females (63%). Most were cohabiting (n=22, 73%), in employment (n=27, 90%), had no college                 
degree (n=17, 57%), and only 2 had gone to grad school (7%). After summarization we have a total of 2,311,151                    
samples, or 8024 days. For our outcome variable we have an observation rate of 30.5% and the other modalities are                    
adaptively sampled, i.e. without a fixed sampling rate. The total number of days for each participant in the study is                    
capped at 300 from the first day, including baseline, and the average number of days in the study is 275 with a                      
standard deviation of 27.  
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Figure 1: Treatment effect 

Posterior estimate of each treatment relative to CON in period 1 (baseline to 3 months), 2 (3–6 months), and 3 (after                     
6 months) of the study. The whiskers indicate 95% interval. For smartphone data we see a positive effect for all of                     
the interventions in the first period and then a decline in the second. For the ActiGraph data we see a more varied                      
result with positive effects in the second period as well.  

Effects of interventions 
Treatment effects measured by non-exercise activity of each intervention contrasted to the control group for each of                 
the two periods in the study measured by the two devices are shown in Figure 1. As a participant-specific                   
pre-treatment intercept is also modelled, the effects are in contrast to the estimated baselines as well. In the effects                   
measured by the smartphone we see a pattern in which it appears that the participants initially are motivated to be                    
more active but after 3 months the activity declines, not unlike similar studies [4]. However, even though the effects                   
for MOD and VIG in the second period are not significantly different from CON, they are neither significantly different                   
from the effects in period one, so while we do observe a relative decrease in activity with respect to CON, we can not                       
be sure of an absolute decrease of each group. BIKE is the group with the most significant drop in activity with both                      
period two and three being less active than CON and we see the same for the third period of MOD. The third period                       
for VIG, however, is the most active of them all, a result currently with no obvious explanation as it is an uncontrolled                      
period without data from any other modality. 

In the effects measured by ActiGraph the effects for the first period at 3 months is positive but becomes negative                    
in the second period for BIKE, following the trend observed from the smartphone. MOD and VIG, however, becomes                  
more positive and stays the same, respectively, which is almost the opposite of what we see in the smartphone data. 

A comparison to loss of fat 

In [25] the fat mass of the same participants as in the present study was measured with dual-energy X-ray                   
absorptiometry. Here a significant loss of fat mass was found in all three groups compared to CON in the first period                     
(baseline to 3 months), and a sustained fat mass in the second period (from 3 to 6 months), for BIKE and MOD but                       
further decreased for VIG. If we compare the loss of fat mass to the physical activity effect (Figure 1) measured by                     
the smartphone, those results are highly correlated and make sense if we assume that increase in non-exercise                 
activity leads to loss of fat mass. If we were to include activity measured during prescribed training exercises, the                   
measured effect would be even greater and probably better correlated to loss of fat mass. This suggests that                  
smartphones are able to predict the loss of fat mass. 
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Figure 2: Effect of domains between groups 

Treatment effect summed over the periods. The posterior estimates are not contrasted to CON (as in Figure 1) and                   
therefore not directly interpretable as a treatment effect why no y-axis is shown but they can be used for comparison                    
between domains and interventions. For the smartphone we see e.g. MOD and VIG are more active during Leisure,                  
and that Travelling and Unknown generally elicit higher activity.  

   

Figure 3: Effect of domains over time 

Treatment effect summed over the interventions. In the smartphone data we see a general increase of activity in the                   
second period followed by a decrease after the end of the study in the third period. The ActiGraph data shows a                     
change in which domain the activity is high between the periods.  

Effects of domain and time 
In Figure 2 we see significant differences in the amount of physical activity spent in the different domains even                   
though the samples are distributed relatively evenly with about a third in the Unknown domain and an equal share                   
in the three others. The Unknown domain is unfortunately also the most active across all interventions. Secondary is                  
Travelling which suggests the participants regularly walk between destinations, e.g. to the grocery store, as               
motorized transportation typically elicit a low accelerometer response. The groups CON and BIKE are more active at                 
Home than away whereas MOD and VIG are inactive at Home and VIG is very active in Leisure. The exercises are                     
excluded from the data and can therefore not explain why VIG is so active during Leisure but some of the explanation                     
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might be that it has less Unknown samples than e.g. MOD. In the ActiGraph data the effect of domains are less                     
pronounced, perhaps because VIG in Leisure is so dominating, but apart from that the trend follows the smartphone                  
data rather well. We see a bit more activity at Home in MOD and VIG which might be due to participants not carrying                       
their phones. 

If Figure 3 the effect of domains is shown for each period where the third period is after the 6 months when the                       
study is completed but participants have continued collecting data on their smartphones for a time up to 300 days                   
post commencement. It appears the total level of physical activity increases from the first to the second period which                   
naively contradicts the decrease of treatment effect (Figure 1). The explanation is simply that while the treatment                 
effect is in contrast to CON, the domain effect is a sum over all the groups and can therefore not be used to evaluate                        
the effect of interventions. It is, however, interesting, and perhaps expected, that the level of activity decreases                 
significantly in all domains after the study is completed. The results from the ActiGraph (Figure 3) show a quite                   
different pattern in which it seems the Travelling domain has absorbed activity from both Leisure and Unknown                 
from period 1 to 2. 

Why do the results differ between devices? 

Data from the ActiGraph is acquired at three times; at baseline, 3 months, and 6 months, and for a maximum of 7                      
days each time. This leads to less data and therefore less stable inference even though the posterior estimates are                   
significant. In a free-living study there will be unobservable confounding factors and one might be the psychological                 
effect of carrying an accelerometer on the hip. The ubiquitous nature of the smartphone leads in this case to more                    
reliable estimates. 

  

Figure 4: Linear regressors 

Coefficients of the linear regressors with whiskers indicating 95% interval. A positive value indicates a positive                 
correlation with, and therefore increase in, physical activity. Age is slightly negatively correlated, BMI, VO2max,               
temperature, rain and sick days have no effect and the number of days off from the study is also negatively                    
correlated.  
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Figure 5: Covariates 

The varying intercepts with whiskers indicating 95% interval. All groups (e.g. gender or education) are                
sum-to-zero contrasted. Being a cohabiting male without a graduate school degree you have a higher probability of                 
being physically active. It is uncertain if being employed or a student is associated with higher levels of activity.  

Characteristics 
External factors and personal characteristics may influence a measured response to a degree in which the effect of                  
interest is either lost in noise or incorrectly estimated due to e.g. confounders. For this reason all relevant                  
information of the participants and their surroundings are included in the model either as a linear predictor or a                   
varying intercept.  

Linear predictors 

In Figure 4 estimates of the regression coefficients are illustrated in a horizontal boxplot with whiskers indicating                 
95% intervals. Most of the coefficients are either very small or insignificant but age is interestingly a predictor of less                    
physical activity, which is a common finding [26,27]. The number of days off the study is the strongest predictor of                    
less activity indicating that for whatever reason participation was hindered also limited their non-exercise activity.               
In the ActiGraph data VO2max is a small but positive contributor and we see a moderately strong contribution from                   
the number of sick days a participant has had during a given period in the study. It is unsure if sick days leads to                        
more exercise, which would be unexpected, or the activity during the days of wearing the ActiGraph happen to                  
correlate with the number of sick days.  

Varying intercepts 

We observe large significant effects of most covariates when modelling the smartphone data with the one exception                 
that it is uncertain whether having a job or being a student is important (Figure 5). Notably it seems men are more                      
active than women, which has been previously observed [26], highly educated people are less active than lower                 
educated, and participants with a partner are more active, perhaps due to motivational support. Covariate estimates                
from the ActiGraph data are quite similar with the exception of having a reversed relationship between employed                 
and student participants but as the ratio between these groups are very skewed, this result should not be                  
interpreted strongly. 
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Time-dependent intercepts show the expected behaviour of high activity during the day (Figure 6), more activity                
in the summer months (Figure 8), and less activity in the weekends compared to the weekdays (Figure 7).  

Discussion 

Principal findings 
This is the first long-term randomized controlled trial to investigate the effects of active commuting and leisure-time                 
exercise on physical activity in sedentary obese and overweight people using smartphones and ActiGraph. We find                
the smartphone is a resourceful platform for research but also that is has both strengths and limitations that needs                   
to be better quantified.  

