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Incorporating Non-Convex Operating Characteristics
into Bi-Level Optimization Electricity Market

Models
Yujian Ye, Member, IEEE, Dimitrios Papadaskalopoulos, Member, IEEE, Jalal Kazempour, Senior Member, IEEE,

and Goran Strbac, Member, IEEE

Abstract—Bi-level optimization constitutes the most popular
mathematical methodology for modeling the deregulated electric-
ity market. However, state-of-the-art models neglect the physical
non-convex operating characteristics of market participants, due
to their inherent inability to capture binary decision variables
in their representation of the market clearing process, rendering
them problematic in modeling markets with complex bidding
and unit commitment (UC) clearing mechanisms. This paper
addresses this fundamental limitation by proposing a novel mod-
eling approach enabling incorporation of these non-convexities
into bi-level optimization market models, which is based on the
relaxation and primal-dual reformulation of the original, non-
convex lower level problem and the penalization of the associated
duality gap. Case studies demonstrate the ability of the proposed
approach to closely approximate the market clearing solution of
the actual UC clearing algorithm and devise more profitable
bidding decisions for strategic producers than the state-of-the-
art bi-level optimization approach, and reveal the potential of
strategic behavior in terms of misreporting non-convex operating
characteristics.

Index Terms—Bi-level optimization, electricity markets, non-
convexities, strategic bidding, unit commitment.

NOMENCLATURE

A. Indices and Sets
t ∈ T Index and set of time periods
i ∈ I Index and set of producers
i− Index of producers other than i
j ∈ J Index and set of demands
b ∈ B Index and set of generation blocks
c ∈ C Index and set of demand blocks
V P Set of decision variables of the original lower level

(LL) problem
V D Set of decision variables of the dual of the relaxed

LL problem
V Set of decision variables of the final single-level

optimization problem
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B. Parameters
NT Length of market horizon
λGi,b Marginal cost of block b of producer i (£/MWh)
fi No-load cost of producer i (£/h)
KU

i ,K
D
i Start-up / shut-down cost of producer i (£/h)

gmin
i Minimum stable generation limit of producer i

(MW)
gmax
i,b Maximum generation limit of block b of producer

i (MW)
RU

i , R
D
i Ramp-up / down limit of producer i (MW/h)

TU
i , T

D
i Minimum-up / down time limit of producer i (h)

gi,0 Initial output of producer i (MW)
ui,0 Initial UC status of producer i
HU

i , H
D
i Number of periods producer i must be initially on

/ off due to its minimum-up / down limits.
kmax
i Upper limit of strategic bidding variable of pro-

ducer i
λDj,t,c Marginal benefit of block c of demand j at period

t (£/MWh)
dmax
j,t,c Maximum demand limit of block c of demand j

at period t (MW)
C. Variables
gi,t,b Power output of block b of producer i at period t

(MW)
ui,t Binary UC status of producer i at period t (ui,t =

1 if it is on, ui,t = 0 if it is off)
CU

i,t, C
D
i,t Start-up / shut-down cost incurred by producer i

at period t (£/h)
ki Strategic bidding variable of producer i
dj,t,c Power input of block c of demand j at period t

(MW)
λt Market clearing price at period t (£/MWh)

I. INTRODUCTION

A. Background and Motivation

S IGNIFICANT efforts towards the deregulation of the
electricity industry have been witnessed worldwide during

the last decades, characterized by the unbundling of vertically
integrated utilities and the introduction of competition among
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multiple self-interested market participants [1]. This paradigm
change means that traditional centralized models, optimizing
system objectives (e.g. minimizing system costs or maximizing
social welfare) and assuming perfectly competitive (price-
taking) behavior by market participants, are not able to provide
accurate and meaningful insights anymore. New models are
required instead, capable of capturing the strategic, profit-
driven behavior of self-interested market players and identi-
fying the market outcomes emerging from the interactions of
these players.

Bi-level optimization has clearly been the most successful
methodological framework for developing such new models
over the last two decades. The popularity of this methodology
lies in its ability to capture in a mathematically rigorous
fashion the interaction between the strategic decision making
of self-interested players (modeled in the upper level) and
the competitive clearing of the electricity market (modeled in
the lower level). Bi-level optimization problems are usually
solved after converting them to single-level Mathematical
Programs with Equilibrium Constraints (MPEC), through the
replacement of the lower level problem by its equivalent
Karush-Kuhn-Tucker (KKT) optimality conditions.

This popularity is justified by the large number of papers
employing this methodology, including papers [2]–[25]. This
list includes papers focusing on market models including
only traditional generation participants [2]–[16] as well as
models investigating the impact of demand side flexibility
[17]–[20] and energy storage [21]–[25] in electricity markets.
Furthermore, some of these papers focus on the optimization
of the strategic bidding decisions of a single market player [5],
[8], [9], [12], [15], [16], [18], [19], [21]–[25], while others
have gone further, aiming at identifying the market equilibria
stemming from the interactions of multiple players [2]–[4],
[6], [7], [10], [11], [13], [14], [17], [20]. Finally, some of
these papers have managed to incorporate realistic aspects
such as network constraints [2]–[6], [9], [11], [12], [14]–[18],
[20]–[25], and uncertainty faced by market players [5], [8]–
[10], [12]–[16], [18], [19], [24], [25] in the developed market
models.

However, this modeling framework exhibits a fundamental
limitation which is yet to be comprehensively addressed. This
is that the lower level problem does not include any binary
decision variables since the derivation of the equivalent KKT
optimality conditions is only possible when this problem is
continuous and convex [26]. As a result, the models developed
in all previous relevant papers [2]–[25] consider only the
variable costs, maximum output limits and ramp rates of
generation units and they neglect physical non-convex cost
components and constraints that are associated with binary
commitment decisions, including no-load, start-up and shut-
down costs, minimum stable generation limits, and minimum-
up / down time constraints.

However, these complex operating characteristics affect
the market clearing outcome determined by the lower level
problem and consequently the strategic decisions of the market
players determined by the upper level problem. This implies
that the employment of state-of-the-art bi-level optimization
market models may lead to sub-optimal bidding decisions

for strategic players as well as calculation of inaccurate
market equilibria when the interaction of multiple players
is modeled. This limitation is particularly important when
modeling markets with complex bidding mechanisms, whose
clearing algorithm involves the solution of a mixed-integer
unit commitment (UC) problem, such as many markets in the
USA (e.g. California, PJM, New York, MISO) [27]–[30], and
Europe (e.g. Greece, Poland, Ireland & Northern Ireland) [31].

