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Summary (english)
3D vision technology is the process of estimating 3D geometry from 2D image data. In
recent years, it has reached a maturity that allows for real world usage, no longer being
confined to a laboratory. We see this in the availability of commercial 3D scanners
(e.g. Kinect, RealSense, GOM) and their many applications (e.g self-driving cars,
automation, quality control). However, as any engineer knows the transition from
lab to real world application is not trivial, often with unforeseen challenges. In this
sense, much 3D vision technology is built on an unknown foundation, as there have
been few studies on it’s practical problems and limitations.

This thesis contributes to several subjects within the field of 3D vision with such
studies. These encompass dataset creation, empirical evaluation and system engineer-
ing.

Datasets are essential to quantitative evaluation and testing. Thus we have created
datasets for two fields which are lacking in that area.

The first being a dataset for Non-Rigid Structure from Motion (NRSfM). NRSfM
estimates the 3D geometry of a deforming object from a 2D point sequence, thus the
dataset is comprised 2D point sequences with a recorded 3D reference. We accom-
plished this using structured light scanning and several stop-motion animatronics.
This allowed for much greater deformation variety than what has previously been
available. Structured light scanning provides dense reference geometry and surface
normals, which allowed us to created occlusion-based missing data for each point
sequence. Something which has not been done before.

The second dataset is built for evaluation of rendering techniques for challenging
scenes. In it, we record a series of images along with precise geometry, radiometry,
environment and camera pose. The intent is for a rendering algorithm to use said
data to recreate the recorded image.

Datasets serves little purpose unless they are used. Therefore, we have applied our
NRSfM dataset to analyze the field using 16 methods representative of the state-of-
the-art. Our factorial analysis shows not only which methods gives the most precise
results, but also overall trends in the field. For example which deformations are the
most challenging to reconstruct and how the camera impacts reconstruction quality.
We also show that the previous reliance on random missing data has lead to algorithms
that handles the missing data from self-occlusion poorly.
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We have also evaluated several structured light techniques on biological material.
Structured light is designed with the assumption of diffuse reflection, but most bio-
logical material has heavy subsurface scattering. We show that this results in subtle,
systematic overestimation of depth (up to 1mm), even for state-of-the-art techniques.
However, we also demonstrate that a large part of this error can be corrected with a
linear, geometry based model.

This thesis also presents some vision-based solutions to practical problem, as some
information can only be gained through application. First, we investigate the inter-
action between 3D vision and robotics by engineering a solution for non-rigid bin
picking. Our system shows that the problem is solvable, but error correction remains
a big concern. Errors from multiple sources such as calibration, 3D scanner, segmen-
tation and pose estimation might seem insignificant individually, but are problematic
when taken as a whole.

Second, we designed an algorithm for automatic measurement of contact surface
areas for usage in tribology testing. The method performs measurements with an
error of less than 0.4µm.



Summary (danish)
3D vision er teknologi der estimerer 3D geometry fra 2D billede data. I løbet af
de seneste år, har feltet nået en teknologisk modenhed der muliggør brug uden for
laboratiet. Vi ser denne tendens i antallet af komercielle 3D skannere (fx. Kinect,
Realsense, GOM) og deres mange applikationer (fx. selv-kørende biler, automation,
kvalitets kontrol). Som enhver ingeniør ved er overførelsen af teknologi fra laboratoriet
til den virkelige verden langt fra triviel, ofte præget af uforudsete problemstillinger.
In den forstand, bygger meget 3D vision teknologi på et usikkert fundament eftersom
at der har kun være få studier af de praktiske problemstillinger og udfordringer.

Denne afhandling bidrager med sådanne studier til flere felter indefor 3D vision.

Datasæt er en essentiel del af kvantitativ evaluering og test. Derfor er to datasæt
blevet designet og implementeret som en del af denne afhandling.

Det første er et Non-Rigid Structure from Motion (NRSfM) datasæt. NRSfM
estimerer deformerbare objekters 3D geometri udefra en sekvens af 2D punkter, vores
datasæt består derfor af sådanne sekvenser med tilhørende 3D reference. Vi lavede
dette data vha. struktureret lys skanninger og en håndful stop-motion animatronic.
Derfor har vi kunne inkludere nye deformationstyper der ikke har været tilgængelig før.
Derudover har vores brug af struktureret lys skanning givet os tætpakket overflade
geometri og overflade normaler. Denne data har vi brugt til at skabe okklusions-
baseret ’missing data’, hvilket ikke er set før indefor NRSfM.

Det andet datasæt blev skabt med henblik på evaluering af renderings teknikker
for udfordrende scener. Vi har optaget en series billeder med tilhørende scene ge-
ometri, radiometri, lysmiljø og kamera positioner.

Datasæt tjener ikke med formål hvis de ikke bliver brugt. Derfor har vi udført en
evaluering af NRSfM feltet vha. vores datasæt. Feltet er her repæsenteret af 16 af de
mest relevante NRSfM metoder. Vores faktoranalyse viser ikke blot hvilke metoder er
de mest præcise, men også overordnede tendenser indefor NRSfM feltet. For eksem-
pel hvilke deformationer er de sværeste at rekonstruere og hvorledes kamera påvirker
rekonstruktions kvalitet. Vi har også påvist at tidligere brug tilfældig ’missing data’
har ført til algorithmer der håndtere vores okklusions-baseret ’missing data’ dårligt.

Vi har også evalueret flere struktureret lys metoder på biologisk materiale. Struk-
tureret lys er designed med en antagelse om diffus refleksion, men de fleste biologiske
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materialer spreder lys under deres overflade. Vi har påvist at dette resulterer i en sys-
tematisk overestimation af dybde (op til 1mm), selv for de nyeste teknikker. Heldigvis
kan en stor del af denne fejl rettes vha. en simpel linear model.

Denne afhandling behandler også et par pratiske problemstillinger ved brug af
vision. Dette blev gjort eftersom visse informationer kun kan indsamles under prak-
tiske studier. Vi har undersøgt interaktionen mellem 3D vision og robotteknologi
ved at designe og implmentere en løsning for bin picking af deformerbare objekter.
Vores system viser at problemstillingen kan løses, men også at fejlhåndtering er meget
vigtigt. Fejl fra flere kilder såsom kalibrering, 3D skanning, segmentering og positur
estimation kan synes individuelt ubetydelige, men summen af disse er problematisk.
Derudover har vi designed et system for automatisk måling af kontakt overfalde areal
til brug i tribologi test. Metode udfører målinger med en præcision på under 0.4µm.
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Notation
Matrix

Given by upper case, bold letters e.g. A.

Vector
Given by lower case, bold letters e.g. x.

Entry of a Matrix
Given by a lower case of the corresponding matrix symbol with location as
subscript. The (i, j) entry of A would be aij .

Matrix Row
Given by bold, lower case of the corresponding matrix symbol with location and
* as subscript. Row i of A would be ai∗.

Matrix Column
Given by bold, lower case of the corresponding matrix symbol with * and loca-
tion as subscript. Column j of A would be a∗j .

Mean
Given by the expectation operator e.g. E[x].
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CHAPTER 1
Introduction

3D vision is the science of estimating 3D geometry from 2D data, typically from
images. While it has long been confined to laboratories, recent advances has seen
many 3D vision methods move from the lab to application on real-world problems.
This is evident by the availability of commercial 3D scanning technology (e.g Kinect,
RealSense and GOM) and their many applications (e.g. self-driving cars, robotics and
quality control). And it is easy to see why, as 3D vision is a fast and non-destructive
method for acquiring rich 3D data. However, as any engineer knows the move from
lab to real-world application is not trivial. In this sense, the application of much 3D
vision technology is built on an unknown foundation, as there has been few studies
on the complications and limitations that appear in the real world.

1.1 Scope
This thesis presents a study on the practical applications of 3D vision. We wanted
to clearly define current possibilities and challenges. The field of 3D vision is vast
therefore the scope of this thesis is limited to studying a handful of problems. However,
we do feel that these are representative of the overall state of 3D vision.

1.1.1 Evaluation of Non-Rigid Structure from Motion
Structure from Motion (SfM) is the science of estimating 3D geometry from a set
of 2D points, typically obtained from an image sequence. It invokes a rigidity prior
to constrain the problem. Non-Rigid Structure from Motion (NRSfM) forgoes this
prior, allowing for reconstruction of a deforming scene. While SfM is well understood,
NRSfM is not quite as technologically mature. One reason for this is that NRSfM
is inherently a more difficult problem than SfM. Another is that there has been
little effort to evaluate and study the many methods that has been published over
the years. Thus it is unknown which algorithms work well and which areas future
research should focus on.

As we see it there are two primary barriers. First, a lack of high-quality, varied
datasets with ground truth, which can be used for quantitative study. Second, a
factorial evaluation protocol that can examine the state-of-the-art in NRSfM in sta-
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tistical sound manner. A resolution for both is presented in this thesis. As such, we
will make it clear what contemporary NRSfM can do and where the main challenges
lie.

1.1.2 Flexible Automation using 3D Vision
Contemporary automation has a rigidity problem, though not one of form, but of
setup. Current automation solutions are designed to do one task and one task only.
This means that automation is only financially feasible for products that are con-
stantly manufactured. As such, many tasks still has to be performed with 100%
manual labor. Additionally, the robots timing and movement is completely prepro-
grammed. This means that great care must also be taken in designing the environ-
ment around the robot, as unknowns cannot be dealt with. This also means that
rigid objects are far easier to deal with than non-rigid. Therefore, it is of interest to
combine 3D vision technology with robotics to create more flexible automation. The
idea being that online gathered geometric information can be used to make decisions
and adjustments in real-time.

Flexible automation with 3D vision is studied in this thesis. Not only can we learn
which problems are feasible to solve, but we will also uncover the major challenges in
integrating vision and robotic path planning.

The subject will be studied through a use case at Danish Crown, Ringsted. Danish
Crown, Ringsted is a large slaughterhouse which make meat products and cutouts.
The final stage for a product is packaging, where the cutouts is picked up from an
plastic box and placed on a conveyor belt or a cardboard box and then sent to shipping.
This process is illustrated in Figure 1.1. While this process seems simple, it has so
far proven infeasible to automate. The reason being that cutout shapes and sizes
often changes, which makes offline programmed solutions unworkable. Additionally,
products arrives in an unordered pile. As such, We study how 3D vision may be used
to overcome both of these challenges.

1.1.3 Error Analysis of Structured Light
Structured light scanning is an active 3D scanning technique. It projects one or more
patterns onto a scene, captures images and estimates surface geometry based on these.
Examples of commercial structured light includes Kinect V1, RealSense and GOM.
While structured light has provided a quick and easy way of gathering rich geometric
information, it is based on assumptions that is unfortunately often violated in the
real-world.

The primary assumption being that the observed signal in the captured images
is primarily the results of the direct reflection of the projected pattern. Generally
speaking, the real world breaks this assumption in two ways inter-reflections and sub-
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Figure 1.1: The practical use case for this thesis. The deceptively simple process of
picking meat from an unorganized pile (left) and placing it on e.g. a conveyor belt.

surface scattering. Inter-reflections is when the scene reflects the projected pattern
internally. Subsurface scattering describes light entering the scene material and being
scattered before being emitted back into the environment.

The effects of subsurface scattering on structured light scanning is studied in this
thesis, as this was previously poorly understood. And it is important to understand as
many real world materials (e.g. plastic, biological tissue and cloth) exhibits subsurface
scattering.

1.1.4 Evaluation of Photorealistic Rendering
As is evident from the video game industry and cinema, computer graphics has come
a long way since it’s inception. We are infact capable of creating imagery that closely
resemble real world photographies. However, little effort has gone into quantifying
the realistism of state-of-the-art rendering. The main reason for this is that creating
a dataset with input (geometry, radiometry, camera pose, environment map) and a
corresponding ground truth image is extremely difficult.

Understanding the precision of state-of-the-art computer graphics is quite impor-
tant for computer vision, as it is increasingly being used to create synthetic training
data for deep learning. Indeed, training on synthetic data might not transfer well to
the real world, if said data is subtlety biased or flawed.

Therefore, we present the implementation of such a dataset with a corresponding
evaluation of state-of-the-art rendering techniques in this thesis.

1.1.5 Geometric Metrology using Vision
Geometric metrology is the science of geometric measurements and uncertainty es-
timation. One of it’s central concepts is traceablity, which is an unbroken chain
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of comparisons to a stated reference (e.g. the meter standard) with uncertainty esti-
mates. As such geometric metrology is relevant for 3D vision and vice versa. However,
uncertainty estimates and traceability for computer vision is still somewhat of an open
question.

In this thesis we will study establishing traceability and uncertainty for vision
using a specific problem. The problem being the automatic measurement of contact
surface area using microscopy data.

1.2 Objectives
So in summary the objectives of this thesis was,

1. Create a high-quality, realistic dataset for NRSfM.

2. Evaluate the field of NRSfM and find the major challenges.

3. Create a flexible automation system for bin-picking of meat by integrating 3D
vision and robotics.

4. Study the accuracy of structured light w.r.t. subsurface scattering.

5. Create a realistic dataset for evaluation of photorealistic rendering, with in-
put (geometry, radiometry, camera pose, environment map) and corresponding
ground truth imagery.

6. Study the uncertainty and traceability of vision by solving the metrological
problem of automatic contact surface area estimation.

1.3 Thesis Overview
This thesis is structured as follows:

Chapter 2
Here we will go over some of the theory needed to understand this thesis. It will
primarily concern camera geometry and NRSfM. Structured light scanning has
served a substantial role, both in implementing solutions and gathering data.
Therefore this chapter also features the basic concepts and theory of structured
light scanning.

Chapter 3
In this chapter, we will review the relevant literature. We will primarily be
focusing on the main contributions. As such it will be divided into two parts:
one concerning state-of-the-art NRSfM algorithms and one concerning robotic
handling and bin-picking of deformable objects.
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Chapter 4
In this chapter, we will summarize the primary contribution that has been
made during this thesis. It will primary be based on the peer-review publica-
tions which are listed in the thesis frontmatter with additional details added as
needed.

Chapter 5
Here we will summarize the thesis and reflect on it as a whole. We will consider
whether the thesis goals has been met.
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CHAPTER 2
Background

In this chapter we will outline some of the background theory necessary to understand
the contents of this thesis. Since a lot of the work herein is based on camera and
multi-view geometry, we will go over it first. That is briefly defining important camera
models and epipolar geometry. Next we will discuss structured light scanning, both
the basics and the implementation of a popular line of techniques known as phase
shifting. We do this as structured light has played a huge role in this thesis both in
application and data collection. Finally we will end the chapter with an introduction
to the problem of Non-Rigid Structure from Motion (NRSfM) and relevant theory.

2.1 Camera Geometry
Camera geometry is the theory behind image formation and how it relates to the 3D
geometry of a given scene. This is understood as both the geometry of the scene itself
and the camera’s spatial properties. Camera geometry is the foundation of the vast
majority of 3D estimation techniques such as stereo-vision, structured light, structure
from motion and non-rigid structure from motion.

In this thesis, camera geometry is described in terms of projective models. That
is, a model that can tell us a given 3D point’s projection on the image plane. We
will primarily be dealing with two camera models; orthographic and pinhole. The
orthographic camera is arguably the simplest camera which finds usage in structure
from motion and non-rigid structure from motion. Here, a 3D point x is projected
along a line orthogonal to image plane I. Mathematically it is modeled as;

u =

1 0 0 0
0 1 0 0
0 0 0 1

 [
sR t
0 1

]
x, (2.1)

where,

R = rotation matrix,

t = translation vector,
s = scale,
u = x’s projection in homogenous coordinates.
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As can be seen, an orthographic camera simply discards the z-coordinate during
projection. This camera model is illustrated on the left side of Figure 2.1. While the
orthographic camera provides a decent model of real world cameras for small volumes,
it does not work well with large object or distances. The reason is that it does not
model perspective foreshortening.

The pinhole camera model is a more accurate representation of real-world cameras.
Here all projection lines must pass through a single point f called the focal point.
Mathematically it is described as;

u =

fx 0 cx

0 fy cy

0 0 1


︸ ︷︷ ︸

A

R t


︸ ︷︷ ︸

E

x, (2.2)

where,

R = rotation matrix,

t = translation vector,
u = x’s projection in homogenous coordinates,

fx, fy = focal length,

cx, cy = principal point,
A = intrinsic matrix,

E = extrinsic matrix.

Unlike the orthographic camera, the pinhole camera models perspective foreshorten-
ing. For this reason it is also sometimes referred to as a perspective camera. It can
even be extended to model lens distortion [Dua71]. Overall it is a quite good repre-
sentation of most real-world cameras despite leaving out concepts such as depth of
field and focus. Parameters for the model in (2.2) for a given camera can be efficiently
estimated calibrated using e.g. the method of [Zha00].

2.1.1 Epipolar Geometry
Neither of the above camera models are invertible, that is you cannot deduce a point’s
3D position from it’s projection onto the image. However 3D estimation is possible

x1
x2

x3

u1

u2

u3

x1
x2

x3
u1 u2

u3

f

Figure 2.1: Illustration of orthographic camera to the left and pinhole to the right.
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X

F1 F2

P1 P2

u1 u2

Figure 2.2: Geometry of a pair of pinhole cameras. F1 and F2 are the focal points,
u1 and u2 are perspective projections of X, and P1 and P2 are the projective lines

X

F1 F2

e2

P1 P2

u1

Figure 2.3: Epipolar geometry of the correspondence problem. The gray is the plane
spanned by focal points F1 and F2 as well as u2 which is X’s projection along P1.
This planes intersection with the image plane of F2 is the epipolar line e2 on which
u2 can be found

using two or more observations of the same point. Indeed, much of a human’s sense
of depth is a result of us having two eyes and can thus make two simultaneous ob-
servations. To understand how, we need to take a look at the geometry of a point
and two pinhole cameras. Consider the notation of of Figure 2.2. Suppose we would
like to estimate X and we know of X’s projection onto both camera images; u1 and
u2. Also suppose that we know the positions of each camera F1 and F2 along the
corresponding intrinsics. With this information we can deduce the projective lines P1
and P2. We known that X must lie on both P1 and P2, therefore X must lie on the
intersection between P1 and P2. This process of finding X using projective lines is
known as triangulation.

In practice, the positions of F1 and F2 can be determined beforehand in a cali-
bration step [Its15], but u1 and u2 must be deduce using the available image data.
This is typically formulated as a pair assignment problem, meaning given some u1
we would like to deduce it’s correspondence u2 in the other image. This is problem
known as the correspondence problem. Fortunately, the camera geometry itself can
be used to constraint the search space.

Let us say that we know F1, F2 and u1 and we would like to find u2. Consider



10 2 Background

the plane spanned by F1, F2 and u1, we known that X, P2 and u2 must also lie in
this plane. This plane is illustrated as the gray triangle shape in Figure 2.3. The
intersection between this plane and the image plane of F2 gives us a line on which
u2 lies. This is referred to as an epipolar line and is shown in Figure 2.3 as e2.
Thus epipolar geometry is used to constrain the search space for the correspondence
problem with known camera geometry. For specifics, please consult [HZ04].

Even with the constraints of epipolar geometry, the correspondence problem can
be quite hard to solve accurately for natural images due to weak or repeating texture.
Structured light is an effective way of overcoming these limitation and often provides
much more accurate 3D data than passive stereo.

2.2 Structured Light
Structured light is an active depth measurement technique, which eases the correspon-
dence problem by projecting artificial texture onto the measured scene. The simplest
example is merely projecting random noise, but typically the projected patterns are
structured such that they directly encode positional information. Structured light
can be implemented in many ways, but is typically achieved with a light projector
and cameras, as was done in this thesis. The many structured light methods that
have been developed over the years can be roughly grouped according to two factors;

Camera
Single or Multi. Meaning whether a single or multiple cameras are used. For
single camera the correspondence search is performed between the camera and
the projector. For multi the correspondence search is performed between the
cameras.

Pattern
One-shot or multiplex. Meaning whether one or multiple patterns are projected
onto the scene. The former is often used for real-time applications and the
latter is often used for precision measurements.

Table 2.1 illustrates this taxonomy with examples. The general idea of multi-
plexing structured light is to compile the multiple patterns into a cohesive set of
information that can be used to solve the correspondence problem. Formally let us
say that we have a series of patterns p = {p0 . . . pN−1} which we sequentially project

Table 2.1: Structured light taxonomy with cited examples for each entry.

Oneshot Multiplex
Single-Camera Kinect V1 SLStudio [WOL14]
Multi-Camera Assisted Stereo [Kon10] SeemaLab [Eir+15]
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and record. As such we obtain a series of images i = {i0 . . . iN−1}, which are to be
used in solving the correspondence problem.

There are quite many ways of doing this like e.g. Gray Codes [PA82] or Un-
structured Light [CMR11]. During this project, phase shifting was primarily used for
it’s precision and versatility. The following text will cover the base version of phase
shifting, which will give an overview of how it operates.

2.2.1 Phase Shifting
As the name suggests, this category of structured light techniques seeks to encode a
unique phase onto the scene. The pattern sequence is defined by the following,

pn(u, v) = 1
2

+ 1
2

cos
(

2π
( n

N
+ u

))
, (2.3)

where,

u, v = normalized projector coordinates,
N = sequence steps,
n = pattern step.

Notice that v is not present in the pattern definition of (2.3). The reason for this
is that patterns need only be horizontally unique because of the epipolar constraint.
The values in the observed image then is,

in(x, y) = o(x, y) + a(x, y) cos
( n

N
+ θ(x, y)

)
, (2.4)

where,

o(x, y) = background illumination,

a(x, y) = albedo,

θ(x, y) = phase.

So for each pixel, we observed a sinusoidal signal that evolves over the sequence. We
refer to this signal as i(x, y) = {i0(x, y), . . . , iN−1(x, y)}. The background illumina-
tion and albedo of the signal in (2.4) is not necessarily unique, however θ(x, y) is
unique along epipolar lines. Therefore the goal of phase shifting is to recover θ(x, y)
and use it for the correspondence problem. Indeed all of θ(x, y) is referred to as a
phase map, and the process for creating one is illustrated in Figure 2.4. To properly
recovering the phase, we apply the Discrete Fourier Transform (DFT) to this signal:

I(x, y) = F {i(x, y)} ,

= {I0(x, y), . . . , IN−1(x, y)} (2.5)
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+

Figure 2.4: Illustration of single phase encoding. The signal defined by (2.3) is
projected onto the scene. The observed images are then combined into a single phase-
map, which defines θ(x, y), using (2.5) and (2.9)

where,

In(x, y) = Fourier components of i(x, y).

Ideally, the resulting spectrum should be,

I0(x, y) = o(x, y) (2.6)
I1(x, y) = Na(x, y)eiθ(x,y) (2.7)

I2(x, y) = . . . = IN−1(x, y) = 0 (2.8)

With this, we obtain the phase by,

θ(x, y) = arg (I1(x, y)) (2.9)

In practice I2(x, y), . . . , IN−1(x, y) is not exactly zero due to sensor noise and slight
variations in background illumination. In fact some of this noise spectrum will likely
spill over into I1(x, y) as dictated by the Nyquist-Shannon sampling theorem. Luckily,
this can be mitigated by simply adding more samples to our signal. Thus, phase
shifting is quite scalable requiring a minimum of 3 patterns with the option of adding
more patterns for more precision.

Typically only real-time applications goes for this base pattern approach. The
reason being that there are many external sources of noise (e.g. signal discretization,
unstable background illumination and sensor noise) that sets an effective limit to how
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accurate we can know θ(x, y). Instead, it is more accurate to observe multiple phases
with the above method and combine them. One of the most common ways of doing
this, and the technique used in this project, is called phase unwrapping.

2.2.1.1 Phase Unwrapping

The use of phase unwrapping requires that one projects two sinusoidal signals onto
the measured scene, one with 1-period and one with K-periods. The idea is then
to combine the phase of each into a single, accurate phase map. This process is
illustrated in Figure 2.5. The 1-period signal is defined in (2.3) which we refer to this
pattern sequence as p = {p0, . . . , pN−1}. Let us then denote the K-spatial period
signal as pK = {pK,0, . . . , pK,N−1} with each pattern being defined by,

pK,n(u, v) = 1
2

+ 1
2

cos
(

2π
( n

N
+ uK

))
, (2.10)

where,

u, v = normalized projector coordinates,
N = sequence steps,
n = pattern step,

K = number of spatial periods.

In the above, the phase lies in the range [0, 2Kπ]. However, the observed phase
θK(x, y) is still the same (2.4) and thus lies in the range [0, 2π]. Let us refer to the
true phase as ϕK(x, y) which is given by,

ϕK(x, y) = θK(x, y) + 2πk(x, y), (2.11)

where,

k(x, y) = some integer giving the period,

Phase unwrapping is basically the problem of determining k(x, y) which is the
purpose of p. For this reason, p is typically referred to as the unwrapper. As p only
has one spatial period, it’s phase is unambiguous and can thus be used to determine
k(x, y). This is done by dividing the range of θ(x, y) into K parts and then finding
the right one. In other words,

k(x, y) = round
(

Kθ(x, y) − θK(x, y)
2π

)
. (2.12)

By using the results of (2.12) in (2.11), we can recover ϕK(x, y).
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+

+

...

+

Figure 2.5: Illustration of the encoding process of unwrapping phase shifting. First,
two sequences of patterns projected onto the scene are recorded. Then, encoded into
two phase-maps, θ(x, y) and θK(x, y), respectively at the top and at the bottom.
Finally they are encoded into a complete phase map via (2.11) and(2.12)
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2.2.1.2 Advanced Techniques

The aforementioned technique is very accurate, but also makes critical assumption;
the observed signal is only the result of the direct reflection of the projected patterns.
This assumption is often broken in two ways in the real world. First, if the background
illumination is not constant, it will contaminate the signal spectrum. Second, is if
a spatial echo of the signal is measured along with the primary reflection. This is
typically the result of either inter-reflections or subsurface scattering. The former
refers to light reflected from one part of the scene to another, the latter refers to light
being scattered beneath an object’s surface. Subsurface scattering can in particular
introduce a subtle bias in measured depth, as we have shown in one of the studies
included in this thesis [JWA17].

Various solutions to these problems have been proposed. Authors of [GN12] points
out that the effect of inter-reflection dependent on the spatial frequency of the pro-
jected patterns. They also conclude that lower frequencies are more affected than
higher frequencies. Thus, they propose micro phase shifting, where only a narrow
band of high-frequent patterns are used. This minimizes the effect of inter-reflections
by ensuring that it is approximately the same for all patterns. Modulated phase
shifting follows a similar strategy, wrapping the signal in a high frequency carrier
wave [CSL08].

2.3 Non-Rigid Structure from Motion

NRSfM is, as Figure 2.6 illustrates, the science of estimating geometry from a set of
2D observations, that is both view and scene geometry. Unlike regular Structure from
Motion (SfM), NRSfM makes no rigidity assumption, which makes a much broader
and a much harder problem. To see why, let us take a look at the classical SfM
factorization problem formulated by Tomasi et al. [TK92],

W = MS, (2.13)
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where,

W =



u11 u12 · · · u1P

v11 v12 · · · v1P

u21 u22 · · · u2P

v21 v22 · · · v2P

...
... . . . ...

uF 1 uF 2 · · · uF P

vF 1 vF 2 · · · vF P


=


w11 w12 · · · w1P

w21 w22 · · · w2P

...
... . . . ...

wF 1 wF 2 · · · wF P

 ,

M =


M1 0 · · · 0
0 M2 · · · 0
...

... . . . ...
0 0 · · · MF

 ,

S =



x1,1 x1,2 · · · x1,P

y1,1 y1,2 · · · y1,P

z1,1 z1,2 · · · z1,P

x2,1 x2,2 · · · x2,P

y2,1 y2,2 · · · y2,P

z2,1 z2,2 · · · z2,P

...
... . . . ...

xF,1 xF,2 · · · xF,P

yF,1 yF,2 · · · yF,P

zF,1 zF,2 · · · zF,P


=


s11 s12 · · · s1P

s21 s22 · · · s2P

...
... . . . ...

sF 1 sF 2 · · · sF P

 ,

Mf = 2x3 orthographic projection matrix,
F = number of frames,
P = number of points.

100

50

0

50

100

150
150

100

50

0

50

100

100
50
0
50
100

Frame 0

100

50

0

50

100

150
150

100

50

0

50

100

100
50
0
50
100

Frame 20

100

50

0

50

100

150
150

100

50

0

50

100

100
50
0
50
100

Frame 39

Figure 2.6: Illustration of NRSfM. The general idea is to take a set of 2D observations
(typically from images) and produce an estimate of the scene and view geometry.
The reconstructions on the right have been created using the algorithm described
in [KDL17a]
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In other words, W is the observation matrix, M is the motion matrix and S is the
shape matrix. For SfM we have the following constraint,

x1,p = x2,p = · · · = xF,p, (2.14)
y1,p = y2,p = · · · = yF,p, (2.15)
z1,p = z2,p = · · · = zF,p. (2.16)

As such, we know that rank(S) ≤ 3. For NRSfM we do not make any such assump-
tions. This means that the factorization problem in (2.13) becomes highly ill-posed,
as a non-singular corrective transform G can be applied to arrive at a different valid
factorization,

W = MGG−1S (2.17)

In order to solve (2.13) one needs to add the appropriate priors and regularization.
While SfM is a quite mature field, NRSfM still remains a largely unsolved problem.
There is not as of yet a clear consensus of the best approach. However, many methods
follow the same overall strategy, that is using a low-rank basis.

2.3.1 Low-Rank Basis
This prior was first proposed by Bregler et al. [BHB00]. It assumes that the shape in
each frame can be modeled as the linear combination of a set of basis shapes of some
rank K. As such the general problem of (2.13) becomes,

W = D(C ⊗ I3)︸ ︷︷ ︸
M


Ŝ1
Ŝ2
...

ŜK


︸ ︷︷ ︸

S

(2.18)

where,

D =


R̂1 0 · · · 0
0 R̂2 · · · 0
...

... . . . ...
0 0 · · · R̂2

 , C =


c1,1 c1,2 · · · c1,K

c2,1 c2,2 · · · c2,K

...
... . . . ...

cF,1 cF,2 · · · cF,K


This particular formulation of the problem has become quite popular due to it’s
simplicity and expressive power, see [GM11a], [GM11b], [GM11c] or [HGM12] for
examples. While the formulation in (2.18) is much more constrained than the base
formulation in (2.13), there still quite many unknowns to be determined. Furthermore
low-rank shapes only ensures spatial smoothness, but neglects temporal smoothness.
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For this reason the idea of using a Discrete Cosine Transform (DCT) basis was intro-
duced. Akhter et al. [Akh+08] first used the DCT as a shape basis, however Gotardo
et al. [GM11c] later proposed to use the DCT basis to model the weight matrix C
instead,

C = Ωd

[
x1 x2 · · · xK

]
= ΩdX (2.19)

where,

Ωd = DCT basis with d components,
xk = DCT coefficient.

Such that (2.18) becomes,

W = D(ΩdX ⊗ I3)︸ ︷︷ ︸
M


Ŝ1
Ŝ2
...

ŜK


︸ ︷︷ ︸

Ŝ

(2.20)

This ensures temporal smoothness for both shape deformation and for the camera as
well. Gotardo et al. [GM11c] and Ansari et al. [DGS17] suggest first estimating D
and X, then Ŝ can be found by,

Ŝ = M+W, (2.21)

where,

M+ = Moore-Penrose pseudoinverse of M.

2.3.2 Missing Data
The base formulation of the NRSfM problem in (2.13) implicitly assumes that the
position of all points are known in all frames. However, in the real-world this is
rarely the case due to self-occlusion and occlusions from the environment. This adds
additional complexity on top of an already difficult problem. Most attempt to deal
with this problem as a matrix completion problem, that is estimating the missing
entries in W. This can be accomplished using either a DCT-basis [GM11c] or repeated
factorizations [Pal+09]. This described in detail in Section 3.1.1.

2.4 Conclusion
In this chapter, we have gone through some of the background theory of this thesis.
We have seen that image formation can be modeled using either orthographic or
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perspective projection. We have also seen how these models can be used to recover
the 3D position of a point from multiple camera observations.

Structured light has been defined as a method for solving the correspondence
problem inherent to multi-view geometry estimation. We have shown how this may be
implemented by gradually shifting a sinusoidal pattern over the scene, which encodes
a horizontal phase. This technique is what is known as phase-shifting.