Strengths 
As a strength the smartphone may lower the bar to including multidimensional, longitudinal data streams in any                 
study regardless of participant technological proficiency and furthermore have the potential to not only provide               
easier enrollment but also recruitment through platforms such as the ResearchKit (Apple, Cupertino, CA, USA),               
increasing reach and decreasing cost of marketing [28]. Selection bias may be lessened by using smartphones as the                  
primary sensor since the vast majority owns a smartphone already and time-demanding activities such as spending                
multiple days on physiological examinations may no longer be needed, reducing the burden on participants.               
Reducing examinations can in turn allow researchers to spend more time on activities that improve retention.                
Clinicians will initially, and rightly, argue that high-variance data as we acquire from most smartphone sensors, are                 
no substitution for low-variance momentary clinical measurements and depending on the endpoint that may be               
correct, but the sheer volume and variety of data made available through smartphones not only enables                
low-variance estimates, they allow researchers to explore new directions.  

Limitations 
In terms of limitations, a too short time-span was available to tailor the existing mobile sensing application before                  
enrolling the first participant which also meant that insufficient time was available to conduct a pilot study to                  
sufficiently test the application. In hindsight it would have been prudent to improve sampling consistency and server                 
infrastructure to reduce the amount of missing data. Newer developments in this area with ResearchKit and                
ResearchStack [29] will undoubtedly improve much upon this issue and general adaptation. Having access to raw                
data is always preferred but sampling multidimensional streams at a high frequency introduces a multitude of                
potential issues with battery-life, storage, data-transfer, etc., that can be mitigated by edge-computing; carefully              
choosing some pre-processing to take place on the smartphone. 

Previous research find strong correlations between activity estimates from smartphones and ActiGraph [11] why              
the observed discrepancies in the present study are likely due to the difference in the time-span covered by the                   
observations and non-observable confounders. The relatively small sample size and psychological effects of carrying              
a physical activity tracker could also cause enough bias to throw off the analysis [5]. An explanation that is supported                    
by the agreement of linear regressor and covariate estimates.  

Conclusions 
Pervasive sensing technologies show great potential in clinical research as either a substitution, enhancement, or               
addition to existing methodology. We find that the smartphone provides reliable estimates in correspondence with               
independently measured loss of fat mass. In the results we see a decrease in physical activity with time but we also                     
see a shift in the distribution of activity over the domains with activity moving from Home to Leisure and that VIG in                      
general has a much greater tendency to be active in Leisure than at Home. By combining multi-modal data it is                    
possible to decompose measured effects into time, domain, and many other directions which may contain previously                
hidden insights to research questions.  
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Time-dependent varying intercepts 
 

Figure 6: Hourly variation 
The effect of hour of the day on the activity level. The effects between devices are quite similar and follow a trend                      
that is agreeable with previous results [27]. 

 

 

Figure 7: Daily variation 
The effect of day of the week on the activity level.  Somewhat similar variation between devices where mostdays 
are not significantly different from each other and the weekend seems to be for resting. 

 

 

Figure 8: Monthly variation 
The effect of month of the year on the activity level.  We see little correspondence between the devices and note 
that the variations observed in the smartphone data are closer to what would be expected with better weather 
yielding higher activity. 
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Estimating energy expenditure from smartphones. A 
free-living long-term comparison with doubly labelled water 

 

Abstract 
Doubly labelled water (DLW) is the gold standard method to measure free-living energy expenditure (EE), but it is                  
expensive and laborious to use. With the advent of wearable sensor technologies capable of measuring mechanical and                 
physiological signals, it is possible to estimate EE in a pervasive way that in addition provides higher temporal                  
resolution. The objective of this study was to look beyond the dedicated devices; to ascertain how well a smartphone with                    
integrated sensors is capable of estimating EE. In a 6 month randomised controlled trial of sedentary obese individuals,                  
EE was measured with DLW, and physical activity was determined using the accelerometer sensor in a smartphone. A                  
simple linear regression model to predict EE from smartphone data was found inaccurate due to physiological                
inter-person variation. Taking advantage of multiple sources of data, a two-stage regression model with a common                
mediator that is calibrated to each individual, can predict EE with strong correlation (r=0.84, P < 0.001). Accurate EE                   
estimates from smartphones have the potential to provide novel insights into behavioural aspects of physical activity, but                 
how to generalize regression models of EE to populations remains an open question. 

Introduction 
Prediction of physical activity energy expenditure (PAEE) from pervasive technology such as embedded inertial sensors               
is an active research area with great commercial, societal, and scientific value (Jeran, Steinbrecher, and Pischon 2016).                 
With nearly a quarter of the western population being obese, the associated non-communicable diseases such as diabetes                 
and stroke threaten to overload the healthcare systems (Badimon et al. 2017). Exercise and a hypocaloric diet are the                   
preferred remedies for obesity (Maher et al. 2013), with exercise being more effective in reducing visceral adiposity                 
(Verheggen et al. 2016).  
 
Physical activity level is a product of genetic, cultural, cognitive, and many other factors. Objective measures of physical                  
activity can e.g. be used as a predictor of changes in mental state (Faurholt-Jepsen et al. 2014; Chapman et al. 2017) or to                       
influence people's behaviour into more healthy lifestyle patterns when used in combination with behaviour-change              
techniques (Chin et al. 2016; Direito et al. 2017). Wearable activity trackers can motivate people to increase physical                  
activity, but there is no evidence that the increase is maintained over time (Sullivan and Lachman 2016; Finkelstein et al.                    
2016). Individuals who purchase activity trackers are already motivated to develop healthy behaviours. However,              
increasing the physical activity level in the “unmotivated” group has great societal implications and smartphones might                
prove to be an important entry point, as most people already possess one.  
 
For decades inertial sensors, such as accelerometers, have been used to approximate PAEE (Montoye et al. 1983; Bouten                  
et al. 1994). They have been validated when continuously worn on a known position on the body, e.g. the hip, leg, wrist                      
etc., but with varying degrees of success (Plasqui and Westerterp 2007; Sardinha and Júdice 2017; Jeran, Steinbrecher,                 
and Pischon 2016; de Graauw et al. 2010; Ferguson et al. 2015). Due to different levels of cardiorespiratory fitness and                    
body weight of individuals, it is not possible to accurately model EE directly from physical activity alone (Bonomi and                   
Westerterp 2012), as it requires calibration to the individual or at least the activity performed (Crouter, Bassett, and                  
Freedson 2009; Bassett, Rowlands, and Trost 2012; Altini et al. 2015; Bonomi et al. 2009).  
 
A significant increase in prediction accuracy is observed when including characteristics such as sex, body weight, and                 
age in the model (Sardinha and Júdice 2017; Ingraham, Ferris, and Remy 2017), but these measures are crude and as the                     
heterogeneity of the sample population increases, model performance decreases. Combinations of accelerometers and             
other modalities such as heart rate (HR) monitors (Brage et al. 2015; Murakami et al. 2016; Chowdhury et al. 2017;                    
Beltrame et al. 2017; Ingraham, Ferris, and Remy 2017) will generally increase prediction accuracy, but are also                 
considerably more obtrusive than a simple accelerometer and are therefore as yet infeasible in large-scale studies. 
 
The objective of this study was to assess how well the smartphone can predict EE over a longer period (14 days). No                      
restrictions were imposed upon the participants, and therefore unobserved non-wear time and variability from how the                
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smartphone is carried and used must be expected. Smartphones have previously been compared to research-grade               
accelerometers in free-living conditions and found comparable (Hekler et al. 2015; Maddison et al. 2017; Bort-Roig et al.                  
2014), but only during a short period (≤ 7 days) and only evaluated on PAEE in laboratory settings (Maddison et al.                     
2017). To our knowledge, this is the first study to evaluate the level of accuracy of the smartphone as a pervasive monitor                      
of EE in everyday life using DLW as ground truth.  

Methods 

Participants 
In the period from November 2013 to October 2015, Caucasians with overweight or class 1 obesity were recruited from                   
the greater Copenhagen area. They were required to be physically inactive, 20-45 years of age, have a body mass index                    
from 25 - 35 kg/m2, non-smoking, and with normal plasma glucose (< 6.1 mmol/l) and blood pressure (<140/90 mm Hg).                    
They were recruited using advertisements in local media and on the Internet, including social media. Further information                 
is available elsewhere (Rosenkilde et al. 2017). 