Two recent pieces of work have proposed mathematical
approaches to solve bi-level optimization problems with binary
variables in the lower level problem, although they have
applied these approaches to fundamentally different problems
than the strategic bidding problem examined in papers [2]–
[25] and this paper. The first one involves an iterative solu-
tion technique based on a column-and-constraint generation
method [32], [33]. Despite its relevance, this approach has
been applied to a class of bi-level optimization problems with
a different mathematical structure that the one of papers [2]–
[25]. When applied to a strategic bidding bi-level optimiza-
tion problem, the market clearing prices become unbounded
decision variables and independent of the strategic players’
bidding decisions. This contradicts the very essence of the
application of bi-level optimization to electricity market mod-
eling problems and renders the obtained results unreliable.
The second one derives KKT optimality conditions for each
combination of the (fixed) states of all the binary variables
in the problem [34]. Despite the theoretical optimality of the
obtained solution, this approach is practically inapplicable
to realistic instances of the strategic bidding problem due
to its enormous computational complexity, since the number
of possible combinations and therefore the number of KKT
optimality conditions increase exponentially with the number
of players and the number of time periods in the market
horizon.

B. Scope and Contributions

This paper aims at addressing this fundamental limitation
by proposing a novel modeling approach that enables incorpo-
ration of the non-convex generation operating characteristics,
associated with binary UC decisions, into the market clearing
representation of bi-level optimization market models. This
approach is based on the relaxation and primal-dual reformu-
lation of the original, non-convex lower level problem and
the penalization of the associated duality gap. Although this
approach can be potentially applied to all types of market
problems investigated in the relevant literature [2]–[25], the
authors have chosen for clarity reasons to apply it to the
simplest instance of these market problems, i.e. the optimiza-
tion of the strategic bidding decisions of a single producer
in the electricity market, neglecting aspects such as network
constraints, demand flexibility, energy storage participation
and uncertainty effects.

Case studies on a test market with day-ahead horizon
and hourly resolution demonstrate the effectiveness and value
of the proposed approach by carrying out three different
types of tests. The first one demonstrates the ability of the
proposed model to closely approximate the market clearing
solution of the actual UC clearing algorithm. The second one
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demonstrates the value of the proposed model in devising more
profitable bidding decisions for strategic producers participat-
ing in a complex bidding market than state-of-the-art bi-level
optimization models. The third one demonstrates the ability
of the proposed model to reveal and quantitatively analyze the
potential of strategic behavior in terms of misreporting non-
convex operating characteristics, which cannot be explored
with state-of-the-art models.

C. Paper Structure
The rest of this paper is organized as follows. Section II

details the proposed modeling approach. Section III presents
case studies demonstrating the value of the proposed approach.
Finally, Section IV discusses conclusions and future extensions
of this work.

II. PROPOSED MODELING APPROACH

A. Modeling Assumptions
For clarity reasons, the main assumptions behind the pro-

posed model are outlined below:
1) The modeled market is a pool-based, energy-only market

with a complex bidding mechanism, implying that the produc-
ers submit price-quantity bids and their UC constraints. The
clearing algorithm involves the solution of a mixed-integer UC
problem, maximizing the perceived social welfare, similar to
the ones employed in [27]–[30]. The pricing mechanism is the
one proposed in [35] , where the clearing prices are obtained
by solving a continuous version of the clearing algorithm, with
the binary UC variables fixed to their optimal values. Finally,
side payments (uplift payments) are not explicitly considered
in the examined modeling framework.

2) For presentation clarity reasons and without loss of
generality, we assume that each producer i owns a single
generation unit.

3) As discussed in Section I-B, the examined market prob-
lem lies in the optimization of the strategic bidding decisions
of a single producer i. Following the model employed in [3],
[4], [6], [17], [20] the strategic behavior of producer i is
expressed through a decision variable 1 ≤ ki ≤ kmax

i . If
ki = 1, producer i behaves competitively and offers its actual
marginal costs λGi,b,∀b to the market. If 1 < ki ≤ kmax

i ,
producer i behaves strategically and offers higher than its
actual marginal costs (ki ∗ λGi,b,∀b) to the market. Producer
i should optimize the value of ki by accounting for the trade-
off between higher market clearing price and lower clearing
quantity. More specifically, a higher ki will tend to increase
market prices, but at the same time it will tend to decrease
the quantity sold by producer i, since producers with lower
submitted offers may replace i in the merit order and / or the
demand side may reduce demand.

4) Each demand submits to the market a non-increasing
(capturing the effect of demand’s self-price elasticity) step-
wise bid curve, consisting of a number of blocks.

B. Bi-level Optimization Model Considering Non-convex Op-
erating Characteristics

Following the paradigm of the relevant literature [2]–[25],
our starting point for addressing the market problem discussed

in point 3) above, is a bi-level optimization model. However,
as discussed in Section I-A, state-of-the-art models neglect
physical non-convex operating characteristics of the producers.
Therefore, in this section, we present a new bi-level opti-
mization model considering these non-convexities. This model,
optimizing the strategic bidding decisions of producer i, is
formulated as follows:
(Upper level)

max
{ki}

∑
t,b

λtgi,t,b −
∑
t,b

λGi,bgi,t,b

−
∑
t

fiui,t −
∑
t

CU
i,t −

∑
t

CD
i,t

(1a)

subject to:
1 ≤ ki ≤ kmax

i (1b)

(Lower level)

min
V P

[(∑
t,b

kiλ
G
i,bgi,t,b +

∑
t

fiui,t +
∑
t

CU
i,t

+
∑
t

CD
i,t

)
+

( ∑
i−,t,b

λGi−,bgi−,t,b +
∑
i−,t

fi−ui−,t

+
∑
i−,t

CU
i−,t +

∑
i−,t

CD
i−,t

)
−
∑
j,t,c

λDj,t,cdj,t,c

] (1c)

where:
V P = {gi,t,b, ui,t, CU

i,t, C
D
i,t, dj,t,c} (1d)

subject to: ∑
j,c

dj,t,c −
∑
i,b

gi,t,b = 0 : λt,∀t (1e)