Finally, SfM was defined as the problem of recovering camera pose and scene ge-
ometry from a series of monocular images. NRSfM was defined as when the observed
scene is not static, but changes over the course of the series. We have shown why
this problem is inherently ill-posed and some common priors used to constrain the
solution space.
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CHAPTER 3
Related Work

In this chapter, we will go through the relevant body of research related to the work
done in this thesis. The work done in Non-Rigid Structure from Motion (NRSfM)
and flexible robotics is considered the main contribution of this thesis, and will thus
be the focal point of this section. For literature related to the other works included
in this thesis, we refer to the respective publications themselves in the appendices.

First, we will go over the recent literature in NRSfM, which solutions have been
proposed and how they relate to eachother. We will go over what types of priors have
been employed and how the camera has been modeled. Then, we will examine how
missing data has been handled in past work.

Secondly, we will examine the literature relevant to the flexible robotics problem.
As problem is picking piece of meat from an unorganized pile, we consider the problem
as bin-picking of non-rigid objects. To our knowledge, there is little work done on
this exact topic. As such we will divide our attention to two closely related fields;
bin-picking and instance segmentation.

3.1 Non-Rigid Structure from Motion
As briefly mentioned in section 2.3, NRSfM is still a field undergoing significant de-
velopment. In the following, we will give a review of related work in NRSfM. It
should be seen as expanding upon the existing literature review of paper A. We will
first focus on the shape and motion recovering aspects of NRSfM and how the idea
of low-rank shapes has been implemented in previous work. The base NRSfM factor-
ization problem assumes an orthographic camera. However, most real-world image
data is obtained via perspective projection. Thus, we will examine how this gap has
been bridged in previous work. As previously mentioned, much of field assumes a
complete W which is rarely the case in real-world data. Thus, a portion of this text
will be dedicated to examining how missing data has been dealt with previously.

NRSfM is an inherently ill-posed problem and thus a solution needs regularization
and priors to be physically meaningful. Despite the physical nature of the problem,
purely statistical priors are often employed. Methods that use the low-rank basis prior
are a part of this category, as are methods which employ spatio-temporal smoothness
as well as orthonormality.
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Bregler et al. [BHB00] was the first to employ a low-rank statistical prior, inspired
by Tomasi et al.’s work in Structure from Motion (SfM) [TK92]. Indeed, they also
recover the camera motion and base shapes using the Singular Value Decomposition
(SVD),

W = UΣVT , (3.1)
= M̂Ŝ (3.2)

where,

M̂ = UΣ
Ŝ = VT

and simply taking the 3K largest singular vectors and values. While reasonable results
were achieved with the above factorization method, it only acts as a constraint on the
spatial distribution of the reconstruction. So for a rapidly moving camera, results can
quickly deteriorate. Akhter et al. [Akh+08] proposed that a low frequency Discrete
Cosine Transform (DCT) should be used as shape basis instead,

W = DΩdS. (3.3)

where,

D = trace orthographic projection matrix,
Ωd = DCT basis with d vectors,

S = shape bases.

They derive this form by applying a rectification matrix Q to (3.2),

DΩd = M̂Q (3.4)
S = Q−1Ŝ. (3.5)

Q is found using the DCT basis. This dual representation is referred to as the point
trajectory approach. Gotardo et al. [GM11c] later argue that the trajectory approach
could be expanded to the entire shape, viewing the deformation as a smooth point
trajectory in K dimensional space,

W = D(ΩdX ⊗ I3)︸ ︷︷ ︸
M


Ŝ1
Ŝ2
...

ŜK


︸ ︷︷ ︸

Ŝ

(3.6)
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The motion matrix M can then effectively be estimated using their column space
fitting algorithm [GM11a]. The shape basis is then determined by,

Ŝ = M+W, (3.7)

where,

M+ = Moore-Penrose pseudoinverse of M.

This approach was later expanded with the kernel trick, to provide effective means
of modeling non-linear deformations like articulated motion [GM11b]. Torresani et
al. [THB08] points out that the linear subspace representation of NRSfM in (2.18)
is inherently quite unstable w.r.t. the size of the subspace. Choose a K that is
too large and the problem becomes totally unconstrained, choose a K that is too
small and the problem becomes too constrained, unable to accurately model real
world motion. Thus, making these methods work would require extensive parameter
tuning. They argue that treating the shape estimation as a probabilistic problem is a
better approach. Specifically that the shape weights of C in (2.18) should be viewed
as a normal distribution,

cf,k = N (0, 1) (3.8)

Then S can be found via an Expectation-Maximization (EM) algorithm. Olsen et
al. [OB08] included both temporal and spatial smoothness into their NRSfM algo-
rithm by including corresponding penalty terms into an optimization step. Olsen et
al. [Bar+08] combined this approach with another key assumption; that base shapes
Sk are ordered in a coarse to fine manner similar to the components of Principal Com-
ponent Analysis (PCA). This means that the first base shapes describes the coarse
movements while the later shapes describes finer motion. In their algorithm, shapes
are estimated in an iterative manner, allowing for automatic selection of rank K to
a certain error threshold. Each shape is determined in an optimization step with
spatial and temporal smoothness terms. In a similar spirit, Brandt et al. [Bra+09]
argues that the best way to select the shape base is via statistical independence. They
proposed using the independent component analysis to accomplish this.

Kong et al. [KL16] argues that the linear combination of a number of shapes is too
restrictive to express generic deformations. Instead, one should exploit the inherent
compressibility of SfM to enforce sparsity in the shape basis. As such we can assume
a full rank shape basis S which is sparse in the sense that it only has K non-zero
entries for each row. Kong et al. [KL16] showed that this prior is strong enough to
yield decent reconstructions without any additional priors like smoothness.

A low-rank basis implicitly assumes that only one deforming object is present.
Kumar et al. [KDL17b] argues that this is too inflexible to handle real-world scenes,
where more than one object is typically present. Instead, they proposed formulating
the reconstruction problem as a joint segmentation and reconstruction problem. In-
deed, they argue this can be done by exploiting the inherent spatial and temporal
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clustering of NRSfM. This is formulated as a self-expressive property of S. For spatial
clustering this is given by,

S = SC1, (3.9)

subject to,

diag(C1) = 0, (3.10)
1T C = 1. (3.11)

Here, some clustering matrix C1 approximates each column (which is a trajectory)
in S as a linear combination of other columns in S. Constraint (3.10) ensures that
we avoid the obvious solution of C1 = I and (3.11) ensures that the combination
remains affine. A similar self-expressive constraint can be formulated for trajecto-
ries [KDL17b]. Kumar et al. then shows that an accurate reconstruction can be
estimated in solving for the spatio-temporal clustering. While this approach has
been designed for multiple bodies, it also works quite will for single bodies as we have
shown with our NRSfM dataset and evaluation (paper A).

All of the above methods deal with an orthographic camera, however most real
world image data is best approximated with a perspective camera. A perspective
projection q of a point s is given by,

λq = Ps (3.12)

where,

s =


x
y
z
1

 , q =

u
v
1

 ,

P = 3x4 perspective projection matrix,

λ = projective depth.

In other words, perspective projection can be seen as a scaled affine projection.
For this reason many NRSfM and SfM methods account for perspective projection by
considering a scaled measurement matrix W̃ instead of the original,

W̃ =


λ11q11 λ12q12 · · · λ1P q1P

λ21q21 λ22q22 · · · λ2P q2P

...
... . . . ...

λF 1qF 1 λF 2qF 2 · · · λF P qF P

 (3.13)
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where,

qfp =
[
wfp

1

]
,

wfp = image coordinate as given by (2.13),
λfp = projective depth.

Estimating the projective depths is, of course, not a trivial task, especially for non-
rigid scenes. Wang et al. [WTH07] proposed a solution where the observation matrix
W is iteratively reweighted. The new weights are calculated from the estimated
factorization M’s and S’s deviation from the observed perspective projection.

Hartley and Vidal [HV08] derived a closed-form algrebraic solution for recovering
the perspective projection matrices along with the shape basis and shape weights.
The algorithm simply requires an initial estimate of a multifocal tensor, though the
authors have reported it as being very noise sensitive.

Llado et al. [LDA10] proposed a method for segmenting a deforming scene into
rigid and non-rigid points using an initial rough projective depth estimation. The
camera is then self-calibrated using the rigid subset, which is then used to refine the
perspective factorization problem.

Chhatkuli et al. [Chh+17] completely forgoes the standard factorization procedure
in dealing with perspective. Instead, they resolve the projection depth in second-
order cone programming formulation by representing shape as a set of view invariant
features. Specifically, they use the assumption of isometry in the form of a maximum
depth heuristic.

3.1.1 Missing Data
In real world observations W is rarely complete due to occlusions. As such dealing
with this missing data is essential for NRSfM. The BALM algorithm [Del+12] treats
shape, motion and missing data filling as a joint iterative optimization problem. Con-
sider that we want to estimate to factorization W = MS, but only some values of
W are known. Let this set of known values be the set O = {(i, j) : Wi,j is known}.
Now instead of optimizing on W, we instead optimize on a function Y (Z) which fills
W’s unknown entries with estimates Z. In other words, Y (Z) is defines as,

Y (W, Z)ij =

{
wij , if(i, j) ∈ O

zij , otherwise
(3.14)

Then we want to optimize on the following loss function,

L(W, Z, S, M; λ) = ||Y (W, Z) − MS||2 + Λ(M, λ), (3.15)



26 3 Related Work

where,

Λ = Lagrangian constraint function,
λ = Lagrange Multipliers.

Note that (3.15) is a simplified version of the one found in [Del+12]. Specifically, it
excludes a manifold projection penalty term as it is not important for understanding
how the algorithm deals with missing data. M, S and Z are then determined by
iteratively solving (3.16) and (3.17),

(Sk+1, Mk+1) = argmin
S,M

L(W, Zk, S, M; λ), (3.16)

Zk+1 = argmin
Z

L(W, Z, Sk+1, Mk+1; λ), (3.17)

where Sk, Mk, Zk denotes the results of iteration k. In other words Z is estimated,
based on the best estimates of S and M and vice versa.

Paladini et al. [Pal+09] follows a similar iterative missing data estimation ap-
proach. Indeed, theirs is quite generic, requiring only an initial estimate of a filled W
via Z. The complete procedure is described in Algorithm 1.

Algorithm 1: Iterative factorization and missing data estimation algo-
rithm [Pal+09]. Note that E[∗] denotes the expectation (or mean) operator.
Y (W, Z[k]) is as defined in (3.14). Runs for K iterations or until convergence.

1 for k ∈ K do
2 Fill missing entries: Y[k] = Y (W, Z[k])

3 Estimate centroid: t[k] =
[
E

[
y[k]

1∗

]
E

[
y[k]

2∗

]
· · · E

[
y[k]

F ∗

]]T

4 Remove centroid: Ŷ[k] = Y[k] −
[
t[k] t[k] · · · t[k]]

5 Solve NRSfM factorization: Ŷ[k] = M[k]S[k]

6 Add centroid: Z[k+1] = M[k]S[k] +
[
t[k] t[k] · · · t[k]]

7 end

Another strategy for dealing with missing data is to fill the missing entries in W
before applying a NRSfM algorithm, as was done in [GM11c] and [GM11a]. Indeed,
they assume that, similar to their camera trajectory, that each projected point trajec-
tory can be expressed in terms of a low frequency DCT basis. With this assumption
they recover an initial M and S from the known entries, which is used to fill the
missing entries in W.

Chhatkuli et al. [Chh+17] poses the NRSfM reconstruction problem as an opti-
mization problem. As such they simply do not include the missing terms in their
optimization algorithm.
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3.2 Bin-Picking of Non-Rigid Objects
As stated in the start of this chapter, our study of flexible robotics is related to two
fields of research. The first being bin-picking which is the task of picking separate
object from a clutter (typical in a bin). Second being instance-level segmentation
which is the unique segmentation of several object instances. We will go over both
fields in teh following

3.2.1 Bin Picking
This task has been around for many years and still remains an active field of research.
The archetype of this task is picking out objects of known geometry from a clutter,
typically in the form of a Computer Assisted Design (CAD) model. Mahler and Gold-
berg [MG17] proposed a transferred deep learning solution to the bin picking problem.
To be specific, they used a Convolutional Neural Network (CNN) as a regressor to
a partially observed Markov decision process formulation of the bin picking process.
The network is trained using a collecting of synthetic depth maps generated using a
variety of CAD models in various poses.

Kim et al. [Kim+16] uses a cascaded kernel convolution score with Haar-like filers
to robustly detect object poses in a cluttered pile. Indeed, they show their method to
be robust even under severe specular reflections. However, the method is specifically
designed to work with approximately planar objects, which are assumed to be parallel
with bottom of their container.

Zeng et al. [Zen+17] successfully applied a CNN for object classification and de-
tection to RGB-D data. Object pose was deduced afterwards by fitting the appro-
priate CAD model to the measured point cloud using fine-grained Iterative Closest
Point (ICP). This information was then used to guide a 6-DoF robot arm with a claw
gripper.

Chang and Wu [CW14] proposed a more traditional approach for detecting and
pose estimating cluttered rigid bodies. Using a structured light scanner, they obtain
the surface geometry of the object pile. Object instances are then simultaneously
detected and pose estimated via registering a CAD model onto the point cloud.

Wang et al. [Wan+17] argued for a strategy based on point pair features for
handling cluttered texture-less objects. Using a voting framework and PCA they
implemented a clustering technique based these features, which can retrieve the pose
of a known object in a cluttered scene. Their voting scheme also allows for mismatch
detection.

Indeed, point pair features are quite commonly used for pose estimation of known
cluttered objects as Abelloos and Goedemé [AG16] point out in their review of the
field. However, they argue that point pair features can be prohibitively slow when
trying to register to a large point cloud. Thus they purpose a search heuristic, based
iterative highest point detection.

Ellekilde et al. [Ell+12] models the bin picking problem as a search through a
probability space. This space can be efficiently searched using either a weighted
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random selection scheme or, if samples are sparse, a priority based scheme. A camera
is used for input and for learning correction.

3.2.2 Instance-Level Segmentation
Segmentation is the task of separating one or more objects from the background in
an image. This problem has been relevant since the inception of computer vision
and image analysis, and thus has been and is an active research field. Needless
to say, this is also quite relevant for vision guided bin-picking. However, ordinary
segmentation is basically a classification process that assigns a class to each pixel (e.g.
foreground/background). This is insufficient for the bin-picking problem, as we need
to know the location of each instance of said class (e.g. where is each screw in this
pile). Instance segmentation is an extension of the segmentation problem, where you
seek to assign a unique label for each object instance.

One of the most common approaches is segmentation by detection, where objects
are first localized on a bounding box level and then segmented within each box. Ku-
mar et al. [KTZ05] proposed an Markov Random Field (MRF) based implementation
of this strategy with category specific shape priors. Similarly Yao et al. [YFU12]
used shape priors in combination with a holistic Conditional Random Field (CRF)
to formulate detection and segmentation as a joint problem. Riemenschneider et
al. [Rie+12] proposed a two step process in which object centers are located via a
voting scheme in a Hough graph. Fine-grained segmentation is then achieved via
back-projection onto a CRF. The watershed transform is a traditional technique for
instance-level segmentation in image analysis, but it requires a well-defined poten-
tial field to yield good results. Thus, it is rarely used on complex scenery. Bai and
Urtasun [BU17] proposed using a CNN to transform an image into an instance seman-
tic energy field, where the center of each object corresponds to a well-defined local
minimum. Then, watershed transform can be used to achieve accurate instance-level
segmentation.

Instance-level segmentation is quite a daunting task, thus human-in-the-loop seg-
mentation strategies has been often been applied. This is typically in the form of
initialization data, such as a bounding box or a mask. The quintessential example
is probably the GrabCut algorithm [PMC10]. Here, a user supplied mask is used
to derive a color-based Gaussian Mixture Model (GMM) model for background and
object, which is later used in a MRF formulation of the segmentation problem. The
latter is solved via a graph cut. The OSVOS [Cae+17] and OnAVOS [VL17] utilizes
a similar approach, though here a user supplied mask is used to refine a CNN for
instance tracking and segmentation.

Another approach is segmentation via registration of a known CAD model. This
prominent strategy in the field of bin packing, as shown Section 3.2.1. For example
Zeng et al. [Zen+17] used a CNN to detect object instances in an RGB-D image.
Then the corresponding CAD model was registered onto the scene to obtain exact
location and orientation.
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Newer approaches seeks exploit the power of deep learning to solve instance seg-
mentation without the need for object detection or shape priors. Zhang et al. [ZFU16]
proposed merging local CNN label predictions into a global MRF energy problem
along with smoothness and inter-connectedness priors. The maximum expectation
solution is then obtained using mean fields. Liang et al. [Lia+15] prosed training a
CNN for predicting the bounding boxes and number of instances. The information
is then used in a simple clustering scheme to obtain the final instance-level segmen-
tation.

3.3 Conclusion
In this chapter, we reviewed the related work in two fields; NRSfM and bin-picking
of deformable objects.

As we have shown, there is quite an impressive and diverse body of literature
on NRSfM. We have seen how statistical priors like low-rank and/or DCT basis
have been used to constraint the solution spaces. Thus, enabling one to find both
spatially and temporally smooth solutions. Other priors have also been efficiently
applied such as spatio-temporal clustering or isometry. We have also seen that the
orthographic camera model is still widely used, despite efforts to employ a perspective
model. Missing data remains a challenging issue with many suggested solutions,
though mostly modeled as a matrix completion problem. Some performs an initial
fill-in and then proceeds to the ordinary NRSfM algorithm whereas others employ an
iterative fill-in factorization approach.

As shown in this chapter, there are many proposed solutions to the problem of
bin-picking and instance segmentation. Some formulate the problem as finding the
EM solution to a MRF or CRF, others leverage the power of deep-learning and CNNs
to achieve high quality segmentation. For bin-picking prior known CAD models are
still widely used for detection and pose estimation, which implies a rigidity prior.
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CHAPTER 4
Contributions

In this chapter, we go over the contributions made, in this thesis, in fulfilment of
the objectives specified in Section 1.2. We will first discuss our evaluation of the
field of Non-Rigid Structure from Motion (NRSfM) (paper A). This will cover both
the creation of a new NRSfM dataset as well as our factorial analysis of the field.
Then, we shall discuss the flexible robotics cell that was developed during our studies
(paper B). We will focus both on the implementation and on the lessons learned.
In continuation of this project, we shall move on to our study of structured light
scanning of biological material (paper C). This is effectively also a study on the
effects of subsurface scattering on structured light scanning. Finally, we will examine
the work done on the creation of a rendering dataset as well as traceable vision in
geometric metrology. In the end, we will reflect on the lessons learned and provide
perspective on future avenues of research.

4.1 Evaluation of Non-Rigid Structure from Motion
As shown in Section 3.1, many NRSfM methods have been proposed. So many, that it
is unclear what the field can do and where the challenges are. Thus, in the following,
we will go over this thesis’s evaluation of NRSfM. This is divided into two parts; the
creation of a proper dataset and a factorial analysis. Our work also provides a basis
for future evaluation and studies.

4.1.1 Dataset
In our opinion, the lack of coalescence in NRSfM is largely due to a lack of interesting,
realistic data with ground truth. Therefore, we set out to create one. Formally a
NRSfM dataset consists of three correlated types of data:

Observations
A set of 2D points which is to be given to a NRSfM algorithm as input, denoted
as matrix W.

Missing Data
Indicative data which shows which observation points are visible. Given to a
NRSfM algorithm as input along with the observations.
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Ground Truth
The 3D deformation corresponding to the 2D observations, denoted as matrix
S.

As described in paper A, our NRSfM dataset contains several innovations. First
we used stop-motion mechatronics to approximate real deformations. This allowed us
to record the ground truth with very precise structured light scanning. To be specific,
we employed the robot-mounted structured light scanner, shown in Figure 4.2, used
in previous work at DTU [Ste+17; Aan+15; Jen+BD; Aan+16]. It also allowed for us
to include varied deformations. To be specific, our dataset includes five deformation
types; articulated motion (Figure 4.1a), bending (Figure 4.1b), deflation (Figure 4.1c),
stretching (Figure 4.1d) and tearing (Figure 4.1e).

Like other data used in evaluation NRSfM (like MOCAP) we create observations
by projecting the ground truth using a synthetic camera. However, unlike previous
work we create observations according to a factorial design. Specifically, we have
six different camera paths and two camera models. An observation matrix is then
created for each factorial combination. Our evaluation shows that this factorial design
is quite important as the camera has a significant influence on the reconstruction error,
regardless of the algorithm used.

Unlike previous work, we create missing data based on self-occlusions. The afore-
mentioned structured light scans not only records the ground truth, but also gives
us complete, dense surface reconstructions. As such, creating missing data can be
done by raycasting from each point into the camera, while occlusion testing against
the recorded surface. As we will later see, this kind of realistic missing data is very
different from the randomly removed missing data used in previous work.

The ground truth and observation points were sampled using standard optical flow
procedure. Therefore we obtain a more naturally distributed set points compared to
marker-based motion capture.

4.1.2 Evaluation Pipeline
Our evaluation is based on a factorial analysis using Analysis of Variance (ANOVA).
It is described in paper A. While ANOVA is an well established statistical tool for
comparing distributions, it has, to our knowledge, never been applied for NRSfM (or
most comparisons in computer vision for that matter). The previous standard has
been to simply aggregate some collected error metric for various categories and ana-
lyzing the difference without regard for whether the difference is statistical significant.
Not only can the ANOVA help to avoid this kind of type I error, it can also separate
the influence of various factors on reconstruction quality.

To be precise, our ANOVA model included the influence of five factors on the
reconstruction error. These were as follows;

Algorithm ai

Which algorithm was used.
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(a) Articulated (b) Bending (c) Deflation (d) Stretching (e) Tearing

Figure 4.1: Stop-motion mechatronics used for NRSfM dataset creation.

Camera Model mj

Was the camera model perspective or orthographic.

Animatronics sk

Which animatronics sequence was reconstructed.

Camera Path pl

How did the camera move.

Missing Data dn

Whether occlusion based missing data was used.

Our model allowed us to learn much about the state-of-the-art in NRSfM. Our first
analysis without missing data revealed that there is a statistical significant difference
between the average reconstruction error for all 16 NRSfM methods included. This
is not particularly surprising, so we redid the same factorial analysis with the 5

(a) Scanner (b) Environment

Figure 4.2: The mobile structured light scanner that was used for recording our
NRSfM dataset.
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Figure 4.3: Boxplot of the error distribution of the five NRSfM algorithms with the
lowest mean error. The distribution has been adjusted for factors like camera motion
and deformation type. Notice how closely the means of each distribution resemble
each other.

algorithms that had the lowest mean error. These were MultiBody [KDL17a], KSTA
[GM11b], RIKS [HGM12], CSF2 [GM11c] and MetricProj [Pal+12]. Interestingly, the
analysis revealed no significant difference. Indeed, visualization the error distribution
of each after correcting for other factors supports this hypothesis1. This is shown
in Figure 4.3, as can be seen the error distributions are very similar. Introducing
our occlusion-based missing data into the model changes this conclusion however.
Almost all methods see a large increase in reconstruction error when subjected to
our occlusion-based missing data. The only algorithm that is relatively stable is
MetricProj [Pal+12]. Curiously the authors of the method designed their method
around the spatio-temporal structure of missing data, whereas other merely focus on
the ratio.

The camera model has long been an open question in NRSfM. Specifically, employ-
ing a perspective camera model has proven to be challenging. Indeed, we observed
this in paper A as only 2 out the 16 included methods uses a perspective camera
model. However, our study indicates that the employed camera model is actually not
that important. While the camera model does have a statistically significant influence
on the reconstruction error, it is small compared to the influence of the deformation
type and camera path. Indeed, the few perspective methods we tested did not signif-
icantly outperform methods that employ an affine camera on perspectively projected

1Using the residuals of an ANOVA model without algorithm terms.
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Figure 4.4: Repeated reconstructions with varied camera model. Each point is the
reconstruction a factorial combination of algorithm, camera path and deformation
under orthographic and perspective camera model. As can be seen there is a rough
linear trend. This was intended to be included in paper A, but cut due to page limit.

observations. A look at the data, shown in Figure 4.4, illustrates an interesting trend.
The relationship between a reconstruction done under affine and perspective camera
can be approximately modeled as line. This line has an approximate unit slope and
a positive intercept. Thus, reconstructing perspectively projected observations adds
a small constant increase in error, compared to reconstructions using orthogonally
projected observations. Though it should be noted that the distance changes in the
used camera paths are not particularly extreme, thus keeping perspective artifacts to
a minimum (distance changes with a factor 1.6 on average).

We concluded that deformation type has a significant influence on reconstruction
error. Particularly articulated motion and stretching (shown in Figure 4.1a and 4.1d)
results in a large reconstruction error, no matter which algorithm is used. Indeed,
we also showed that the camera path has a significant impact on reconstruction,
independent of algorithm used.

4.1.3 Discussion
Our evaluation results has several implications as to the future development of NRSfM.
Most of the state-of-the-art methods handle occlusion-based missing data poorly, thus
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this area needs attention. It is unclear whether it is the algorithms themselves or their
matrix completion that needs improvement. For example, a DCT basis is often used
for track completion before doing NRSfM. Perhaps the successful completion method
of MetricProj [Pal+12] could be used with other algorithms.

Our studies shows the camera model to be have a small influence on the recon-
struction error. Thus, we do not see at being a priority to employ a perspective
projection model, especially considering the needed effort.

Articulated motion is an issue which should be dealt with in future work. The non-
linear motion of the densely sampled joints poses a challenge regardless of employed
prior.

Our analysis also demonstrates the need for controlling the camera. Especially,
the camera motion has a significant impact on reconstruction error. Thus employing
a taxonomy similar to our work would be benefitial. The influence of the camera
path also indicates that future NRSfM research should investigate how to deal with
this variance.

4.2 Flexible Robotics for Bin-Picking of Non-Rigid
Objects

This section provides an overview our work in solving the bin-picking problem at Dan-
ish Crown as described in Section 1.1.2. Details can be found in paper B. Our system
for solving this task can be seen in Figure 4.5. It consists of four core components:

Vision
There are two subparts to this system. First, a structured light scanner which
recovers the surface geometry of the box content. Second, a fast segmentation
algorithm that separates each meat piece instance. Developed during this thesis.

Robot Arm
Standard issue 6-Degree of Freedom (DoF) robotic arm.

Suction Cup Gripper
Gripper intended to provide flexible gripping without damage the meat. Suction
cup positions can be adjusted to account for different cutout sizes and shapes.
Developed by Jørgensen et al. [Jør+17].

Simulation Framework
Runs simulation of meat handling and optimizes the robots movement in terms
of fast and proper placement. Also yields the optimal suction cup placement
for the gripper. Developed by Troels Bo Jørgensen of the Southern University
of Denmark.

During online operations, the vision system detects the target piece which is then
fed to the path planning algorithm. This algorithm has been parameter tuned using
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Figure 4.5: The automated solution for bin-picking that has been developed during
this thesis. A structured light scanner is used to recover surface geometry, which is
then used to guide the robotic arm with suction cup gripper.

the simulation framework, and generates and optimal path for picking and placing.
The suction cup gripper is then placed on the meat piece, which is then lifted and
placed. This process is then repeated until the box has been emptied. The system
was implemented using Robot Operating System (ROS) [Qui+09].

The vision component of this system was developed during this thesis. It uses the
structured light method described in Section 2.2.1 to acquire 3D information. This
information is then fed to an instance segmentation algorithm that we have developed.
It is based on the idea of region growth segmentation which is implemented in Point
Cloud Lib (PCL) [RC11; RC17]. Briefly described, it grows a region from a seed of low
curvature and terminates at high curvature which is typically at the edge of an object
instance. The data from phase shifting structured light arrives in a 2D grid, which
we exploit to greatly reduce the region growth runtime. Specifically, the algorithm
goes through many neighborhood searching steps, which was originally done in 3D
Cartesian coordinate system. We instead search for neighbors in the 2D grid which
is why our implementation can segment a 675x540 point cloud in 100-150ms on a
laptop 2. The segmentation algorithm is illustrated in Figure 4.6.

4.2.1 Discussion
We have demonstrated that it is possible to implement a flexible system for bin-picking
of non-rigid objects. We successfully tested it on several cutouts of meat. That said
our experience also shows that it is quite challenging to control automation with 3D

2Specifically on an Intel Core i7-4610M
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Region Growth

Selection

Depth Map

Figure 4.6: Example of the segmentation algorithm in process. Each region/instance
is given by a separate color. Last stage is selecting the meat piece to be picked, which
is a decision weighted on depth and size.

Figure 4.7: Example of the robot cell doing bin-picking. First frame shows a pattern
from the structured light scanner. Second frame shows the robot placing the gripper
for lift. Third frame is the lift in action.

vision in a stable manner. One major problem is the aggregation of error from the
various components. Individually, the error from simulation, calibration, scanning,
segmentation and path planning might seem insignificant, but they can quickly add
up to cause major problems. As such one must expect partially erroneous data when
designing the systems module.
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Another major challenge is the sheer number of unique situations the system
can encounter in a real world industrial hall. This is especially true when working
with unorganized bins of non-rigid objects. It is very easy to be blinded by good
performance on a dataset, and then be unpleasantly surprised when testing in the
real environment. It is therefore incredible important to test early and test often in the
actual operational environment when developing applied computer vision solutions.
A dataset is fine as a performance indicator, but it is important to realize that it only
encompasses a subset of the problem domain.

Another good argument for early testing is that some error sources can only be
uncovered this way. For example, we found that specular reflections from the ceiling
lighting would interfere with our structured light scanner. Varying sunlight due to
changing cloud cover would also cause disruptions.

4.3 Error Analysis of Structured Light Scanning of
Biological Material

Biological material exhibits heavy subsurface scattering properties, e.g. only 5-7% of
the light transmitted by human skin is the results of a direct reflection. To ensure
that the structured light method used in the robotic solution produces accurate data,
we engaged in a study to ascertain the effects of subsurface scattering on the precision
of structured light.

As covered in Section 1.1.3, we wanted to examine how subsurface scattering
influence structured light scanning. This was also motivated by our development of
the flexible robotics cell at Danish Crown.

Our work is covered in paper C. The approach was simple, scan the surface of
some meat. Then coat said meat in a thin layer of diffuse material, which is our
case was chalk. Scanning the coated meat then yields the true surface, which we
used as a reference. Then we simply applied a standard linear model, based on
surface normals and view geometry, to model the error behavior. We discovered that
subsurface scattering largely causes a positive bias to structured light scanning, which
means the scanned surface seems to be further away than it actually is. This bias is
dependent on the specific material and structured light method used and can be up
to 1mm. We also found that the error is largely systematic and can be corrected for
using the aforementioned linear model. Before correction, methods like micro phase
shifting [GN12] and modulated phase shifting [CSL08] has a lower scanning error than
standard phase shifting. However after correction with the fitted model, the three
methods actually have approximately the same average scanning error.
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4.4 Other Contributions
Our work in creating a dataset for evaluation of photorealistic rendering is docu-
mented in paper D. We created input data for scenes with glass objects as well as
diffuse geometry. The dataset includes fully defined camera pose, BRDFs, scene ge-
ometry and environment lightning maps as well as a ground truth image for each
camera pose. This was accomplished using the robotics setup shown in Figure. 4.2
as well as CT scanning.

Our efforts in applying computer vision to the geometric metrology problem de-
scribed in Section 1.1.5 were also successful. The work is documented in poster F.
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Conclusion

In this chapter, we will examine the contributions made and see how it aligns with
the objectives stated in Section 1.2.

We introduced a new high-quality dataset for Non-Rigid Structure from Mo-
tion (NRSfM) that boast of realism, variety and accurate ground truth. In addition,
we created missing data via self-occlusion which is much closer to reality than the
previously used method of randomly removed missing data. This work is described
in detail in paper A.

We used this dataset to perform a factorial analysis of the performance of 16
state-of-the-art methods. Not only did this provide us with valueable insights, such
as articulated motion remains difficult to reconstruct, but it also lays the ground
work for future evaluations of the field. We also show that employing a perspective
camera model in future work should not be a priority. The complete evaluation can
be found in paper A.

Our efforts in creating a flexible robotics cell for bin-picking of non-rigid objects
resulted in an integration of structured light 3D and a 6-DoF robot arm with a suc-
tion cup gripper. The scanner provides accurate 3D data which is used to guide the
arm. This prototype demonstrates that the problem is indeed solvable with a single
flexible automation solution. We learned that robust error handling is vital for stable
operations. Additionally, early field testing should be a priority. This work is fully
described in paper B.

We studied the effects of subsurface scattering on structured light scanning by
studying it’s accuracy in scanning biological material. The scanning error could be
described using a simple linear model based on view geometry. It demonstrates that
the error manifests largely as a positive offset and that much of it can be corrected
with the aforementioned model. This work is described in paper C.