 

Characteristics of included participants 

Gender Count Weight (kg) Fat % BMI Age 

Female 7  84.2 (7.5) 43.7 (2.9) 29.1 (2.3) 37.3 (7.1) 

Male 4 94.6 (7.7) 31.8 (2.3) 30.4 (1.6) 37.0 (7.2) 

Table 1. Baseline characteristics. BMI: body mass index, kg・m-2. Data is shown as mean (standard deviation).  

 

Study design 
The study was a 6-month randomised controlled trial with three identical test periods at baseline, 3 months, and 6                   
months. Participants were randomised to one of three exercise interventions (BIKE, MOD, VIG) or a control group.                 
Prescribed daily exercise energy expenditure was set to 320 kcal for women and 420 kcal for men, five days a week. The                      
BIKE group was tasked with commuting to and from school/work by bicycle, MOD was asked to exercise at moderate                   
intensity (50% of peak oxygen uptake (VO2peak)-reserve) and VIG at vigorous intensity (70% of VO2peak-reserve).  

Data Collection 
Doubly labelled water 
Participants were administered a dose of DLW at each test period, with which their total EE was estimated for the                    
following 14 days. Urine samples were taken every day over the period and in each sample the enrichment of 18O and 2H                      
were measured using isotope ratio mass spectrometry to establish the turnover rates (Westerterp 2017). The difference                
between these decay rates is a function of carbon dioxide production, which in turn is a function of EE. Measurement                    
error is correlated with the biological half-life of the isotopes, which varies with age and physical activity level. Based on                    
the half-life, an observation interval of 2 weeks is recommended for adults. 

Accelerometer 
Participants were provided with a smartphone (Nexus 5X, LG electronics, Seoul, South Korea or Galaxy S5, Samsung                 
Electronics Ltd., Suwon, South Korea) for the duration of the study, which they used as their primary phone. A                   
custom-made mobile sensing application enabled ubiquitous data acquisition. The application was from a previous study               
(Stopczynski et al. 2014; Aharony et al. 2011) extended with measure of 3-axis acceleration sampled with a frequency of                   
50 Hz. 
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Heart rate 
During the exercise sessions that were prescribed throughout the interventions, participants wore a Polar heart rate                
monitor (RC3 GPS, Polar Electro Oy, Kempele, Finland) that sampled HR with a frequency of 1 Hz. HR monitors were                    
individually adjusted after 6 weeks and 3 months for changes in maximal HR, VO2peak and body weight.  

Model 
Total EE consists of three components; the basal metabolic rate, physical activity, and digestion (Westerterp 2009). If we                  
assume an approximately constant EE due to digestion, a linear relationship between physical activity and EE is feasible.                  
However, physical activity varies a lot from a sedentary person to an athlete, and therefore it is physiologically motivated                   
to model this relationship on an individual basis. Even with people of comparable body composition, activity types and                  
patterns have significant impact on EE. Due to a long observational window in which EE is measured using DLW, and                    
because each DLW sample is expensive, we have a maximum of three observations per participant. With a low number                   
of samples, the model is restricted in its number of parameters to avoid overfitting and it is thus not immediately possible                     
to model EE with participant-level parameters. To overcome this limitation, we expand the model to use HR as a                   
mediator between physical activity and EE, and participant-level parameters are estimated from independent data.  

Individual calibration 
We can approximate EE from HR with the linear model  

 
(1) 

where N(⋅,⋅) is the normal distribution, y represents EE, z represents HR, i indicates participant, and the sum is due to                     
multiple HR samples for each EE. To estimate α, each individual was subjected to a VO2peak test in which HR was                     
measured using a HR monitor (RC3 GPS, Polar Electro Oy, Kempele, Finland) and EE through indirect calorimetry. We                  
can also make the approximation of estimating HR from physical activity  

, (2) 

in which the physical activity is represented by x and is derived from the accelerometer and β denotes the parameters.                    
Priors on the parameters are 

 

 
where the relatively narrow variance ensures regularization across participants. We rarely have HR and smartphone               
accelerometer data simultaneously, as participants rarely carried their smartphones during exercise, but due to high               
sampling frequency, even short durations are sufficient to estimate this relationship. If physical activity data is partly                 
unavailable it is modelled through  

  
where 𝛉 are observed covariates and predictors (Kamronn, Hansen, and Larsen 2018). Figure 1 depicts the resulting                 
probabilistic graphical model for each subject, with N EE observations each with M physical activity samples. 
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Figure 1. Illustration of generative model during inference and prediction. a) Prediction model of HR using Polar and 
smartphone data acquired during free-living exercises. b) Prediction model of EE using data acquired during VO2peak 
test. c) Combination of model parameters to create the full generative model from physical activity to EE. Data used 
for prediction in this model is from free-living during DLW periods.  

 

Baseline calibration 
To compare with existing methodology, a linear regression model is fitted to the physical activity and EE data directly,                   
without using independent HR data as a mediator. The model definition is  

, 
where X contains both physical activity and baseline characteristics; gender, age, weight, and fat mass. The prior on 𝛽2 is                    
a multivariate normal distribution to model possible correlation between the covariates. The model is evaluated with                
mean absolute error (MAE) and leave-one-out cross-validation (LOO-CV), where participants in turn are left out when                
estimating parameters and then used for prediction. To inspect the added predictive value of each characteristic, five                 
models are estimated, where each model adds another characteristic, i.e. the first has none and the last includes all.  

Model fit 
Parameters are estimated using Stan (Carpenter et al. 2017) with the No-U-Turn sampler and all Gelman-Rubin                R̂
statistics are ≤ 1.01, indicating convergence of sampling chains.  

Data preprocessing 
The full dataset collected during this study spans 6 months, and two subsets of the full dataset are considered here. One                     
used for model inference and one used for EE prediction.  

Inference 
Data are extracted from periods defined by exercise sessions from the HR monitor, which was only worn during                  
prescribed exercise sessions. A session is omitted if it has insufficient physical activity data (< 20 minutes), if the total                    
physical activity level is too low, or if the correlation between HR and physical activity is low (r < 0.7). The latter two                       
criteria exclude non-compliant sessions during which the smartphone was not carried during the whole session.               
Individual samples are excluded if the HR is too low (< 80 beats per minute), as the initial HR in the beginning of a                        
training session is not representative of the true labour. By basing the model entirely on high-intensity data, we risk                   
modelling local noise, and therefore resting HR measurements are included to represent zero physical activity. Both                
activity and HR data are summed to bins of 5 minutes and normalised to lie between 0 and 1. 
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Prediction 
When predicting EE, the data subset is not defined by exercise sessions but by the 14-day period in which total EE is                      
measured using DLW. The physical activity data is summed to bins of 1 hour, and if a bin is partly missing physical                      
activity data, it is imputed from a hierarchical Bayesian model that was fitted from the full data set (Kamronn, Hansen,                    
and Larsen 2018). Days with too much missing data (> 80%) are not included, and to ensure consistency across                   
predictions, only the 5 days with least missing data are included for each period. If a DLW period does not contain 5 days                       
with enough data, it is excluded.  

Data Availability 
The datasets generated during and/or analysed during the current study are not publicly available due to privacy                 
regulation but are available from the corresponding author on reasonable request. 

Results 
A total of 47 participants were recruited for the smartphone study of whom 30 completed the 6-month intervention. Eight                   
participants were excluded due to extensive missing smartphone data while exercising, and 11 participants were excluded                
due to missing smartphone data during the DLW periods. A two-sided t-test report no significant difference of baseline                  
characteristics between the groups of included (Table 1) and excluded participants.  

Baseline calibration 
If the model is not calibrated to each individual, the correlation is very poor (r=0.05, P=0.83). The results of the baseline                     
calibrated models are reported in Table 2. It is observed that including body weight decreases performance, while the best                   
model includes all baseline characteristics. 
 

Characteristic Activity +Gender +Age +Weight +Fat mass 

LOO-CV MAE (kcal・day-1) 1051 878 778 903 729 

Table 2. Leave-one-out cross-validation (LOO-CV) mean absolute errors (MAE) for the 
baseline calibrated model. Each column adds another baseline characteristic as predictor to 
the model.  