0 ≤ gi,t,b ≤ ui,tgmax
i,b : µmin

i,t,b , µ
max
i,t,b ,∀i,∀t,∀b (1f)

0 ≤ dj,t,c ≤ dmax
j,t,c : νmin

j,t,c , ν
max
j,t,c ,∀j,∀t,∀c (1g)

ui,tg
min
i ≤

∑
b

gi,t,b : ξmin
i,t ,∀i,∀t (1h)

∑
b

gi,t,b −
∑
b

gi,(t−1),b ≤ RU
i : πU

i,t,∀i,∀t (1i)∑
b

gi,(t−1),b −
∑
b

gi,t,b ≤ RD
i : πD

i,t,∀i,∀t (1j)

CU
i,t ≥ 0 : ρUi,t,∀i,∀t (1k)

CD
i,t ≥ 0 : ρDi,t,∀i,∀t (1l)

CU
i,t ≥ (ui,t − ui,(t−1))KU

i : σU
i,t,∀i,∀t (1m)

CD
i,t ≥ (ui,(t−1) − ui,t)KD

i : σD
i,t,∀i,∀t (1n)

HU
i∑

t=1

(1− ui,t) = 0 : τUi ,∀i (1o)

HD
i∑

t=1

ui,t = 0 : τDi ,∀i (1p)

TU
i (ui,t − ui,(t−1)) ≤

t+TU
i −1∑

r=t

ui,r : φUi,t,

∀i,∀t = HU
i + 1, . . . , NT − TU

i + 1

(1q)
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−TD
i (ui,t − ui,(t−1)) ≤

t+TD
i −1∑

r=t

(1− ui,r) : φDi,t,

∀i,∀t = HD
i + 1, . . . , NT − TD

i + 1

(1r)

NT∑
r=t

(ui,r − (ui,t − ui,(t−1))) ≥ 0 : χU
i,t,

∀i,∀t = NT − TU
i + 2, . . . , NT

(1s)

NT∑
r=t

(1− ui,r − (ui,(t−1) − ui,t)) ≥ 0 : χD
i,t,

∀i,∀t = NT − TD
i + 2, . . . , NT

(1t)

ui,t = {0, 1},∀i,∀t. (1u)

The upper level (UL) problem determines the optimal
bidding strategy of producer i so as to maximize its profit
(1a). This problem is subject to the limits of the strategic
bidding variable (1b) and the lower level (LL) problem (1c)-
(1u). The latter represents the market clearing algorithm,
minimizing the perceived negative social welfare (1c), subject
to demand-supply balance constraints (1e), producers’ and
demands’ power bounds (1f)-(1g), minimum stable generation
constraints (1h), ramp-up and ramp-down constraints (1i)-
(1j), start-up and shut-down cost constraints (1k)-(1n), and
minimum-up and minimum-down time constraints (1o)-(1t).

In contrast with state-of-the-art bi-level optimization mod-
els, this model includes the binary decision variables (1u)
associated with the producers’ UC status. Therefore, it is
able to account for non-convex cost components (namely no-
load, start-up and shut-down costs) and non-convex operating
constraints (namely minimum stable generation, minimum-up
time and minimum-down time constraints).

C. Reformulation of LL problem

As discussed in Section I-A, state-of-the-art bi-level opti-
mization problems are solved after converting them to single-
level MPEC, through the replacement of the LL problem
by its equivalent KKT optimality conditions [2]–[25]. This
reformulation is possible since the LL problem in state-of-
the-art models is convex, as it neglects binary UC decisions
and the associated non-convex operating characteristics of the
producers. On the other hand, it is not applicable to the new
bi-level optimization model (1) since the latter includes these
binary decisions which prevent the derivation of equivalent
KKT conditions.

In order to address this fundamental challenge, an alter-
native approach for the reformulation of the LL problem is
adopted, based on [36]. The first step of this approach lies in
the relaxation of the original LL problem (1c)-(1u) by relaxing
its binary constraints (1u) as continuous constraints:

0 ≤ ui,t ≤ 1 : ψmin
i,t , ψmax

i,t ,∀i,∀t (2)

with ψmin
i,t , ψmax

i,t being their respective dual variables. This
relaxation enables the definition of dual variables for all the
constraints of the LL problem, which are indicated after
a colon in constraints (1e)-(1t) above. In other words, this

relaxation coverts the LL problem from a mixed-integer linear
problem to a continuous linear problem, defined by (1c)-(1t)
and (2).

After this conversion, the dual problem associated with the
relaxed LL problem can be derived, which is formulated as
follows:

max
V D

[
−
∑
j,t,c

νmax
j,t,c d

max
j,t,c −

∑
i,t

πU
i,tR

U
i −

∑
i,(t=1)

πU
i,tgi,0

+
∑

i,(t=1)

πD
i,tgi,0 −

∑
i,t

πD
i,tR

D
i −

∑
i,(t=1)

σU
i,tK

U
i ui,0

+
∑

i,(t=1)

σD
i,tK

D
i ui,0 +

∑
i

τUi H
U
i

−
∑

i,(t=HU
i +1)

φUi,tT
U
i ui,0

∣∣∣
HU

i =0

+
∑

i,(t=HD
i +1)

φDi,tT
D
i ui,0

∣∣∣
HD

i =0
−

NT−TD
i +1∑

i,t=HD
i +1

φDi,tT
D
i

−
NT∑

i,t=NT−TD
i +2

χD
i,t(NT − t+ 1)−

∑
i,t

ψmax
i,t

]

(3a)

where:

V D = {λt, µmax
i,t,b , ν

max
j,t,c , ξ

min
i,t , πU

i,t, π
D
i,t, σ

U
i,t,

σD
i,t, τ

U
i , τ

D
i , φ

U
i,t, φ

D
i,t, χ

U
i,t, χ

D
i,t, ψ

max
i,t }

(3b)

subject to:

kiλ
G
i,b − λt + µmax

i,t,b − ξmin
i,t + πU

i,t − πU
i,(t+1)

−πD
i,t + πD

i,(t+1) ≥ 0,∀i,∀t < NT ,∀b
(3c)

kiλ
G
i,b − λt + µmax

i,t,b − ξmin
i,t + πU

i,t − πD
i,t ≥ 0,

∀i,∀t = NT ,∀b
(3d)