A dataset for evaluation of photorealistic rendering was created with complete in-
put data and reference images. We created it using a variety of vision techniques, such
as structured light scanning as well as CT. The depicted scenes contains challenging
optical objects, such as glass, and was effectively used for evaluation. Furthermore,
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we also demonstrate it’s applicability in analysis by synthesis. The dataset is fully
described in paper D.

We have implemented an automatic solution for measuring the area of contact
surfaces. With this we demonstrated the importance of traceability for 3D vision
as it effectively determines systematic errors and biases. This work is presented in
poster F.

All in all we must conclude that the objectives of thesis has been met.
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A Benchmark and Evaluation of
Non-Rigid Structure from Motion

Sebastian Hoppe Nesgaard Jensen, Alessio Del Bue, Mads Emil Brix Doest, Henrik Aanæs,

Abstract—Non-Rigid structure from motion (NRSfM ), is a long standing and central problem in computer vision, allowing us to obtain
3D information from multiple images when the scene is dynamic. A main issue in the further development of this important computer
vision topic, is the lack of high quality data sets. We here address this issue by presenting of data set compiled for this purpose,
which is made publicly available, and considerably large than previous state of the art. To validate the applicability of this data set, and
provide and investigation into the state of the art of NRSfM , including potential directions forward, we here present a benchmark and a
scrupulous evaluation for this data set. This benchmark evaluates 16 different methods with available code, which we argue reasonably
spans the state of the art in NRSfM . We also hope, that the presented and public data set and evaluation, will provide benchmark tools
for further development in this field.

Index Terms—Non-Rigid Shape Recovery, Non-Rigid Structure from Motion, Deformation Modelling.

F

THE estimation of structure and motion from an
image sequence, i.e. the structure from motion (SfM)

or monocular simultaneous localization and mapping
(SLAM) problem, is one of the central problems within
computer vision. This problem has received a lot of
attention, and truly impressive advances has been made
over the last ten to twenty years. It plays a central role
in robot navigation, self-driving cars, and 3D reconstruc-
tion of the environment, to mention a few. A central part
of maturing regular SfM is the availability of sizeable
data sets with rigorous evaluations, e.g. [1][2].

The regular SfM problem, however, primarily deals
with rigid objects, which is somewhat at odds with the
world we see around us. That is, trees sway, faces express
themselves in various expressions, and most non-static
organic objects are generally non-rigid. The issue of
making this obvious and necessary extension of the SfM
problem, is referred to as the non-rigid structure from
motion problem (NRSfM ). A problem that also has a
central place in computer vision. The solution to this
problem is, however, not as mature as the regular SfM
problem. A reason for this is the scarcity of high quality
data sets and accompanying evaluations. Such data and
evaluations allow us to better understand the problem
domain and better determine what works best and why.
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To address this issue we here introduce a high quality
data set, with accompanying ground truth (or reference
data to be more precise) aimed at evaluating non-rigid
structure from motion. To the best of our knowledge,
this data set is significantly larger and more diverse
than what has previously been available – c.f. Section 3
for a comparison to previous evaluations of NRSfM .
The presented data set better captures the variability of
the problem, and gives higher statistical strength of the
conclusions reached via it. Accompanying this data set,
we have conducted an evaluation of 16 state of the art
methods, hereby validating the suitability of our data
set, and providing insight into the state of the art within
NRSfM . This evaluation was part of the competition we
held at a CVPR 2017 workshop, aimed at NRSfM . It is
our hope and belief that this data set and evaluation will
help in furthering the state of the art in NRSfM research,
by providing insight and a benchmark. The data set is
publicly available at
http://nrsfm2017.compute.dtu.dk/dataset.

This paper is structured by first giving an overview of
the NRSfM problem, followed by a overview of related
work, wrt. other data sets. This is then followed by a
presentation of our data set, including an overview of the
design considerations, c.f. Section 3, which is followed by
a presentation of our proposed protocol for evaluation,
c.f. Section 4. This leads to the result of our benchmark
evaluation in Sections 5. The paper is rounded of by a
discussion and conclusions in Section 6.

2 THE NRSfM PROBLEM

In this section, we will provide a brief introduction of the
NRSfM problem, followed by a more detailed overview of
ways this problem has been addressed. The intention is
to establish a taxonomy to base our experimental design
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and evaluation upon. For a more in-depth review of
NRSfM , we recommend the survey of Salzmann et al.
[3].

The standard/rigid SfM problem, c.f. e.g. [4], is an
inverse problem aimed at finding the camera positions
(and possibly internal parameters) as well as 3D struc-
ture – typically represented as a static 3D point set, Q
– that best describe a sequence of 2D images of a rigid
body. Where the 2D images are typically reduced to a
sparse set of tracked 2D point features, corresponding
to the 3D point set, Q. The most often employed ob-
servation model linking 2D image points to 3D points
and camera models, is either the perspective camera model,
or the weak perspective approximation here of. The weak
perspective camera model is derived from the full per-
spective model, by simplifying the projective effect of
3D point depth, i.e. the distance between camera and
3D point.

The extension from rigid structure from motion to
the non-rigid case is by allowing the 3D structure, here
points Qf , to vary from frame to frame, i.e.

Qf =
[
Qf,1 Qf,2 · · · Qf,P

]
, (1)

Where Qf,p is the 3D position of point p at frame f .
To make this NRSfM problem well-defined, a prior or
regularization is often employed. Here most of the cases
target the spatial and temporal variations of Qf . The
fitness of the prior to deformation in question is a crucial
element in successfully solving the NRSfM problem, and
a main difference among NRSfM methods is this prior.

In this study, we denote NRSfM methods according to a
three category taxonomy, i.e. the deformable model used
(statistical or physical), the camera model (affine, weak
or full perspective) and the ability to deal with missing
data. In the remainder of this section, this taxonomy will
be elaborated on and related to the litterature, leading up
to a discussion of how the NRSfM methods we evaluate,
c.f. TABLE 1, span the state of the art.

2.1 Deformable Models
The description of our taxonomy will start with the un-
derlying structure deformation model category, divided
into statistical and physical based models.

2.1.1 Statistical
This set of algorithms apply a statistical deformation
model with no direct connection with the physical
process of structure deformations. They are in general
heuristically defined a priori to enforce constraints that
can reduce the ill-posedness of the NRSfM problem. The
most used low-rank model in the NRSfM literature falls
into this category, utilizing the assumption that 3D de-
formations are well described by linear subspaces (also
called basis shapes). This property was first used in 2000
by Bregler, Hertzmann and Biermann [5] to first instan-
tiate the solution of NRSfM by solving a factorization
problem, as analogously made by Tomasi and Kanade

for the rigid case [6]. However, strongly nonlinear de-
formations, such as the one appearing in articulated
shapes, may drastically reduce the effectiveness of such
models. Moreover, the low-rank model acts mainly as a
constraint over the spatial distribution of the deforming
point cloud and it does not restrict the temporal varia-
tions of the deforming object.

Given this observation, Akhter et al. [7] was the first
to propose constraining the temporal deformations of
the object, using a set of DCT bases, thus, assuming
that deformations act with low-frequency components.
This principle was supported by a study indicating
a correlation between 3D bases extracted by PCA on
MoCap sequences of human motion: the distribution of
the linear weights closely resemble the DCT ones [8].
Even at the expenses of introducing a new parameter,
this principle of smoothing deformations in the temporal
domain was able to achieve reasonable results with
human motion modelling, even applied to synthetically
generated sequences with a large camera motion [7].

Differently, Gotardo et al. [9] had the intuition to use
the very same DCT bases to model camera and deforma-
tion motion instead, assuming those factors are smooth
in a video sequence. This approach was later expanded
on to explicitly modeling a set of complementary rank-3
spaces, and to constrain the magnitude of deformations
in the basis shapes [10]. An extension of this framework,
increased the generalization of the model to non-linear
deformations, with a kernel transformation on the 3D
shape space using radial basis functions [11]. This switch
of perspective, addressed the main issue of increasing
the number of available DCT bases, allowing more di-
verse motions, while not restricting the complexity of
deformations. Later, further extension and optimization
have been made to low-rank and DCT bases approaches.
Valmadre and Lucey [12] noticed that the trajectory
should be a low-frequency signal, thus laying the ground
for an automatic selection of DCT basis rank via pe-
nalizing the trajectory’s response to one or more high-
pass filters. Moreover, spatio-temporal constraints have
been imposed both for temporal and spatial deforma-
tions [13]. Recently a new prior model, related to the
Kronecker-Markov structure of the covariance of time-
varying 3D point, very well generalizes several priors
introduced previously [14]. Another recent improvement
is given by Ansari et al.’s usage of DCT basis in con-
junction singular value thresholding for camera pose
estimation [15].

Similar spatial and temporal priors have been intro-
duced as regularization terms while optimizing a cost
function solving for the NRSfM problem, mainly using
a low-rank model only. Torresani et al. [16] proposed a
probabilistic PCA model for modelling deformations by
marginalizing some of the variables, assuming Gaussian
distributions for both noise and deformations. Moreover,
in the same framework, a linear dynamical model was
used to represent the deformation at the current frame
as a linear function of the previous. Brand [17] penal-
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izes deformations over the mean shape of the object
by introducing a sensible parameters over the degree
of flexibility of the shape. Del Bue et al. [18] instead
compute a more robust non-rigid factorization, using
a 3D mean shape as a prior for NRSfM [19]. In a non-
linear optimization framework, Olsen et al. [20] include
l2 penalties both on the frame-by-frame deformations
and on the closeness of the reconstructed points in
3D given their 2D projections. Of course, penalty costs
introduce a new set of hyper-parameters that weights the
terms, implying the need for a further tuning, that can
be impracticable when cross-validation is not an option.
Regularization has also been introduced in formula-
tions of Bundle Adjustment for NRSfM [21] by including
smoothness deformations by using l2 penalties mainly
[22] or constraints over the rigidity of pre-segmented
points in the measurement [23].

Another important statistical principal is enforcing
that low-rank bases are independent. In the coarse to fine
approach of Bartoli et al. [24], bases shapes are computed
sequentially by adding a basis, which explain most of
the variance in respect to the previous ones. They also
impose a stopping criteria, thus, achieving the automatic
computation of the overall number of bases. The concept
of basis independence clearly calls for a statistical model
close to Independent Component Analysis (ICA). To this
end, Brandt et al. [25] proposed a prior term to minimize
the mutual information of each basis in the NRSfM model.
Low-rank models are indeed compact but limited in the
expressiveness of complex deformations, for this reason,
an over complete representation can still be used by im-
posing sparsity over the selected bases [26]. In this way,
3D shapes in time can have a compact representation,
and they can be theoretically characterized as a block
sparse dictionary learning problem. In a similar spirit,
Hamsici et al. propose to use the input data for learning
spatially smooth shape weights using rotation invariant
kernels [27].

All these approaches for addressing NRSfM with a low-
rank model have provided several non-linear optimiza-
tion procedures, mainly using Alternating Least Squares
(ALS), Lagrange Multipliers and alternating direction
method of multipliers (ADMM). Torresani et al. first
proposed to alternate between the solution of camera
matrices, deformation parameters and basis shapes. This
first initial solution was then extended by Wang et al.
[28] by constraining the camera matrices to be orthonor-
mal at each iteration while Paladini et al. [29] strictly
enforced the matrix manifold of the camera matrices to
increase the chances to converge to the global optimum
of the cost function. All these method were not been
designed to be strictly convergent, for this reason a
Bilinear Augmented Multiplier Method (BALM) [30] was
introduced to be convergent while implying all the prob-
lems constraints being satisfied. Furthermore, robustness
in terms of outlying data was then included to improve
results in a proximal method with theoretical guarantees
of convergence to a stationary point [31].

Despite the non-linearity of the problem, it is possible
to relax the rank constraint with the trace norm and to
solve the problem with convex programming. Following
this strategy Dai et al. provided one of the first effective
closed form solutions to the low-rank problem [32].
Although their convex solution, resulting from relax-
ation, did not provide the best performance, a following
iterative optimization scheme gave improved results. In
this respect, Dai et al. proposed a further improvement
on their previous approach where deformations are rep-
resented as a spatio-temporal union of subspaces rather
than a single subspace [33]. Thus complex deformation
can be represented as the union of several simple ones.

More recently, the Procrustean Normal Distribution
(PND) model was proposed as an effective way to im-
plicitly separate rigid and non-rigid deformations [34].
This separation provides a relevant regularization, since
rigid motion can be used to obtain a more robust camera
estimation, while deformations are still sampled as a
normal distribution as similarly done previously [16].
Such separation is obtained by enforcing an alignment
between the reconstructed 3D shapes at every frame that
in practice should factor out the rigid transformations
from the statistical distribution of deformations. The
PND model has been then extended to deal with more
complex deformations and longer sequences [35].

2.1.2 Physical
Physical models represents a less studied class, but in
practice the one being able to achieve most accuracy in
spite of the higher number of parameters required to
tune. They are characterized by the use one of several
properties of deforming materials, and we will start from
the most general ones towards the most specialized.

The first class of physical model assume that the non-
rigid object is piecewise, i.e. a collection of pre-defined
or estimated patches that are mostly rigid or slightly de-
formable. One of the first approaches to use this strategy
is Varol et al. [36]. By preselecting a set of overlapping
patches from the 2D image points, and assuming each
patch being rigid, homography constraints can be im-
posed at each patch, followed by global 3D consistency
being enforced using the overlapping points. However,
the rigidity of a patch, even if small, is a very hard
constraint to impose and it does not generalise well for
every non-rigid shape. Moreover, dense point-matches
over the image sequence are required to ensure a set of
overlapping points among all the patches. Relaxation to
the piece-wise rigid constraint was given by Fayad et al.
[37], assuming each patch deforming with a quadratic
physical model, thus, accounting for linear and bending
deformations. These methods all require an initial patch
segmentation and the number of overlapping points, to
this end, Russel et al. [38] optimize number of patches
and overlap by defining a cost function with energy
terms. The method of Lee et al. [39] instead use 3D
reconstructions of multiple combination of patches and
define a 3D consensus between a set of pacthes. This
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approach provides a fast way to bypass the segmentation
problem and robust mechanism to prune out wrong local
3D reconstructions.

Differently from these approaches, Taylor et al. [40]
constructs a triangular mesh, connecting all the points,
and considering each triangle as being locally rigid.
Global consistency is here imposed to ensure that the
vertexes of each triangle are coinciding in 3D. Again, this
approach is to a certain extent similarly to [36], which
requires a dense set of points in order to comply with
the local rigidity constraint.

A strong prior, which helps dramatically to mitigate
the ill-posedness of the problem, is obtained by consid-
ering the deformation isometric, i.e. the metric length of
curves does not change when the shape is subject to de-
formations (e.g. paper, metallic materials to some extent).
Using assumption that a surface can be approximated as
infinitesimally planar, Chhatkuli et al. [41] proposed a
local method that frame NRSfM as the solution of Partial
Differential Equations (PDE) being able to deal with
missing data as well. A further update [42] formalizes
the framework in the context of Riemannian geometry,
that led to a practical method for solving the problem
in linear time and scaling for a relevant number of
views and points. Furthermore, a convex formulation
for NRSfM with inextensible deformation constraints was
implemented using Second-Order Cone Programming
(SOCP) leading to a closed form solution to the prob-
lem [43]. Vincente and Agapito implemented soft in-
extensibility constraints [44] in an energy minimization
framework, e.g. using recently introduced techniques for
discrete optimization.

Another set of approaches try to directly estimate the
deformation function using high order models. Del Bue
and Bartoli [45] extended and applied 3D warps such as
the thin plate spline, to the NRSfM problem. Starting from
an approximate mean 3D reconstruction, the warping
function can be constructed and the deformation at each
frame can be solved by iterating between camera and 3D
warp field estimation. Finally, Agudo et al. introduced
the use of Finite Elements Models (FEM) in NRSfM [46],
[47]. As these models are highly parametrized, requiring
the knowledge of the material properties of the object
(e.g. the Young modulus), FEM needs to be approx-
imated in order to be efficiently estimated, however,
in ideal conditions it might achieve remarkable results,
since FEM is a consolidated technique for modelling
structural deformations.

2.2 Missing Data

The initial methods for NRSfM assumed complete 2D
point matches among views, when observing a de-
formable object. However, given self and standard oc-
clusions, this is rarely the case. Most approaches for
dealing with such missing data in NRSfM were framed
as a matrix completion problem, i.e. estimate the missing
entries of the matrix W given known constraints (mainly

matrix low-rank). Torresani et al. [48] first proposed
removing rows and lines of the matrix corresponding
to missing entries in order to solve the NRSfM problem.
However, this strategy suffers greatly from even small
percentages of missing data, since the subset of know
completely entries can be very small. Dai et al. [32]
complete the missing entries via convex optimisation
by relaxing the rank constraint using a matrix trace
norm. Indeed, this method can be robust to more missing
entries even do being computationally viable only for
smaller scale problems. Most of the iterative approaches
indeed include an update step of the missing entries
[29], [30] where the missing entries become an explicit
unknown to estimate. Gotardo et al. [9] instead strongly
reduce the number of parameters by estimating only
the camera matrix explicitly under severe missing data.
This variable reduction, also know as VARPRO in the
optimization literature. It has been recently revisited in
relation to several structure from motion problems [49].

2.3 Camera Model
Most NRSfM method research focus on modelling and
optimization aspects, and most assume a weak perspec-
tive camera model. However, in cases where the object
is close to the camera and undergoing strong changes
in depth, time-varying perspective distortions can affect
the measured 2D trajectories.

As low-rank NRSfM is treated as a factorization prob-
lem, a straightforward extension was to follow best
practices from rigid SfM for perspective camera. Xiao
and Kanade [50] have e.g. developed a two step factor-
ization algorithm for reconstruction of 3D deformable
shapes under the full perspective camera model. This
is done using the assumption that a set of basis shapes
are known to be independent. Vidal and Abretske [51]
have also proposed an algebraic solution to the non-
rigid factorization problem. Their approach is, however,
limited to the case of an object being modelled with two
independent basis shapes and viewed in five different
images. Wang et al. [52] proposed a method able to
deal with the perspective camera model, but under the
assumption that its internal calibration is already known.
They update the solutions from a weak perspective to
a full perspective projection by refining the projective
depths recursively, and then refine all the parameters
in a final optimization stage. Finally, Hartley and Vidal
[53] have proposed a new closed form linear solution
for the perspective camera case. This algorithm requires
the initial estimation of a multifocal tensor, which the
authors report is very sensitive to noise. Llado et al. [54],
[55] proposed a non-linear optimization procedure. It is
based on the fact that it is possible to detect nearly rigid
points in the deforming shape, which can provide the
basis for a robust camera calibration.

2.4 Evaluated Methods
We have chosen a representative subset of the afore-
mentioned methods, which are summarized according
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to our taxonomy in TABLE 1. This gives us a good
representation of recent work, distributed according to
our taxonomy with a decent span of deformation models
(statistical/physical) and camera models (orthographic,
weak perpsective or perspective). This also takes into
account in-group variations such as DCT basis for sta-
tistical deformation and isometry for physical deforma-
tion. Even lesser used priors, such as compressibility,
are represented. While this is not a full factorial study,
we think this reasonably spans the recent state of the
art of NRSfM . Our choice has, of course, also been
influence by method availability, as we want to test
the author’s original implementation, to avoid our own
implementation bias/errors. All in all, we have included
16 methods in our evaluation. A further omission is
Taylor et al.’s work [40] since the approach has the option
to remove points associated to triangle patches which are
likely to provide a wrong 3D estimate. This method was
removing a considerable number of points in the tested
dataset so it was not included in the evaluation since
every NRSfM approach is able to reconstruct a complete
3D reconstruction1.

3 DATASET

As stated, in order to compare state of the art methods
for NRSfM , we have compiled a larger data set for
this purpose. Even though there is a lack of empirical
evidence w.r.t. NRSfM , it does not imply, that no data
sets for NRSfM exist.

As an example in [39], [9], [10], [11], [33], [8], [27]
and [32], a combination of two data sets are used.
Namely seven sequences of a human body from the
CMU motion capture database [56], two MoCap se-
quences of a deforming face [57], [58], a computer ani-
mated shark [57] and a challenging flag sequence [37].
To the best of our knowledge, this list represents the
most used evaluation data sets for NRSfM with available
ground truth.

The CMU data set [56] captures motion of humans.
Since the other frequently used data sets are also related
to animated faces [57], [58], this implies that there is
a high over representation of humans in this state of
the art, and that a higher variability in the deformed
scenes viewed is deemed beneficial. In addition, the
shark sequence [57] is not based on real images and
objects, but on computer graphics and pure simulation.
As such there is a need for new data sets, with reliable
ground truth or reference data2, and a higher variability
in the objects and deformations used.

As such, we here present a data set consisting of five
widely different objects/scenes and motions. Based on
mechanically - and therefor repeatable - object motions,
we have defined six different camera motions employing

1. this issue has been noticed in other experimental data for NRSfM ,
rarely this approach has been included for evaluation in other papers.

2. With real measurements like ours the ’ground truth’ data also
include noise, why ’reference data’ is a more correct term.

Fig. 1. Mobile structured light scanner used to acquire 3D
data for the data set.

two different camera models. This setup, all in all, gives
60 different sequences organized in a factorial experi-
mental design, thus, enabling a more stringent statistical
analysis. In addition to this, since we have tight 3D
surface models of our objects or scenes, we are able to
determine occlusions of all 2D feature points. This in
turn gives a realistic handling off missing data, which is
often due to object self occlusion.

As indicated, these data sets are achieved by
stop-motion using mechanical animatronics. These are
recorded in our robotic setup previously used for gen-
erating high quality data sets c.f. e.g. [59]. We will here
present details of our data capture pipeline, followed by
a brief outline and discussion of design considerations.

The goal of the data capturing is to produce 3 types
of correlated data:
Ground Truth: A series of 3D points that change over

time.
Input Tracks: 2D tracks used for input for NRSfM .
Missing Data: Binary data representing which tracks

are occluded at what frame.
We record the step-wise deformation of our animatronics
from K static views, obtaining both image data and
dense 3D surface geometry. We obtain 2D point features
by applying standard optical flow tracking to the image
sequence obtained from each of the K views, which
is then reprojected onto the recorded surface geometry.
The ground truth is then the union of these 3D tracks.
By using optical flow for tracking instead of MoCap
markers, we obtain a more realistic set of ground truth
points. We create input 2D points by projecting the
recorded ground truth using a virtual camera in a fully
factorial design of camera paths and camera models.

In the following we will detail some of the central
parts of the above procedure.

3.1 Animatronics & Recording Setup
Our stop-motion animatronics are five mechatronic de-
vices capable of computer controlled gradual deforma-
tion. They are shown in Fig. 2, and cover five types
of deformations: articulated motion, bending, deflation,
stretching and tearing. We belive this covers a good
range of interesting and archetypal deformations. It is
noted, that NRSfM has previously been tested on bending
and tearing [40], [44], [43], [39], but without ground
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TABLE 1
Methods included in our NRSfM evaluation with annotations of how they fit into our taxonomy.

Method Citation Deformable Model Camera Model Missing Data

BALM [30] Statistical Orthographic Yes
Bundle [22] Statistical Weak Perspective Yes

Compressible [26] Statistical Weak Perspective -
Consensus [39] Statistical Orthographic -

CSF [9] Statistical Weak Perspective Yes
CSF2 [10] Statistical Orthographic Yes

EM PPCA [16] Statistical Weak Perspective Yes
KSTA [11] Statistical Orthographic Yes
MDH [43] Physical Perspective Yes

MetricProj [29] Statistical Orthographic Yes
MultiBody [33] Statistical Orthographic -

PTA [8] Statistical Orthographic -
RIKS [27] Statistical Orthographic -

ScalableSurface [15] Statistical Orthographic Yes
SoftInext [44] Physical Perspective Yes

SPFM [32] Statistical Orthographic -

truth for quantitative comparison. Additionally, elastic
deformations, like deflation and stretching, are quite
commonplace, but hasn’t appeared in any previous data
sets, to the best of our knowledge.

The animatronics can hold a given deformation or
pose for a large extent of time, thus, allowing us to
record accurately the object’s geometry. We, therefore,
do not need a real-time 3D scanner or elaborate multi-
scanner setup. Instead our recording setup consists of
an in-house built structured light scanner mounted on
an industrial robot. Tested according to standard VDI
2634-2 [60] the scanner has a form error of [0.01mm,
0.32mm], a sphere distance error of [-0.33mm 0.50mm]
and a flatness error of [0.29mm, 0.56mm]. This setup is
shown in Fig. 1. This does not only provide us with
accurate 3D scan data, but the robot’s mobility also
enables a full scan of the object at each deformation step.

3.2 Recording Procedure

The recording procedure acquires for each shape a se-
ries of image sequences and surface geometries of its
deformation over F frames. We record each frame from
K static views with our aforementioned structured light
scanner. As such we obtain K image sequences with F
images in each. We also obtain F dense surface recon-
structions, one for each frame in the deformation. The
procedure is summarized in pseudo code in Algorithm 1.
Fig. 3 illustrates a sample images of three views obtained
using the above process.

3.3 3D Ground Truth Data

The next step is to take acquired images If,k and surfaces
Sf , and extract the ground truth points. We do this by
applying optical flow tracking [61] to obtain 2D tracks,
which are then reprojected onto Sf . The union of of these
reprojected tracks gives us the ground truth, Q. This
process is summarized in pseudo code in Algorithm 2.

(a) Articulated (b) Bending

(c) Deflation (d) Stetching

(e) Tearing

Fig. 2. Animatronic systems used for generating specific
types of non-rigid motion.

3.4 Projection using Virtual Camera

To produce the desired input, we project the ground
truth Q using a virtual camera, similar to what has been
done in [39], [9], [32], [58]. This step has two factors
related to the camera that we wish to control for: path
and camera model. To keep our design factorial, we
define six different camera paths which will all be used
to create the 2D input. They are illustrated in Fig. 4.
We believe these are a good representation of possible
camera motion with both linear motion and panoramic
panning. The camera model can be either orthographic
or perspective. The factorial combination of these el-
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Algorithm 1: Process for recording image data for
tracking and dense surface geometry for an anima-
tronic.

1 Let F be the number of frames
2 Let k be the number of static scan views K
3 for f ∈ F do
4 Deform animatronic to pose f
5 for k ∈ K do
6 Move scanner to view k
7 Acquire image If,k
8 Acquire structured light scan Sf,k

9 end
10 Combine scans Sf,k for full, dense surface Sf

11 end

Algorithm 2: Process for extracting the ground truth
Q from recorded images and surface scans.

1 Let F be the number of frames
2 Let k be the number of static scan views K
3 Let Sf be the surface at frame f
4 Let If,k be the image from view k, frame f
5 S = {S1 . . . SF }
6 for k ∈ K do
7 Ik = {I1,k . . . IF,k}
8 Apply optical flow [61] to Ik to get 2D tracks Tk
9 Reproject Tk onto S to get 3D tracks Qk

10 end
11 Q = {Q1 . . . QK}

ements yields to 12 input sequences for each ground
truth. Additionally, as we have previously recorded the
dense surface for each frame (see Sec. 3.2), we estimate
missing data via self-occlusion. Specifically, we create a
triangular mesh for each Sf and estimate occlusion via
raycasting into the camera along the projection lines.
This process is summarized in pseudo code in Algo-
rithm 3.

3.5 Discussion

While stop-motion does allow for diverse data creation,
it is not without drawbacks. Natural acceleration is
easily lost when objects deform in step-wise manner and
recordings are unnaturally free of noise like motion blur.
However, without this technique, it would have been
prohibitive to create data with the desired diversity and
accurate 3D ground truth.

The same criticism could be levied against the use of
a virtual camera, it lacks the shakiness and acceleration
of a real world camera. On the other hand, it allows for
us to precisely vary both the camera path and camera
model. This enables us to perform a factorial analysis,
in which we can study the effects of both on NRSfM
. As we show in Sec. 5 some interesting conclusions
are drawn from this analysis. Most NRSfM methods are

View

Po
se

Fig. 3. Illustrative sample of our multi-view, stop-motion
recording procedure. Animatronic pose evolves vertically
and scanner view change horizontally.

designed with an orthographic camera in mind. As such
investigating the difference between data under ortho-
graphic and perspective projection is of interest. Such
investigation is only possible using a virtual camera.

4 EVALUATION METRIC

In order to compare the methods of TABLE 1 w.r.t.
our data set, a metric is needed. The purpose is to
project the high dimensional 3D reconstruction error
into (ideally) a one dimension measure. Several different
metrics have been proposed for NRSfM evaluation in the
past literature, e.g. the Frobenius norm [62], mean [27],
variance normalized mean [10] and RMSE [40].

All of the above mentioned evaluation metrics are
based on the L2-norm in one form or another. A draw-
back of this is, that the L2-norm is very sensitive to large
errors, often letting a few outliers dominate an evalu-
ation. To address this, we incorporate robustness into
our metric, by introducing truncation of the individual

(a) Circle (b) Flyby (c) Half Circle

(d) Line (e) Tricky (f) Zigzag

Fig. 4. Camera path taxonomy. The box represents the
deforming scene and the wiggles illustrates the main
direction of deformation, e.g. the direction of stretching.
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Algorithm 3: Creation of input tracks Wc,p and
missing data Dc,p from ground truth Q for each
combination of camera path p and model c.

1 Let F be the number of frames
2 Let P be the set of camera paths shown in Fig. 4
3 Let C be the either perspective or orthographic
4 Let Qf be the ground truth at frame f
5 Let Sf be the surface at frame f
6 for Sf ∈ {S1 . . . SF } do
7 Estimate mesh Mf from Sf

8 end
9 for c ∈ C do

10 for p ∈ P do
11 for f ∈ F do
12 Set camera pose to pf
13 Project Qf using model c to get points wf

14 Do occlusion test qf against Mf to get
missing data df

15 end
16 Wc,p = {w1 . . . wF }
17 Dc,p = {d1 . . . dF }
18 end
19 end

3D point reconstruction errors. In particular, our metric
is based on a RMSE measure similar used in Taylor et
al. [40].

The robust truncation is achieved in a manner sim-
ilar to the widely used box plot’s outlier detection
strategy [63]. Consider E being the set of point-wise
errors (||Xf,p −Qf,p||) and E1, E3 as being the first and
third quartile of that set. Now define the whisker as
w = 3

2 (E3 − E1), then any point that is more than a
whisker outside of the interquantile range (E3 - E1) is
considered as an outlier. This strategy works well for
approximately normally distributed data [64]. With this
in mind, our truncation function is defined as follows,

t (x,q) =

{
||x− q||, ||x− q|| < E3 + w

E3 + w, otherwise
(2)

Thus the robust RMSE is defined as,

m (Q,X) =

√√√√ 1

FP

F,P∑
f,p

t (Xf,p,Qf,p). (3)

A NRSfM reconstruction is given in an arbitrary coor-
dinate system, thus we must align the reference and
reconstruction before computing the error metric. This
is typically done via Procrustes Analysis [65], but as it
minimizes the distance between two shapes in a L2-
norm sense it is also sensitive to outliers. Therefore
we formulate our alignment process as an optimization
problem based on the robust metric of Eq. 3. Thus the
combined metric and alignment is given by,

m(X,Q) = min
s,R,t

√
1

FP

∑
f,p

t (s [RXfp + t] ,Qfp), (4)

where s = scale,
R = rotation and reflection,
t = translation.

An implication of using a robust, as opposed to a L2-
norm, is that the minimization problem of (4) cannot be
achieved by a standard Procrustes alignment as done
in [40]. As such we optimize (4) using the Levenberg-
Marquardt method, where s, R and t have been initial-
ized via Procrustes alignment [66].

In summary, (4) defines the alignment and metric that
has been used for the evaluation presented in Sec. 5.

Since the choice of metric, always has a streak of
subjectivity to it, we wanted to investigate the sensitivity
of our choice. We did this by repeating our evaluation
with another robust metric, where minimum track-wise
distance between the ground truth and reconstruction
was used. The major findings and conclusions, as pre-
sented in Sec. 5, were the same. As such we conclude that
our conclusions are not overly sensitive to the choice of
metric. Note, that due to space limitations and clarity of
presentation this sensitivity study is not treated further
in this text.