Individual calibration 
The two-stage model structure makes it possible to investigate the intermediate step of estimating HR from smartphone                 
activity as specified in equation (2) and illustrated in Figure 1a. In Figure 2a, the predicted HR is visualised against the                     
measured HR, and while the prediction is positive and strongly correlated (r=0.86, P < 0.001), we observe difficulties in                   
modelling low HR, so only measurements above 80 beats per minute are included. The prediction is unbiased, as                  
depicted in the Bland-Altman plot in Figure 2b, and the residuals are close to normally distributed. 
 
Figure 3 depicts the comparison of the predicted EE against the measured EE for the individually calibrated model                  
(depicted in Figure 1c). The correlation is strongly positive (r=0.84, P < 0.001) with a mean absolute error of 242 kcal・                    
day-1. The prediction is slightly negatively biased (-52 kcal・day-1 , ≈ 2.1% of average response) with a standard                  
deviation of 297 kcal・day-1 of the residuals. The estimated model parameters are provided in Table 3 to provide a                   
transparent overview of the contribution to the predicted EE from the different parts of the model. By comparing model                   
parameters it easy to see the large differences in e.g. bias, which would not be possible to estimate with a simpler model.  
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(a) Hexagonal binned heatmap of predicted versus 
measured heart rate. The colour-scale of the joint plot 
(centre) illustrates how many samples fall within a 
particular bin (the cells) with darker colours indicating 
higher density. The marginal plots (top and right) show 
histograms overlaid with kernel density estimations of 
the marginal sample distributions of the predicted and 
measured heart rates, respectively. 

(b) Bland-Altman plot showing a negligible bias and that 
most samples fall within 2 standard deviations.  

Figure 2. Heart rate prediction 

 

 

Figure 3. Predicted and measured energy expenditure. The colours represent intervention group and the size of the 
mark represents error of the estimate. The shaded area depicts the 95% confidence interval of the regression calculated 
by bootstrapping. 
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Participant ID 𝛽1 𝛽2 𝛼1 𝛼2 

1 0.131552 0.420998 0.477086 0.491608 

2 0.247892 0.603714 0.100037 0.47053 

3 0.144971 0.350678 0.862894 0.764199 

4 0.273536 0.540913 0.627859 0.693642 

5 0.258299 0.433329 -0.073656 0.378969 

6 0.411951 0.253482 0.087761 0.555243 

7 0.507432 0.330656 0.022673 0.522429 

8 0.082066 0.386173 0.120447 0.414975 

9 0.459349 0.218257 0.732309 0.681283 

10 0.133753 0.3504 0.573855 0.601198 

11 0.280383 0.622213 -0.06886 0.2325 

Table 3. Estimated model parameters (𝛽1, 𝛽2, 𝛼1, 𝛼2) for 11 participants (ID 1-11) 

Discussion 
The principal finding of this study is that smartphones can be used to estimate EE in free-living individuals with limited                    
constraints on how the smartphone is used or carried. The proposed model is robust to the various sources of noise                    
introduced by the smartphone, but it requires calibration to the individual. The model is capable of adapting to                  
individuals by combining data from two domains. Using data acquired from a one-time VO2peak test conducted with                 
accurate equipment, the model compensates for individual-level physiology and body composition. Using data acquired              
from wearable devices under free-living conditions, it models variation in inter-person movement patterns and variation               
between naturally occurring activities. All these sources of variation in EE and physical activity must be accounted for.  
 
Our finding that a single uncalibrated model is too simple to estimate EE across all individuals reaffirms previous studies                   
(Sardinha and Júdice 2017; Jacobi et al. 2007). Body weight is proportional to PAEE in weight-bearing activities                 
(Schoeller and Jefford 2002), which means that an obese individual spends more energy being physically active than a                  
lean individual (Prentice et al. 1986). Body weight is therefore often used to calibrate regression models of EE. However,                   
the amount of fat-free mass explains more than 80% of the variance in resting EE (Müller et al. 2018), a major                     
component of the total EE, which is why normalising by body weight is not appropriate when applied to individuals of                    
varying body composition. Tissue, organs, and genetics are also important determinants in resting EE, adding to the                 
complexity (Müller et al. 2018). The results in Table 2 show that normalizing by gender and age improves the estimate                    
but including body weight actually worsens it. With the error measure being calculated on a leave-one-subject-out basis,                 
we can conclude that including body weight leads to overfitting. By including fat mass, the prediction improves                 
significantly, which is due to the model’s ability to adjust for both fat and fat-free mass. Using accurate data from the                     
laboratory (VO2peak test) when estimating EE from HR, the prediction is three times better (242 vs. 729 kcal・day-1).                  
The estimated model parameters in Table 3 stress the need for calibration. A large variation is observed in e.g. the bias                     
term in predicting EE from HR (𝛼1=[-0.073656; 0.862894]), suggesting a large difference in resting EE and similarly for                  
the slope (𝛼2=[0.2325; 0.764199]), suggesting variation in the amount of energy expended at a certain HR. It should be                   
stressed that the reported results include resting EE, which is often the largest component of total EE, and therefore not                    
directly modelled by the data acquired by the smartphone. This distinction is important when evaluating the predictive                 
performance. 
 
Models that do well in a laboratory setting generally do much worse in a free-living setting due to the nature of the                      
activities performed in each. A linear model estimated on data from a small set of activities on a treadmill is not able to                       
generalise to the set of activities performed in active daily living and will substantially underestimate the PAEE (Nilsson                  
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et al. 2008; de Graauw et al. 2010). In this study, that limitation is partially circumvented by using data obtained under                     
free-living conditions when estimating HR from physical activity with small (Polar chest strap), or even pervasive                
(Shcherbina et al. 2017), equipment.  
 
The high prediction accuracy found in many studies of PAEE that do not calibrate models to individuals probably overfit                   
severely due to small homogenic cohorts in simplified scenarios (Jeran, Steinbrecher, and Pischon 2016). Human               
physiology is too complex to model with simple means like linear models on high variance signals, or even with complex                    
models (Crouter, Bassett, and Freedson 2009) if the data foundation is not adequate, and current research indicates that                  
no study to date is adequately sized (Sardinha and Júdice 2017). To create this foundation, a ubiquitous device is needed                    
to capture the true behavioural aspects of physical activity and it needs to be available in all corners of the high                     
dimensional space that encompasses human variability. The smartphone is currently the only device that fits the bill. 
 
Because the smartphone is able to measure modalities besides acceleration, such as location through GPS, local                
proximity through WiFi and Bluetooth (Stopczynski et al. 2014), and mood through the voice (Hargreaves, Starkweather,                
and Blacker 1965), the smartphone has much greater potential than stand-alone devices. From location, the geospatial                
movement patterns can be used to understand human behaviour in a visual manner by illustrating the spatiotemporal                 
trajectories (Maddison et al. 2017) or by inferring the context of different locations such as home and work (Kamronn,                   
Hansen, and Larsen 2018). This information can be leveraged to increase and generalise prediction accuracy and to                 
decompose predicted PAEE into a more nuanced picture. Being able to model the behavioural mechanisms of PAEE and                  
being aware of the environment, it becomes possible to take a decision-theoretical approach to just-in-time interventions                
that adapts to the context of an individual. 

Limitations 
The DLW method is considered the gold standard for measuring EE under daily living conditions (Westerterp 2017).                 
Samples obtained in this way are, however, rather coarse compared to alternative methods that sample with intervals on                  
the second or minute scale, so even though these devices are capable of higher resolution, we can only make claims to the                      
validity of a long sample interval. 
Furthermore, smartphones are unreliable in terms of sample consistency, partly due to adaptive sampling schemes that                
optimise when to sample to reduce power usage and partly due to an unreliable software platform. As the smartphone is                    
not mounted on the participant, they may not always carry it on their body, resulting in non-compliant missing data.                   
These issues result in lower physical activity estimates and we are only able to model away some of the missingness. It is                      
acknowledged that the reported results are accompanied by uncertainty due to the high level of missingness and the low                   
number of participants. 
Due to both the physiological and behavioural variation between individuals, the model requires calibration to the                
individual, which is a major limitation in applicability outside clinical settings. 

Future work 
Calibration of model parameters to individual participants is only feasible in small to moderately sized studies, while the                  
method of monitoring through smartphones has population-sized potential (Stopczynski et al. 2014; Althoff et al. 2017).                
More flexible models using context such as activity-type and location can be used to increase the precision (Altini et al.                    
2015), but as the relationship between physical activity level and EE varies across not only types of activities, but more                    
importantly, across individuals, a more ambitious approach is warranted. The relationship between human physiology              
and behaviour measured by the smartphone and EE needs to be explored for large heterogeneous groups to build a model                    
that is able to generalize across populations.  