λGi−,b − λt + µmax
i−,t,b − ξmin

i−,t + πU
i−,t − πU

i−,(t+1)

−πD
i−,t + πD

i−,(t+1) ≥ 0,∀i−,∀t < NT ,∀b
(3e)

λGi−,b − λt + µmax
i−,t,b − ξmin

i−,t + πU
i−,t − πD

i−,t ≥ 0,

∀i−,∀t = NT ,∀b
(3f)

fi −
∑
b

µmax
i,t,b g

max
i,b + ξmin

i,t gmin
i

+(σU
i,t − σU

i,(t+1))K
U
i − (σD

i,t − σD
i,(t+1))K

D
i

+ψmax
i,t + Γi,t

1 ≥ 0,∀i,∀t < NT

(3g)

fi −
∑
b

µmax
i,t,b g

max
i,b + ξmin

i,t gmin
i

+σU
i,tK

U
i − σD

i,tK
D
i + ψmax

i,t + Γi,t
1 ≥ 0,∀i,∀t = NT

(3h)

1− σU
i,t ≥ 0,∀i,∀t (3i)

1− σD
i,t ≥ 0,∀i,∀t (3j)

−λDj,t,c + λt + νmax
j,t,c ≥ 0,∀j,∀t,∀c (3k)

µmax
i,t,b ≥ 0,∀i,∀t,∀b (3l)

νmax
j,t,c ≥ 0,∀j,∀t,∀c (3m)
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ξmin
i,t , πU

i,t, π
D
i,t, σ

U
i,t, σ

D
i,t, φ

U
i,t, φ

D
i,t, χ

U
i,t, χ

D
i,t, ψ

max
i,t ≥ 0,∀i,∀t.

(3n)
Constraints (3c)-(3f), (3g)-(3h), (3i), (3j), and (3k) constitute

dual constraints with respect to primal variables gi,t,b, ui,t,
CU

i,t, C
D
i,t, and dj,t,c, respectively, while constraints (3l)-(3n)

express non-negativity of the relevant dual variables.
However, the relaxation of the binary constraints (2) implies

that the reformulated LL problem does not generally produce
the optimal solution of the original LL problem. In order to
ensure that the reformulated LL problem produces a solution
that minimally deviates from the solution of the original LL
problem, the following primal-dual formulation should be
adopted, based on [36]:

min
{V P ,V D}

DG ≡ (1c)− (3a) (4a)

subject to:

(1e)− (1t), (3c)− (3n), and (1u). (4b)

Problem (4) minimizes the duality gap (DG) between the
primal and dual objective function values of the relaxed LL
problem (4a), while enforcing the primal (1e)-(1t) and the
dual constraints (3c)-(3n) of the relaxed LL problem, as well
as the original binary constraints (1u). Although these binary
constraints were previously relaxed to enable the derivation of
the dual problem, they are enforced in problem (4) to ensure
that the solution of this problem conforms to the physical
reality of UC.

D. Final Single-Level Optimization Model

Formulation (4) constitutes the reformulation of the original
LL problem (1c)-(1u). This formulation is similar to the final
formulation of [36] which addresses a market clearing and
pricing problem from the perspective of the market operator.
However, the optimal bidding problem from the perspective
of a strategic producer i we aim at solving in this paper is
the bi-level problem (1) which additionally contains the UL
problem (1a)-(1b). In order to achieve this in a mathematically
rigorous fashion, we convert this bi-level problem to a single-
level problem by:

1) Combining the objective functions of the UL problem
(1a) and the reformulated LL problem (4) into a single
objective function (5a). In order to do this, we adopt the
penalty function method [37] and penalize the DG by a
positive constant W . By following this approach, the DG
is indirectly suppressed (as prescribed by (4a)), while still
pursuing a higher producer’s i profit (as prescribed by (1a)).
The value of the penalty constant W is selected by balancing
the trade-off between the accuracy of the market clearing
solution and the consideration of the profit. Specifically, small
values of W do not sufficiently penalize the DG in (5a),
meaning that the proposed model produces a market clearing

1Γi,t represents the derivative of the contribution of the minimum-up /
down time constraints (1o)-(1t) to the Lagrangian function of the relaxed LL
problem LLL with respect to the variable ui,t. Due to the complex form
of (1o)-(1t), Γi,t does not adopt a generic expression but a case-specific
expression depending on the operating parameters TU

i , TD
i , HU

i , HD
i as

well as the considered period t. These case-specific expressions of Γi,t are
provided in Appendix.

solution that deviates significantly from the solution of the
original market clearing problem, and producer i receives
poor quality feedback regarding the impact of its bidding
decisions on the market clearing outcome, ultimately making
poor quality bidding decisions. On the other hand, large values
of W render the profit in (5a) less important, ultimately leading
to less profitable bidding decisions. The impact of different
values of W on the performance of the model and the selection
of a suitable value are quantitatively analyzed in Section III-B.

2) Enforcing both the constraints of the UL problem (1b)
and the constraints of the reformulated LL problem (4b), as
expressed by (5c).

The resulting single-level problem is formulated as follows:

max
V

(1a)−W ∗DG (5a)

where:
V = {ki, V P , V D} (5b)

subject to:
(1b), (1e)− (1t), (3c)− (3n), and (1u). (5c)

At this point, it should be stressed that this model (5) is
merely a tool used by producer i to determine its strategic
bidding decision ki and is not generally fully accurate, as the
proposed reformulation of the LL problem implies that it does
not generally produce the optimal solution of the original LL
problem (Section II-C). As a result, the profit (1a) determined
by the solution of (5) is the profit estimated by producer i
based on the proposed model (we will refer to it as estimated
profit in the remainder) and is not generally equal to its actual
profit, which is ultimately determined after inputting the value
of ki obtained from model (5) to the actual UC clearing
algorithm (1c)-(1u).

Going further, it should be noted that problem (5) is non-
linear, since it includes the bilinear terms

∑
t,b λtgi,t,b and∑

t,b kiλ
G
i,bgi,t,b in the objective function (5a), and thus any

solution obtained by commercial solvers is not guaranteed to
be globally optimal. Therefore, we aim at transforming (5) to a
mixed-integer linear problem (MILP) which can be efficiently
solved to global optimality using commercial branch-and-cut
solvers [8]. It should be noted that similar bilinear terms are
also present in state-of-the-art MPEC models, where they are
handled by adopting linearization techniques exploiting the
strong duality theorem [9]. However, such techniques are not
applicable to the proposed model, since its LL problem is
non-convex and therefore strong duality does not hold.