5 EVALUATION

With our data set and robust error metric, we have
performed a thorough evaluation and analysis of the
state-of-the-art in NRSfM , which is presented in the
following. This is done in part as an explorative analysis
and in part to answer some of what we see as most
pressing, open questions in NRSfM . Specifically:

- Which algorithms performs the best?
- Which deformable models have best

performance/generalization?
- How well can the state-of-the-art handle data from

a perspective camera?
- How well can the state-of-the-art handle occlusion-

based missing data?
To answer these questions, we perform our analysis in

a factorial manner, alligned with the factorial design of
our data set. To do this, we view a NRSfM reconstruction
as a function of the following factors:
Algorithm ai: Which algorithm was used.
Camera Model mj : Which camera model was used

(perspective or orthographic).
Animatronics sk: Which animatronics sequence was

reconstructed.
Camera Path pl: How the camera moved.
Missing Data dn: Whether occlusion based missing

data was used.
We design our evaluation to be almost fully crossed,
meaning we obtain a reconstruction for every com-
bination of the above factors. The only missing part
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is that the authors of MultiBody [33] only submitted
reconstructions for orthographic camera model.

Our factorial experimental design allows us to employ
a classic statistical method known as ANalysis Of VAri-
ance (ANOVA) [67]. The ANOVA not only allows us to
deduce the precise influence of each factor on the recon-
struction, but also allows for testing their significance. To
be specific, we model the reconstruction error in terms
of the following bilinear model,

y = µ+ ai +mj + sk + pl + dn (5)
+ asik + apil + adin +msjk

+mpjl +mdjn + spkl + sdkn + pdln,

where,

y = reconstruction error,
µ = overall average error,

xyi,j = interaction term between factor xi and yj .

This model, Eq. (5), contains both linear and inter-
action terms, meaning the model reflects both factor
influence as independent and as cross effects, e.g. asik is
the interaction term for ’algorithm’ and ’animatronics’.
For each term, we test for significance by choosing
between two hypotheses:

H0 : c0 = c1 = . . . = cN (6)
H1 : c0 6= c1 6= . . . 6= cN

with cn being a term from (5) e.g. ai or mdjn. The value
H0 is typically referred to as the null hypothesis, mean-
ing the term cn has no significant effect. ANOVA allows
for estimating the probability of falsely rejecting the null
hypothesis for each factor. This statistic is referred to as
the p-value. A term is referred to as being statistically
significant if it’s p-value is below a certain threshold. In
this paper we consider a significance threshold of 0.0005
or approximately 3.5σ. As such, we clearly evaluated
which factors are important for NRSfM and which are
not.

Another interesting property of the ANOVA is that all
coefficients in a given factor sums to zero,

N∑
i=0

ci = 0. (7)

So each factor can be seen as adjusting the predicted
reconstruction error from the overall average. It should
be noted that the ’algorithm’/’camera model’ interaction
amij has been left out of (5) due to MultiBody [33] only
being tested with one camera model.

The error model of (5) is not directly applicable to the
error of all algorithms as not all state-of-the-art methods
from TABLE 1 can deal with missing data. As such we
perform the evaluation in two parts. One where we
disregard missing data and include all available methods
from TABLE 1, and one where we use the subset of
methods that handle missing data and utilize the full
model of (5). The former is covered in Sec. 5.1 and the
latter is covered in Sec. 5.2.

TABLE 2
ANOVA table for NRSfM reconstruction error without

missing data. Sources as as defined in (5). All factors are
statistically significant at a 0.0005 level except msjk and

mpjl.

Factor Sum Sq. DoF Mean Sq. F p-value

ai 3.6×105 15 2.4×104 204.8 5.5×10−242

mj 1.1×104 1 1.1×104 90.4 3.2×10−20

sk 1.0×105 4 2.6×104 219.0 3.6×10−121

pl 1.5×104 5 3.0×103 25.6 9.3×10−24

asik 4.1×104 60 6.9×102 5.9 2.9×10−33

apil 4.1×104 75 5.5×102 4.7 2.3×10−28

msjk 1.3×103 4 3.2×102 2.7 0.03
mpjl 1.8×103 5 3.6×102 3.1 0.0086
spkl 1.1×104 20 5.7×102 4.9 2.3×10−11

Error 8×104 689 1.2×102

Total 7×105 878

TABLE 3
Linear term µ+ ai sorted in ascending numerical order,

this is the average error for the given algorithm.
Algorithms are referred to by their alias in TABLE 1. All

numbers are given in millimeters.

MultiBody KSTA RIKS CSF2
29.36 31.94 32.21 32.83

MetricProj CSF Bundle PTA
34.09 41.19 46.66 46.80

ScalableSurface EM PPCA SoftInext BALM
53.88 59.19 61.94 66.34

MDH Compressible SPFM Consensus
70.34 79.18 85.34 94.61

5.1 Evaluation without missing data
In the following, we discuss the results of the ANOVA
without taking ’missing data’ into account, using the
model as in Eq. (5) without terms related to dn:

y = µ+ ai +mj + sk + pl + asik (8)
+ apil +msjk +mpjl + spkl.

The results of the ANOVA using Eq. (8) is summarized
in TABLE 2. All factors except msjk and mpjl are statis-
tically significant. As such, we can conclude that all the
aforementioned factors have a significant influence on
the reconstruction error. Therefore, we will explore the
specifics of each factor in the following, starting with
’algorithm’.

TABLE 3 shows the average reconstruction error for
each algorithm. The method MultiBody [33] has the
lowest average reconstruction error over all experiments
followed by KSTA [11] and RIKS [27]. For more de-
tailed insights refer to TABLE 4 showing the ’algo-
rithm’/’animatronic’ dependent reconstruction error. As
it can be seen, MultiBody [33] does not have the lowest
error for all animatronics, as e.g. KSTA [11] has sig-
nificantly lower error on the Tearing and Articulated
deformations. Both of these can roughly be described
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TABLE 4
Interaction term µ+ ai + sk + asik. This is equivalent to

the algorithms average error on each animatronic.
Lowest error for each animatronic is marked with bold

text. Algorithms are referred to by their alias in TABLE 1.
All numbers are given in millimeters.

Deflation Tearing Bending Stretching Articulated

MultiBody

KSTA

RIKS

CSF2

MetricProj

CSF

Bundle

PTA

ScalableSurface

EM PPCA

SoftInext

BALM

MDH

Compressible

SPFM

Consensus

15.20 24.81 25.20 25.12 56.45

27.60 20.78 36.66 29.62 45.05

24.10 21.37 35.04 32.07 48.49

23.55 21.55 36.21 32.33 50.51

27.75 25.93 35.93 33.22 47.63

34.92 40.93 40.10 39.96 50.03

39.36 29.47 43.07 49.96 71.44

35.75 34.49 51.81 47.93 63.99

34.60 47.95 53.82 59.40 73.65

40.10 59.59 65.28 73.89 57.10

46.60 54.07 64.05 65.49 79.48

52.51 58.28 74.85 67.76 78.29

56.87 63.75 69.00 75.02 87.05

61.62 71.06 79.66 79.08 104.47

54.85 76.19 80.05 89.93 125.68

66.96 83.07 83.51 95.62 143.90

TABLE 5
Interaction term µ+ ai + pl + apil. Algorithms are

referred to by their alias in TABLE 1. All numbers are
given in millimeters.

Zigzag Half Circle Line Flyby Circle Tricky

MultiBody

KSTA

RIKS

CSF2

MetricProj

CSF

Bundle

PTA

ScalableSurface

EM PPCA

SoftInext

BALM

MDH

Compressible

SPFM

Consensus

19.48 30.88 28.52 29.72 15.37 52.18

24.35 29.36 33.56 34.65 26.57 43.17

25.68 26.76 30.24 37.59 31.81 41.21

28.22 28.25 28.96 36.58 31.02 43.96

26.48 30.67 32.37 34.88 31.36 48.79

31.90 40.17 46.39 34.53 34.65 59.49

47.30 45.55 39.27 39.68 52.84 55.30

35.51 42.67 48.34 43.91 49.82 60.53

39.64 52.68 41.88 52.64 87.98 48.49

52.96 54.71 58.29 55.76 76.01 57.43

51.38 58.32 49.13 62.58 89.06 61.17

62.61 59.87 72.22 56.73 73.06 73.55

75.10 60.50 71.77 67.89 79.33 67.46

73.61 80.78 80.08 83.84 72.49 84.24

85.53 86.09 82.53 88.33 82.68 86.88

94.70 94.52 94.81 94.35 94.88 94.42

as rigid bodies moving relative to each other, and it
would seem KSTA [11] is the best at handling these
deformations.

Methods with a physical prior, like MDH [43] and
SoftInext [44], seems not to perform very well, as is
evident from tables 1, 4 and 5. MDH [43] is designed
with an isometry prior, therefore one would expect it
to perform well in the bending deformation. Indeed,
while its interaction term asik has its lowest value for the
bending deformation, the average reconstruction error is
simply too high.

A similar trend can be observed in TABLE 5, which

TABLE 6
Linear term µ+mj sorted in ascending numerical order,
this is the average error for the given camera model. All

numbers are given in millimeters.

Orthographic Perspective
50.52 57.72

TABLE 7
Linear term µ+ sk sorted in ascending numerical order,

this is the average error for the given animatronic. All
numbers are given in millimeters.

Deflation Tearing Bending Stretching Articulated
40.15 45.83 54.64 56.02 73.95

TABLE 8
Linear term µ+ pl sorted in ascending numerical order,
this is the average error for the given camera path. All

numbers are given in millimeters.

Zigzag Half Circle Line Flyby Circle Tricky
48.40 51.36 52.40 53.35 58.06 61.14

shows the ’algorithm’/’camera path’ dependent recon-
struction error. While MultiBody [33] has the lowest
average error, it is surpassed in the Half Circle and
Tricky ’camera path’ by RIKS [27]. On the other hand,
MultiBody has the lowest error under the Circle path by
quite a significant margin.

From this analysis we can conclude that MultiBody
performs the best on average, but is surpassed w.r.t.
to certain camera paths and animatronic deformations
by algorithms such as RIKS [27] and KSTA [11]. This
also clearly indicates that one needs to control for both
deformation type and camera motion in future NRSfM
comparisons, as the above conclusion could be changed
by choosing the right combination of camera path and
deformation. On the other hand, these findings shows
that NRSfM performance can be optimized by choosing
the right camera path (e.g. zigzag) and the right algo-
rithm for the deformation in question.

The camera model has a significant impact on re-
construction error, a trend that can be observed from
TABLE 5. Two factors relate to the camera, ’camera path’
and ’camera model’. TABLE 8 shows that there is a
significant difference in average error w.r.t. camera path.
It is interesting to note that the circle path has one of
the highest average errors, only surpassed by the tricky
camera path. The latter was specifically designed to be
challenging, as such, it is surprising to find that the circle
and tricky path’s average error only differ by 3.08mm.
In fact MultiBody [33] seems to be the only method that
benefits from the circle type of camera path, as can be
seen in TABLE 5. TABLE 6 shows the average error of
reconstructions for an orthographic and a perspective
camera model. As it can be seen, there is a difference
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TABLE 9
ANOVA table for NRSfM reconstruction error with missing

data. Factors as as defined in (5). All factors are
statistically significant at a 0.0005 level except msjk,

mpjl and mdjn.

Factor Sum Sq. DoF Mean Sq. F p-value

ai 1.3×105 8 1.6×104 90.9 7.7×10−108

mj 1.4×104 1 1.4×104 81.6 1.2×10−18

sk 7.5×104 4 1.9×104 106.5 3.8×10−73

pl 4.1×104 5 8.2×103 47.0 8.8×10−43

dn 1.6×104 1 1.6×104 89.8 2.7×10−20

asik 1.6×104 32 5.0×102 2.9 3.4×10−7

apil 5.6×104 40 1.4×103 8.0 6.4×10−37

adin 1.1×104 8 1.3×103 7.5 1.1×10−9

msjk 2.6×103 4 6.5×102 3.7 0.0052
mpjl 2.5×103 5 5.1×102 2.9 0.013
mdjn 2.9×102 1 2.9×102 1.6 0.2
spkl 2.7×104 20 1.4×103 7.8 6.7×10−21

sdkn 3.6×103 4 8.9×102 5.1 0.00048
pdln 8.1×103 5 1.6×103 9.3 1.4×10−8

Error 1.4×105 824 1.8×102

Total 5.7×105 962

of 7.20mm, which is significant but not as large as the
difference w.r.t. ’algorithm’ (TABLE 3) or ’camera path’
(TABLE 8). This suggests that, while the error increases
the state-of-the-art in NRSfM can still operate under a
perspective camera model. This is quite interesting as
most NRSfM are not designed with a perspective camera
in mind. It would seem that an orthographic or weak-
perspective camera acts a reasonable approximation on
the scale of our animatronics.

There is also a significant difference between the av-
erage reconstruction error of each animatronic which
TABLE 7 shows. Articulated has by far the highest
average reconstruction error, making it the most difficult
to reconstruct for the current state-of-the-art in NRSfM .
Since most approaches use low-rank methods, a highly
structured motion such as an articulation is difficult
to handle with a low-rank prior, especially if points
are densely sampled on all joints. On the other hand,
deflation seems to be quite easy to handle for most of
the state-of-the-art methods.

5.2 Evaluation with Missing Data
As previously mentioned, we are interested in ’missing
data’ and its effect on NRSfM . We, thus, here use Eq. (5),
which is use to evaluate the subset of methods capable of
handling missing data, as shown in TABLE 1. It should
be noted that while MDH [43] is nominally capable of
handling missing data, it has not been included in this
part of the study. The reason being code provided only
reconstructs frames with minimum ratio of visible data,
thus our error metric cannot be applied. As such, we
have 8 methods in total in this category.

We treat ’missing data’ as a categorical factor having
two states: with or without missing data. This is because
the missing percentage of our occlusion-based missing

TABLE 10
Interaction between

camera path and missing
data; µ+ pl + dn + pdln.

Numbers are given in
milimeters.

Without
Missing

With
Missing

Zigzag

Half Circle

Flyby

Line

Circle

Tricky

43.34 47.47

44.93 52.32

46.63 53.53

47.19 53.56

55.40 60.30

54.96 76.56

TABLE 11
Interaction between

animatronic and missing
data; µ+ sk + dn + sdkn.

Numbers are given in
milimeters.

Without
Missing

With
Missing

Tearing

Deflation

Stretching

Bending

Articulated

40.63 44.59

37.20 49.47

51.63 56.28

50.54 64.01

63.72 72.10

data is dependent on the ’animatronic’, ’camera path’
and ’camera model’ factors. Additionally, there is a
significant sampling bias in the occlusion-based missing
data. For example, in-plane motion, like articulated and
tearing, rarely get a missing percentage above 25% and
more volumetric motion such as deflation rarely go
below 40% missing data. This would make it difficult to
distinguish between the influence of the ’missing data’
factor and the animatronic factor.

The results of the ANOVA is summarized in TA-
BLE 9 and all factors except msjk, mpjl and mdjn are
statistically significant. This means that ’missing data’
has a significant influence on the reconstruction error.
TABLE 12 shows the interaction between ’algorithm’
and ’missing data’. As expected, the mean error without
missing data is very similar to the averages in TABLE 3
with KSTA [11] having the lowest expected error. How-
ever, with missing data, MetricProj [29] actually has a
lower average reconstruction error. This is due to its
low increase in error of 5.85mm when operating under
occlusion-based missing data. In comparison, KSTA [11],
CSF2 [10] and CSF [9] are much more unstable with
average increases in error of 9.65mm, 18.15mm and
13.49mm respectively. Common for the three methods
is that they assume a Discrete Cosine Transform (DCT)
as their prior. Indeed, we see a similar increase for
ScalableSurface of 16.52mm and this method also uses
a DCT basis.

These results suggests that while DCT-based ap-
proaches are quite accurate without missing data, they
are not very robust when operating under occlusion-
based missing data. And, thus, they would likely not
be very robust when applied to real-world deformations
where occlusion-based missing data is unavoidable. This
indicates that, future research should focus on making
DCT basis methods more robust or to modify the DCT
model to better generalise for ’missing data’. Finally,
BALM [30] method exhibit some peculiar behavior as
its average error actually decreases by 3.33mm, contrary
to expectation.

TABLE 11 shows the average error as an interac-
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TABLE 12
Interaction between ’algorithm’ and ’missing data’; µ+ ai + dn + adin. This is the average error for each algorithm

either with or without occlusion-based missing data.

KSTA MetricProj CSF2 CSF Bundle ScalableSurface EM PPCA BALM

Without Missing

With Missing

31.94 34.09 32.83 41.19 46.66 53.88 61.22 66.34

41.59 39.94 50.98 54.68 52.98 70.40 64.05 63.01

tion between ’animatronic’ and ’missing data’, i.e. the
average reconstruction error of each animatronic with
and without missing data. It is interesting to note that
the in-plane deformations, i.e. Tearing, Stretching and
Articulated, generally have a smaller increase in error
with missing data compared to the more volumetric
deformation, i.e. Deflation and Bending, compared to
the error without missing data. The increase is respec-
tively 3.96mm, 4.65mm and 8.38mm versus 12.27mm
and 13.47mm. The main difference between the two
groups is that the ratio of missing data is consistently
low for the in-plane deformations. This would suggest
that the ratio of missing data has an impact on the
reconstruction error.

TABLE 10 shows the average error as interaction be-
tween ’camera path’ and ’missing data’. The Tricky path
has by far the highest average error. This is expected,
as the small camera movement ensures that a portion
of the tracked points is consistently hidden. As such,
while Tricky and Circle were approximately equally
difficult without missing data, this is no longer the
case with missing data as Circle’s average error only
increases by 4.9mm. Indeed, all other camera paths have
approximately the same increase in error with missing
data. These paths also ensure that all observed points
are equally visible. So while the camera paths nominally
have approximately the same percentile of missing data
as the Tricky path, the spatio-temporal distribution is
different. These results suggests that the distribution of
missing data is as important as the ratio in affecting
the reconstruction error. Indeed this is in line with the
observations made by Paladini et al. [29].

The aforementioned observations demonstrates the
importance of testing against occlusion-based missing
data as it contains a spatio-temporal structure of missing
data that a randomly removed subset lacks. Many NRSfM
methods treats missing data as a matrix fill-in problem,
meaning recreating missing values from interpolation of
spatio-temporally close observations. Thus, it is easy to
see that conceptually it is much easier to interpolate ran-
dom, evenly distributed missing data, compared to the
spatio-temporally clustered structure of occlusion-based
missing data. It is noted, that KSTA [11] and CSF [9]
were both evaluated using random subset missing data
in the original works, and was found to approximately
have the same reconstruction whether from 0% to 50%
missing data. These results are obviously quite different
from the conclusion of our study and we hypothesize,

that the spatio-temporal structure of our occlusion-based
missing is probably the primary cause for this.

6 DISCUSSION AND CONCLUSION

To summarize our findings, we would like to firstly
mention that, the algorithm with the lowest error on
average without missing data was found to be Multi-
Body [33]. There is, however, a large variation between
the different algorithms performance depending on the
factors chosen. As such our study does not conclude that
Multibody [33] is definitively better than all other meth-
ods in general. As an example, for some camera paths
RIKS [27] had lower average error than MultiBody [33].
Also, with missing data MetricProj [62] has the low-
est reconstruction error. Other observations include that
methods with a DCT basis were found to have a great
increase in error with occlusion-based missing data.

Our study also has findings that support and form
hypotheses of where future NRSfM work could head. In
relation to this, it should be mentioned, that even though
some of these hypotheses have been stated before else-
where, it is a strength of this work and our data set that
it confirms these. Firstly, it is clear that methods using
the weak perspective approximation to the perspective
camera model only incur a small penalty for doing
so on average. This camera model seems like a good
approximation at first, although it should be noted, that
our data set does not challenge the algorithms extremely
in this regard, with only an average 1.6 fold change in
the depth change.

Another main avenue of investigation was the effect
of missing data. Here we found, that that this aspect
has a large impact on on the reconstruction error. This is
somewhat at odds with previous findings, and we spec-
ulate that this has to do with our missing data having
structure originating from object self occlusion, as op-
posed to generate missing data with random sampling.
In particular, occlusion-based missing data increases the
reconstruction error of all methods except BALM [30].
Our study thus indicates this area to be a fruitful area
of investigation for NRSfM research.

Another observation is that the physically based meth-
ods did quite poorly compared to the methods using a
statistically based deformation model. This is in a sense
counter intuitive, provided that the physical models
capture the deformation physics well. This in turn, thus,
lead us to the observation that stronger efforts could
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be beneficial as far as better physical based deformation
models.

As stated, many of these observations, support hy-
pothesis held in the NRSfM community, and it strengths
them, that we have here provided empirical support for
them. On the other hand, this study also helps to validate
the suitability of our compiled data set. In regard to
which, it should be noted, both deformation types and
camera paths have a statistically significant impact on
reconstruction error, regardless of the algorithm used.
This indicated that our proposed taxonomy and the data
set design has value.

All in all, we have here presented a state of the art data
set for NRSfM evaluation. We have applied 16 different
NRSfM method to this data set. Methods that span the
state of the art of NRSfM . This evaluation validates the
usability of our proposed, and publicly available data
set, and gives several insights into the current state of the
art of NRSfM , including directions for further research.
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[58] A. Del Bue, X. Lladó, and L. Agapito, “Non-rigid face modelling
using shape priors,” in AMFG, pp. 97–108, Springer, 2005.

[59] H. Aanæs, R. Jensen, G. Vogiatzis, E. Tola, and A. Dahl, “Large-
scale data for multiple-view stereopsis,” International Journal of
Computer Vision, pp. 1–16, 2016.

[60] Deutsches Institut fr Normung, “VDI 2634: Optical 3-D measuring
systems. Optical systems based on area scanning,” tech. rep.,
Deutsches Institut fr Normung, 2012.

[61] J.-Y. Bouguet, “Pyramidal implementation of the affine lucas
kanade feature tracker description of the algorithm,” Intel Cor-
poration, vol. 5, no. 1-10, p. 4, 2001.

[62] M. Paladini, A. Del Bue, M. Stosic, M. Dodig, J. Xavier, and
L. Agapito, “Factorization for non-rigid and articulated structure
using metric projections,” in International Conference on Computer
Vision and Pattern Recognition, 2009.

[63] P. F. Velleman and D. C. Hoaglin, Applications, basics, and comput-
ing of exploratory data analysis. Duxbury Press, 1981.

[64] D. F. Williamson, R. A. Parker, and J. S. Kendrick, “The box
plot: a simple visual method to interpret data,” Annals of internal
medicine, vol. 110, no. 11, pp. 916–921, 1989.

[65] J. C. Gower, “Generalized procrustes analysis,” Psychometrika,
vol. 40, no. 1, pp. 33–51, 1975.

[66] J. C. Gower and G. B. Dijksterhuis, Procrustes problems, vol. 30.
Oxford University Press on Demand, 2004.

[67] G. A. Seber and A. J. Lee, Linear regression analysis, vol. 936. John
Wiley & Sons, 2012.

Sebastian Hoppe Nesgaard Jensen is a Ph.D.
student employed at the Image Analysis and
Computer Graphics Department at the Techni-
cal University of Denmark. A technical expert
that has worked extensively to build different
datasets and with the robotic setup used for data
acquisition.

Alessio Del Bue is the head of the Visual Ge-
ometry and Modelling (VGM) Lab at Istituto Ital-
iano di Tecnologia (IIT), Genova, Italy. Starting
his research on NRSfM in 2004, he contributed
to the field with novel non-linear optimization
methods, shape priors and studies over the mo-
tion manifold of rigid, non-rigid and articulated
objects.

Mads Emil Brix Doest is a Ph.D. student em-
ployed at the section for Image Analysis and
Computer Graphics, at the Technical University
of Denmark. His research is focused on optical
scanners and appearance acquisition.

Henrik Aanæs is associate professor in com-
puter vision at the Technical University of Den-
mark, where he is, among others, heading and
effort for making large high quality data sets for
3D computer vision. His interests mainly lye in
3D computer vision, and their application, where
he has e.g. also worked with NRSfM .



58



APPENDIX B
An Adaptive Robotic
System for Doing Pick

and Place Operations
with Deformable

Objects



An Adaptive Robotic System for Doing Pick and Place Operations with
Deformable Objects

Troels Bo Jørgensen1, Sebastian Hoppe Nesgaard Jensen2, Henrik Aanæs2, Niels Worsøe Hansen3 and Norbert
Krüger1

1Maersk McKinney Møller institute, University of Southern Denmark, 5230 Odense M, Denmark, trjoe@mmmi.sdu.dk
2DTU Compute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark, snje@dtu.dk, aanes@dtu.dk

3Danish Meat Research Institute, Danish Technological Institute, 2630 Taastrup, Denmark, nwh@dti.dk

Abstract

This paper presents a robot system for performing pick and place operations with deformable objects. The system
uses a structured light scanner to capture a point cloud of the object to be grasped. This point cloud is then analyzed
to determine a pick and place action. Finally, the determined action is executed by the robot to solve the task. The
robotic placement strategy contains several free parameters, which should be chosen in a context-specific manner. To
determine these parameters we rely on simulation-based optimization of the individual use cases. The entire system
is tested extensively in real world trials. First, the reliability of the grasp is evaluated for 7 different types of pork
cuts. Then the validity of the simulation-based optimization of the placement strategy is evaluated for 2 of the most
different pork cuts, to show the generality of the overall approach.

Keywords: Robotic Manipulation, Deformable Objects, Structured Light Scanner, Vision-based Meat Analysis,
Simulation-based Optimization

1. Introduction

Minimizing setup times for industrial robotic systems
is an important task for incorporating robots in small
batch production, since designing and integrating the
system is a relatively large part of the total expense in
this type of production. In this paper, we focus on meat
handling, where we investigate the possibilities for us-
ing robots to execute pick and place operations of meat
pieces. The challenge is that there are a lot of different
cuts of meat, and special solutions have to be designed
for each case. Thus it is important that a procedure is
formulated, which can help to design robotic solutions
for as many cases as possible in a reasonable amount of
time.

We approach this problem from two directions. First,
we design a general and adaptable hardware setup for
doing pick and place operations with meat. Secondly,
we present a simulation-based optimization framework
for designing and fine tuning the solution in simulation.

The hardware setup is shown in Fig. 1 and it consists
of a 6 axis robot arm, a suction-based gripper tool and
a vision system. The gripper tool can be adapted to a
specific task and it is designed to cope with the high

Fig. 1: The physical setup.

variation when grasping deformable objects. The vision
system is also designed to be a generic solution for de-
tecting and segmenting meat surfaces. It uses stereo-
scopic structured light for 3D surface reconstruction,
which has been shown to generate precise point clouds,
even when scanning materials with high levels of sub-
surface scattering [1]. Furthermore, we apply a generic
region growing method to segment the individual meat
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surfaces, which we have applied successfully to differ-
ent cuts of pork. The segmented point cloud is then used
to generate a robotic action for lifting and placing the
meat. This action is also designed such that it can be
adapted to specific use cases.

To adapt the generic solutions to specific use cases,
we have designed a simulation tool for modeling the
robotic meat handling operations. Furthermore, the sim-
ulation framework enables the user to analyze the ro-
bustness of the solutions. This is achieved by doing hun-
dreds of simulations with different perturbations of sys-
tem uncertainties, e.g. the meat size, to ensure the sys-
tem works even for products with high variation, such
as meat. We parameterized the generic solutions, such
that they can be tuned for the specific problems using
numeric optimization. The optimization is done based
on the simulation framework, such that ten thousands of
simulations are used to determine good system param-
eters. After good parameters are found in simulation,
they are implemented and evaluated in the real world.

The main contribution of this work lies in combining
several technologies, in order to design a robot solution
for handling pork in a physical prototype at a Danish
slaughterhouse. The individual technologies have been
published in various conference proceedings. The grip-
per and the grasping strategy used in this work was in-
troduced in [2]. This is extended by parameterizing the
grasp action and introducing a placement strategy. The
simulation framework used was introduced in [3]. In
our work, this framework is extended to model the use
cases addressed in this paper. Lastly, the optimization
approach is based on work presented in [4].

The paper is structured as follows: First we discuss
relevant litterature addressing the three main compo-
nents in Section 2. These components are vision so-
lutions for segmenting meat, robot systems for handling
meat and optimization techniques relevant for robotic
systems. The overall system is described in Section 3.
The vision system for generating and segmenting the
point clouds is described in Section 4. In Section 5,
we introduce the gripper tool and discuss the procedure
for generating a robotic action based on the point cloud.
The case specific tuning of parameters is split into two
parts. First, we introduce the simulation tool in Sec-
tion 6 and then the optimization process is described in
Section 7. In Section 8, we test the solutions with dif-
ferent cuts of pork. Lastly, we conclude on the results
in Section 9.

2. Related Work

In this paper, 3 key topics are addressed. The first
topic is vision based segmentation of meat surfaces.
The second topic is robotic systems for manipulating
deformable objects such as meat. Lastly, optimization
based parameter tuning of robotic systems is addressed.

2.1. Vision Systems for Analysing Deformable Objects

3D reconstruction and simulation of deformable ob-
jects and has been studied intensively for years. A re-
cent example would be [5] where cloth is handled dy-
namically by a humanoid robot. Here a control algo-
rithm is fed input data from a Kinect that supplies both
color and depth. Similar approaches can be found in [6],
[7] and [8]. Common for these is that the object of in-
terest is distinct and easily segmented from its environ-
ment. As such they are not directly applicable to our
problem domain. This is because we have to handle
boxes of meat with multiple pieces of meat in a pile.
For this reason, depth data supplied is too inaccurate to
properly segment each piece.

One needs to look no further than the DAVIS chal-
lenge [9] to see the tremendous progress and challenge
of object segmentation. Some researchers have pro-
posed to used convolutional neural network [10][11],
others pursue other strategies such as region augmenta-
tion via Gaussian mixture models (GMM) [12]. How-
ever, while they focus and succeed at segmenting a sin-
gle primary object, they do not consider a cluttered sce-
nario as our system will have to deal with.

Our contribution will be applying high accuracy
depth from structured light and a simple, yet powerful
segmentation algorithm to obtain depth data for each
piece of meat. The superior accuracy [13] of stereo-
scopic vision enables us to distinguish individual pieces,
something that would likely be impossible with the
Kinect.

2.2. Robotic Solutions for Handling Meat

While a huge body of work has addressed pick and
place operations for rigid objects, only limited research
has addressed these operations for deformable objects,
such as meat. One example is [6] who developed a
robotic system for handling silicon elements which was
used as a more test friendly replacement for meat. They
both addressed peg-in-hole operations and laying down
operations of deformable objects with their system. In
this work, we focus on real world cases and use substan-
tially different equipment to address the grasping chal-
lenges of real meat products.
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For related tasks such as cutting and separation of
meat pieces research has been done in [14], [15] and
[16]. Long et al. [14] proposed a system using three
robots, one for moving the vision system, one for hold-
ing the meat and one for cutting the meat. Furthermore,
they developed a simulator for modeling the deformable
meat handling operation. Nabil et al. [15] proposed a
similar system, but focused more on physically accu-
rate simulation of the use case. Our proposed approach
similarly rely on simulation-based analysis of the prob-
lem. However, we focus on modeling the interactions
between the meat and its surroundings rather than just
the interaction with a knife. We also use numeric opti-
mization to tune the solutions in simulation, rather than
just using it as a virtual test bed.

The researchers behind GRIBBOT [16] developed an
automation solution for separating chicken fillet from a
carcass. Their system consists of a vision solution, a 6-
axis robot and a gripper tool for grasping and separating
the chicken fillet. They also show how incorporating
compliance in the gripper tool can make the solution ro-
bust to uncertainties from the vision system. Our system
contains the same components and we also use compli-
ance in the gripper to handle uncertainties and variation
in the meat products. However, we focus on more gen-
eral solutions for handling multiple tasks.

In terms of placing the deformable meat pieces, a
closely related field is draping operations for cloth.
To solve this problem, Balaguer et al. [17] proposed
to combine reinforcement learning and learning by
demonstration to train a robot system to fold a towel.
Other researchers have shown how visual servoing can
be used to fold cloth [18]. In our work, we also deal
with fairly flat objects where draping operations to some
level are necessary to achieve a nice placement. The
pork bellies handled in our work is more rigid, which
makes them easier to place and thus we can utilize sim-
pler placement strategies. However, the individual prod-
ucts vary more and therefore it is necessary with a place-
ment operation that is robust to the product variation. To
achieve this, our work focusses more on determining ro-
bust placement actions based on optimization.

In terms of robotic solutions, our main contributions
are a novel gripper tool and strategies for grasping and
placing the meat based on point clouds from the vision
system.