Conclusion 
Total EE can be predicted from smartphone usage with the right approach and the right equipment. The proposed model                   
can adapt to individuals using a combination of high-accuracy clinical and high-variation free-living data. It is shown that                  
an uncalibrated model, and arguably a complex model without the necessary information available, is not able to                 
accurately predict EE. Developing a model that is able to generalise to populations is a monumental task but with                   
increasing adoption of ubiquitous sensors, increasingly feasible.  
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Abstract

This paper takes a step towards temporal reasoning in a dynamically changing video,
not in the pixel space that constitutes its frames, but in a latent space that describes
the non-linear dynamics of the objects in its world. We introduce the Kalman
variational auto-encoder, a framework for unsupervised learning of sequential data
that disentangles two latent representations: an object’s representation, coming
from a recognition model, and a latent state describing its dynamics. As a result, the
evolution of the world can be imagined and missing data imputed, both without the
need to generate high dimensional frames at each time step. The model is trained
end-to-end on videos of a variety of simulated physical systems, and outperforms
competing methods in generative and missing data imputation tasks.

1 Introduction

From the earliest stages of childhood, humans learn to represent high-dimensional sensory input
to make temporal predictions. From the visual image of a moving tennis ball, we can imagine
its trajectory, and prepare ourselves in advance to catch it. Although the act of recognising the
tennis ball is seemingly independent of our intuition of Newtonian dynamics [29], very little of this
assumption has yet been captured in the end-to-end models that presently mark the path towards
artificial general intelligence. Instead of basing inference on any abstract grasp of dynamics that is
learned from experience, current successes are autoregressive: to imagine the tennis ball’s trajectory,
one forward-generates a frame-by-frame rendering of the full sensory input [4, 6, 21, 22, 27, 28].

To disentangle two latent representations, an object’s, and that of its dynamics, this paper introduces
Kalman variational auto-encoders (KVAEs), a model that separates an intuition of dynamics from
an object recognition network (section 3). At each time step t, a variational auto-encoder [16, 23]
compresses high-dimensional visual stimuli xt into latent encodings at. The temporal dynamics in
the learned at-manifold are modelled with a linear Gaussian state space model that is adapted to
handle complex dynamics (despite the linear relations among its states zt). The parameters of the
state space model are adapted at each time step, and non-linearly depend on past at’s via a recurrent
neural network. Exact posterior inference for the linear Gaussian state space model can be performed
with the Kalman filtering and smoothing algorithms, and is used for imputing missing data, for
instance when we imagine the trajectory of a bouncing ball after observing it in initial and final video
frames (section 4). The separation between recognition and dynamics model allows for missing data
imputation to be done via a combination of the latent states zt of the model and its encodings at only,
without having to forward-sample high-dimensional images xt in an autoregressive way. KVAEs are
tested on videos of a variety of simulated physical systems in section 5: from raw visual stimuli, it
“end-to-end” learns the interplay between the recognition and dynamics components. As KVAEs can
do smoothing, they outperform an array of methods in generative and missing data imputation tasks
(section 5).

∗Equal contribution.
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2 Background

Linear Gaussian state space models. Linear Gaussian state space models (LGSSMs) are widely
used to model sequences of vectors a = a1:T = [a1, ..,aT ]. LGSSMs model temporal correlations
through a first-order Markov process on latent states z = [z1, .., zT ], which are potentially further
controlled with external inputs u = [u1, ..,uT ], through the Gaussian distributions

pγt(zt|zt−1,ut) = N (zt;Atzt−1 + Btut,Q) , pγt(at|zt) = N (at;Ctzt,R) . (1)

Matrices γt = [At,Bt,Ct] are the state transition, control and emission matrices at time t. Q and R
are the covariance matrices of the process and measurement noise respectively. With a starting state
z1 ∼ N (z1;0,Σ), the joint probability distribution of the LGSSM is given by

pγ(a, z|u) = pγ(a|z) pγ(z|u) =
∏T
t=1pγt(at|zt) · p(z1)

∏T
t=2 pγt(zt|zt−1,ut) , (2)

where γ = [γ1, .., γT ]. LGSSMs have very appealing properties that we wish to exploit: the filtered
and smoothed posteriors p(zt|a1:t,u1:t) and p(zt|a,u) can be computed exactly with the classical
Kalman filter and smoother algorithms, and provide a natural way to handle missing data.

Variational auto-encoders. A variational auto-encoder (VAE) [16, 23] defines a deep generative
model pθ(xt,at) = pθ(xt|at)p(at) for data xt by introducing a latent encoding at. Given a
likelihood pθ(xt|at) and a typically Gaussian prior p(at), the posterior pθ(at|xt) represents a
stochastic map from xt to at’s manifold. As this posterior is commonly analytically intractable, VAEs
approximate it with a variational distribution qφ(at|xt) that is parameterized by φ. The approximation
qφ is commonly called the recognition, encoding, or inference network.

3 Kalman Variational Auto-Encoders

The useful information that describes the movement and interplay of objects in a video typically lies
in a manifold that has a smaller dimension than the number of pixels in each frame. In a video of a
ball bouncing in a box, like Atari’s game Pong, one could define a one-to-one mapping from each
of the high-dimensional frames x = [x1, ..,xT ] into a two-dimensional latent space that represents
the position of the ball on the screen. If the position was known for consecutive time steps, for a
set of videos, we could learn the temporal dynamics that govern the environment. From a few new
positions one might then infer where the ball will be on the screen in the future, and then imagine the
environment with the ball in that position.

zt−1 zt zt+1

at−1 at at+1

xt−1 xt xt+1

ut−1 ut ut+1

VAE

LGSSM

Figure 1: A KVAE is formed by stack-
ing a LGSSM (dashed blue), and a VAE
(dashed red). Shaded nodes denote ob-
served variables. Solid arrows represent
the generative model (with parameters θ)
while dashed arrows represent the VAE
inference network (with parameters φ).

The Kalman variational auto-encoder (KVAE) is based
on the notion described above. To disentangle recognition
and spatial representation, a sensory input xt is mapped to
at (VAE), a variable on a low-dimensional manifold that
encodes an object’s position and other visual properties. In
turn, at is used as a pseudo-observation for the dynamics
model (LGSSM). xt represents a frame of a video2 x =
[x1, ..,xT ] of length T . Each frame is encoded into a
point at on a low-dimensional manifold, so that the KVAE
contains T separate VAEs that share the same decoder
pθ(xt|at) and encoder qφ(at|xt), and depend on each
other through a time-dependent prior over a = [a1, ..,aT ].
This is illustrated in figure 1.

3.1 Generative model

We assume that a acts as a latent representation of the
whole video, so that the generative model of a sequence
factorizes as pθ(x|a) =

∏T
t=1 pθ(xt|at). In this paper

pθ(xt|at) is a deep neural network parameterized by θ,

2While our main focus in this paper are videos, the same ideas could be applied more in general to any
sequence of high dimensional data.
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that emits either a factorized Gaussian or Bernoulli probability vector depending on the data type of
xt. We model a with a LGSSM, and following (2), its prior distribution is

pγ(a|u) =
∫
pγ(a|z) pγ(z|u) dz , (3)

so that the joint density for the KVAE factorizes as p(x,a, z|u) = pθ(x|a) pγ(a|z) pγ(z|u). A
LGSSM forms a convenient back-bone to a model, as the filtered and smoothed distributions
pγ(zt|a1:t,u1:t) and pγ(zt|a,u) can be obtained exactly. Temporal reasoning can be done in the
latent space of zt’s and via the latent encodings a, and we can do long-term predictions without
having to auto-regressively generate high-dimensional images xt. Given a few frames, and hence
their encodings, one could “remain in latent space” and use the smoothed distributions to impute
missing frames. Another advantage of using a to separate the dynamics model from x can be seen by
considering the emission matrix Ct. Inference in the LGSSM requires matrix inverses, and using
it as a model for the prior dynamics of at allows the size of Ct to remain small, and not scale with
the number of pixels in xt. While the LGSSM’s process and measurement noise in (1) are typically
formulated with full covariance matrices [24], we will consider them as isotropic in a KVAE, as at
act as a prior in a generative model that includes these extra degrees of freedom.