In order to address this challenge, the binary expansion
approach [5], [7] is employed. Let {gi,t,b,l, l = 1, 2, · · · , L}
be a set of discrete values in the range [0, gmax

i,b ] as prescribed
by the physical bounds (1f). Then, the variable gi,t,b can be
expressed as the following sum of binary variables:

gi,t,b =

logL
2 −1∑

n=0

2n 4i,b xi,t,b,n,∀i,∀t,∀b (6a)

where 4i,b =
gmax
i,b

L−1 and xi,t,b,n is an auxiliary binary variable.
Multiplying both sides of (6a) by λt, summing for every t and
b, and defining a dummy variable zi,t,b,n, results in:∑

t,b

λtgi,t,b =
∑
t,b,n

2n 4i,b zi,t,b,n (6b)
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zi,t,b,n = λtxi,t,b,n,∀i,∀t,∀b,∀n (6c)

Therefore, the bilinear term
∑

t,b λtgi,t,b can be replaced
by the expression in the right side of (6b) which is linear.
The product of variables in (6c) can be transformed into the
following equivalent mixed-integer linear constraints:

0 ≤ λt − zi,t,b,n ≤M(1− xi,t,b,n),∀i,∀t,∀b,∀n (6d)

0 ≤ zi,t,b,n ≤Mxi,t,b,n,∀i,∀t,∀b,∀n (6e)

where M is a positive constant that is large enough for
(6d) and (6e) to hold when xi,t,b,n = 0 and xi,t,b,n = 1,
respectively. In the first case, (6d) and (6e) are transformed to
0 ≤ λt ≤ M and zi,t,b,n = 0, respectively. In the second
case, (6d) and (6e) are transformed to λt = zi,t,b,n and
0 ≤ zi,t,b,n ≤M , respectively, which again implies λt ≤M .
Consequently, the value of M should be set according to the
upper bound of the market clearing price variable λt. In the
examined problem, this upper bound is equal to the maximum
marginal cost that can be offered by a strategic producer i.e.
maxi,b λ

G
i,bki. The other bilinear term

∑
t,b kiλ

G
i,bgi,t,b can be

linearized in a similar fashion. The set of decision variables of
the MILP reformulation of problem (5) includes the set (5b)
as well as the aforementioned auxiliary variables introduced
for linearizing the two bilinear terms.

The overall structure of the proposed modeling approach,
detailed in Sections II-B, II-C and II-D, is illustrated in Fig.
1.
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Fig. 1. Illustration of proposed modeling approach.

III. CASE STUDIES

A. Test Data and Implementation

Case studies are carried out on the test market of [38],
which involves a day-ahead horizon, hourly resolution and
7 electricity producers, the operating parameters of which
are presented in Table I. In order to align the data of [38]

with the formulation of this paper, the quadratic variable cost
curve employed in [38] has been transformed to a piecewise
linear curve, by employing the technique presented in [39] and
assuming five blocks for each producer. For simplicity and
without loss of generality, it is assumed that HU

i = HD
i =

0,∀i [39].

TABLE I
Electricity producers’ operating parameters

Producer iii 1 2 3 4 5 6 7

fififi (£/h) 18,431 17,005 13,755 9,930 9,900 8,570 7,530

λGi,1λGi,1λGi,1 (£/MWh) 6.20 32.10 36.47 64.28 84.53 97.36 102.69

λGi,2λGi,2λGi,2 (£/MWh) 7.07 34.72 38.49 72.84 93.60 105.02 111.42

λGi,3λGi,3λGi,3 (£/MWh) 7.42 35.77 39.60 81.40 102.66 115.63 123.51

λGi,4λGi,4λGi,4 (£/MWh) 7.76 36.82 40.70 89.97 111.73 126.24 135.60

λGi,5λGi,5λGi,5 (£/MWh) 8.11 37.87 41.80 98.53 120.79 136.85 147.69

KU
iK
U
iK
U
i (£) 4,000,000 325,000 142,500 72,000 55,000 31,000 11,200

KD
iK
D
iK
D
i (£) 800,000 28,500 18,500 14,400 12,000 10,000 8,400

gmin
ig
min
ig
min
i (MW) 3,292 2,880 1,512 667 650 288 275

gmax
ig
max
ig
max
i (MW) 6,584 5,760 3,781 3,335 3,252 2,880 2,748

RU
iR
U
iR
U
i (MW/h) 1,317 1,152 1,512 1,334 1,951 1,728 2,198

RD
iR
D
iR
D
i (MW/h) 1,317 1,152 1,512 1,334 1,951 1,728 2,198

TU
iT
U
iT
U
i (h) 24 20 16 10 8 5 4

TD
iT
D
iT
D
i (h) 24 20 16 10 8 5 4

ui,0ui,0ui,0 1 1 1 1 1 0 0

gi,0gi,0gi,0 (MW) 5,268 4,608 3,025 2,668 2,602 0 0

As previously discussed, the investigated market problem
lies in the optimization of the strategic bidding decisions
of a single producer. In the examined case studies, this
corresponds to either producer 4 or producer 5 of Table I
(two different scenarios) while the rest of the producers are
assumed to behave competitively. The upper limits of their
strategic bidding variables are assumed kmax

4 = kmax
5 = 2.

The penalty constant of the DG has been selected as W =
1000, for the reasons analyzed in Section III-D. The size of
the discretization set employed for the binary expansion of
variable gi,t,b has been selected as L = 32, while the value of
the positive constant M is set according to the upper bound
of the market clearing price variable λt (Section II-D). In the
examined case studies, this quantity is equal to 295.39£/MWh
(as the largest λGi,b is equal to 147.69£/MWh according to
Table I and the largest ki is equal to its upper bound kmax

i =
2). The proposed MILP model has been implemented using the
optimization software FICOTM Xpress [40] and solved through
its solver "Xpress-Optimizer", with the accepted optimality
gap set equal to 0.1%.