2.3. Numeric Optimization of Robotic Systems
Numeric optimization has been applied to several

robotic problems to determine stable solutions based on
real world trials [19, 20, 21, 22]. However, limited work
has addressed simulation-based optimization of robotic

solutions, where the systems are tested in simulation
rather than the real world. The advantage of simulation-
based optimization is that the number of real world trials
can be heavily reduced. Besides speeding up the inte-
gration process, this also reduces the chance that real
products are damaged during the test phase. When han-
dling meat products, this is especially useful since the
meat products have to be changed often to avoid con-
tamination and health hazards. Thus testing in simula-
tion can make the test phase substantially cheaper. Fur-
thermore, it is often easier to set-up experiments and ad-
just various hardware settings in simulation compared to
doing it in the real world, as we demonstrated in [4].

Buch et al. [23] proposed to use simulation-based
optimization to determine robotic action parameters for
executing a peg-in-hole operation. In their work, they
only optimize 2 parameters. Thus they are able to use
brute-force like methods to determine a good parame-
ter set. Bodenhagen et al. [6] also rely on simulation-
based optimization to tune their action for doing peg-in-
hole and laying down operations with deformable ob-
jects. Their solutions again rely on only 2 and 3 pa-
rameters, and thus they are able to use brute-force like
techniques. In our work, we rely on more parameters to
define the solutions and thus we focus on optimization
techniques that can deal with this in a computationally
tractable manner.

Wolniakowski et al. [24] focus on optimizing grip-
per design in simulation. To achieve this gradient de-
scent based methods are used to determine 11 parame-
ters specifying the gripper fingers. In our work, 12 pa-
rameters are optimized, so the scope of the problems
are similar. However, we focus on using optimization
based on function fitting, in particular “RBFopt” [25],
since earlier work [26] indicated this technique is more
suitable for this type of optimization problem.

One of the robotic problems that have been optimized
based on real world trials is maximizing the walking
speed of bipedal robots [20, 21]. In both approaches op-
timization based on function fitting is used to determine
the parameters that result in the fastest robots. Simi-
larly Tesch et al. [22] optimize the speed of a snake-like
robot. Again they show optimization based on function
fitting have the best performance in terms of quickly op-
timizing their 7 free parameters.

Our main contributions in the field of parameter tun-
ing is a new use case, where we show simulation-based
optimization is suitable for designing robot solutions for
handling deformable objects in an industrial setting.
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3. Method

Robotic handling of meat is a challenge as few prior
assumptions can be made in design. For example, we
cannot design towards a specific shape and size as is
common in contemporary robotics. Additional we do
not have prior knowledge on the object’s pose. As such
the exact geometry and the pose must be acquired dur-
ing the runtime of the system. One way to accomplish
this is through 3D vision technology.

Physically moving the object requires adaptable au-
tomation. The 6-axis robot arm is ideal for this purpose
as it gives us maximum freedom of movement. Further-
more, the robot arm must be equipped with a gripper
that is flexible enough to handle the variation and defor-
mation of the meat. The gripper should also be adapt-
able to different types of meat cuts. Either in runtime or
after a short preparation stage.

Picking and placing are not trivial either, as the object
of interested should be placed in a specific pose. The de-
formable nature of the meat pieces makes this need even
more pressing. As such our system is equipped with a
sophisticated path planning system for determining an
appropriate grasp and placement action based on the vi-
sion input.

Our system can be roughly broken down into Vi-
sion, Gripper and Planning components. However,
this alone is not enough as all components contain pa-
rameters that must be tuned to a given problem. A large
part of the setup time goes to this tuning process. There-
fore we have developed a Simulation framework, which
can handle a huge chunk of the optimization in a virtual
environment.

The entire system is illustrated in two flowcharts. The
first (Fig. 2) describes the physical system. The dia-
gram also indicates, which parameters are tuned using
simulation-based optimization. The second flowchart
(Fig. 3) indicates how the system parameters are opti-
mized in simulation. The optimization happens in an
iterative procedure, where different software and hard-
ware parameters are tested to determine which produce
the best result.

4. Vision

For the robot system to properly locate and handle the
meat pieces, it must be supplied with 3D data. By far the
most flexible way to achieve this is through vision tech-
nology. There has been a huge surge in 3D vision appli-
cations due to the wide availability of user friendly real-
time scanners such as the Microsoft’s Kinect and Intel’s
Real-Sense. While they are great, they have made a lot
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Fig. 2: Diagram of the system architecture. The upper three boxes
constitute the runtime system.
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Fig. 3: Diagram of the simulation-based parameter optimization. This
process describes how the control parameters and configuration are
determined in the parameter tuning block of Fig. 2.

of sacrifices to reach real-time performance on a low-
cost embedded platform. This means that the accuracy
and precision of their 3D data is subpar. For example
both versions of the Kinect has an accuracy in the near
1cm range [27].

We instead choose to go another route, by using a
similar technology as employed in the above examples,
but customized to our needs.

4.1. Structured Light Scanning
Structured light is an active 3D scanning technology

that estimates depth via stereo triangulation [28]. The
basic idea is the same as with passive stereo vision.
By finding the same points projection in a stereo im-
age pair and knowing the relative camera geometry, it
is possible to infer the 3D position of that point. The
first part is known as the correspondence problem and it
can be quite challenging. In passive stereo non-unique
and weak texture creates uncertainty which has to be
resolved with e.g. statistical priors like spatial smooth-
ness [29].

Instead of relying solely on material appearance, we
can project light patterns onto the scene to create arti-
ficial texture. By building a certain structure into the
projected pattern, the correspondence can be made a
lot easier. Hence the name; structured light. There
exist many different encoding strategies ranging from

4



the one-shot, speckle patterns of the Kinect and the
Real-Sense to multi-pattern approaches such as Gray
Codes [30] and Micro Phase-shifting [31]. First we will
go over our hardware setup, afterwards we will discuss
the specific structured light method used.

Our scanner consists of three components: two high-
definition cameras and a light projector. Depth is esti-
mated via stereo triangulation using the pixel disparities
between the camera image pair. This is illustrated in
Fig. 4.

In theory, triangulation could also be done between
the projector and a camera. However, this requires
a projector that has a very well-defined linear gamma
curve. Most consumer projectors cannot be used here.
By adding a second camera, we ease on the hardware
requirement of the projector. This is due to that the pro-
jected pattern need no longer be accurately portraited,
but that it simply has to be horizontally unique.

As mentioned, we project a series of patterns onto the
scene and acquire a series of images from both cameras.
Then the idea is to use these patterns to, as the name
suggests, encode a continuous phase across the scene.
This value can then be used to efficiently solve the cor-
respondence problem. Formally we consider a situation
with N projected patterns. Each pixel in each projected
pattern should conform to the following spatio-temporal
model,

Ii(x, y) = sin
(
2π

[ i
N

+
ω · x

w

])
, (1)

where i is the sequence number, ω is the spatial pat-
tern frequency and w is the pattern width. The first term,
i
N , defines the temporal component of the waveform and
the second term, ω·x

w defines the spatial component. The
latter defines a constant, unique phase for each pixel.
This is true for both the projected pattern and any image
taken of it. We can use the acquired pattern series to
estimate ω·x

w for each pixel. Fig. 4 illustrates the overall
process in the method.

We refer the interested to [28] for specific implemen-
tation details.

4.2. Segmentation
Of course, a point cloud generated by structured light

is not particularly useful in itself. It must be segmented
into meaningful parts before the information can be uti-
lized in path planning. Specifically, we want each meat
piece as separate segments. We accomplish this via a
modified version of the region growing segmentation al-
gorithm available in Point Cloud Lib [32][33]. Our ver-
sion is shown in Algorithm 1. It grows a region from a

Encode

Triangulate

...

...

Fig. 4: Illustration of the encoding and triangulation flow of a struc-
tured light scan. The first row shows the scene, the second shows the
encoded phase as per equation 1 and the final shows the triangulated
point cloud.
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Data:

P = organized point cloud,
N = organized point normals,
C = organized point curvature,
ct = curvature threshold,
θt = angle threshold.

Result:

R = list of segmented regions.

{w, h} ← size(P);
R← ∅;
A← zeros(w, h);
S ← set of all points in P;
Sort S by ascending order of curvature;
while S , ∅do

pmin = (x, y)← head of S ;
S ← S \ pmin;
if A(x, y) = 1 then

continue;
end
S c ← {pmin};
Rc ← ∅;
while S c , ∅ do

pi ← head of S c;
S c ← S c \ pi;
Rc ← Rc ∪ pi;
B← 8-neighbors of pi;
for p j in B do
{x j, y j} ← p j;
{xi, yi} ← pi;
if A(x j, y j) = 1 then

continue;
end
a← N(x j, y j) · N(xi, yi);
if a < cos θt then

continue;
end
Rc ← Rc ∪ p j;
A(x j, y j)← 1;
if c(x j, y j) < ct then

S c ← S c ∪ p j;
end

end
end
R← R ∪ Rc;

end

Algorithm 1: Segmentation via image space region
growth.

Region Growth

Selection

Depth Map

Fig. 5: Flow of the segmentation and selection process of the observed
meat pieces.

point of low curvature and terminates at high curvature
and change in normal angle. The idea is that an object’s
surface is relatively smooth and it’s edge is character-
ized by corners or other high curvature forms.

The main difference lies in our algorithm being
tailored specifically towards organized point clouds,
meaning point clouds that are given in a 2D grid. This
is the typical output format of e.g. the Kinect and our
structured light scanner. The main performance limiter
for a generic point cloud is the search for neighbors.
This, along with various control logic, can be greatly
sped up by exploiting the grid location of a given point.
On an Intel Core i7-4610M it segments a point cloud of
size 675x540 in 100ms-150ms.

After segmenting the point cloud, we must determine
which is the next meat piece that should be handled.
This is achieved by locating the five largest point clouds
and selecting the top most point cloud of these. The
process in its entirety is shown in Fig. 5.

5. Pick and Place Operations

In this work, we focus on a fairly general pick and
place operation where multiple meat pieces are placed
in a box and have to be moved to a conveyor belt. Fur-
thermore, the meat should be placed stretched out such
that it is ready for post-processing. Automating this task
is a challenge as the meat is deformable and each cut
varies significantly. To solve the task, two components
are required: First, a hardware solution has to be de-
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Fig. 6: The suction based gripper relies on ejectors for generating the
vacuum, and it contains 3 sensors for measuring the pressure levels at
each suction cup.

signed to move the meat. Secondly, a mechanical mo-
tion for lifting and placing the meat has to be generated.

As discussed in Section 1, a 6-axis robot with a flex-
ible and adaptable suction based gripper tool is used to
lift the meat. The gripper attached to the robot is dis-
cussed in Section 5.1.

Besides designing a hardware solution, a robotic mo-
tion for lifting and placing the meat also has to be de-
veloped. These motions are discussed in detail in Sec-
tion 5.2 and 5.3 respectively.

Both these motion strategies are determined based on
the vision input derived as discussed in Section 4. Fur-
thermore as one might expect, the parameterization of
the robotic hardware and motions contain several free
parameters which have to be determined. In this work,
these parameters are determined using simulation-based
optimization as discussed in Section 6 and 7. A full list
of the parameters are given in Table 1 and they are ex-
plained in detail in this section.

5.1. The Gripper

When designing the gripper tool, one of the key chal-
lenges is the high variation between each pick. Multi-
ple aspects contribute to this variation. First of all, the
size, shape and deformability of the meat pieces vary
even within the same type of meat cut. Furthermore, the
placement and deformed state also vary as each meat
piece is placed differently in the box. Besides simply
being flexible enough to handle one type of meat cut, the
gripper should also be adaptable, such that it can be ad-
justed to handle different cuts. The gripper design used
for addressing these challenges can be seen in Fig. 7 and
the real gripper is shown in Fig. 6.

Fig. 7: A cad model of the gripper tool.

To grasp the meat, the gripper relies on suction cups,
similar to [2]. The suction cups are flexible, so they can
adapt to the local surface variation of the meat pieces.
This is necessary to ensure that no air leaks into the
vacuum chamber which would result in the suction cup
dropping the meat. However, the local surface adap-
tation is not enough to deal with the larger variations
that can occur across an entire meat piece. To address
this, the suction cups are placed at the end of air pis-
tons, which act as passive components much like if they
were replaced with one-dimensional springs. These air
pistons can be compressed a lot more than the suction
cups, and enable the tool to adapt to larger deformation.

Besides being flexible, the gripper should also be
adaptable such that it can grasp meat cuts of different
sizes. To achieve this the distance between the suction
cups, d, can be changed to match a particular meat cut.
In this work, d is considered a control parameter which
is optimized in simulation. A deeper discussion of the
gripper design is given in [2].

5.2. The Rolling Grasp
The goal of the grasping strategy is to lift the meat

robustly. A key challenge here is that a vacuum can
form between the meat piece that is to be lifted and the
piece below. If this vacuum becomes too strong, it will
result in the grasp failing because the gripper lifts the
two pieces sticking together.

To address this challenge a rolling lift was designed
where the suction cups are placed close to the edge of
the meat and lifted in a rolling motion, as illustrated in
Fig. 9. This allows air to flow under the meat which
increases the chance that the meat is separated from the
piece below. The benefit of using this fairly complex
grasp strategy over a simpler approach is demonstrated
in [2].

The grasp based on the segmented point cloud of the
meat discussed in Section 4, is generated in two stages:
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Fig. 8: Placement of the suction cups. a) A PCA is applied to the
grey 3D point cloud. The red and transparent ellipsoid represents the
eigenvector and eigenvalues of the PCA. The frame is the PCA frame.
b) The point cloud is projected onto the PCA frame to generate a 2D
point cloud. c) The black dots show the concave hull of the 2D point
cloud that is used to represent the meat edge. The green dots represent
the initial suction cup placement aligned with the PCA frame. d) The
final suction cup placement is determined by minimize a regret score.

First, an acceptable suction cup placement is determined
based on the segmented point cloud. This process is
illustrated in Fig. 8. Then a robotic trajectory is defined
to move the suction cups to the determined positions
and lift the meat piece in a rolling motion. This motion
is illustrated in Fig. 9.

Two challenges have to be addressed when placing
the suction cups. First of all, none of the suction cups
should stick outside the meat, if this happens air can
flow into the vacuum chamber resulting in the suction
cup dropping the meat. The second challenge is that the
suction cups should be placed close to the edge of the
meat to allow air to flow in and separate the meat piece
from the piece below during the lift. To further increase
this air flow, a large part of the meat edge should also be
close to the suction cups. To address these challenges,
the first step is to determine the edge of the meat piece.
Secondly, the placement of the suction cups should be
based on the edge and determined to address both of the
mentioned challenges.

To determine the edge of the meat, the first step is
to do a PCA of the segmented point cloud (Fig. 8a).
Then the point cloud is projected onto the x,y-plane of
the PCA frame (Fig. 8b). Finally, the edge can be de-
termined as a concave hull of the projected 2D points
(Fig. 8c). To generate the concave hull, the concave
hull algorithm from PCL [33] is used. After the edge
is determined, it is re-sampled to a resolution of 10mm
to have a uniformly sampled edge model.

The next step is to determine the placement of the
suction cups based on the edge model. This placement
has to satisfy three conditions. First, the suction cups

should be placed within the meat. Secondly, the suction
cups should be placed close to the edge. Lastly, a large
part of the meat edge should be close to the suction cups.
To determine a placement that satisfies these conditions,
we pose the problem as a minimization problem where a
regret score is minimized. The regret score, R, captures
how well the placement satisfies the conditions and it
consists of two parts Rcups and Rmeat. Rcups ensures that
the suction cups are placed close to the edge while still
being inside the meat. Rmeat ensures that a large part
of the meat edge is close to the suction cups. For the
particular case where three oval suction cups are placed
on a rectangular meat piece: Rcups favors that the suction
cups are placed close to the long edge of the meat, while
Rmeat favors that the suction cups are placed close to the
corners of the meat piece.

To control how close the suction cups and the meat
edge should be, the control parameter dideal is intro-
duced. dideal represents the ideal distance between the
suction cups and the meat edge and it should be deter-
mined through simulation-based optimization. The re-
gret score and the two subcomponents are given in (2),
(3) and (4).

Rcups =


1
N

∑N
i=1(min(‖si − P‖) − dideal)2, all si are inside

the meat

1.0, otherwise
(2)

Rmeat =


1
M

∑M
j=1

√
|min(‖p j − S‖) − dideal|,

all p j are outside
the suction cups

0, otherwise
(3)

R = w · Rcups + (1 − w) · R4
meat (4)

where si is a point on the suction cups. Each suction cup
contains 16 points placed on the periphery, as illustrated
by green dots in Fig. 8c and 8d. P is the meat edge. To
determine Rcups the smallest distances from the suction
cup points to the meat edge are squared, to favor that all
the points on the suction cups are close to the edge.

p j is a point on the meat edge. S is the suction cup
edges. To determine Rmeat, the square root of the small-
est distances from points on the meat edge to the suction
cups are used. This is done to ensure outliers do not
dominate the score since some edge points will be far
away from the suction cups. This can be seen in Fig. 8d,
where there are many points on the meat edge (black
dots) that are far away from the suction cups. This way
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Fig. 9: Rolling lift - planning and simulation. a,b) show how the tool
is aligned with the grasp frame after the grasp frame is mapped to the
3D world. c,d,e,f) illustrate the rolling motion that is used to lift the
meat. The via frame, VF, and the lift frame, LF, are used to define
the motion as indicated.

the score favors many inliers, over being close to every
point.

Finally, the regret score is determined based on a
tradeoff, w, between the two subcomponents. This
tradeoff is a control parameter which should be opti-
mized in simulation.

To determine a good suction cup placement based on
the regret score, the minimization algorithm coordinate
descent [34] is used. This algorithm moves the suction
cups around in the 2D-plane, to find the placement with
the lowest regret.

After the suction cup placement is determined, the
next step is to determine the actual robot motion. The
purpose of this motion is to lift the meat while avoiding
a vacuum forming below it. This is achieved by lift-
ing the meat in a rolling motion, such that air can flow
in and separate the meat from the surface below. The
motion is produced by the robot moving through three
frames, which is illustrated in Fig. 9. The first frame
is the grasp frame, GF, and it describes where the suc-
tion cups should be placed to grasp the meat. After the
robot reaches the grasp frame the suction cups are acti-
vated to initiate the lift. Then the robot moves to the via
frame, VF, which ensures the meat is lifted in a rolling
motion. Lastly, the robot moves to the lift frame, LF,
which ensures the meat is lifted well above the box.

The three frames are determined based on two control
parameters named gr and gl, which should be optimized
in simulation. Both gr and gl are illustrated in Fig. 9.

Fig. 10: Human meat placement. The meat is placed on the conveyor
belt with a flat front facing the wrapping station.

The grasp frame is determined by reprojecting the op-
timal suction cup placement back into the 3D-world.
The via frame is determined by rotating the grasp frame
around the y-axis of the frame, by an angle specified by
gr. Lastly, the lift frame is determined by translating the
grasp frame in the z-direction by a distance specified by
gl.

5.3. The Placement Operation

The goal of the placement strategy is to place the
meat, such that it can be wrapped in folio by a wrap-
ping station. To achieve this, the meat should be placed
stretched out on the conveyor belt with a flat front facing
the wrapping station, as illustrated in Fig. 10. This op-
eration is fairly specific, but the placement criteria itself
is common in the meat sector. E.g. it is a requirement if
the meat is to be placed in boxes and for various cutting
operations.

To enable the robot to place the meat in this manner,
the placement strategy is designed to stretch the meat
as it collides with the conveyor belt. This stretching is
achieved by moving the gripper through two frames as it
moves towards the final position over the conveyor belt.
As the tool reaches these frames, the meat collides with
the conveyor belt which stretches it. If the frames are
picked reasonably, the meat is more likely to be placed
in the desired fashion. When the gripper reaches the fi-
nal position, the suction cups release the meat and the
robot moves away. The entire placement strategy is il-
lustrated in Fig. 11, and especially 11c shows how the
collision with the conveyor belt can stretch the meat.

The three frames that define the robotic motion are
named placement frame, PF, first approach frame, AF1,
and second approach frame AF2. The placement frame
specifies where the suction cups should be placed when
the meat is released.

At the end of the rolling grasp (Fig. 9f) it can be seen
that a large part of the meat hangs down to the left and at
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Fig. 11: Placement Action. a) illustrates the 2D placement of the
suction cups used during the grasp. The distances xmin, ymin and ymax
is used to determine the placement action. b) shows the tool moving
to the first approach frame, AF1, and c) shows it moving to the second
approach frame, AF2. d) shows the tool as it reaches the placement
frame, PF, and finally in e) the vacuum is turned off and the robot is
moved away.

the back of the suction cups. To ensure this is stretched
out the first approach frame was introduced. The height
of the frame is chosen, such that the corner of the meat
to the left and at the back roughly touch the conveyor
belt. Furthermore, the frame is moved slightly to the
left and further back to ensure the meat is stretched as
the robot moves towards the placement frame.

Initial trials using only the first approach frame and
the placement frame resulted in the meat being twisted
during the placement. The result was similar to the
placement shown in Fig. 11c. This twist was corrected
by introducing the second approach frame. This frame
ensures the meat is dragged a bit too far, such that when
it moves back to the placement frame the twist will be
reduced as illustrated in Fig. 11d.

Both of the approach frames are dependent on several
control parameters, which should be optimized in sim-
ulation to ensure a robust placement operation. These
parameters are dx1, dy1, dz1, dx2, dz2, θ and b. All param-

eters except b represent different offsets to the transla-
tion and rotations of the approach frames. b specify how
much the meat hanging down at the edges of the suction
cups should be considered in the translation of the first
approach frame.

Mathematically the first approach frame is defined as
the placement frame translated by (xAF1, yAF1, zAF1) and
rotated around the z-axis by θAF1, these values are given
in (5), (6), (7) and (8).

xAF1 = −(xmin · b + dx1) (5)

zAF1 = xmin · b + dz1 (6)

yAF1 =

−(ymin · b + dy1), ymin > ymax

ymax · b + dy1, otherwise
(7)

θAF1 =

−θ, ymin > ymax

θ, otherwise
(8)

where xmin, ymin and ymax are distances between the
suction cups and the edge of the meat. These distances
are illustrated in Fig. 11a, and they are used to ensure
that the stretching of the meat is dependent on how
much meat is hanging down at the edges of the suction
cups.

The zAF1 translation ensures that the meat roughly
touches the conveyor belt. The xAF1 translation ensures
that the meat hanging down to the left of the suction
cups is stretched. The yAF1 translation ensures the meat
is stretched in the y direction as well. Whether the meat
should be stretched in the positive or negative y direc-
tion depends on where the suction cups are placed on
the meat. Finally, initial trials indicated that the meat
is slightly rotated when the y translation is introduced.
Therefore the rotation θAF1 was added to reduce the
other rotation.

The second approach frame, AF2, is defined as the
placement frame translated (dx2, 0, dz2). The x transla-
tion is introduced to ensure the meat moves too far, such
that it can move back to reduce the twist of the meat
(Fig. 11c). The z translation is introduced to ensure the
meat is not pushed too hard into the conveyor belt.

6. Simulation

To optimize the robot system in simulation, the first
step is to construct a simulation framework for model-
ing robotic handling of the meat pieces. To achieve this
two fundamental steps have to be taken. First of all, a
deformable model of the meat piece should be created.
Secondly, several models for the interaction between the
meat and its surrounding has to be developed.
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In this work, a mass-spring model is used to model
the deformable meat pieces. This model consists of
several particles, which motion is constrained by vari-
ous springs placed between them. Throughout this pa-
per the particles in the mass-spring model is refered to
as meat particles. The model is described in detail in
[3]. As discussed in [3], a spring-model was chosen
over more complex finite element models, similarly to
[35, 15]. The main reason for this is that spring-models
tend to to be less computationally expensive. This is
favorable since many simulations have to be conducted
both to evaluate the robustness of potential solutions and
to optimize the overall solution.

During the real scenario, four different mechanical in-
teractions occur. First, a human places the meat in a box
containing an arbitrary number of meat pieces. Then the
robot pushes the unactivated suction cups into the meat.
Next, the suction cups are activated, such that the robot
can lift the meat. Finally, the meat is placed on the con-
veyor belt.

All these interactions are modeled by various con-
straints, which determine the motion of the meat par-
ticles. These constraints all represent the various sur-
faces the meat comes in contact with, and they come in
three formats. The first is the initial box constraint, this
represents the initial surface that the meat is placed on
in the box, and it is discussed in Section 6.1. The sec-
ond constraint is the planar constraint, this model the
conveyor belt and the unactivated suction cups, and it is
discussed in Section 6.2. The last constraint is a vacuum
constraint which is used to attach the meat piece to the
activated suction cups. This constraint is discussed in
Section 6.3.

Besides modeling the motion of the meat particles,
the motion of the suction cups also has to be modeled
as discussed in Section 6.4. Furthermore, to generate
the robotic action discussed in Section 5, a point cloud
has to be rendered. This rendering process is discussed
in Section 6.5. Lastly, the entire simulation scenario is
discussed in Section 6.6.

6.1. Initial Box Constraint
The purpose of this constraint is to model the interac-

tion between the meat piece and the box that the meat
arrives in. This constraint should also capture that there
might be several meat pieces below the top piece.

To model the uneven surface of a box full of meat a
thin plate spline (TPS) [36] is used. This spline guaran-
tees a smooth surface, and yet it can be highly random-
ized to capture many different initial conditions. The
initial box surface, with a meat piece laying on it, is il-
lustrated in Fig. 15.

Fig. 12: The meat piece laying on the initial contact surface. The grey
point cloud represents the thin plate spline, and the big grey points
represent the knot points determining the shape. Furthermore, the
meat piece is transparent and the box with the meat is represented as
lines, to make the knot points of the thin plate spline fully visible.

The spline is defined based on 4×7 knot points, which
determine the shape of the surface. The knot points are
placed on a regular grid, which matches the shape of the
box with the meat pieces. The height of the knot points
is randomized, to roughly model that the meat pieces
below are placed randomly.

If a meat particle moves through the thin plate spline,
it is considered in contact with the initial box constraint.
When this happens, the particles motion is fixed to the
point of contact.

This constraint should capture two phenomena. The
first is that the meat can not move through the surface of
the box. The second is that a vacuum can form between
two meat pieces placed in the box.

To model both these aspects, the meat particle is fixed
to the point where it comes in contact with the surface.
To move it two conditions have to be satisfied. The
first condition is that air can flow below the meat par-
ticle. This is modeled by requiring that at least one of
the neighboring meat particles is free of the initial box
constraint. The second condition is that the meat can
not move further into the surface. This is modeled by
requiring that the meat particle is lifted.

6.2. Planar Constraint

The purpose of this constraint is to model the inter-
actions between the meat piece and a planar surface. In
this work, the un-activated suction cups and the con-
veyor belt is modeled with planar constraints.

The constraint has a planar surface and a 2D bound-
ary shape, for the suction cups the shape is an ellipse,
and for the conveyor belt it is a rectangle. In case a meat
particle comes in contact with the constraint, a contact
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Fig. 13: A planar constraint is used to ensure the meat does not fall
through the conveyor belt.

point is added where the particle collides with the sur-
face. In case the particle moves further into the surface,
it is moved back to the contact point. In case it moves
away from the surface the constraint is removed. When
using the constraint to model a suction cup, the con-
tact point moves along the surface of the suction cup.
The constraint in action is illustrated in Fig. 13, where
it keeps the meat from falling through the conveyor belt.

6.3. Vacuum Constraint

The purpose of this constraint is to model the interac-
tions between the meat and the activated suction cups.

When the suction cups are activated in the real world,
the meat is quickly attached to the suction cups. To
model this in simulation, a contact volume is used to
determine which meat particles are in contact with the
suction cups. This volume is an elliptic cylinder that is
formed by the surface of the suction cup ±5mm. When
a suction cup is activated, all the meat particles within
the contact volume is projected onto the surface of the
suction cup. The meat particles are then fixed to these
projected points until the suction cups are deactivated.
The constraint in action can be seen in Fig. 14, where it
constrains meat particles to the blue suction cup surface.

6.4. Suction Cups

Besides modeling the interaction between the meat
and the suction cups, the motion of the suction cups
themselves also has to be modeled. The model should
capture the linear motion of the air pistons placed above
the suction cups, and the local adaptation of the suction
cups themselves.

This is achieved by modeling a suction cup as a planar
elliptical mass placed at the end of a linear and angular
spring, as illustrated in Fig. 14. The other side of the
linear spring is attached to the gripper tool, which po-
sition is kinematically determined based on the robotic
motion. The forces and torques affecting a suction cup

Fig. 14: The spring based suction cup model ensures the blue surface
of the suction cup aligns with the meat during grasping. The middle
suction cup and the meat are transparent to better visualize the blue
surface of the middle suction cup.

Fig. 15: The simulation of the grey point cloud is done using Rob-
Work [37]. The meat piece is transparent such that the entire point
cloud can be seen. Furthermore, the point cloud is slightly translated
and rotated to model the effect of uncertainties in the vision system.

are determined based on the meat particles in contact
with the suction cup.

6.5. Point Cloud Rendering

Besides modeling the mechanical interactions be-
tween the meat piece and its surroundings, a point
cloud renderer was also introduced. This step is needed
to generate input data for the pick and place strategy,
which determine the robot motion based on a segmented
point cloud of the meat. To ensure the meat piece is
segmented, a new scene only containing the meat piece
is generated and then the point cloud is captured in this
scene. The RobWork [37] point cloud renderer was used
to generate the point cloud, and the final result is illus-
trated in Fig. 15.
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6.6. The Simulation Scenario

The goal of the simulator is to model the use case
addressed in this paper. The scenario we address is that
meat pieces are dropped into a box. Then a scanner
generates a segmented point cloud of the top meat piece,
as discussed in Section 4. This point cloud is used to
determine a robotic pick and place action for moving
the meat, as discussed in Section 5. Then the robotic
action is executed, which moves the meat from the box
to a conveyor belt.

To simulate this, the meat piece is first placed above
the box. The meat is then translated by (Mx,My, 0) and
rotated by MR around the z-axis to randomize the initial
position. Then it is dropped such that it falls into the
box, similarly to if a human dropped it. The constraint
in the box is based on a thin plate spline, so after the
meat settles, it is placed in a deformed state, similarly
to if it was placed on top of another meat piece. Then a
point cloud of the meat piece is rendered to generate the
robotic pick and place action for moving the meat to the
conveyor belt.

After the action is generated, the robotic motion is
simulated. First, the suction cups are moved down to
the meat. Then they are activated and lifted according to
the grasp strategy. Then the suction cups move the meat
to the conveyor belt where it is placed. After it is placed
the suction cups are lifted, and then the simulation ends.
Images from the simulation can be seen in Fig. 9 and 11.

7. Optimization in Simulation

To determine an action that places the meat pieces
stretched out on a table, we propose to use simulation-
based optimization. The simulation used is discussed in
Section 6. The strategy used to place the meat is based
on various control parameters, and it is these parameters
that should be optimized. The control parameters are
discussed in Section 5 and listed in Table 1.

Besides the control parameters, there are also many
uncertain parameters in the use case, such as the shape
and initial placement of the meat. To ensure the robot
solution is robust, it is important to analyze whether the
performance of the solution is stable, even when the un-
certain parameters are varied. Both the control parame-
ters and the uncertain parameters are discussed in Sec-
tion 7.1.

In order to optimize the control parameters, it is nec-
essary to quantify the quality of a placement based on
the simulations. This score should favor actions that
place the meat stretched out on a table. The score for
achieving this is discussed in Section 7.2.

Finally, the process for determining a robust solu-
tion based on numeric optimization is discussed in Sec-
tion 7.3. This process is applied to two different cases.
In the first the robot has to pick pork bellies and in the
second it has to pick pork loins.

7.1. Free Parameters and Uncertainties
Several control parameters that are crucial for gener-

ating a stable placement action were selected for opti-
mization. All the parameters are listed in Table 1, the
first parameter specifies the gripper design, the next 4
specify the grasp action and the last 7 specify the place-
ment action. Besides just listing the parameters the table
also shows the parameter bounds used during optimiza-
tion of the entire pick and place action. These bounds
are selected based on hardware limitations and to ensure
that the meat pieces are placed on the conveyor belt. All
the control parameters have been described in detail in
Section 5.

Besides the control parameters, the system also con-
tains a lot of uncertain parameters, such as meat size
and deformability. To ensure the solution can cope with
variation in these parameters, the tested actions should
be simulated with different perturbations of the uncer-
tain parameters. To achieve this the first step was to de-
termine the most crucial uncertainties. These are listed
in Table 2. Furthermore, the bounds the parameters
can occur within should be estimated. These bounds
are based on data from the production lines at Danish
Crown and the values are given in Table 2.