What happens when a ball bounces against a wall, and the dynamics on at are not linear any more?
Can we still retain a LGSSM backbone? We will incorporate nonlinearities into the LGSSM by
regulating γt from outside the exact forward-backward inference chain. We revisit this central idea at
length in section 3.3.

3.2 Learning and inference for the KVAE

We learn θ and γ from a set of example sequences {x(n)} by maximizing the sum of their respective
log likelihoods L =

∑
n log pθγ(x

(n)|u(n)) as a function of θ and γ. For simplicity in the exposition
we restrict our discussion below to one sequence, and omit the sequence index n. The log likelihood or
evidence is an intractable average over all plausible settings of a and z, and exists as the denominator
in Bayes’ theorem when inferring the posterior p(a, z|x,u). A more tractable approach to both
learning and inference is to introduce a variational distribution q(a, z|x,u) that approximates the
posterior. The evidence lower bound (ELBO) F is

log p(x|u) = log

∫
p(x,a, z|u) ≥ Eq(a,z|x,u)

[
log

pθ(x|a)pγ(a|z)pγ(z|u)
q(a, z|x,u)

]
= F(θ, γ, φ) , (4)

and a sum of F’s is maximized instead of a sum of log likelihoods. The variational distribution
q depends on φ, but for the bound to be tight we should specify q to be equal to the posterior
distribution that only depends on θ and γ. Towards this aim we structure q so that it incorporates the
exact conditional posterior pγ(z|a,u), that we obtain with Kalman smoothing, as a factor of γ:

q(a, z|x,u) = qφ(a|x) pγ(z|a,u) =
∏T
t=1qφ(at|xt) pγ(z|a,u) . (5)

The benefit of the LGSSM backbone is now apparent. We use a “recognition model” to encode each
xt using a non-linear function, after which exact smoothing is possible. In this paper qφ(at|xt) is a
deep neural network that maps xt to the mean and the diagonal covariance of a Gaussian distribution.
As explained in section 4, this factorization allows us to deal with missing data in a principled way.
Using (5), the ELBO in (4) becomes

F(θ, γ, φ) = Eqφ(a|x)
[
log

pθ(x|a)
qφ(a|x)

+ Epγ(z|a,u)
[
log

pγ(a|z)pγ(z|u)
pγ(z|a,u)

]]
. (6)

The lower bound in (6) can be estimated using Monte Carlo integration with samples {ã(i), z̃(i)}Ii=1
drawn from q,

F̂(θ, γ, φ) = 1

I

∑

i

log pθ(x|ã(i))+log pγ(ã
(i), z̃(i)|u)−log qφ(ã(i)|x)−log pγ(z̃(i)|ã(i),u) . (7)

Note that the ratio pγ(ã(i), z̃(i)|u)/pγ(z̃(i)|ã(i),u) in (7) gives pγ(ã(i)|u), but the formulation with
{z̃(i)} allows stochastic gradients on γ to also be computed. A sample from q can be obtained by
first sampling ã ∼ qφ(a|x), and using ã as an observation for the LGSSM. The posterior pγ(z|ã,u)
can be tractably obtained with a Kalman smoother, and a sample z̃ ∼ pγ(z|ã,u) obtained from it.
Parameter learning is done by jointly updating θ, φ, and γ by maximising the ELBO on L, which
decomposes as a sum of ELBOs in (6), using stochastic gradient ascent and a single sample to
approximate the intractable expectations.
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3.3 Dynamics parameter network

The LGSSM provides a tractable way to structure pγ(z|a,u) into the variational approximation in
(5). However, even in the simple case of a ball bouncing against a wall, the dynamics on at are not
linear anymore. We can deal with these situations while preserving the linear dependency between
consecutive states in the LGSSM, by non-linearly changing the parameters γt of the model over time
as a function of the latent encodings up to time t− 1 (so that we can still define a generative model).
Smoothing is still possible as the state transition matrix At and others in γt do not have to be constant
in order to obtain the exact posterior pγ(zt|a,u).
Recall that γt describes how the latent state zt−1 changes from time t − 1 to time t. In the more
general setting, the changes in dynamics at time t may depend on the history of the system, encoded
in a1:t−1 and possibly a starting code a0 that can be learned from data. If, for instance, we see the ball
colliding with a wall at time t− 1, then we know that it will bounce at time t and change direction.
We then let γt be a learnable function of a0:t−1, so that the prior in (2) becomes

pγ(a, z|u) =
∏T
t=1pγt(a0:t−1)(at|zt) · p(z1)

∏T
t=2 pγt(a0:t−1)(zt|zt−1,ut) . (8)

dt−1 dt dt+1

αt−1 αt αt+1

at−2 at−1 at

Figure 2: Dynamics parameter network
for the KVAE.

During inference, after all the frames are encoded in a, the
dynamics parameter network returns γ = γ(a), the param-
eters of the LGSSM at all time steps. We can now use the
Kalman smoothing algorithm to find the exact conditional
posterior over z, that will be used when computing the
gradients of the ELBO.

In our experiments the dependence of γt on a0:t−1 is
modulated by a dynamics parameter network αt =
αt(a0:t−1), that is implemented with a recurrent neu-
ral network with LSTM cells that takes at each time
step the encoded state as input and recurses dt =
LSTM(at−1,dt−1) and αt = softmax(dt), as illustrated
in figure 2. The output of the dynamics parameter network
is weights that sum to one,

∑K
k=1 α

(k)
t (a0:t−1) = 1. These weights choose and interpolate between

K different operating modes:

At =
K∑

k=1

α
(k)
t (a0:t−1)A

(k), Bt =
K∑

k=1

α
(k)
t (a0:t−1)B

(k), Ct =
K∑

k=1

α
(k)
t (a0:t−1)C

(k) . (9)

We globally learn K basic state transition, control and emission matrices A(k), B(k) and C(k), and
interpolate them based on information from the VAE encodings. The weighted sum can be interpreted
as a soft mixture of K different LGSSMs whose time-invariant matrices are combined using the time-
varying weights αt. In practice, each of the K sets {A(k),B(k),C(k)} models different dynamics,
that will dominate when the corresponding α(k)

t is high. The dynamics parameter network resembles
the locally-linear transitions of [14, 31]; see section 6 for an in depth discussion on the differences.

4 Missing data imputation

Let xobs be an observed subset of frames in a video sequence, for instance depicting the initial
movement and final positions of a ball in a scene. From its start and end, can we imagine how
the ball reaches its final position? Autoregressive models like recurrent neural networks can only
forward-generate xt frame by frame, and cannot make use of the information coming from the final
frames in the sequence. To impute the unobserved frames xun in the middle of the sequence, we need
to do inference, not prediction.

The KVAE exploits the smoothing abilities of its LGSSM to use both the information from the past
and the future when imputing missing data. In general, if x = {xobs,xun}, the unobserved frames in
xun could also appear at non-contiguous time steps, e.g. missing at random. Data can be imputed
by sampling from the joint density p(aun,aobs, z|xobs,u), and then generating xun from aun. We
factorize this distribution as

p(aun,aobs, z|xobs,u) = pγ(aun|z) pγ(z|aobs,u) p(aobs|xobs) , (10)
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and we sample from it with ancestral sampling starting from xobs. Reading (10) from right to left, a
sample from p(aobs|xobs) can be approximated with the variational distribution qφ(aobs|xobs). Then,
if γ is fully known, pγ(z|aobs,u) is computed with an extension to the Kalman smoothing algorithm
to sequences with missing data, after which samples from pγ(aun|z) could be readily drawn.