B. Selection of Penalty Constant W

Before proceeding to the studies demonstrating the effec-
tiveness of the proposed model, we quantitatively analyze an
important designing aspect of the model, namely the selection
of the penalty constant W . As discussed in Section II-D,
this selection is based on balancing the trade-off between the
accuracy of the market clearing solution and the consideration
of the profit. In order to quantitatively demonstrate this trade-
off, we execute the proposed model for different values of W
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and compare its respective solutions in terms of: i) the value
of ki determined by the proposed model, ii) the value of DG
determined by the proposed model, iii) the minimum value of
DG given the value of ki determined by the proposed model;
this is obtained by solving problem (4) for this value of ki, iv)
the estimated profit of producer i determined by the proposed
model, and v) the actual profit of producer i, obtained after
inputting the value of ki determined by the proposed model
to the actual UC clearing algorithm (1c)-(1u). The results of
this analysis are included in Tables II and III, corresponding
to two different scenarios where producer 4 and producer 5
optimize their strategic decisions, respectively.

TABLE II
Performance of Proposed Model for Different Values of the Penalty

Constant W (Optimizing the Bidding Decisions of Producer 4)

WWW k4k4k4 DG (£) Minimum
DG (£)

Estimated
profit (£)

Actual
profit (£)

1 1.1836 238,587 209,676 1,819,014 1,477,990
10 1.2139 187,686 175,442 1,766,701 1,513,320

100 1.2214 153,115 144,338 1,673,052 1,588,290
1,000 1.2305 129,270 129,270 1,626,409 1,627,065

10,000 1.6400 87,514 87,514 630,992 630,636
100,000 1.7110 73,080 73,080 435,956 436,991

TABLE III
Performance of Proposed Model for Different Values of the Penalty

Constant W (Optimizing the Bidding Decisions of Producer 5)

WWW k5k5k5 DG (£) Minimum
DG (£)

Estimated
profit (£)

Actual
profit (£)

1 1.0877 138,976 122,135 539,353 380,443
10 1.2154 95,617 89,379 493.397 384,240

100 1.1704 86,822 81,845 469,792 405,373
1,000 1.1226 74,840 74,840 451,269 455,145

10,000 1.2030 42,293 42,293 419,362 427,683
100,000 1.2879 28,311 28,311 335,921 334,065

These results demonstrate that relatively small values of W
(1-100) do not sufficiently penalize the DG in the objective
function (5a) and therefore the obtained DG is higher than
the minimum DG corresponding to the obtained ki. This
means that the model is not as accurate as it could be in
approximating the market clearing solution of the original LL
problem. In turn, this implies that the strategic producer i
employing the proposed model receives poor quality (mislead-
ing) feedback regarding the impact of its bidding decisions
on the market clearing outcome. As a result, the profit it
estimates is far away from the actual profit corresponding to
the obtained ki; specifically it is much higher than the actual
profit, implying that strategic producer i is over-optimistic
regarding its profitability in the market.

On the other hand, relatively large values of W (above
1,000) rectify the above problems; the obtained DG is equal
to the minimum DG corresponding to the obtained ki and the
estimated profit is very close to the actual profit corresponding
to the obtained ki. However, very large values of W (above
10,000) create a different problem. The profit of strategic
producer i becomes less important in the objective function
(5a) and therefore both the estimated profit and the actual
profit are significantly lower.

Ultimately, the most suitable value of W is the one yielding
the highest actual profit, which is the ultimate objective of
strategic producers employing the proposed model. In the
examined case studies, this value is W = 1, 000 (Tables II and
III) which is therefore the value employed in the remainder of
the quantitative analysis presented in our paper.

C. Accuracy of Market Clearing Solution

The aim of the first study lies in validating the accuracy of
the proposed model in terms of the obtained market clearing
solution. In order to do so, we compare this solution against a
benchmark case, where the respective solution is obtained by
solving the original mixed-integer clearing algorithm (corre-
sponding to the original LL problem (1c)-(1u)) given the value
of ki as determined by the proposed model.

Tables IV and V, corresponding to two different scenarios
where producer 4 and producer 5 optimize their strategic
bidding decisions, respectively, compare the market clearing
solutions in the benchmark case and the proposed model
by presenting: i) the dispatch (gi,t =

∑
b gi,t,b) of the 7

producers (and implicitly their UC schedule, since gi,t > 0
implies ui,t = 1 while gi,t = 0 implies ui,t = 0), ii) the
prices and iii) the social welfare of the clearing solution. In
case the values calculated in the benchmark case and the
proposed model are identical, only one entry is given in
the respective cell of the Tables. In case they are different,
the values calculated in the benchmark case are indicated in
parentheses and bold font. The results of Tables IV and V
indicate that the market clearing solution calculated by the
proposed model is very close to the one calculated by the
original mixed-integer clearing algorithm. The UC schedules
are identical for all producers and hours in both Tables, while
only few and very small deviations are observed in generation
dispatch and prices. As a result, the social welfare calculated
by the proposed model exhibits a very small deviation with
respect to the one calculated in the benchmark case (0.0002%
and 0.0001% for the scenario of Table IV and Table V,
respectively). These results demonstrate the ability of the
proposed model to closely approximate the market clearing
solution of the actual mixed-integer clearing algorithm, despite
very small deviations, driven by the proposed reformulation
of the LL problem (Section II-C) and the employed binary
expansion approach (Section II-D). This finding is backed
up by the fact that the DG of the proposed model, which
implicitly expresses the extent of deviation introduced by the
proposed reformulation of the LL problem, is very small:
£129,270 and £74,840 (or, in relative terms, 0.0928% and
0.0932% with respect to the social welfare calculated in the
benchmark case), for the scenario of Table IV and Table
V, respectively. In other words, the proposed model enables
strategic producers to receive very accurate feedback regarding
the impact of their bidding decisions on the market clearing
outcome.