The first 6 uncertain parameters are introduced to
capture the variation between the meat pieces and how
they are placed in the boxes. M is the weight of the meat
piece. Sdef is a deformability parameter. This parame-
ter model the variation in the deformability of the meat
pieces. In reality, this variation occurs due to multiple
factors, such as variation in the thickness, fat content
and temperature of the meat. In the simulation, the vari-
ation is modeled by a scalar multiplied to all the spring
constants in the meat model. The base spring constants
are chosen to make the simulated meat deform similarly
to the real meat pieces, the spring model and the con-
stants are discussed in more detail in [3]. Ssize is a scal-
ing factor multiplied to the base size of the meat piece,
for the pork belly this size is 525× 250× 20mm and for
the pork loin it is 550 × 120 × 75mm. Mx and My are
perturbations of the meat piece in the x and y-direction
before it is dropped into the box in the simulations. MR

specify how much the meat is rotated around the z-axis
before it is dropped.

The following 6 parameters are included to model
imperfections in the camera-robot calibration and other
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Table 1: Control parameter bounds used during optimization of the placement action.

Gripper Rolling Grasp Placement

d dideal w gl gr dx1, dy1, dz1 θ b dx2, dy2

min 130mm 20mm 0 100mm 15◦ 0mm 0◦ 0 0mm

max 170mm 50mm 1 200mm 25◦ 100mm 20◦ 2 100mm

Table 2: Parameter bounds for the uncertain values of the pork belly, which is used to analyze the robustness of the solutions.

Meat Cutout Vision Contact Surface

M Sdef Ssize Mx, y MR Vx, y, z VR, P, Y Soffset dtpsx28

min 3.5kg 0.9 0.95 -50mm -10◦ -10mm -3◦ 0mm 0.0

max 5.5kg 1.1 1.05 50mm 10◦ 10mm 3◦ 200mm 1.0

Table 3: Parameter bounds for the uncertain values of the pork loin, which is used to analyze the robustness of the solutions.

Meat Cutout Vision Contact Surface

M Sdef Ssize Mx, y MR Vx, y, z VR, P, Y Soffset dtpsx28

min 2.0kg 0.9 0.9 -50mm -10◦ -10mm -3◦ 0mm 0.0

max 3.5kg 1.1 1.1 50mm 10◦ 10mm 3◦ 200mm 1.0

uncertainties introduced by the vision system. Vx, Vy

and Vz specify perturbations in the x, y and z directions
of the point cloud of the meat after it is dropped into
the box. VR, VP and VY specify a roll, pitch and yaw
perturbation to the rotation of the point cloud.

The last uncertain parameters are included to model
the variation of the box the meat is dropped into. This
variation occurs because there can be between 0 and 8
meat pieces below the top piece that is to be grasped.
This surface is uneven and in the simulation, it is mod-
eled by a thin plate spline. This spline is specified
based on 29 uncertain parameters. First S offset specify
the maximum height of any knot point in the thin plate
spline. The other 28 dtps parameters are used to specify
the height of the individual 28 knot points, while ensur-
ing the points are never placed below the box.

7.2. The Objective Score

To use numeric optimization, an objective score has
to be defined. This score should capture the quality of
any given set of control parameters, such that the op-
timal pick and place action can be distinguished from

poor actions. In this work, the objective score is deter-
mined based on an automated analysis of the simula-
tions. In particular, it is determined by analyzing each
meat particle throughout the simulation, which is dis-
cussed in Section 6

To capture the quality of a solution the score should
address three different issues. First, it should favor ac-
tions resulting in the meat being stretched out on the ta-
ble. Secondly, it should favor actions where the orienta-
tion of the meat matches the desired orientation. Lastly,
it should favor actions where the internal forces in the
meat are limited, to ensure the meat is not damaged in
the operation. These issues are addressed by construct-
ing the final objective score from three different scores.

The first two scores ensure that the rotation and de-
formation of the meat piece match the desired rotation
and deformation after it is placed on the conveyor belt.
To determine these scores, the first step is to determine
the pose of the meat piece after it is moved to the con-
veyor belt. This is done by using the Kabsch algorithm
[38] between the point set representing the desired meat
placement and the point set representing the meat piece
in the simulation. This returns a pose transformation
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from the desired point set to the actual point set in the
simulation. The rotation from the pose transformation
is then used as the rotational error, Erotation. This error is
converted to the rotation objective through (9).

Qrotation =

{
0 if Erotation > 30◦

1 − Erotation
30◦ otherwise

(9)

To determine the deformation objective, the desired
point set is moved onto the final point set using the pose
transformation, and then the RMS error between the two
point sets are determined. This score is used as the de-
formation error, Edeformation, which is converted into an
objective score through (10).

Qdeformation =

{
0 if Edeformation > 50mm
1 − Edeformation

50mm otherwise
(10)

The last objective score is the force objective. This
score favors solutions that produce small internal forces
inside the meat pieces. This score is based on the max-
imal force exerted on any meat particle throughout the
simulation. The maximal force, Fmax, is converted into
an objective score through (11).

Qforce =
6.0N
Fmax

(11)

Finally, all the objective scores are combined into one
score, Q, using the geometric mean as shown in (12).
The geometric mean was chosen since it favors solu-
tions where all the objective scores are high. Further-
more, the partial objective scores are all designed to
be between 0 and 1, and thus the combined score will
also be in this interval. For more detail, on the objective
scores, we refer to [3].

Q =
3
√

Qrotation · Qdeformation · Qforce (12)

7.3. Numeric Optimization

In bounded global numeric optimization, the idea is
to determine the parameter set resulting in the highest
function evaluation for a multi-dimensional function.
This can be expressed by equation (13).

xopt = argmax
x∈Rn |xmin5x5xmax

f (x) (13)

In this work, x is the control parameters that define
the pick and place action and xopt define the best ac-
tion. xmin and xmax are the bounds which the control
parameters should be optimized within. f is based on

the objective score, Q, which is calculated in the sim-
ulations. To ensure f favors solutions that are robust
to the uncertain parameters, it is determined based on
multiple simulations with different uncertain parameter
perturbations according to (14).

f (x) = Q̄ − 2 · SD(Q) (14)

where Q̄ is the average objective score based on multi-
ple simulations. SD(Q) is the standard deviation of the
objective scores.

When computing the score, the variation in Q is
achieved by varying the uncertain parameters of the
simulation uniformly within the uncertainty bounds.
Equation (14) is based on work presented in [4]. In
[4], the equation is demonstrated to be effective at de-
termining solutions that work well, even when tested
for different perturbations of the uncertain parameters
in simulation.

Several tools exist for solving the maximization or
optimization problem. In previous work, [26], we
showed that RBFopt is a powerful optimization algo-
rithm for robotic meat handling and other robotic use-
cases where the solutions should be robust to various
uncertainties in the system. Thus in this work, we use
RBFopt to optimize the parameters.

During the optimization, it is infeasible to run a sub-
stantial amount of simulations for each parameter set.
Therefore, as verified in [26], we propose to do multiple
optimization runs where each parameter set is evaluated
based on a few simulations. Then for each optimization
run, the best parameter set are thoroughly evaluated to
determine the very best set. During the optimization,
we evaluate the parameter set in simulation based on
10 different perturbations of the uncertain parameters.
Furthermore, we do 10 optimization runs with 100 iter-
ations each. After the 10 best parameter sets are deter-
mined we evaluate them based on 1000 different pertur-
bations of the uncertain parameters to determine the best
parameter set, which is then used as the final solution.
This optimization process is done for both use cases, to
determine case-specific solutions for both cases.

For the pork belly case, the optimization process is
illustrated in Fig. 16. In Fig. 16a, f is plotted through-
out the iterations of the optimization runs. Here it can
be seen that the objective score increases substantially
throughout the optimization. This shows that the pick
and place action improve substantially as better and bet-
ter control parameters are tested. In Fig. 16b, the final
solutions of the individual optimization runs are com-
pared, in order to select the very best solution. This
solution is at index 6, where f evaluated based on 1000
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a

b

Fig. 16: Optimization of the pork belly pick and place action. a) Each
graph shows the best score achieved as the optimization algorithm
progress over the 100 iterations. The 10 different graphs represent
the 10 optimization runs. b) The 10 resulting optimal solutions are
evaluated 1000 times to determine the very best with a more extensive
evaluation. The dashed orange line shows the scores of the optimized
parameters based on 10 evaluations and the blue line shows the scores
of the same parameters based on 1000 evaluations.

simulations result in 0.892. The two graphs in Fig. 16b
represents solution qualities based on 10 and 1000 eval-
uations. Due to the similarity between the two graphs,
it can be seen that the objective scores based on 10 and
1000 evaluations are correlated. However, picking a so-
lution based on 1000 evaluations changes the best pick
from solution 5 to solution 6, so the final evaluation im-
proves the choice slightly.

The optimization process for the pork loin case is
illustrated in Fig. 17. This case appears easier since
the objective scores during optimization converge more
quickly. The best solution is at index 9, where the ob-
jective score evaluated based on 1000 simulations re-
sult in 0.864. Furthermore, the performance of the op-
timized parameter sets is more similar compared to the
pork belly case. Again the best solution changes from
solution 7 to 9 when 1000 simulations are used, so again

a

b

Fig. 17: Optimization of the pork loin pick and place action. The
graphs are similar to Fig. 16.

the final evaluation improves the choice slightly.
The optimal parameter sets for the two cases are

shown in Table 4.

8. Real World Evaluation

In this section, the real world evaluation of the robot
solutions proposed in this paper is discussed. First, we
discuss how the grasp strategy was fine-tuned and evalu-
ated on a physical prototype at a Danish slaughterhouse.
Then we discuss the evaluation of the placement strat-
egy, which was optimized in simulation. The optimized
solutions are evaluated for pork bellies and pork loins.

8.1. Grasping Different Pork Cuts

The first part of the experiments was done to deter-
mine a reliable grasp strategy for the physical prototype.
This was difficult to optimize in simulation due to many
subtle effects playing a role in the success of each grasp.
To capture all these effects in simulation would be com-
putationally intractable.
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Table 4: Control parameters used during real world trials. Pork belly and Pork loin refer to the optimal parameter sets for the two cases.

Gripper Rolling Grasp Placement

d dideal w gl gr dx1 dy1 dz1 θ b dx2 dy2

Pork belly 170mm 22.7mm 0.78 199mm 16.5◦ 9.6mm 0.3mm 65.9mm 0.2◦ 1.33 14.4mm 0.3mm

Pork loin 170mm 42.7mm 0.99 102mm 15.3◦ 8.5mm 0.7mm 100.0mm 0.0◦ 1.28 15.6mm 1.8mm

Default 130mm 0mm 0.5 150mm 20◦ 0mm 0mm 0mm 0◦ 0 0mm 0mm

a b c d

e f g
Fig. 18: The pork cuts tested during grasp evaluation. a) pork loin, b) pork back, c) single ribbed narrow belly, d) undercut narrow belly, e) single
ribbed heavy belly, f) undercut heavy belly, g) single ribbed narrow belly with skin.

During the real world trials of the grasp strategy,
seven different cuts of pork were grasped. These are all
shown in Fig. 18, the backs and loins are thicker than the
bellies and therefore more rigid. The bellies are wider
and thinner and therefore tend to be quite flexible. The
heavy bellies are overall larger than the narrow bellies.
The undercut bellies tend to be the least rigid since some
of the meat structure on the meat side is removed.

During the grasps, several types of failures occurred,
to better analyze the solutions we have split the grasp
results into 4 categories. These categories are 3 differ-
ent failure types and success, S . All the categories are
illustrated in Fig. 19. The first failure type is failure
before the lift, FBL. This refers to failures where the
gripper tool is unable to establish vacuum before lift-
ing the meat. The second failure type is failure after the
lift, FAL. This refers to the suction cups losing vacuum

after the meat is lifted and separated from the piece be-
low. The last failure type is failure due to multiple lifts,
FML. This refers to failures where two meat pieces or
a meat piece and the box stick together. This can cause
the gripper to lift both objects, which is undesirable.

After some initial trials and fine tuning of the rolling
grasp strategy, we evaluated it on all 7 cuts of pork.
The success rate and the failure causes of the grasps are
shown in Fig. 20. For most cuts between 40 and 50 trials
were done, but for pork bellies with skin (Fig. 18g) we
only did 15 since this was clearly easier than all other
cases.

The results show that the undercut pork bellies are
significantly more difficult to lift than the single ribbed
bellies. This is because they contain less structure and
thus are more flexible. During the lift, this extra flexi-
bility makes it more likely that the meat deforms at the
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FBL FAL

FML S
Fig. 19: Failure and success categories. FBL) the green circle high-
lights the vacuum gauges which show vacuum is never established.
The reason for this is the large bulges highlighted by the red circle.
FAL) the lift starts well, but vacuum is lost at the vacuum gauge high-
lighted by the red circle. FML) the box is lifted with the meat. S) a
successful lift of the pork loin.

suction cups and allow air to flow in.

It can also be seen that it is only undercut bellies that
fail due to the gripper lifting multiple objects. This is
again due to the lack of meat structure which makes it
more likely that a vacuum is formed between two meat
pieces such that they stick together. Besides the single
ribbed pork bellies the system also handles pork backs
well, and as seen from the failure types pork backs are
never dropped during the lift. This is because this cut
is thicker and more rigid, thus the meat is less prone to
deform and allow air to flow into the suction cups. How-
ever, pork backs are also more narrow and thus it is more
likely that the suction cups are slightly misplaced be-
fore the grasp. The system also handles pork loins well
and since they deform even less than the pork backs, the
suction cups almost always create and maintain a stable
vacuum.

After the grasp strategy was tested, the next step was
to optimize the entire pick and place action in simu-
lation. Since pork bellies are the most common cut
at the “Danish Crown” slaughterhouse we decided one
of the test cases should be a single ribbed heavy belly
(Fig. 18e). The reason for picking this particular belly
cut is that the vacuum gripper is more likely to work
on single ribbed cuts. Furthermore, since it is wider it
is more difficult to control during the placement which
makes it more interesting from a scientific perspective.

Besides the pork belly we also picked the pork loins
as a test case, the reason for this is that the loins are the
cut that differs most from the bellies. Thus this is the
best cut for illustrating the versatility of the system.

Fig. 20: Success and failure rates of the grasp strategy. a, b, c, d, e,
f and g refers to the cuts listed in Fig. 18. S is successful grasp, FBL
is failure before lift, FAL is failure after lift and FML is failure due to
lifting multiple pieces.

Fig. 21: Example of the image data collected for our analysis.

8.2. Placement Quality

After the rolling grasp strategy was fine-tuned and
tested in real world trials (see Section 8.1) the next step
was to optimize the parameters relevant for the place-
ment in simulation. This was done as discussed in Sec-
tion 7. After the optimal parameter set was found, the
next step was to evaluate it in the real world and deter-
mine whether it leads to better performance. We eval-
uated the default parameter set and the optimized pork
belly parameter set from Table 4 for picking and placing
pork bellies in the real world.

We evaluate the quality of each strategy via running
a series of trail grasps. We allow the robot to pick the
meat and place it as intended on a table. Then we ac-
quire an image of the meat which we can use to quantify
the results. The idea is that the ideal pose should be the
meat lying completely flat without any folds on the de-
livery table. This means that the meat’s visible surface
will be maximised. So by taking an image of the meat
in it’s delivered pose and quantifying it’s surface area,
we can quantity the quality of delivery.

After the robot has transported the meat, we take
a photo. We also ensure that a calibration artificat
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Fig. 22: Distribution of meat area after delivery for the two strategies.

(checkerboard) is present near the meat. By using the
artifact we can deduce the meat’s physical size from its
image space size as well as its physical location. Fig. 21
shows an example of one such photography.

We have this experiment for pork belly cutouts and
fig. 22 shows the resulting distribution of the meat’s vis-
ible surface area after delivery for two strategies: unop-
timized and optimized via the previosly described simu-
lation framework. The optimized strategy shows a con-
sistenly higher mean of surface area compared to the un-
optimized strategy. The mean being 151cm2 higher. We
can conclude that optimized strategy is better at max-
imising the visible area and thus at placing the meat in
an optimal flat pose. Qualitative inspection supports this
conclusion as the one side of the pork belly is consis-
tently folded for the unoptimized strategy. Fig 23 shows
an example of this along with a succesful example from
the optimized strategy. As such we can see a clear im-
provement in quality by employing parameters obtained

(a) Unoptimized (b) Optimized

Fig. 23: Examples of pork belly pose after delivery. Unoptimized
grasping consistently folds the meat, whereas the optimized strategy
delivers a consistently flat pose.

Fig. 24: Top shows a bad placement. Bottom shows a satisfactory
pose.

from the simulation-based optimization.
As shown by the results in Fig. 20, the system is

fairly generic and capable of grasping many variations
in cutout shape and size. To illustrate that the place-
ment strategy is also generic, we tested it for the pork
loins as well. This was again done by optimizing the
placement strategy in simulation and then testing the so-
lution in real world trials. The optimized parameter set
is listed as Pork loin in Table 4. Using this parameter
set, we achieved a satisfactory placement for approxi-
mately 98% of the pick and place operations. A failure
and success case is shown in Fig. 24.

9. Conclusion and Future Work

In this work, we have presented a generic solution
for doing pick and place operations with meat pieces.
Furthermore, we have presented a simulation-based op-
timization procedure for tuning the generic solution to
specific use cases. Finally, the resulting solutions have
been evaluated in the real world to validate the ap-
proach.

To enable the robot action, the first step was to design
a vision system for detecting the meat. The vision sys-
tem developed for this work is able to generate precise
point clouds of the 7 pork cuts tested. Furthermore, a
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segmentation algorithm was designed, which is able to
segment the top surface of all 7 pork cuts.

To move the meat a robot and a suction based grip-
per tool was used. The robot motion for moving the
meat is based on the segmented point cloud from the vi-
sion system. Furthermore, it is based on a rolling lift
which allows air to flow below the meat piece to avoid
it sticking to the surface below. The placement strategy
is designed as a simple draping like motion to place the
meat piece stretched out on a table.

The entire pick and place action was optimized in
simulation to determine the most robust action for plac-
ing the meat flat on a table. The resulting solution was
tested in the real world. This solution was compared to
a non-optimized solution and it is shown that the opti-
mized solution improves the performance by stretching
the meat more in the real world as well.

To show the generality of the entire approach, we also
optimized it for moving pork loins. For this case, we
achieved a success rate of 98% for placing the pork loins
nicely on a table.

In future work, we intend to extend the optimization
framework to model more grippers and manipulation
tools. This would enable the framework to optimize so-
lutions for a much broader range of problems within the
food sector. Furthermore, if new gripper tools are able
to handle sacks or cloth, it would be possible to evaluate
the system in substantially different domains and show
the broad applicability of the overall approach.

The vision solution used in this work is already
fairly generic. However, for it to work optimally it
requires static background lighting, which cannot al-
ways be garuanteed. A possible solution to this prob-
lem would be the light concentration technique of [39],
which vastly increases the SNR of the projected pattern
thus making the noise from the background illumina-
tion irrelevant. Another feasible solution would be to
increase acquisition speed via better hardware synchro-
nization. It should be possible to each speeds of 10-
20 point clouds pr. second [40]. Such speed would
make most background lighting appear approximately
constant.

Even though there are some limitations to the pre-
sented system, the system and the individual technolo-
gies can still help speed up the design and integration
of automation systems for handling meat pieces. This is
especially beneficial when automating small batch pro-
duction, where the design and integration cost is a rela-
tively large part of the overall production cost.
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Abstract. This paper presents an error analysis and correction model for four
structured light methods applied to three common types of biological tissue; skin,
fat and muscle.
Despite its many advantages, structured light is based on the assumption of direct
reflection at the object surface only. This assumption is violated by most biolog-
ical material e.g. human skin, which exhibits subsurface light reflection. In this
study, we find that in general, structured light scans of biological tissue deviate
significantly from the ground truth. We show that a large portion of this error can
be predicted with a simple, stochastic linear model based on the scan geometry.
As such, scans can be corrected without introducing any specially designed pat-
tern strategy or hardware. We can effectively reduce the error in a structured light
scanner applied to biological tissue by as much as factor of two or three.

Keywords: 3D Reconstruction, Error Modeling, Structured Light

1 Introduction

Structured light has proven to be very useful for 3D scene acquisition. This is due to
its high speed, precision and versatility. As such a wide array of related techniques
have been developed in the past decades, facilitating everything from high precision
metrology to real-time guidance of automation [8].

Structured light uses a calibrated camera-projector pair as shown in Fig. 1. A series
of time multiplexed patterns is projected onto the scene, which can be used for matching
and triangulation with the camera. This active approach makes correspondence search-
ing much simpler than passive stereo approaches, and is applicable to scenes with poor
texturing. A very important application for structured light is 3D scanning of biological
materials, especially human tissue. Examples include head tracking for medical mo-
tion correction [22], vision guided surgery [18][23], medical diagnostics [4][1][28] and
automation in agriculture and farming [21][25][7]. While the progress in the field has
been impressive, one must understand that many target materials are quite problem-
atic. Indeed, they violate the inherent assumption of direct, diffuse surface reflection
that most structured light methods are built on. The Fresnel equations predict that when
light transitions from one media to another a portion is directly reflected and another is
transmitted into the media itself. In the media the light is scattered one or multiple times
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until it is absorbed or retransmitted into the environment. The proportion between re-
flected and refracted light is determined by the specific media’s optical properties. For
example only 5-7% of human skin reflectance is direct, the remainder is emitted via
subsurface scattering [14]. It is therefore of paramount importance that the effect of this
violation on structured light is understood and quantified.

In this study, we show that in general, a structured light scan of biological tissue de-
viates significantly from reference measurements, even with patterns designed specifi-
cally to reduce these effects. A large portion of the error can be predicted with a simple,
stochastic linear model based on the incident ray geometry. Scans can then be corrected
without the need for advanced pattern strategies or special hardware. We can effectively
reduce the error in any structured light scanner applied to biological tissue by as much
as factor of two or three.

Our study focuses on three types of biological tissue (fat, muscle and skin) with
an emphasis on human applications. However we are using porcine materials as a sub-
stitute due to its availability and optical similarity to human tissue [26][27]. Through
empirical study we quantify the error induced in structured light by the biological mate-
rial’s optical properties. This results in a linear error model based on the view geometry
fitted to each method, material combination that can be used to predict and correct for
the deterministic scan error.

Projector Camera

Surface

Frame 
Sequence

Pattern 
Sequence

Q

vp

v
cup

qp
qc

uc

Fig. 1. The structured light principle: a number of patterns are projected onto the scene, and
images are captured by a camera. Correspondences are determined by different encoding algo-
rithms, and used to triangulate points on the object surface. In this example, 3-step phase shifting
patterns are shown.

2 Related Work

The issue of global lighting effects in the context of structured light has been recognized
by many authors, e.g. in the acquisition of a human face reflectance field [6].

In order to reduce these effects, hardware modifications such as polarization have
been used [2]. Recent attempts have been to design structured light encoding patterns
such that they are less susceptible to global lighting effects. The underlying observation
is, that with high-frequent patterns, global lighting effects can be considered constant,
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and invariant to a spatial shift of the pattern. This allows for efficient separation of the
observed light intensities into direct and global light [20]. In modulated phase shift-
ing [3], structured light patterns are modulated by means of carrier patterns, such that
they become high-frequent in both spatial dimensions, thereby improving their sepa-
ration power. Micro Phase Shifting [10] makes use of sinusoidal patterns in a narrow
high-frequency band, promising robustness to global lighting effects and stable phase
unwrapping with an optimal number of patterns. It should be noted, that the decod-
ing process in conventional phase shifting methods (e.g. [13]) also implicitly performs
direct/global light separation. This is true in particular for high frequency scene cod-
ing patterns. Since lower frequency phase unwrapping patterns are affected differently
by global lighting effects, this can lead to gross outliers. Hence, the advantage of mi-
cro phase shifting is not in higher accuracy, but rather in improved robustness (fewer
outliers), and more efficient use of information in the encoding patterns.

A newer approach is unstructured light [5], in which the pattern frequency can be
high in both dimensions. However the number of patterns is not ideal, and the matching
procedure rather inefficient. For binary encoding methods, exclusively high or low-
frequency pattern schemes can be considered robust against different global illumina-
tion effects [9].

An approach to compensate for the measurement error in isotropic semi-transparent
material caused by subsurface scattering was presented in [16]. Similarly to our ap-
proach, this work empirically determines the measurement error and explains it by
means of a single variable (the projected light angle), albeit only with a single veri-
fication object and structured light method. In [15], a Monte-Carlo simulation of the
measurement situation was presented, which gives some insight into the error forming
process.

In [11], an analytical derivation of the measurement error is given for the phase
shifting method. This error model predicts the error to decrease with increased spatial
frequency of the pattern. The model does not however take into account the loss of
amplitude at higher frequency patterns, which increases noise in the measurement data.
Furthermore it requires precise knowledge about the scanned material’s optical proper-
ties (extinction coefficient, phase function and index of refraction), all of which can be
difficult to find or estimate.

Computer simulations of structured light scans were performed in [19] to bench-
mark encoding methods with respect to various parameters, and were found to have
similar robustness with respect to subsurface effects.

To our knowledge, no study has thus far quantified the amount of error in scans of
biological tissue, or provided a means of correcting for it.

3 Statistical Error Model

Our principle assumption is that the error is composed of a deterministic part, which
once determined can be subtracted from future scans, in order to improve the accuracy.
Previous work gives some hints as to which parameters to include in a statistical error
model [16][11].
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Object

Projector Camera

Fig. 2. The structured light scan geometry with the parameters of our error model. The surface
normal is n, view direction v, light direction l and the projector-surface distance is d.

Considering the scan geometry, as shown in Fig. 2, we include three variables in
our error model: the view angle (given by n · v), the light angle (given by n · l) and the
distance from projector to object, d. We then formulate the following error model:

y =
[
1 n · v n · l d

]
β0
β1
β2
β3

 , (1)

where

y is the predicted error in mm,
βi is a weight,
n, v, l and d are shown in Fig. 2.

We also tried including many other variables, including reflected light to view an-
gle and coding direction to normal vector angles. These variables are inspired by the
analytical error model of Holroyd [11], but did not explain sufficient variance to jus-
tify their inclusion in our model. We also fitted Holroyd’s error model directly, but our
linear model provided more explanatory power.

4 Experiments

In order to gather data for the error quantification we scanned surfaces made of one of
three porcine tissue types; fat, muscle or skin. All samples were raw and unprocessed
with 8 samples of each type. The samples were placed individually in the scan volume
and spanned many view and light angles. Their distance to the projector also varied
from approximately 200mm to 400mm. Each scan produced approximately 5 ·105 data
points resulting in millions for each tissue type.

In optical metrology it is common practice to prepare optically challenging surface
with a spray [12]. This makes the surface optically diffuse while preserving the geom-
etry. The method was used to acquire a ground truth surface to which each scan was
compared. Specifically, after each scan the object was sprayed and covered with a thin
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Gray PS

µPS Mod PS

Fig. 3. Structured light patterns used in our experiments. In each case, 12 patterns were used.

(a) Muscle (b) Skin (c) Fat

(d) Chalk coated muscle (e) Chalk coated skin (f) Chalk coated fat

Fig. 4. Fine grained binary structured light pattern projected onto various types of tissues. The
effect of subsurface scattering is clearly seen the pattern becomes blurred without chalk coating.

layer of chalk. Then the reference scan was obtained. While we cannot assume that
the chalk coated surfaces to be perfect, we consider them ground truth as they provide
very clear contrast with virtually no global illumination. In order to verify that this pro-
cedure does not alter surface geometry, we applied two separate layers of chalk to a
sample object, and compared the scan result after each layer. The mean signed distance
was 0.037mm, indicating that chalk spraying the surfaces does not significantly bias the
result. As can be seen in Figure 4 the effect of chalk spraying is relatively pronounced,
increasing reflectance and counteracting the pattern blurring caused by subsurface scat-
tering.

In our experiments, we used four different structured light methods:

– Binary Gray coding [24]: one completely lit and one completely dark image were
used to define the binary threshold individually in each camera pixel. The remaining
patterns were used to encode 210 = 1024 individual lines on the object surface.
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– N-step phase shifting was used with 9 shifts of a high-frequency sinusoid of fre-
quency 1/76px−1, corresponding to approximately 1/10mm on the object surface.
Three additional patterns were used for phase-unwrapping [13].

– Micro phase shifting [10] using frequencies in the band [1/80.00−−1/70.00]px−1.
These frequencies corresponds to a spatial frequency on the object surface of ap-
proximately 1/10mm. Slightly different from [10], the specific values were deter-
mined using a derivative free non-linear pattern search.

– Modulated phase shifting [3] with three shifts of a sinusoid of frequency 1/76px−1

(1/10mm on the object surface). Each of these sinusoids was modulated in the
orthogonal direction using a sinusoidal carrier with the same frequency. Three ad-
ditional patterns were used for phase-unwrapping.

For the sake of brevity these will henceforth be referred respectively to as; Gray,
PS, Micro PS and Mod PS. The former two are standard methods of structured light
and can be expected to perform very similar to many derived methods. The latter two
are state-of-the-art and have been specifically designed to mitigate the effects of global
illumination, as described in Sec. 2. A pattern budget1 of 12 was settled on for each
method as it provided a reasonable balance in acquisition time and accuracy. For all
phase-shifting methods, pattern frequency was set so that each period would be ap-
proximately 10mm on the object surface. The remaining frequencies needed in micro
phase-shifting were determined using simplex optimization as suggested in the original
paper [10]. Fig. 3 shows the pattern sequences used in our experiments.

For every sample, we defined a binary mask within which all possible surface points
were reconstructed. This ensured that the exact same surface region was used in the
evaluation of each method.

The error of each surface point was quantified by determining its signed distance to
the corresponding point in the chalk sprayed reference. For Gray code scans we define
the corresponding points as being the pair with the smallest absolute normal distance.
With the other methods, we compared points using their position in the pixel grid.

5 Results and Discussion

The parameters obtained after fitting the error model to our data are seen in Table 1, 2
and 3. These shows the estimated parameters as well as the RMS of data compared to the
chalk coated reference before and after correction (respectively RMSraw and RMScor)
in units of mm. The two latter were evaluated through a process of leave-one-out k-
fold cross validation with 5 partitions. In addition we have also estimated the degree
of variance explained, R2, as well as the P-values for the statistical significance of our
model against a constant model. All model dependencies were subject to an analysis of
variance (ANOVA) [17].

In general the model provides a significant reduction in RMS for all methods with
the greatest effect for muscle and skin. It is interesting to note that R2 is in general
relatively low; at best 13% and at worst 0.8%. Such measure might dispute model’s
validity, but the statistical test versus a constant model proves otherwise. In all cases we

1 Pattern budget is the number of projected patterns allowed in a single scan.
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Fig. 5. Signed distance (sd) between scan and reference on a single sample of muscle. Top row:
before applying the linear correction model. Bottom row: after correction.
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Fig. 6. Signed distance (sd) between scan and reference on a single sample of skin. Top row:
before applying the linear correction model. Bottom row: after correction.
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Fig. 7. Signed distance (sd) between scan and reference on a single sample of fat. Top row: before
applying the linear correction model. Bottom row: after correction.
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Table 1. Muscle model estimate and regression quality.

β0 β1 β2 β3 RMSraw RMScor R2 P
Gray 0.13 0.15 -0.026 2.3×10−4 0.42 0.27 0.0082 0

Phase Shifting 0.25 0.47 -0.18 −2.5×10−5 0.5 0.21 0.06 0
Micro PS 0.21 0.36 -0.12 −4.1×10−6 0.45 0.23 0.034 0

Modulated PS 0.27 0.077 0.053 −9.7×10−5 0.42 0.26 0.0037 0

Table 2. Skin model estimate and regression quality.

β0 β1 β2 β3 RMSraw RMScor R2 P
Gray -0.48 0.018 0.43 1.3×10−3 0.4 0.19 0.069 0

Phase Shifting 0.27 0.28 0.26 −5.9×10−4 0.54 0.17 0.13 0
Micro PS 0.45 0.27 0.21 −1.0×10−3 0.52 0.19 0.13 0

Modulated PS 0.34 0.1 0.27 −6.7×10−4 0.46 0.22 0.054 0

Table 3. Fat model estimate and regression quality.