However, when doing missing data imputation the parameters γ of the LGSSM are not known at
all time steps. In the KVAE, each γt depends on all the previous encoded states, including aun, and
these need to be estimated before γ can be computed. In this paper we recursively estimate γ in the
following way. Assume that x1:t−1 is known, but not xt. We sample a1:t−1 from qφ(a1:t−1|x1:t−1)
using the VAE, and use it to compute γ1:t. The computation of γt+1 depends on at, which is missing,
and an estimate ât will be used. Such an estimate can be arrived at in two steps. The filtered posterior
distribution pγ(zt−1|a1:t−1,u1:t−1) can be computed as it depends only on γ1:t−1, and from it, we
sample

ẑt ∼ pγ(zt|a1:t−1,u1:t) =

∫
pγt(zt|zt−1,ut) pγ(zt−1|a1:t−1,u1:t−1) dzt−1 (11)

and sample ât from the predictive distribution of at,

ât ∼ pγ(at|a1:t−1,u1:t) =

∫
pγt(at|zt) pγ(zt|a1:t−1,u1:t) dzt ≈ pγt(at|ẑt) . (12)

The parameters of the LGSSM at time t + 1 are then estimated as γt+1([a0:t−1, ât]). The same
procedure is repeated at the next time step if xt+1 is missing, otherwise at+1 is drawn from the VAE.
After the forward pass through the sequence, where we estimate γ and compute the filtered posterior
for z, the Kalman smoother’s backwards pass computes the smoothed posterior. While the smoothed
posterior distribution is not exact, as it relies on the estimate of γ obtained during the forward pass, it
improves data imputation by using information coming from the whole sequence; see section 5 for an
experimental illustration.

5 Experiments

We motivated the KVAE with an example of a bouncing ball, and use it here to demonstrate the
model’s ability to separately learn a recognition and dynamics model from video, and use it to impute
missing data. To draw a comparison with deep variational Bayes filters (DVBFs) [14], we apply
the KVAE to [14]’s pendulum example. We further apply the model to a number of environments
with different properties to demonstrate its generalizability. All models are trained end-to-end with
stochastic gradient descent. Using the control input ut in (1) we can inform the model of known
quantities such as external forces, as will be done in the pendulum experiment. In all the other
experiments, we omit such information and train the models fully unsupervised from the videos only.
Further implementation details can be found in the supplementary material (appendix A) and in the
Tensorflow [1] code released at github.com/simonkamronn/kvae.

5.1 Bouncing ball

We simulate 5000 sequences of 20 time steps each of a ball moving in a two-dimensional box, where
each video frame is a 32x32 binary image. A video sequence is visualised as a single image in figure
4d, with the ball’s darkening color reflecting the incremental frame index. In this set-up the initial
position and velocity are randomly sampled. No forces are applied to the ball, except for the fully
elastic collisions with the walls. The minimum number of latent dimensions that the KVAE requires
to model the ball’s dynamics are at ∈ R2 and zt ∈ R4, as at the very least the ball’s position in the
box’s 2d plane has to be encoded in at, and zt has to encode the ball’s position and velocity. The
model’s flexibility increases with more latent dimensions, but we choose these settings for the sake of
interpretable visualisations. The dynamics parameter network uses K = 3 to interpolate three modes,
a constant velocity, and two non-linear interactions with the horizontal and vertical walls.

We compare the generation and imputation performance of the KVAE with two recurrent neural
network (RNN) models that are based on the same auto-encoding (AE) architecture as the KVAE and
are modifications of methods from the literature to be better suited to the bouncing ball experiments.3

3We also experimented with the SRNN model from [7] as it can do smoothing. However, the model is
probably too complex for the task in hand, and we could not make it learn good dynamics.
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(a) Frames xt missing completely at random. (b) Frames xt missing in the middle of the sequence.

(c) Comparison of encoded (ground truth), generated and smoothed trajectories of a KVAE in the latent space
a. The black squares illustrate observed samples and the hexagons indicate the initial state. Notice that the
at’s lie on a manifold that can be rotated and stretched to align with the frames of the video.

Figure 3: Missing data imputation results.

In the AE-RNN, inspired by the architecture from [27], a pretrained convolutional auto-encoder,
identical to the one used for the KVAE, feeds the encodings to an LSTM network [11]. During
training the LSTM predicts the next encoding in the sequence and during generation we use the
previous output as input to the current step. For data imputation the LSTM either receives the previous
output or, if available, the encoding of the observed frame (similarly to filtering in the KVAE). The
VAE-RNN is identical to the AE-RNN except that uses a VAE instead of an AE, similarly to the model
from [5].

Figure 3a shows how well missing frames are imputed in terms of the average fraction of incorrectly
guessed pixels. In it, the first 4 frames are observed (to initialize the models) after which the next
16 frames are dropped at random with varying probabilities. We then impute the missing frames
by doing filtering and smoothing with the KVAE. We see in figure 3a that it is beneficial to utilize
information from the whole sequence (even the future observed frames), and a KVAE with smoothing
outperforms all competing methods. Notice that dropout probability 1 corresponds to pure generation
from the models. Figure 3b repeats this experiment, but makes it more challenging by removing an
increasing number of consecutive frames from the middle of the sequence (T = 20). In this case
the ability to encode information coming from the future into the posterior distribution is highly
beneficial, and smoothing imputes frames much better than the other methods. Figure 3c graphically
illustrates figure 3b. We plot three trajectories over at-encodings. The generated trajectories were
obtained after initializing the KVAE model with 4 initial frames, while the smoothed trajectories
also incorporated encodings from the last 4 frames of the sequence. The encoded trajectories were
obtained with no missing data, and are therefore considered as ground truth. In the first three plots
in figure 3c, we see that the backwards recursion of the Kalman smoother corrects the trajectory
obtained with generation in the forward pass. However, in the fourth plot, the poor trajectory that is
obtained during the forward generation step, makes smoothing unable to follow the ground truth.

The smoothing capabilities of KVAEs make it also possible to train it with up to 40% of missing data
with minor losses in performance (appendix C in the supplementary material). Links to videos of
the imputation results and long-term generation from the models can be found in appendix B and at
sites.google.com/view/kvae.

Understanding the dynamics parameter network. In our experiments the dynamics parameter
network αt = αt(a0:t−1) is an LSTM network, but we could also parameterize it with any differen-
tiable function of a0:t−1 (see appendix D in the supplementary material for a comparison of various
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(a) k = 1 (b) k = 2 (c) k = 3 (d) Reconstruction of x

Figure 4: A visualisation of the dynamics parameter network α(k)
t (at−1) for K = 3, as a function of

at−1. The three α(k)
t ’s sum to one at every point in the encoded space. The greyscale backgrounds in

a) to c) correspond to the intensity of the weights α(k)
t , with white indicating a weight of one in the

dynamics parameter network’s output. Overlaid on them is the full latent encoding a. d) shows the
reconstructed frames of the video as one image.

architectures). When using a multi-layer perceptron (MLP) that depends on the previous encoding as
mixture network, i.e. αt = αt(at−1), figure 4 illustrates how the network chooses the mixture of
learned dynamics. We see that the model has correctly learned to choose a transition that maintains a
constant velocity in the center (k = 1), reverses the horizontal velocity when in proximity of the left
and right wall (k = 2), the reverses the vertical velocity when close to the top and bottom (k = 3).

5.2 Pendulum experiment

Model Test ELBO
KVAE (CNN) 810.08
KVAE (MLP) 807.02

DVBF 798.56
DMM 784.70

Table 1: Pendulum experiment.

We test the KVAE on the experiment of a dynamic torque-
controlled pendulum used in [14]. Training, validation and
test set are formed by 500 sequences of 15 frames of 16x16
pixels. We use a KVAE with at ∈ R2, zt ∈ R3 and K = 2,
and try two different encoder-decoder architectures for the
VAE, one using a MLP and one using a convolutional neural
network (CNN). We compare the performaces of the KVAE
to DVBFs [14] and deep Markov models4 (DMM) [17], non-
linear SSMs parameterized by deep neural networks whose
intractable posterior distribution is approximated with an inference network. In table 1 we see that
the KVAE outperforms both models in terms of ELBO on a test set, showing that for the task in hand
it is preferable to use a model with simpler dynamics but exact posterior inference.

5.3 Other environments

To test how well the KVAE adapts to different environments, we trained it end-to-end on videos of (i)
a ball bouncing between walls that form an irregular polygon, (ii) a ball bouncing in a box and subject
to gravity, (iii) a Pong-like environment where the paddles follow the vertical position of the ball to
make it stay in the frame at all times. Figure 5 shows that the KVAE learns the dynamics of all three
environments, and generates realistic-looking trajectories. We repeat the imputation experiments of
figures 3a and 3b for these environments in the supplementary material (appendix E), where we see
that KVAEs outperform alternative models.