D. Added Value with respect to State-of-the-art Models

The aim of the second study lies in demonstrating the value
of the proposed model with respect to state-of-the-art bi-level
optimization models, in the context of the investigated market
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TABLE IV
Generation Dispatch (MW), Prices (£/MWh) and Social Welfare (£) of Market Clearing Solution in Proposed Model and Benchmark Case

(given Optimal Bidding Decisions of Producer 4)

Hour
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Producer 1 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584

Producer 2 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760

Producer 3 2,889 3,644 3,251 2,391 1,726 2,665 3,781 3,781 3,781 3,781 3,781 3,781 3,781 3,781 3,781 3,781 3,781 3,781 3,781 3,781 3,781 3,781 3,781 3,747

Producer 4 1,334 667 667 667 667 667 2,001 2,668 2,926 3,335 3,335 2,940 2,668 2,668 2,668 2,689 3,335 3,335 3,335 2,934 2,668 2,230 1,334 667(2,702) (2,246)

Producer 5 650 650 650 650 650 650 1,441 2,602 2,602 2,664 2,736 2,602 2,602 2,596 2,596 2,615 3,252 3,252 3,252 2,602 2,602 1,967 859 0(2,602) (1,951)

Producer 6 0 0 0 0 0 0 0 997 1,584 1,584 1,584 1584 1,080 936 936 1584 1,710 2,232 1,584 1,584 958 0 0 0

Producer 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,511 1,701 1,428 893 0 0 0 0

Prices 40.70 41.80 41.80 39.60 38.49 40.70 102.66 115.63 120.20 120.79 120.79 120.20 115.63 111.73 111.73 120.20 126.24 135.60 123.51 120.20 115.63 110.70 93.60 41.80

Social welfare 139,311,866
(139,312,186)

TABLE V
Generation Dispatch (MW), Prices (£/MWh) and Social Welfare (£) of Market Clearing Solution in Proposed Model and Benchmark Case

(given Optimal Bidding Decisions of Producer 5)

Hour
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Producer 1 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584 6,584

Producer 2 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760 5,760

Producer 3 2,889 3,781 3,781 3,042 2,376 3,315 3,781 3,781 3,781 3,781 3,781 3,781 3,781 3,781 3,781 3,781 3,781 3,781 3,781 3,781 3,781 3,781 3,781 3,555

Producer 4 1,334 1,180 788 667 667 667 2,001 3,335 3,335 3,335 3,335 3,335 3,335 3,335 3,335 3,335 3,335 3,335 3,335 3,335 3,335 3,323 2,193 859(3,335)

Producer 5 650 0 0 0 0 0 0 0 0 1,915 1,915 1,915 1,301 1,301 1,301 1,707 2,724 3,252 2,602 1,951 1,951 874 0 0(1,724) (2,731) (862)

Producer 6 0 0 0 0 0 0 1,441 1,584 2,232 1,404 1,476 946 936 936 936 952 2,232 2,232 2,151 1,584 942 0 0 0(936)

Producer 7 0 0 0 0 0 0 0 1,348 1,545 893 893 893 778 624 628 893 1,519 1,701 1,511 1,142 0 0 0 0(1,511)

Prices 40.70 72.84 72.84 40.70 39.60 41.80 115.63 123.51 135.60 115.63 115.63 115.63 111.42 111.42 111.42 115.25 135.60 135.60 126.24 123.51 115.63 98.53 121.01 41.80(105.07)

Social welfare 139,927,595
(139,927,679)

problem i.e. the optimization of a strategic producer’s bidding
decisions. In order to do so, we optimize the strategic decision
variables k4 and k5 of producer 4 and producer 5 (two different
scenarios) and calculate the corresponding actual profits they
would make in the market, through three different models:

State-of-the-art: This bi-level optimization model does not
include the binary UC variables and considers only the variable
costs, the maximum output limits and the ramp constraints
of the producers. This model is solved after converting it to
a single-level MPEC (Section I-A). The obtained values of
k4 and k5 are then inputted to the mixed-integer clearing
algorithm (1c)-(1u) to obtain the actual clearing dispatch
and prices and subsequently calculate the actual profits of
producers 4 and 5.

Proposed model: This is the model developed in this paper
which includes the binary UC variables and therefore considers
the non-convex operating characteristics of the producers. The
obtained values of k4 and k5 are inputted to the mixed-integer
clearing algorithm (1c)-(1u) to obtain the actual clearing dis-
patch and prices and subsequently calculate the actual profits

of producers 4 and 5.
Enumeration model: This model adopts a brute-force

enumeration approach; it tries out K candidate values of the
strategic decision variables k4 and k5 in the range [1, kmax

i ]
(with a step of (kmax

i −1)/K) by inputting them to the market
clearing algorithm (1c)-(1u) and calculating the respective
profits of producers 4 and 5. The value yielding the highest
profit is selected. If K is large enough to cover sufficiently the
entire feasible space [1, kmax

i ], the enumeration model deter-
mines with high accuracy the optimal solution or "benchmark"
solution of the investigated problem, against which the state-
of-the-art and proposed models should be compared. In this
section, we select K = 10,000.

The first two rows of Tables VI and VII present the
bidding decisions and the resulting profits of producers 4
and 5, respectively, as determined by the three examined
models. The bidding decisions determined by the state-of-
the-art model exhibit significant deviations from the optimal
ones (determined by the enumeration model) and consequently
the strategic producers’ profits are significantly lower than
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TABLE VI
Bidding Decisions and Profits of Producer 4

State-of-the-art Proposed Enumeration

Bidding decision k4k4k4 1.1318 1.2305 1.2368

Actual profit without 1,484,327 1,627,065 1,662,579side payments (£)

MWP (£) 0 0 0

Actual profit with 1,484,327 1,627,065 1,662,579MWP (£)

LOCP (£) 38,826 110,410 147,501

Actual profit with 1,523,153 1,737,475 1,810,080LOCP (£)

TABLE VII
Bidding Decisions and Profits of Producer 5

State-of-the-art Proposed Enumeration

Bidding decision k5k5k5 1.1904 1.1226 1.1147

Actual profit without 412,241 455,145 455,668side payments (£)

MWP (£) 0 0 0

Actual profit with 412,241 455,145 455,668MWP (£)

LOCP (£) 226,785 255,135 646,508

Actual profit with 639,026 710,280 1,102,176LOCP (£)

the maximum attainable ones (10.72% and 9.53% lower for
producer 4 and 5, respectively). On the other hand, the bidding
decisions determined by the proposed model are very close
to the optimal ones and consequently the strategic producers’
profits are significantly higher than the respective profits ob-
tained through the state-of-the-art model (and only 2.14% and
0.11% lower than the maximum attainable ones for producer
4 and 5, respectively). These findings demonstrate that the
proposed model devises more profitable bidding decisions for
strategic producers than state-of-the-art models which neglect
the producers’ non-convex operating characteristics.