β0 β1 β2 β3 RMSraw RMScor R2 P
Gray -0.12 0.13 0.039 2.0×10−4 0.26 0.24 0.016 0

Phase Shifting -0.18 0.31 -0.11 3.9×10−4 0.22 0.16 0.084 0
Micro PS -0.13 0.2 -0.043 3.0×10−4 0.2 0.16 0.043 0

Modulated PS -0.06 0.15 -0.029 1.6×10−4 0.2 0.17 0.018 0

can conclude that our model is statistical significant within almost a 100% confidence
interval, as indicated by the P-values tested against a constant model. While this might
seem improbably low, bear in mind that the models was estimated using millions of
points which assists in obtaining a statistical significant results. The model estimate
itself is rather stable, yielding almost the same error measure for every iteration in the
cross validation. This is to be expected due to the high number of training samples and
the low dimensionality of the model.

It is seen that most methods have a positive intercept, meaning that regardless of
measurement conditions the surface seems to be further away from the camera. The
phase shifting methods are especially affected by this bias. This effect is further am-
plified under ideal scanning conditions, where view and light angle are approximately
perpendicular to the measured surface. Since β1 and β2 are in most cases positive it will
further add to positive surface bias. It is also interesting to note that for phase shifting
methods distance adds a negative weight. This means that distant measurement will ef-
fectively have less of a positive bias than close ones. The worst bias can be observed in
standard phase-shifting applied to skin were error can climb to approximately 0.75mm.

This positive trend can be illustrated by visualizing the per point error as a heat map
upon an obtained point cloud, an interesting trend can be observed. Fig. 5, 6 and 7 shows
the signed error on a single sample visually before and after applying the correction
model. All have a positive bias which is very strong for muscle and skin. This alludes
to a general trend, subsurface scattering causes the estimated surface to lie further away
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from the scanner. This is intuitively correct as subsurface scattering is caused by light
entering the material for a bit before it is reflected.

In all cases the application of the proper linear model reduces the error’s RMS
significantly. With a relatively low reduction for fat and a high reduction for skin and
muscle. Skin seems to be especially interesting for application as it has the highest
error RMS and also receives the largest reduction from error prediction. The remaining
unmodeled variance can probably be attributed to variance in chalk thickness, material
inhomogeneity and slight vibrations in the recording environment.

6 Conclusion

Structured light is greatly affected by the optical properties of biological materials such
as subsurface scattering. By comparing structured light scans of a biological object with
scans of the same object covered with a thin chalk layer, we have successfully quantified
the resulting error. Our study shows a general positive bias resulting in a surface that
lies further away from the scanner than an identical diffuse surface. Due to this positive
bias, the RMS of the error can be as high as 0.54mm. We described the error by fitting
a stochastic linear model based on view geometry to the obtained data. Using it, a large
portion of the error can be predicted and compensated for. For instance, applying this
model to phase-shifting scans of skin reduces error RMS from 0.54mm to 0.17mm.

As opposed to the solutions to global illumination proposed in [10][3] our approach
requires no specially designed pattern strategy or hardware. It can simply be applied
directly to the obtained geometry. Additionally our methodology can be applied to any
given structured light method and subsurface scattering material. From a pragmatic
view, one must conclude that standard phase-shifting is the superior choice for scanning
biological tissue. Not because it shows the lowest error, but rather because the error can
be predicted well and compensated using our method.



Bibliography

[1] ACKERMAN, J. D., KELLER, K., AND FUCHS, H. Surface reconstruction of
abdominal organs using laparoscopic structured light for augmented reality. Proc.
SPIE 4661 (2002), 39–46.

[2] CHEN, T., LENSCH, H. P. A., FUCHS, C., AND SEIDEL, H. P. Polarization and
phase-shifting for 3D scanning of translucent objects. Proc. IEEE CVPR (2007).

[3] CHEN, T., SEIDEL, H.-P., AND LENSCH, H. P. Modulated phase-shifting for 3D
scanning. Proc. IEEE CVPR (2008), 1–8.

[4] CLANCY, N. T., LIN, J., ARYA, S., HANNA, G. B., AND ELSON, D. S. Dual
multispectral and 3d structured light laparoscope. Proc. SPIE 9316 (2015),
93160C.

[5] COUTURE, V., MARTIN, N., AND ROY, S. Unstructured light scanning robust to
indirect illumination and depth discontinuities. Int. Journal on Computer Vision
108, 3 (2014), 204–221.

[6] DEBEVEC, P., HAWKINS, T., TCHOU, C., DUIKER, H.-P., SAROKIN, W., AND
SAGAR, M. Acquiring the reflectance field of a human face. Proc. SIGGRAPH
(2000), 145–156.

[7] FENG, Q. C., CHENG, W., ZHOU, J. J., AND WANG, X. Design of structured-
light vision system for tomato harvesting robot. Int. Journal of Agricultural and
Biological Engineering 7, 2 (2014), 19–26.

[8] GENG, J. Structured-light 3D surface imaging: a tutorial. Advances in Optics and
Photonics 160, 2 (2011), 128–160.

[9] GUPTA, M., AGRAWAL, A., VEERARAGHAVAN, A., AND NARASIMHAN, S. G.
A Practical Approach to 3D Scanning in the Presence of Interreflections, Sub-
surface Scattering and Defocus. Int. Journal on Computer Vision 102, 1-3 (aug
2012), 33–55.

[10] GUPTA, M., AND NAYAR, S. K. Micro Phase Shifting. Proc. IEEE CVPR (2012),
813–820.

[11] HOLROYD, M., AND LAWRENCE, J. An Analysis of Using High-Frequency Si-
nusoidal Illumination to Measure the 3D Shape of Translucent Objects. Proc.
IEEE CVPR (2011), 2985–2991.

[12] HUANG, Z., NI, J., AND SHIH, A. J. Quantitative evaluation of powder spray
effects on stereovision measurements. Measurement Science and Technology 19,
2 (2008).

[13] HUNTLEY, J. M., AND SALDNER, H. Temporal phase-unwrapping algorithm for
automated interferogram analysis. Applied Optics 32, 17 (1993), 3047–3052.

[14] KRISHNASWAMY, A., AND BARANOSKI, G. A biophysically-based spectral
model of light interaction with human skin. Computer Graphics Forum 23, 3
(2004), 331–340.
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[28] WISSEL, T., STÜBER, P., WAGNER, B., BRUDER, R., SCHWEIKARD, A., AND
ERNST, F. Enriching 3d optical surface scans with prior knowledge: tissue thick-
ness computation by exploiting local neighborhoods. Int. Journal of Computer
Assisted Radiology and Surgery (2015).



APPENDIX D
Scene reassembly

after multimodal
digitization and

pipeline evaluation
using photorealistic

rendering



Scene reassembly after multimodal digitization
and pipeline evaluation using photorealistic
rendering
JONATHAN DYSSEL STETS,1,† ALESSANDRO DAL CORSO,1,† JANNIK BOLL NIELSEN,1 RASMUS AHRENKIEL

LYNGBY,1 SEBASTIAN HOPPE NESGAARD JENSEN,1 JAKOB WILM,1 MADS BRIX DOEST,1 CARSTEN GUNDLACH,2

EYTHOR RUNAR EIRIKSSON,1 KNUT CONRADSEN,1 ANDERS BJORHOLM DAHL,1 JAKOB ANDREAS BÆRENTZEN,1

JEPPE REVALL FRISVAD,1,* AND HENRIK AANÆS1

1Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads, 2800 Kongens Lyngby,
Denmark
2Department of Physics, Technical University of Denmark, Fysikvej, 2800 Kongens Lyngby, Denmark
*Corresponding author: jerf@dtu.dk

Received 23 May 2017; revised 15 August 2017; accepted 15 August 2017; posted 16 August 2017 (Doc. ID 295986); published 19 September 2017

Transparent objects require acquisition modalities that are very different from the ones used for objects with more
diffuse reflectance properties. Digitizing a scene where objects must be acquired with different modalities requires
scene reassembly after reconstruction of the object surfaces. This reassembly of a scene that was picked apart for
scanning seems unexplored. We contribute with a multimodal digitization pipeline for scenes that require this
step of reassembly. Our pipeline includes measurement of bidirectional reflectance distribution functions and
high dynamic range imaging of the lighting environment. This enables pixelwise comparison of photographs
of the real scene with renderings of the digital version of the scene. Such quantitative evaluation is useful for
verifying acquired material appearance and reconstructed surface geometry, which is an important aspect of
digital content creation. It is also useful for identifying and improving issues in the different steps of the pipeline.
In this work, we use it to improve reconstruction, apply analysis by synthesis to estimate optical properties, and to
develop our method for scene reassembly. © 2017 Optical Society of America
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1. INTRODUCTION

Several research communities work on techniques for optical
acquisition of physical objects and their appearance parameters
[1–5]. Thus, we are now able to acquire nearly any type of ob-
ject and perform a computer graphics rendering of nearly any
type of scene. The range of applications is broad and includes
movie production [2], cultural heritage preservation [3], 3D
printing [4], and industrial inspection [5]. A gap left by these
multiple endeavors is a coherent scheme for acquiring a scene
consisting of several objects that have very different appearance
parameters, together with the reassembly of a digital replica of
such a scene. Our objective is to fill this gap for the combina-
tion of transparent and opaque objects, as many real-world sce-
narios exhibit this combination. An example is a living room,
like the one rendered in Fig. 1 (right). We propose a pipeline
for acquiring and reassembling digital scenes from this type of
heterogeneous real-world scene. In addition, our pipeline closes

the loop by rendering calibrated images of the digital scene that
are commensurable with photographs of the original physical
scene (see Fig. 1, left). This allows for validation and fine-tun-
ing of appearance parameters. The quantitative evaluation we
get from pixelwise comparison of rendered images with photo-
graphs is a great improvement with respect to validation of the
acquired digital representation of the physical objects.

When addressing the problem of acquiring a heterogeneous
scene, there is an infinite variety of scenes and object types to
choose from. So, to make our task feasible, we focus on scenes
that combine glassware and non-transparent materials, more
specifically, a white tablecloth and cardboard with a checker-
board pattern. We made these choices, as glass requires a differ-
ent acquisition modality, the tablecloth bidirectional reflectance
distribution function (BRDF) is spatially uniform but not nec-
essarily simple, and the cardboard has simple two-color varia-
tion. The latter is particularly useful for observing how light
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refracts through the glass. The chosen case is also of particular
interest, since glass is present in many intended applications
of optical 3D acquisition. Considering the highly multidiscipli-
nary nature of our work, we have released our dataset (http://
eco3d.compute.dtu.dk/pages/transparency). This facilitates
further investigation by other researchers of the different steps
of our pipeline with the possibility of a quantitative feedback at
the end of the process.

A. Related Work and Contributions
Researchers occasionally compare renderings with photographs
to provide a qualitative verification of a presented rendering
technique. The work by Phong [6], Goral et al. [7], and Takagi
et al. [8] are early examples of this trend. A procedure to bring a
rendered image close to a photograph was first presented by
Meyer et al. [9]. In this work, likeness of images was evaluated
perceptually by human observers. Pixelwise comparison of
photographs with rendered images is surprisingly uncommon.
The few examples we have found are by Rushmeier et al. [10],
Karner and Prantl [11], Pattanaik et al. [12], and Jones and
Reinhart [13,14]. These examples build on the rendering
framework described by Greenberg et al. [15]. Employing such
a framework for more complex scenes is a long and tedious
process [16]. The key issue is that a scene specification is
expected as an input.

Several problems arise as a result of not having correspon-
dence between the physical and the digital scene. Misalignment
due to inaccurate scene and viewing geometry and inaccurate
orientation of the lighting environment are some of the essen-
tial problems identified in previous work [17,18]. One way to
deal with this problem is to calculate error for image patches
when evaluating results [13,19,20]. As opposed to this, our
digitization pipeline (Fig. 2) provides both reference photo-
graphs and correspondingly calibrated scene and viewing geom-
etry so that pixelwise comparison becomes meaningful.

Pixelwise comparison of rendered images with photographs
is not only useful for quantifying the photorealism of a render-
ing in terms of error measurements. We find it particularly
useful for improving the digitization pipeline. The fact that
our pipeline enables quantitative evaluation led us to more spe-
cific contributions in its different steps. These contributions are
mostly in the reassembly and are as follows. (a) A cross-modality
marker-based placement approach, enabling accurate placement
of objects scanned with one modality into scenes scanned with
another modality. (b) A soft object deformation technique deal-
ing with surface intersections after object placement, which is
critical for scenes containing transparent or translucent objects.
(c) A micropolygon labeling approach for assigning BRDFs to
acquired geometry. (d) A color calibration scheme enabling use

Fig. 1. To the left, we compare rendered images (top) with photographs (bottom). More views are available in Appendix A. The scenes to the left
were digitized using our pipeline and include both glass objects and non-transparent objects (tablecloth and backdrop). To the right, we exemplify
the use of our pipeline for virtual product placement using our digitized glass objects, with estimated optical properties and artifact-reduced removal
of markers.

Fig. 2. Overview of our digitization pipeline in four main stages: acquisition, reconstruction, reassembly, and rendering. A video presentation of
our pipeline is available in supplementary Visualization 1. Colored arrows show the path through the pipeline of transparent objects (dotted blue)
and non-transparent objects (dashed red).
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of spectral optical properties for calculating reflectance, trans-
mittance, and absorption. (e) Perspective unwrapping of mirror
probe images to improve precision when the environment is
not very distant. (f ) Use of analysis by synthesis for fine-tuning
physics-based optical properties.

Digitization is most often unimodal and tailored toward
objects with a specific type of surface reflectance behavior [1].
While unimodal techniques are becoming more versatile
[21–23], objects with a transparent material, such as glass, still
pose challenging problems. Their reflectance behavior is so dif-
ferent that they require an entirely different modality, such as
computed tomography (CT) [24]. The transparent object must
then be removed from the scene to be scanned elsewhere. In the
meantime, the surrounding scene can be scanned with a more
common technique. However, as the transparent object takes
most of its appearance from its surroundings, it must be repo-
sitioned in the surrounding scene (physically and digitally) if
we are to take reference images for comparison with rendered
images. The purpose of our scene reassembly is to address this
type of issue.

Our digitization technique is multimodal. Currently, such
techniques seem to exist only in the context of sensor fusion
[25–27]. Here, the goal is to optimize reconstruction by fusing
data from different sensor modalities with complementary cha-
racteristics. Even so, the different modalities see the same object
and thus work for materials with a similar reflectance behavior.
The challenge is then mostly in registration of the scans. In
their final remarks and suggestions for future work, Weinmann
and Klein [1] discuss possible ways of combining multiple tech-
niques tailored to different types of surface reflectance. Our
pipeline is a different way to take a step in this direction.

In summary, our work makes it possible to perform multimo-
dal digitization and scene reassembly in such a way that rendered
images of the reassembled scene can be quantitatively compared
to photographs of the original. This enables us to provide the first
empirically founded investigation of the appearance accuracy of
objects digitized using a non-optical scanner.

2. DIGITIZATION PIPELINE

We divide our pipeline into four stages: (1) acquisition,
(2) reconstruction, (3) reassembly, and (4) rendering. Figure 2

provides an overview. As illustrated, transparent objects (dotted
blue arrows) and non-transparent objects (dashed red arrows)
take different paths through the pipeline. The acquisition stage
includes structured light scanning of non-transparent objects,
CT scanning of transparent objects, gonioreflectometric reflec-
tance measurements, and photographic capture of environment,
color chart, and scene reference images. Figure 3 provides details
of our workflow in these acquisition steps (except the simpler
captures of environment and color chart). The second stage
includes reconstruction of surface meshes, material BRDFs, and
color space. The third stage is reassembly of the digital scene
consisting of geometric objects, material appearance properties,
and environment map. The fourth and final stage is rendering
and comparison with reference images.

Our acquisition stage requires an elaborate hardware setup.
We assemble the physical scene in a black light-proof enclosure.
This has five LED light tubes for scene lighting, which we cap-
ture by high dynamic range (HDR) imaging of a light probe.
To acquire non-transparent geometry inside this enclosure, we
use a structured light scanner consisting of a toe-in stereo cam-
era rig and a light projector mounted on a robotic arm [28,29].
We chose a converging camera configuration (toe-in) to in-
crease the overlap of the fields of view so that we get a denser
point cloud per stereo view. Together with an LED-based illu-
mination arc, we also use this camera rig with exact control for
measuring isotropic BRDFs. For transparent objects, we use
a CT scanner. In the following subsections, we describe the
individual steps of the pipeline with a focus on details required
for reproducibility and on non-standard techniques that we
introduce.

A. Camera Calibration and Settings
The camera system is calibrated using a standard technique
[30]. Our calibration board is an 11 by 12 black-and-white
checkerboard. For the intrinsic calibration (Pass 1 of Fig. 3,
left), we include a large variety of views to estimate good lens
distortion coefficients. To facilitate stereo calibration, we also
ensure that both cameras have the calibration board fully in
view. For extrinsic calibration (Pass 2 of Fig. 3, left), we balance
good coverage of the scene and good coverage of the calibration
board. Since we cannot change the camera system while collect-
ing data, we chose a small aperture to ensure that background

Fig. 3. Our workflow for scanning the geometry of non-transparent objects and collecting reference images (left), for scanning the geometry of
transparent objects (middle), and for measuring material reflectance properties (right).
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and projected structured light patterns are always in focus from
all views. The full setup is in a dark room environment to elimi-
nate external light, so we use a long shutter time (600 ms) to
obtain sufficient exposure. A slight noise component is present
in the images, but this is considered negligible. Finally, we use
the estimated distortion coefficients to remove distortion from
all images in the dataset so that subsequent algorithms may
assume a pinhole camera model.

To avoid any compression or manipulation of the images by
the camera software, in particular automatic color correction,
we read the raw sensor data directly. We use bilinear interpo-
lation to reconstruct RGB images from the raw Bayer pattern
images. By doing this, we obtain a consistent RGB color space.
Moreover, the raw sensor data are linear and correlate directly
with radiometric quantities, which allows for better BRDF and
environment map estimation in later stages of our pipeline.

We capture radiometrically relevant parts of our dataset in
HDR by stacking multiple exposures [31]. More specifically,
we stack 11 exposures at one-stop intervals ranging from 1 to
2048 ms. For the other parts of the dataset, we capture a single
image at an exposure time of 600 ms.

B. Surface Reconstruction from Structured Light
We use a standard Gray code structured light approach to gen-
erate raw point clouds for a scene [32,33]. With camera param-
eters from the calibration, we transform these point clouds into
the same world coordinate system.

To reconstruct one connected triangle mesh from the point
clouds, we merge them into a single point cloud and perform
screened Poisson reconstruction with trimming and an octree
depth of nine [34]. This technique requires point normals, so
before the merging, we generate normals for each point cloud as
follows. We resample the point cloud down to 100,000 vertices
via Poisson disk sampling [35] and then compute normals via
planar fitting to a nearest neighborhood of 500 points
(∼16 mm radius). We then reorient all the normals according
to the location of one of the cameras and transfer them back
onto the original point cloud. This procedure ensures smooth
continuous normals, necessary for a good performance of the
mesh reconstruction algorithm. As we rely on smoothing, we
cannot reconstruct features in the mesh with the same physical
size as the alignment error accumulated from structured light
and calibration. The aim of the chosen constants was to pre-
serve features by striking a balance between too noisy and too
smooth. The operability of the pipeline is, however, not sensi-
tive to the choice of these constants.

C. Material BRDF Reconstruction
We assume that all non-transparent materials in the scene are
opaque and isotropic, so we model their reflectance properties
by BRDFs. To acquire a BRDF, we combine traditional
canonical gonioreflectometric sampling [36] with a BRDF in-
terpolation (reconstruction) technique [37]. We follow the
workflow outlined in Fig. 3 (right). A light arc illuminates
material samples from 11 unique inclinations, evenly distrib-
uted from 7.5° up to 90° with 7.5° steps. We place a flat
material sample at the center of the circle partly traced by
the light arc. Using the cameras mounted on the robot, we then
measure radiance reflected by the sample across one octant of a

sphere. The center of this sphere coincides with that of the light
arc, while its radius is slightly larger to avoid collision between the
robot and the arc. The robot moves in steps of 7.5° and captures
11 HDR images of the sample per step, one for each light direc-
tion. In total, this yields 2,783 HDR images per material. We
avoid tangential and zenith viewing directions (90° and 0°, respec-
tively). In the former case, no reflected radiance should be visible,
while in the latter the light arc occludes the view of the sample.

The 2,783 observations are too few to faithfully represent
the BRDF of a material in a photorealistic rendering. We need
an interpolation scheme to fill the entire �90 × 90 × 180�
Mitsubishi Electric Research Laboratories (MERL) format
BRDF look-up table [38]. The reconstruction method by
Nielsen et al. [37] is our interpolation scheme. First, we use
each of the 100 BRDFs in the MERL dataset [38] as sample
points in a 90 · 90 · 180 � 1; 458; 000 dimensional space. The
nonlinear mapping of Nielsen et al. [37] is then applied to each
of the samples. The mapped samples are ordered as rows of a
matrix X ∈ Rm×d where m is the number of BRDF samples,
and d is the dimension of the space. The zero-mean matrix is
computed as X − x, with x being the sample mean. From this,
the singular value decomposition X − x � UΣVT is used to
compute the eigenvectors and eigenvalues of the covariance ma-
trix of X − x, which are given as the columns of V and the
diagonal elements of Σ, respectively. This is effectively a prin-
cipal component analysis (PCA), where the eigenvectors are
the principal components. A matrix composed of the scaled
principal components as columns are computed as Q � VΣ.

Now, the full BRDF can be reconstructed from this princi-
pal component space by projection. Let x 0 ∈ Rn be n BRDF
observations measured for a given material. Then, let x 0 ∈ Rn

be the mean values and Q 0 ∈ Rn×k be the scaled eigenvectors
corresponding to the direction pairs of those n observations.
A vector c that spans the full space can be constructed by find-
ing the linear combinations of principal components that best
approximate the n observations. We do this by solving the lin-
ear least-squares optimization problem given by

c � argmin
c

k�x 0 − x�0 −Q 0ck2 � ηkck2

� �Q 0TQ 0 � ηI�−1Q 0T �x 0 − x 0�:
Note that by adding a penalty η to the norm of c, this effectively
becomes a Tikhonov regularized least squares. Now, the full,
mapped BRDF is reconstructed as x � Qc� x. The inverse
of the nonlinear mapping applied to X is applied to x to
get the actual, unmapped BRDF of the material. The described
approach is applied to every single non-transparent material in the
scene in order to obtain models of their reflectance properties.

This approach assumes that the MERL database encom-
passes the class of materials present in the scene. Effectively,
this is a practical compromise between dense, unbiased, canoni-
cal BRDF sampling and fast, inferred BRDF sampling. This
enables us to obtain high confidence BRDFs in a matter of
a few hours.

D. Surface Reconstruction from CT
In our dataset, we have three glass objects: a sphere, a teapot
(pot and lid), and a bowl (bowl and lid), for a total of five
pieces. All objects have spherical plastic markers glued onto
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their outer surfaces. We CT scan each glass piece to obtain
x-ray radiographs and use the CT PRO 3D reconstruction soft-
ware from Nikon Metrology to obtain a volumetric image for
each piece. The resolution of the reconstructed volume is up
to 10003 voxels. Due to beam hardening, high-density differen-
ces between materials lead to streak artifacts [39], especially
around our markers and at the tops and bottoms of the objects
(see Fig. 4). We account for these artifacts in the volumetric
segmentation.

From a CT scan, we generate two triangular meshes with
vertex normals: one for the glass object and one the plastic
markers. Figure 5 provides an overview of our procedure. We
start with the markers, which appear as elements of higher den-
sity in the scan. We preprocess the scan by clamping all the
values under a certain threshold to zero and then create a mesh
using dual contouring [40]. Generating the glass mesh is more
cumbersome. We also use dual contouring in this case, but be-
cause of the streak artifacts (Fig. 4), it is not possible to isolate
the glass mesh via a threshold. Instead, we use a lower threshold
that removes only noise, then estimate the marker positions and
use these to remove the markers from the glass mesh.

To estimate marker positions, we determine a series of
center/radius pairs �ci ; ri� by fitting a multi-sphere model to
the marker mesh vertices using a tuned random sample con-
sensus (RANSAC) algorithm [41]. We then carve a hole by
excluding all the triangles that are inside a sphere with center
ci and radius �1� ϵ�ri, where ε is usually in the 0.5–0.75
range. We store the marker positions ci so that we can use them
to transform from the local coordinate system of the glass object
to the world coordinate system (see Section 2.F).

After removing the markers, the glass meshes still have alias-
ing artifacts. To deal with this issue, we first decimate the mesh
down to 1% of the original vertices via quadric edge collapse.
The holes are then easy to close by identifying the edge loops
surrounding each hole and filling these with triangles. We then

introduce a subdivision-decimation loop with alternating
ffiffiffi

3
p

-subdivision [42] and decimation to 33% of the original
vertices. We perform this subdivision-decimation operation four
times to obtain a cleaned mesh. The decimation removes un-
wanted high-frequency features from the mesh. Thus, we gener-
ate smooth meshes at the cost of some geometric precision. We
are again trying to strike a balance between reconstruction error
and too much smoothing. In Section 4, we compare our method
with a different cleaning procedure that better preserves geometry.

E. Scene Reassembly for Non-transparent Objects
Two operations are necessary to prepare the background mesh
for rendering: labeling and deformation. In the labeling, our
objective is to identify BRDFs and label each face of the mesh
with a BRDF. Assuming a scene with a small number of known
BRDFs, we apply edge detection and watershed on the images
of the scene to segment BRDF boundaries. Shadows, specular
highlights, and different viewing angles of the scene complicate
fully automatic BRDF identification. Our approach gets us
most of the way, but we manually correct any residual misclas-
sification. Figure 6 shows a label image produced by our label-
ing technique.

The label images can be used in multi-view projective
texturing of the background mesh. However, we would like
to precompute the view and label selection instead of doing

Fig. 4. CT scans of the bowl (top row) and the teapot (bottom row)
with markers glued onto them. In the left column, visualized using a
1D transfer function. Note the different density of the markers. In the
right column, a slice scaled to display streak artifacts.

Fig. 5. Reconstruction from CT with stages illustrated using Phong
shading (top row) and wireframe shading (bottom row). After estimat-
ing the marker mesh (first column) and fitting spheres to the markers,
we reconstruct the object mesh (second column). To eliminate noise,
we first simplify the mesh (third column) and then close the holes and
apply our subdivision-decimation loop to get the final object mesh
(fourth column).

Fig. 6. Labeling of the image to the left results in the label image to
the right. Each color in the label image represents a label that we assign
a BRDF to. The black edges between labels indicate areas where we
apply a nearest neighbor method.
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it millions and millions of times while rendering. To avoid
uv-unwrapping of the mesh for storing precomputed labels,
we take an approach inspired by micropolygon rendering [43].
We project each vertex of a face onto the label images of the
scene and select the face BRDF according to the image label
that most of the face vertices were projected to. If a vertex pro-
jects to an unknown label, we resolve it by a nearest neighbor
search. Since faces around material boundaries overlap multiple
materials, we get sawtooth artifacts. We dissolve these by sub-
dividing the mesh until the rendered triangles are smaller than
the surface area observed in a pixel; see Fig. 7.

When applying physically based rendering, we observed in-
tersections between background scene and glass meshes. This
could be due to small errors in reconstruction and positioning,
or perhaps the harder glass objects press down the tablecloth
when placed for reference imaging. It causes significant visual
artifacts, since the rendering exposes all surfaces of a transparent
object. To eliminate these artifacts, we accommodate the hard
object (glass) by deforming the soft object (tablecloth); see
Fig. 8. To deform the soft object, we need a “down” direction
in which to push the vertices. We first find contact vertices.
These are vertices in each mesh that are close to any vertex
of the other mesh. We consider vertices close if the distance
between them is less than 7% of the bounding box diagonal
of the hard object. Using least squares regression, we fit a con-
tact plane to the contact vertices of the soft object. We set the
sign of the contact plane normal so that the upper half-space
contains the center of the hard object bounding box. Projection
of a contact vertex to the normal of the contact plane then
measures the height of the vertex. For each soft object contact
vertex x, we find the nearest hard object contact vertices and
push x down below the lowest one of these.

F. Scene Reassembly for Transparent Objects
To reposition the glass objects in the scene, we rigidly trans-
form the meshes reconstructed from CT to the world co-
ordinate system of the background mesh. We obtain this
transformation by matching markers in the stereo images with
the marker coordinates ci computed during reconstruction
from CT (see Section 2.D).

To find the markers, we employ a size invariant circle
Hough transform [44]. This works well for our dataset, where
the markers show high contrast against their surroundings. We
match markers in the left and the right images via Sampson
distance [45]. Using this technique, markers on the same epi-
polar line lead to false positives, so we manually inspect the
result. We also manually discard detected markers that are vis-
ible through the glass, as the refraction would lead to incorrect
positioning. Markers in both stereo images with no match are
discarded. The result is a set of matched markers in image co-
ordinates, as seen in Fig. 9 (bottom left). We then triangulate
the matched markers from the stereo views and gather them in
clusters of 3D points. We remove outliers via their distances
from the cluster centers, and for each cluster we select the point
with the lowest reprojection error. An example of the points
and clustering is shown in Fig. 9 (top middle).

We manually pair the 3D marker coordinates from the
images with the marker coordinates ci from the CT scans. We
perform Procrustes analysis [46] on the two point sets, exclud-
ing reflection, since we assume a rigid transformation applied to
each vertex of the mesh. The bowl and the teapot are composed
of multiple pieces. For these objects, we compute the transfor-
mation individually for each piece. The result of the object
transformed into the scene is shown in Fig. 9 (top right). We
found that in order to have low error in the transformation, the
chosen markers should sample the surface evenly and be visible
from most views.

G. Color Calibration
Images are quantitatively comparable only if they live in the
same color space. Thus, we must ensure that our radiometry-
dependent data, namely reference images, environment map,
and BRDFs, are in the same color space. We do this by imaging
a color chart of precisely known colors. More specifically, we
use second-degree root-polynomial color correction [47] based
on a 24-patch ColorChecker Classic from X-Rite. This pro-
vides a matrix that transforms from camera RGB to XYZ,
where we assume illuminant D50 when specifying the XYZ
values of the colorchecker. With the assumption of illuminant
D50, we can transform colors to the CIE L � a � b � color

Fig. 7. Subdividing the mesh dissolves unwanted boundary saw-
tooth artifacts that originate from the BRDF labeling.

Fig. 8. Deformation of background mesh, where we push the back-
ground vertices down to avoid mesh intersection.

Fig. 9. Repositioning a CT scanned object in the background scene.
We identify and match the markers in the stereo image pairs and
calculate their corresponding 3D points. Pairing these with marker
coordinates from the CT scans, we transform the CT scanned piece
of an object into the world coordinate system.
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space and then compute color differences using the ΔE00 met-
ric [48]. We use this to refine our result by minimizing ΔE00

using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algo-
rithm [49]. The result is in Fig. 10. The average color difference
is ΔE00 � 1.97� 1.21, which is larger than 1 JND (just
noticeable difference) [50], but we find it acceptable.

Since we work with glass objects (and chrome; see
Section 2.H), we need refractive indices to determine reflec-
tance, transmittance, and absorption properties. Refractive in-
dices can be found per wavelength in tables of research papers.
To use such spectral optical properties together with our tri-
chromatic image data, we integrate them to CIE RGB using
the CIE RGB color-matching functions listed by Stockman
and Sharpe [51]. It is important to normalize these functions
[52] and to use RGB rather than XYZ [53]. This is because a
refractive index is not a color, but rather a quantity that in tri-
chromatic representation should resemble a sparse sampling of
the spectrum. Thus, as recommended by other authors [54], we
choose CIE RGB as our rendering color space. After transform-
ing our image data from camera RGB to XYZ, we therefore
convert them to CIE RGB [55]. As a final step, we apply
Bradford chromatic adaptation [50], adapting to the originally
assumed illuminant D50, so that renderings and reference
images get closer to real-life appearance.

H. Environment Lighting
To capture the lighting observed in the reference images, we
use a method similar to the mirror probe technique [56].
However, we use a pinhole camera model for probe image un-
wrapping instead of the standard orthographic model. Our
pipeline enables this, as we have a calibrated camera and know
its position relative to the photographed mirror probe. With
the pinhole model, we obtain a more precise estimate of the
environment lighting. The environment map is generated from
HDR images and stored in latitude–longitude panoramic
format [50]. We use a polished grade G100 chrome bearing
ball as mirror probe.