6 Related work

Recent progress in unsupervised learning of high dimensional sequences is found in a plethora of both
deterministic and probabilistic generative models. The VAE framework is a common work-horse in
the stable of probabilistic inference methods, and it is extended to the temporal setting by [5, 7, 14, 17].
In particular, deep neural networks can parameterize the transition and emission distributions of
different variants of deep state-space models [7, 14, 17]. In these extensions, inference networks

4Deep Markov models were previously referred to as deep Kalman filters.
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(a) Irregular polygon. (b) Box with gravity. (c) Pong-like environment.

Figure 5: Generations from the KVAE trained on different environments. The videos are shown as
single images, with color intensity representing the incremental sequence index t. In the simulation
that resembles Atari’s Pong game, the movement of the two paddles (left and right) is also visible.

define a variational approximation to the intractable posterior distribution of the latent states at each
time step. For the tasks in section 5, it is preferable to use the KVAE’s simpler temporal model with
an exact (conditional) posterior distribution than a highly non-linear model where the posterior needs
to be approximated. A different combination of VAEs and probabilistic graphical models has been
explored in [13], which defines a general class of models where inference is performed with message
passing algorithms that use deep neural networks to map the observations to conjugate graphical
model potentials.

In classical non-linear extensions of the LGSSM like the extended Kalman filter and in the locally-
linear dynamics of [14, 31], the transition matrices at time t have a non-linear dependence on zt−1.
The KVAE’s approach is different: by introducing the latent encodings at and making γt depend
on a1:t−1, the linear dependency between consecutive states of z is preserved, so that the exact
smoothed posterior can be computed given a, and used to perform missing data imputation. LGSSM
with dynamic parameterization have been used for large-scale demand forecasting in [25]. [18]
introduces recurrent switching linear dynamical systems, that combine deep learning techniques and
switching Kalman filters [20] to model low-dimensional time series. [9] introduces a discriminative
approach to estimate the low-dimensional state of a LGSSM from input images. The resulting model
is reminiscent of a KVAE with no decoding step, and is therefore not suited for unsupervised learning
and video generation. Recent work in the non-sequential setting has focused on disentangling basic
visual concepts in an image [10].

Great strides have been made in the reinforcement learning community to model how environments
evolve in response to action [4, 21, 22, 28, 30]. In similar spirit to this paper, [30] extracts a latent
representation from a PCA representation of the frames where controls can be applied. [4] introduces
action-conditional dynamics parameterized with LSTMs and, as for the KVAE, a computationally
efficient procedure to make long term predictions without generating high dimensional images at
each time step. As autoregressive models, [27] develops a sequence to sequence model of video
representations that uses LSTMs to define both the encoder and the decoder. [6] develops an action-
conditioned video prediction model of the motion of a robot arm using convolutional LSTMs that
models the change in pixel values between two consecutive frames.

While the focus in this work is to define a generative model for high dimensional videos of simple
physical systems, several recent works have combined physical models of the world with deep learning
to learn the dynamics of objects in more complex but low-dimensional environments [2, 3, 8, 32].

7 Conclusion

The KVAE, a model for unsupervised learning of high-dimensional videos, was introduced in this
paper. It disentangles an object’s latent representation at from a latent state zt that describes its
dynamics, and can be learned end-to-end from raw video. Because the exact (conditional) smoothed
posterior distribution over the states of the LGSSM can be computed, one generally sees a marked
improvement in inference and missing data imputation over methods that don’t have this property.
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A desirable property of disentangling the two latent representations is that temporal reasoning, and
possibly planning, could be done in the latent space. As a proof of concept, we have been deliberate
in focussing our exposition to videos of static worlds that contain a few moving objects, and leave
extensions of the model to real world videos or sequences coming from an agent exploring its
environment to future work.
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A Experimental details

We will describe here some of the most important experimental details. The rest of the details can be
found in the code at github.com/simonkamronn/kvae.

Data generation. All the videos were generated using the physics engine Pymunk. We generated
5000 videos for training and 1000 for testing.

Encoder/Decoder architecture for the KVAE. As we only use image-based observations, the
encoder is fixed to a three layer convolutional neural network with 32 units in each layer, kernel-
size of 3x3, stride of 2, and ReLU activations. The decoder is an equally sized network using the
Sub-Pixel[26] procedure for deconvolution. In the pendulum experiment however we also test MLPs.

Optimization. As optimizer we use ADAM [15] with an initial learning rate of 0.007 and an
exponential decay scheme with a rate of 0.85 every 20 epochs. Training one epoch takes 55 seconds
on an NVIDIA Titan X and the model converges in roughly 80 epochs.

Training tricks for end-to-end learning. The biggest challenge of this optimization problem is
how to avoid poor local minima, for example where all the focus is given to the reconstruction term,
at the expense of the prior dynamics given by the LGSSM. To achieve a quick convergence in all the
experiments we found it helpful to

• downweight the reconstruction term from of VAEs during training, that is scaled by 0.3. By
doing this, we can in fact help the model to focus on learning the temporal dynamics.

• learn for the first few epochs only the the VAE parameters θ and φ and the globally learned
matrices A(k), B(k) and C(k), but not the parameters of the dynamics parameter network
αt(a0:t−1). After this phase, all parameters are learned jointly. This allows the model to
first learn good VAE embeddings and the scale of the prior, and then learn how to utilize the
K different dynamics.

Choice of hyperparameters for the LGSSM. In most of the experiments we used at ∈ R2,
zt ∈ R4 and K = 3. In the gravity experiments we used however zt ∈ R5 as the model has no
controls applied to it and needs to be able to learn a bias term due to the presence of the external
force of gravity. The polygon experiments uses K = 7 as it needs to learn more complex dynamics.
In general, we did not find difficult to tune the parameters of the KVAE, as the model can learn to
prune unused components (if flexible enough).

B Videos

Videos are generated from all models by initializing with 4 frames and then sampling. The filtering
and smoothing versions are allowed to observe part of the sequence depending on the masking scheme.
All the filtering and smoothing videos are generated from sequences applied with a random mask
with a masking probability of 80% (as in figure 3a) except for the videos with the suffix consecutive
in which only the first and last 4 frames are observed (as in figure 3b). Only the KVAE models have
smoothing videos. For the bouncing ball experiment (named box in the attached folder), we also show
the videos from a model trained with 40% missing data.

In most videos the black ball is the ground truth, and the red is the one generated from the model,
except for the ones marked long_generation in which the true sequence is not shown.

Videos are available from Google Drive and the website sites.google.com/view/kvae.

C Training with missing data.

The smoothed posterior described in section 4 can also be used to train the KVAE with missing data.
In this case, we only need to modify the ELBO by masking the contribution of the missing data points
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(a) (b)

Figure 6: Training with missing data

Figure 7: Comparison of modelling choices wrt. the α-network

in the joint probability distribution and variational approximation:

p(x,a, z,u) = p(z1)
T∏

t=2

pγt(zt|zt−1,ut)
T∏

t=1

pγt(at|zt)It
T∏

t=1

pθ(xt|at)It

qφ(a|x) =
T∏

t=1

qφ(at|xt)It ,

where It is 0 if the data point is missing, 1 otherwise. Figure 6 illustrates a slight degradation
in performance when training with respectively 30% and 40% missing data but, remarkably, the
accuracy is still better when using smoothing in these conditions than with filtering with all training
data available.

D Dynamics parameter network architecture

As the α-network governs the non-linear dynamics, it has a significant impact on the modelling
capabilities. Here we list the architectural choices considered:

• MLP with two hidden layers.
• Recurrent Neural Networks with LSTM units.
• ’First in, first out memory’ (FIFO) MLP with access to 5 time steps.

In all cases, we can also model α as an (approximate) discrete random variable using the the Concrete
distribution [19, 12]. In this case we can recover an approximation to the switching Kalman filter[20].
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In figure 7 the different choices are tested against each other on the bouncing ball data. In this case
all the alternative choices result in poorer performances than the LSTM chosen for all the other
experiments. We believe that LSTMs are able to better model the discretization errors coming from
the collisions and the 32x32 rendering of the trajectories computed by the physics engine.

E Imputation in all environments

(a) Bouncing ball - Frames xt missing randomly. (b) Bouncing ball - Frames xt missing in the middle

(c) Gravity - Frames xt missing randomly. (d) Gravity - Frames xt missing in the middle

(e) Polygon - Frames xt missing randomly. (f) Polygon - Frames xt missing in the middle

(g) Pong - Frames xt missing randomly. (h) Pong - Frames xt missing in the middle

Figure 8: Imputation results for all environments
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