An environment map represents an infinite area light and
maps a direction to a texture element (a texel). To do unwrap-
ping, we map each texel direction ~l to the corresponding pixel

position pproj in a light probe image. Given the configuration
illustrated in Fig. 11, we have

~v� c−o
kc−ok ; ~n� ~v�~l

k~v�~lk
; p� o�R~n; pproj �M�pT 1 	T ;

where camera matrix M and camera position c are available
from our calibration. The radius of the sphere R is available
from the bearing ball specification, and we find the center
of the sphere o by manually annotating the sphere and then
triangulating it. We assume that the distance to the actual light
along ~l is equal to the distance between camera and sphere
kc − ok. This assumption works well in practice, leading to
an error smaller than the uncertainty of o caused by the triangu-
lation. With the original orthographic camera model, we can
reconstruct the lighting for all directions except one (−~v). In
our model, we cannot reconstruct the lighting for a set of di-
rections �~n · ~v ≤ R∕kc − ok�, so we set them to black. Since we
do our unwrapping in world space, we can combine contribu-
tions from multiple camera views with no need to align them
afterwards.

The environment map is color corrected according to
Section 2.G, which enables us to correct for the angularly de-
pendent reflectance of chrome. The correction is to divide by
Fresnel reflectance, which we compute during unwrapping. As
input for Fresnel’s equations, we use the angle β between
c − p and ~n and the complex refractive index of chrome [57]
converted from spectrum to CIE RGB. The result is shown in
the inset of Fig. 11.

I. Rendering
We render images using progressive unidirectional path tracing
[58,59] implemented in OptiX [60]. The captured HDR envi-
ronment map is the sole light source in our scene [56]. When
rendering non-specular materials, we importance-sample the
environment map to get direct illumination and use sampling
of a cosine-weighted hemisphere to get indirect illumination.
From our labeling, we have one BRDF attached to each triangle
in our scene. For non-transparent objects, we use our measured
BRDFs tabulated in the MERL format [38]. To terminate
paths probabilistically, we use Russian roulette based on the

Fig. 10. Color calibration: raw images (left) and color corrected im-
ages (right). The camera sensor is particularly sensitive to green.

Fig. 11. Unwrapping of a spherical probe. We know the sphere ra-
dius R from specification, the camera position c through calibration,
and the sphere center o by triangulation. Radiance at pproj in our image

then corresponds to the environment map direction ~l . The result for
the robot enclosure is in the lower left corner in latitude–longitude
panoramic format (here tone-mapped).
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bihemispherical reflectance of each measured BRDF. This
reflectance is calculated in a preprocessing step using Monte
Carlo integration. We deal with transparent objects in the usual
way, setting reflectance and transmittance according to Fresnel’s
equations of reflection and Bouguer’s law of exponential attenu-
ation. Given their small surface, we were unable to estimate a
BRDF for the markers. Instead, we render them as glass with all
refracted rays being absorbed.

3. ANALYSIS BY SYNTHESIS

The ability to render images comparable to photographs ena-
bles us to use our pipeline for improving parameter estimates
through analysis by synthesis. As an example, we need a scaling
factor for our HDR environment map, as it measures relative
radiance [31]. We estimate this factor by taking ratios of refer-
ences and renderings with the background scene alone. Another
example is estimating real and imaginary parts of glass refractive
indices. As analysis by synthesis is fundamentally ill posed [61],
we take our outset in physics-based initial guesses such as
Schott K5 crown glass (sphere and teapot) and soda lime glass
(bowl). Spectral refractive indices for these glasses were ob-
tained from an online database (http://refractiveindex.info) and
converted to CIE RGB. All parameters were estimated using
views different from the ones in our comparisons of renderings
with references.

As an example of our analysis by synthesis, we plot the evo-
lution of the root-mean-squared error (RMSE) for different
renderings of the glass bowl in Fig. 12. For each rendering,
we vary a trichromatic component of the absorption coefficient
(which directly relates to the imaginary part of the refractive
index). We identify a distinct minimum in the error for each
channel, with a slightly larger uncertainty in the red channel.
The minimum values in this figure were used in our renderings
of the glass bowl. We apply the same analysis to the teapot and
the sphere.

Given an initial guess for a parameter, we can employ stan-
dard optimization algorithms, defining the RMSE between the
reference and the rendering as a cost function to minimize. To
reduce rendering times, the evaluation of the cost function can
be calculated on a downsampled image or limited to a specific

patch of the images. Various general optimization algorithms
exist for minimizing expensive cost functions [62].

4. RESULTS

Our scenes consist of a backdrop, a stand, and a glass object
(with markers) placed on the stand. The backdrop is a 30 by
20 white-and-gray checkerboard print on 120 cm by 80 cm
semi-matte cardboard, and the stand is a tabletop with a white
cloth. An example scene is depicted in Fig. 13. We imple-
mented our reconstruction and reassembly procedures as a
modular software pipeline and computed all rendered images
using our path tracer. As illustrated in Fig. 2 and mentioned in
Section 2.G, we color correct both rendered images and refer-
ence images to have a meaningful perceptual comparison.
Figure 14 compares markers in a reference image with rendered
markers to validate our marker positioning. For the teapot, the
average distance between the markers from stereo and the trans-
formed markers from CT is 0.43 mm.

Figure 15 presents pixelwise comparisons of reference im-
ages and rendered images. The error images allow us to spot
subtle differences not easily noticed in a perceptual comparison,
such as the slight misalignments in geometry and highlights.
As reference photographs were not captured in HDR, we clamp
the renderings correspondingly. This means that areas of strong
light intensity, such as highlights and intense caustics, appear
black in the error images.

Fig. 12. Analysis by synthesis to estimate absorption of the glass
bowl. We run renderings in low resolution and change the absorption
in each color channel one at the time. In the case of the bowl, the blue
channel is the most sensitive one.

Fig. 13. Scene with checkerboard backdrop, lighting, glass teapot,
and stand with table cloth observed by two cameras mounted on a
6-axis industrial robot arm.

Fig. 14. Markers rendered in blue and added to the reference image
to validate marker positions by looking at pixel offsets.
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Figure 16 exemplifies the impact on error images of some
of our contributions. In Fig. 16(a), we reposition only the glass
object in the background scene and apply color correction
(Sections 2.F and 2.G). This means that we use Lambertian
materials (with bihemispherical reflectances from the measured
BRDFs), an orthographic unwrapping model of the environ-
ment map, and no chrome reflectance correction or analysis
by synthesis optimization. We compare to the reference image
in Fig. 16(g), with error images as in Fig. 15. Figure 16(b)
shows the impact of using measured BRDFs (Section 2.C),
resulting in a more accurate representation of the folds of
the cloth in the background scene (top image) and an overall
reduction of the error (bottom image). In Fig. 16(c), we add
deformation of the background mesh (Section 2.E), which
ensures that the background mesh does not poke through the
glass surface (see a close-up in Fig. 17). Additionally, we can see
how this improves the error on the lid of the bowl, because of
refraction of light in the glass. The next step, Fig. 16(d), shows
the impact of our modified environment map unwrapping
(Section 2.H) against the standard orthographic unwrapping

rotated according to our camera parameters. A close-up is avail-
able in Fig. 18. Our modified unwrapping provides a better
shape and alignment of highlights and caustics. Partially due
to the assumption of infinitely distant environment light, some
alignment artifacts persist. In Fig. 16(e), we show the effect
of correcting for chrome reflectance in our environment map
reconstruction. Quantitatively, this changes the distribution of
the error (bottom image). On the cloth, the exposure increases,
exposing the caustics misalignment. On the backdrop, the error
reduces. Interestingly, the structural similarity index (SSIM)
improves while the RMSE worsens. Finally, in Fig. 16(f ),
we use analysis by synthesis to adjust glass absorption. This
improves the glass appearance, but it also leads to slight color
changes in other parts of the scene due to indirect light paths.
Because of this global influence, the analysis by synthesis intro-
duces slightly too much absorption to compensate for the
slightly too bright tablecloth.

As an example of how our pipeline can be used to validate
existing algorithms, we investigate the case of glass object recon-
struction. In Fig. 19, we compare two different reconstruction

Fig. 15. Pixelwise error for three rendering-reference pairs. Error is
the l2-norm of 32-bit per channel RGB images, visualized using a base
10 logarithmic scale.

Fig. 16. Qualitative (top) and quantitative (bottom) step-by-step evaluation of our reassembly techniques. The log error images have the same
format as in Fig. 15 and the reference photograph is in the rightmost column (g). In each column, we provide root-mean-squared error and structural
similarity index (RMSE/SSIM). Both measures attain their best scores in our final result (f ).

Fig. 17. Zoom-in of Figs. 16(b) and 16(c) to emphasize the effect
of our background deformation.

Fig. 18. Zoom-in of Fig. 16(c) and 16(d) to emphasize the effect of
our perspective unwrapping of the environment map.
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methods with a focus on two parts of the teapot scene. Smooth
reconstruction refers to the procedure described in Section 2.D.
The other procedure is simply to decimate the reconstructed
mesh to 2.5% of the original vertices and apply Taubin
smoothing [63]. This removes the high frequencies of the
noise, but much noise is still present in the midranges, leading
to wobbly refractions. Our method in Section 2.D reduces far
more noise, but this is at the cost of greater changes to the over-
all shape. We note that a refractive object with a simple geom-
etry is very hard to reconstruct automatically if fidelity and
almost no noise are both required.

5. DISCUSSION

Since our pipeline enables us to compare renderings with pho-
tographs, we can identify problems in acquisition, reconstruc-
tion, and rendering that would otherwise have been hard to
find. Camera calibration issues, for example, reveal themselves
as error lines along edges (visible in Fig. 20). Color calibra-
tion issues reveal themselves as color shift. Such issues led us
to more careful camera calibration procedures and the choice
of root-polynomial color correction. Qualitative comparisons
revealed artifacts in surface reconstruction, mesh intersections
calling for deformation, misplacement of highlights, color
shift due to chrome reflectance, and missing absorption in
renderings (Figs. 16–19). Quantitative comparisons confirmed

improvement due to perspective unwrapping of light probe
images and led to analysis by synthesis.

The comparison with reference photographs before and after
deformation (Fig. 17) to some extent validates our soft object
deformation technique. Further validation would be desirable,
but it is difficult to come up with a different experiment. Some
kind of soft, durable memory foam with a scannable surface
would be required, as the soft object would otherwise change
shape again once the hard object is removed. Our validation
supports only that the cloth appearance (as observed through
glass) is represented more faithfully after deformation.

We found analysis by synthesis useful for estimating param-
eters with an outset in physics-based initial guesses. The results
in Fig. 12 show that we can estimate optical properties for a
given material and use them in a different setting (right part
of Fig. 1). The precision of the estimation varies with the im-
pact of the property on the overall error, and the estimated
parameters may compensate for unrelated errors. In this regard,
specific scene configurations could be used to favor estimation
of a particular parameter. The most important limitation of our
method is that we describe materials as large patches of iso-
tropic BRDFs. In our renderings, this assumption works well
for the checkerboard backdrop but not for the cloth, where we
have both subsurface scattering effects and probably anisotropy
due to the weave structure of the cloth. Figure 21 reveals that
the rendered image is too dark in areas surrounding caustics.
As seen in the light refracted through the sphere in the vicinity
of the marker, our processing of the glass object to separate
glass from markers causes some imprecision in the geometry.
We believe this mainly influences the shape of the caustic. The
bleeding of the caustic to areas that are much darker in the
rendered images looks like backscattering from the table beneath
the cloth. We refer to this as a kind of subsurface scattering.

Another limitation is seen at the transition between non-
connected elements. It is visible in the renderings at the boun-
dary between the cloth and the backdrop (see Fig. 20). The
problem derives from the fact that the cloth and the backdrop
were too close to each other during dataset acquisition. This
resulted in the Poisson mesh reconstruction interpreting them
as a continuous object instead of two separate ones. The prob-
lems around markers (Fig. 21) are also due to transition of
materials. The marker removal and whole closing in the glass
surface reconstruction interrupts the original shape of the
surface. Furthermore, the markers are glued onto the glass sur-
face, and the glue is not considered in the reconstruction and
renderings. The marker glue problem is magnified by the glass
refraction.

Fig. 19. Trade-off in mesh reconstruction. If we smooth more, we
get less distortion in the refractions, but less precision in the mesh
geometry. From left to right: Rendering with smoothing, reference im-
age, rendering without smoothing.

Fig. 20. Material transitions: error lines along checker edges and
along the boundary between tablecloth and backdrop.

Fig. 21. Effect of separating markers from glass (refracted light close
to marker) and of not accounting for subsurface scattering (dark areas
close to caustics).
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6. CONCLUSION

We have proposed a pipeline for multimodal scene digitization.
Our work addresses the entire process from acquisition of the
original objects, through reassembly of the digital scene, to
accurate modeling of camera and environment. While the pipe-
line required several non-trivial steps, the benefits are corre-
spondingly great, since we can perform pixelwise comparisons
between rendered images and photographs of the corresponding
physical scene. This means that we have the means to quanti-
tatively assess the accuracy of an acquired model based on
comparison with empirical evidence. We believe this kind of
quantitative assessment has not previously been possible for
transparent objects. In applications such as cultural heritage
preservation and industrial inspection, where the accuracy of
a digitization is important, such comparison with empirical
evidence is crucial.

To the best of our knowledge, our work is also the first work
to quantify the photorealism of a heterogeneous scene requiring
multimodal acquisition.

Our dataset is publicly available so that others can test new
techniques for the different steps of the pipeline with quanti-
tative feedback based on photorealistic rendering. The fact that
one can use off-the-shelf rendering techniques for improving
the different steps of a multimodal digitization pipeline is per-
haps the most important benefit of our work. An application of
the full pipeline is the virtual product placement in Fig. 1.
Another important application is the estimation of radiometric
properties through analysis by synthesis. The ability to accu-
rately estimate optical properties through computation rather
than measurement, which might require specialized equip-
ment, is likely to greatly simplify the digitization of radiometri-
cally complex objects. In this paper, we estimated absorption
and refractive indices of transparent objects, but analysis by
synthesis could be equally useful for other materials with
non-trivial BRDFs. This is another key benefit of our work that
we believe is well worth exploring in the future.

APPENDIX A

Figure 22.
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1. Introduction
Over the previous years, we have at the Section for Im-

age Analysis and Computer Graphics at the Technical Uni-
versity of Denmark been working on generating high qual-
ity data sets for computer vision via our lab setup using a
6-axis industrial robot. This has provided a new data set
aimed at feature matching [1, 4], and two data sets aimed
at multiple view stereo [14, 16]. The resulting data sets
are publicly available via http://roboimagedata.
compute.dtu.dk/.

The evaluation of computer vision algorithms on these
data sets has provided useful insights on realistic scenarios
by setting a rigorous framework for evaluation. The results
of these efforts have been well received by the community
and the hardware and software platform associated with the
robot is now well developed. We are currently in the pro-
cess of making three new data sets aimed at 3D vision, with
a special focus on the more challenging aspects, such as
radiometry and the modelling of non-rigid objects. The
construction of these data sets all leverage on our robotic
setup’s ability to produce ground truth camera and surface
geometry, as briefly outlined in Section 2, and there is a
great deal of commonality in the making of the data sets.

This abstract describes our current ongoing work on this
data set construction for 3D vision. The data sets include:

1. A direct extension of our large multiple view stereo
(MVS) data set [14], where we are now includ-
ing transparent and semi transparent objects into the
scenes, Section 3. A challenge in doing this is getting
the ground truth geometry of the transparent objects.

2. A data set addressing the radiometric challenges in 3D
vision as presented in Section 4 where we aim at ex-
tending our MVS data set by explicitly measure the
bidirectional reflectance distribution function (BRDF)
of the surfaces. This will have the additional feature to
finally give a data set for evaluating photometric stereo
with a ground truth.

3. An extension of our data set on feature matching to

Figure 1. Photos of the 6-axis industrial robot mounted with two
cameras and a projector. Cameras allow for MVS, and in conjunc-
tion with the projector SL provides ground truth point clouds.

evaluate these algorithm with non-rigid objects, (Sec-
tion 5) where we use actuators to make stop motion
3D data sets. This data set will also evaluate Non-rigid
Structure from Motion (NRSfM) with realistic objects.

2. Brief System Overview
Our experimental setup, cf. [1], is built around a 6-

axis ABB IRB 1600 industrial robot, providing a flexible,
precise, and highly repeatable camera pose. The robot is
mounted with two Point Grey Grasshopper3 3376×2704 8-
bit RGB cameras and a projector (for previously published
datasets the cameras were 1600 × 1200 8-bit Point Grey
Scorpion cameras). From each position ground truth sur-
face point clouds are obtained using structured light (SL),
and stereo images with a 32 cm baseline are captured with
the camera pair. Five individually controlled 6500K LED
tube lights allow for soft natural illumination of scenes from
varying directions. Figure 1 shows the robot.

Previous evaluations of our system [14] have shown that
the ground truth samples obtained through SL have good
accuracy with a surface standard deviation of 0.14 mm. We
expect similar or better performance in this data set. Posi-
tioning repeatability of the robot is very high, with a stan-
dard deviation of 0.0031 mm over two months.

Additional instruments used for generating the data in-
clude a CT (Computed Tomography) scanner for ground
truth geometry of transparent objects (described in Section
3) and an illumination arch for controlled directional light-

1



Figure 2. Preliminary images from our data set. In the first row,
three glass objects (sphere, bowl, teapot) with markers placed on.
On the second row, three calibration and rendering tools part of the
pipeline: a black and white checkerboard (coordinate estimation),
an X-Rite ColorChecker R© (color balance compensation) and a
chrome sphere (environment light evaluation).

ing (described in Section 4).

3. Transparent Objects
Our goal is to extend our original MVS dataset to ac-

count for transparent objects where the focus is on recon-
struction of geometry and appearance. Usually, the radio-
metric behavior of the objects used in 3D reconstructions
is assumed diffuse and opaque. This leads to a number of
simplifications that we cannot apply to transparent objects.
In the case of transparent objects, refraction and reflection
cause distortion effects that complicate reconstruction.

Previous methods acquire data sets useful for image-
based rendering of a transparent object [18, 11]. However,
these methods do not produce an actual triangle mesh and
require special rendering techniques for reconstruction of
the appearance of the transparent object. A survey on meth-
ods that do provide a triangle mesh is available [13]. In
this survey, they note that CT scanning of refractive objects
like glass is costly but straight forward. Thus, we use CT
scanning to obtain ground truth geometry. Another way is
to acquire shape and pose of a transparent object from mo-
tion [3]. In any case, there seems to be no data set, like the
one we propose, which is useful for multiple view recon-
struction of transparent objects.

3.1. Data

Our data set contains a set of multiple view HDR im-
ages of three glass objects with different radiometric prop-
erties (top row of Figure 2). We use a solid sphere, a bowl
with lid (composed of two parts) and a teapot with multiple
thin glass layers (composed of three parts). The walls of
the bowl and the teapot have different thickness. A diffuse

backdrop is provided for the objects. We have made this
as a gradient checkerboard, so that one half of the squares
varies in color from left to right, and the other half varies in
color from top to bottom. In this way, we can see how light
reflects, refracts and scatters through the objects. The re-
fractive index of the glass objects will be estimated directly
from the scanned images, or, if this is unsuccessful, by the
use of a refractometer. We marked the objects with small
black plastic spheres, in order to easily determine their po-
sition relative to the scene. In our data set, we also provide
high-resolution triangle meshes generated from CT scans.
We use these scans as ground truth for either geometrical
reconstruction algorithms or physically based rendering al-
gorithms for appearance modelling.

Our current data set creation procedure is as follows.
First, we choose a sequence of camera positions and ori-
entations for our industrial robot. The robot enables us to
reproduce a given set of positions and orientations with a
very high precision. Then, we capture a first set of images
placing a black and white checkerboard in the scene. This is
done to obtain the camera positions relative to the scanned
objects and calculate camera parameters for the setup. Sec-
ondly, we scan a commercial color checker, which allows
us to compensate for color channel alterations in the final
images. Finally, we scan a chrome sphere to get an HDR
environment map of the surroundings. We use the result-
ing map as a light source in our rendering algorithms [5],
so we can simulate the resulting scene with high precision.
After these three calibration steps, we can finally scan the
glass objects using the same pre-defined path used for the
calibration images.

Once compiled, we are planning to use this data set to
verify that the radiometric models [9] properly describe the
radiometric properties of the scene. To do this we plan to
feed the ground truth of our data into a custom-built ren-
derer based on the NVIDIA OptiX library [20], and see how
well it reproduces the images. If successful, we have a val-
idated computational model, which in principle we ‘just’
have to invert to do 3D reconstruction of transparent ob-
jects. Following this we plan at applying state of the art
3D reconstruction algorithms and quantify how far the state
of the art has come toward solving this central 3D vision
reconstruction problem.

4. BRDF measurements and Photometric
Stereo

The radiometric behaviour of an object plays a crucial
role in MVS. Often this behaviour has been ignored or at
most assumed Lambertian. This allows for acceptable re-
constructions of geometry, but often poor recovery of the
reflectance. For more accurate MVS and reflectance cap-
ture, the BRDF of an object should be taken into account
and this is a problem that receives a growing amount of
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attention [24, 15]. Within the field of photometric stereo,
the reflectance of an object is the key element in recovering
surface normals and thereby indirectly the object’s geom-
etry. Also here, assumptions about reflectance are made,
these include e.g. Lambertian behaviour [27] or isotropic
BRDFs [12].

For both of the above areas, a multi-view data set having
ground-truth reflectance behaviour would be of great value,
and does, to our knowledge, not currently exist. We are
therefore now working on a MVS data set where not only
the ground-truth geometry is given, but also a densely sam-
pled BRDF ground-truth for all materials in the scene. In
the following, we will elaborate on the details of how this
data set will be acquired and what it will include.

4.1. Concept

Turntable

Illumination Arc

Halogen light-bulbs

7.5°

Table / Static Surface

ABB IRB 1600
Industrial Robot

1200 mm.

1200 mm.

BRDF acquisition layout

CCD Camera 
mounted

Figure 3. Schematic of BRDF capturing setup. Setup includes a 6-
axis industrial robot holding a CCD (stereo) camera for view, and
an arc in conjunction with a turntable for illumination.

Capturing the reflectance of a material generally re-
quires four degrees of freedom: polar and azimuthal an-
gle of illumination-direction, and polar and azimuthal an-
gle of view-direction, ρ(ωi, φi, ωv, φv). Utilizing our lab-
facility’s 6-axis industrial robot, mounted with a stereo-
camera setup, all view directions (ωv, φv) can effectively
be captured. For illumination directions (ωi, φi), we utilize
an illumination arc and a rotation-table. The arc holds a
range of halogen light-bulbs and is capable of covering the
polar angle φi in 7.5◦ intervals. The rotation-table turns the
target sample with a resolution of < 1◦, thus densely cover-
ing θi. Figure 3 shows a schematic of the BRDF capturing
setup, and Figure 4 is a photo of an actual acquisition scene.

Using the above described setup, we intend to densely
sample the BRDFs of a collection objects whose sur-
faces consist of one or a few, isotropic, BRDFs. The
BRDFs of each material will be stored in the 3-dimensional
Rusinkiewicz frame for isotropic BRDFs [21], as also done
in the MERL database[17], although with a coarser reso-

Figure 4. Capturing the BRDF of an object with known geome-
try. All illumination directions and view-directions are covered
for each type material present on the object.

lution of 7.5◦ in each dimension. In conjunction with the
densely sampled BRDFs, stereo images of scenes contain-
ing the sampled objects will be acquired for a wide range
of directions. Objects will be of relatively low geometric
complexity, and scenes will consist of one or more of the
objects.

5. Non-Rigid Structure from Motion
Evaluating Non-rigid feature matching and NRSfM al-

gorithms1 in a quantitative manner has in the literature
proven to be problematic. Deformations are inherently a
dynamic process and subject to the physical properties of
the objects in consideration. Thus, evaluating deformation
modelling algorithms require a reasonable number of differ-
ent objects and set of motions. Also, given the dynamic de-
formation objects might change their topology (e.g. stretch-
ing and tearing) and easily self-occluded some parts of the
shape. For this reason, many approaches have provided sev-
eral models that fit specific types of deformation, but that
cannot comprise all of them. For this reason understanding
the real performance of methods on realistic deformations
is necessary to push forward advancements in this field.

The central problem of producing reference ground truth
has been approached from many different angles. Several
works compare their methods using synthetically generated
images, as the true 3D geometry is readily available[26, 22,
19, 10]. Another popular approach is using MOCAP data,
mainly human motion, for generating both test video se-
quence with 3D reference points [7, 26, 2, 10, 25]. Both
falls short, as the former often lacks the complexity found
in real-life scenes and the latter provides only a sparse set of
reference points that are likely not to be possible to detect
from images because of occlusions. As stated in [22, 8],
there is a lack of and a need for a real-life NRSfM sequence
with a dense 3D reference.

1A review on NRSfM methods, updated to 2010, can be found here:
[23]
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Figure 5. Robot arm carrying cameras for capturing stop motion
frame and structured light data. A Gray code pattern is currently
being projected onto the object.

We seek to remedy this situation by providing a video
recording of real objects with dense 3D ground truth for
each frame. It will be accomplished using a stop motion
like animation techniques and structured light 3D scanning,
combined in our unique recording setup.

5.1. Concept

We wish to simulate motion in a manner similar to stop
motion animated films. Here a rigid object is moved into
a certain pose, an image is taken, the object is slightly
changed with a deformation, another image is taken etc.
The result is a sequence that, when played at an interactive
frame rate, provides the illusion of motion. We will apply
the same principle here, in generating a benchmarking data
set for NRSfM with ground truth.
Now one may ask, why not just record the motion using or-
dinary video format? After all, stop motion techniques does
not properly reproduce motion blur artifacts that are present
in standard recorded video sequences. Our approach has
several significant advantages that greatly outweigh the loss
of motion blur. Most importantly, we can obtain a 3D
ground truth for each frame. After adjusting the object into
its current frame position and acquiring an image for the
stop motion sequence, we will perform a 3D scan using
structured light. Utilizing gray code patterns we obtain a
dense ground truth so obtaining both the image frame and a
3D reference for benchmarking and validation.
Another advantage is that we can obtain data from multiple
views by acquiring images at different angles thus providing
data for evaluating multi-view NRSfM (e.g. [6]). Further-
more, this procedure provides a great degree of control over
both camera movement and object pose. As each frame is
recorded independently, time in between becomes a non-
issue.

Figure 6. Actuators for manipulating the geometry of the mask.
The image of the mask has been superimposed on an image of the
actuators, illustrating their functionality.

5.2. Implementation

Such data could be acquired by pure manual effort, how-
ever that would be extremely time consuming and error-
prone. As such, a robotics solution is currently being de-
veloped with a the data acquisition procedure that is pre-
dictably and reproducibly implemented. In detail, a robotic
arm move the camera and the projector needed for data
acquisition and structured light scan. From this the view
position can be determined with high precision and repro-
ducibility. Figure 5 illustrates this setup.
Additionally, object deformation will also be automated and
Figure 6 shows an example with an object where a mask re-
sembling a human face is put on top of two actuators. Ma-
nipulating the actuators deforms the mask geometry, simu-
lating facial movement. Similar results can be obtained with
cloth, paper and other deformable materials.

6. Concluding Remarks
We have here presented our ongoing work on making

high quality data sets for evaluating and developing meth-
ods for 3D vision. A motivation for doing this is that we see
a need for this, especially with respect to making data sets
that are large enough, so that it is possible to reasonably de-
termine if differences in performance are a statistical fluke,
or are in fact statistically significant.

By presenting our ongoing work in this forum, we hope
to get valuable and constructive feedback on how these data
sets in the making could be adapted to serve the needs of
the computer vision communities as best possible.
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In connection with the use of brass specimens 
featuring structured surfaces in a tribology test, 
an algorithm was developed for automatic 
measurement of the contact area by optical 
means. 

The contact area of the specimen after 
deformation is visible on a digital photograph 
as 10 parallel bands in adequate contrast to 
the background. 

An approach was developed that automatically 
performs a pixel segmentation based on local 
image gradient extrema, leading to an accurate 
band-edge segmentation. For each band, a fine-
grained line width is estimated through the 
distance transform in conjunction with non-max 
suppression, which can be used to estimate the 
desired area statistics.

During this study, the traceability of the method
was established through an optical standard from 
NPL. Measuring line-widths in the range 10-100 
μm, errors less than 0.4μm were obtained. 

The method was applied to quantify the 
single bands’ width and it was
observed on the specific item that the 
bands are slightly wider at the edges, 
indicating a higher deformation. 

Based on the study, it is concluded that
the method for automatic
measurement of contact areas
provides traceable measurements for 
the investigated dimensional range.
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The measurement uncertainty for a single band is calculated as

𝑈𝑈 = 𝑘𝑘 � 𝑢𝑢2𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑢𝑢2𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑢𝑢2𝑟𝑟 + 𝑢𝑢2𝑟𝑟 where

𝑢𝑢 𝑟𝑟𝑟𝑟𝑟𝑟 : reference uncertainty
𝑢𝑢 𝑟𝑟𝑟𝑟𝑟𝑟 : uncertainty from repeatability of the measurements on the reference
𝑢𝑢 𝑟𝑟 : specimen line-width uncertainty
𝑢𝑢 𝑟𝑟 : uncertainty coming from the coefficient of thermal expansion

A general expanded uncertainty (k=2) of 0.5μm was estimated for single band 
measurement on the brass specimen.

optical standard
brass specimen
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VirtualTable: a projection augmented reality game
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Figure 1: (left) Our setup using projector (red frustum) and a Kinect camera (green frustum). (middle,right) Pictures of the gameplay.

VirtualTable is a projection augmented reality installation where
users are engaged in an interactive tower defense game.The instal-
lation runs continuously and is designed to attract people to a table,
which the game is projected onto. Any number of players can join
the game for an optional period of time. The goal is to prevent the
virtual stylized soot balls, spawning on one side of the table, from
reaching the cheese. To stop them, the players can place any kind of
object on the table, that then will become part of the game. Depend-
ing on the object, it will become either a wall, an obstacle for the
soot balls, or a tower, that eliminates them within a physical range.
The number of enemies is dependent on the number of objects in
the field, forcing the players to use strategy and collaboration and
not the sheer number of objects to win the game.

Our installation is an example of a combination of tangible user in-
terfaces [Shaer and Hornecker 2010] and projection augmented re-
ality [Mine et al. 2012]. Leitner et al. [2008] presented IncreTable, a
tabletop game that includes multiple inputs from different devices,
including physical objects. Molla and Lepetit [2010] present a sim-
ilar concept of augmented board game, but in their case the output is
shown on a screen and not re-projected on the game. Compared to
Leitner et al. [2008], our interaction design can be learned by explo-
ration and thus requires no instructions. This is important in child-
computer interaction and in combination with the use of tangibles
it empowers the shift from “learning by being told” to “learning by
doing” [Hourcade 2008]. We thus believe that our VirtualTable is
an excellent concept for development of immersive and engaging
learning games for children.

Our approach
VirtualTable uses a computer unit attached to both a Kinect camera
and a projector. We first process the input from the Kinect depth
camera, then we pass it to the actual game to display the output.

The objects are recognized using the depth camera of the Kinect.
We automatically calibrate our software once before the game is
actually started, to estimate both a ground depth and the Kinect-

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
Owner/Author. Copyright is held by the owner/author(s).
SA’15 Posters, November 02-06, 2015, Kobe, Japan
ACM 978-1-4503-3926-1/15/11.
http://dx.doi.org/10.1145/2820926.2820950

projector homography. After the calibration, objects of any signif-
icant depth (at least 0.5 cm) can be recognized. The output of the
depth camera is used to create a bounding box around the objects.
We exclude objects that are connected to the border, to avoid recog-
nizing the players’ hands. In Figure 1 (left) we see that the Kinect
camera covers an area bigger than the game area, to not accidentally
exclude objects lying on the border.

We transmit the identified bounding boxes to the actual game using
a custom made protocol. In the virtual game, wall objects are invis-
ible and affect only the behavior of the soot balls. We project a red
glow around the towers to distinguish them and give a visual feed-
back on their range (see Figure 1 (right)). When we update the set
of recognized boxes, we compare it with the existing set. Matching
boxes have their position updated, interpolating it with their old po-
sition to avoid flickering. The remaining boxes are either added or
removed to the game accordingly. Objects are distinguished only
by shape: elongated objects are walls, square-like objects towers.

The behavior of the soot balls is simulated using Unity Engine’s
built-in navigation system on navigation meshes. A tower, with a
given frequency, shoots bullets to the soot balls within its range,
removing them from the game.

The game explores the concept of augmented reality games, com-
bining the tangible sensation of the pieces from board games and
the immediate visual feedback from modern computer games.
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This challenge was held at CVPR 2017. Description and results, as well as NRSfM
dataset, can be found at http://nrsfm2017.compute.dtu.dk/

http://nrsfm2017.compute.dtu.dk/
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