As mentioned in Assumption 1, Section II-A, side payments
(uplift payments) are not explicitly considered in the examined
modeling framework. The reason lies in the complexity of in-
corporating (in an already complex model) the side-payments’
calculation which takes place separately and after the market
clearing process [41]. However, since side payments constitute
an important part of markets with complex bidding and UC
clearing mechanisms, we have included them in this study
through an offline (ex-post) calculation approach. In other
words, although the proposed model (as well as the state-
of-the-art and the enumeration model) is executed without
explicitly considering the side payments to determine the
strategic bidding decisions k4 and k5, the final profits of the
two examined producers include the side payments.

In this analysis, we consider the two types of side payments
existing in the relevant literature and actual markets [41]: a)
make-whole payments (MWP), which ensure that the final
profit of each producer is non-negative, i.e. the MWP of each

producer is equal to its (potential) profit loss as determined
by the market clearing process, and b) lost-opportunity-cost
payments (LOCP), which ensure that the final profit of each
producer is equal to the maximum profit the producer would
make if it was free to individually determine its UC schedule
and dispatch according to the market clearing prices (usually
referred to as self-scheduling profit), i.e. the LOCP of each
producer is equal to the (potential) difference between the self-
scheduling profit and the market clearing profit.

The results of this analysis are included in Tables VI and
VII. In the examined study, the market clearing profits of
the two examined producers are positive (independently of
the model employed for determining their strategic bidding
decisions) and therefore their MWP are zero and do not
alter their final profits. On the other hand, their LOCP are
positive and change (increase) their final profits. Despite
these changes though, the proposed model still devises more
profitable bidding decisions than the state-of-the-art model.

Going further, state-of-the-art bi-level optimization models
presented in [2]–[17], [20] investigate the ability of strategic
producers to misreport their variable costs (which also applies
to the formulation and the previous case studies of this
paper), while few of them explore the ability to misreport
their maximum generation limits or ramp rates [7], [14],
[16]. Since the proposed model enables incorporation of non-
convex operating characteristics, it allows investigating a very
interesting aspect that cannot be explored with state-of-the-
art models: can strategic producers exercise market power and
strategically increase their profits by misreporting non-convex
cost components or constraints?

Although this issue can potentially involve misreporting
different non-convex cost components or constraints, we ex-
amine an example case of misreporting the no-load (fixed) cost
component. Following the model employed for misreporting
the marginal cost component (explained in Assumption 3,
Section II-A), the strategic behavior of producer i in terms
of its no-load cost is expressed through a decision variable
1 ≤ kfi ≤ kf,max

i . If kfi = 1, producer i behaves competi-
tively and offers its actual no-load cost fi to the market. If
1 < kfi ≤ k

f,max
i , producer i behaves strategically and offers

higher than its actual no-load cost kfi ∗ fi to the market.
The examined example case involves the optimization of

the strategic decision variables kf4 and kf5 of producer 4 and
producer 5 (two different scenarios), assuming that they do
not misreport their marginal costs (by binding k4 = k5 =
1), and comparing the profits they would make in the market
with the corresponding profits in the case they were perfectly
competitive (kf4 = kf5 = 1).

Regarding producer 4, the results indicate that the optimal
value of its strategic variable is kf4 = 1, which implies
that this producer cannot strategically increase its profits by
misreporting its no-load component. In the case of producer
5 however, the results indicate that the optimal value of its
strategic variable is kf5 = 1.3645 and this strategic action of
reporting higher than its actual no-load cost in the market
increases its profit by 5.24%. Table VIII analyzes the reason
behind this result, by comparing the dispatch and different
profit components of producer 5 under competitive and strate-
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gic behavior in terms of its no-load cost, during hours 1-
6. Under competitive behavior, producer 5 is committed and
produces energy during these hours but the combination of
low prices with the incurrence of the no-load cost leads to a
significant negative hourly profit. Under strategic behavior, by
reporting higher than its actual no-load cost, producer 5 gets
out of the merit order and is de-committed at hour 2 (it cannot
be de-committed at hour 1 since its initial dispatch is higher
than its ramp-down limit, according to Table I); therefore it
avoids this negative profit during hours 2-6, apart from the
required cost for shutting-down (£12,000, in line with Table
I).

TABLE VIII
Market Outcome for Producer 5 Under Competitive and Strategic Behavior

in terms of No-load Cost

Hour

1 2 3 4 5 6

Competitive

Dispatch (MW) 650 650 650 650 650 650

(kf
5 = 1kf
5 = 1kf
5 = 1)

Revenue (£/h) 26,470 27,188 27,188 25,753 25,036 26,470

Var. cost (£/h) 54,980 54,980 54,980 54,980 54,980 54,980

Other cost (£/h) 9,900 9,900 9,900 9,900 9,900 9,900

Profit (£/h) -38,410 -37,692 -37,692 -39,127 -39,844 -38,410

Strategic

Dispatch (MW) 650 0 0 0 0 0

(kf
5 = 1.3645kf
5 = 1.3645kf
5 = 1.3645)

Revenue (£/h) 26,470 0 0 0 0 0

Var. cost (£/h) 54,980 0 0 0 0 0

Other cost (£/h) 9,900 12,000 0 0 0 0

Profit (£/h) -38,410 -12,000 0 0 0 0

These results demonstrate the ability of the proposed model
to reveal and quantitatively analyze the potential of strategic
behavior in terms of misreporting non-convex operating char-
acteristics, which has not been previously explored and could
be very interesting for both strategic producers and market
regulators.

E. Analysis of Computational Performance

The aim of this Section lies in comparing the proposed
model against the enumeration model in terms of the trade-
off between accuracy and computational requirements. In this
context, we execute the enumeration model for different values
of K (number of tested candidate solutions) and compare its
respective solutions and computational requirements against
the proposed model (Tables IX and X).

As K increases, both the accuracy and the computational
requirements of the enumeration model are enhanced. The
computational time of the proposed model is in the same
order of magnitude with the respective time of the enumeration
model with K = 100, but its resulting strategic producers’
profits are significantly higher (2.94% and 14.06% higher for
producer 4 and 5, respectively). The enumeration model yields
higher profits than the proposed model only in the case with K
= 10,000, but its computational time in this case is significantly
higher (more than 50 times higher for both scenarios of
Tables IX and X). These results clearly demonstrate that the
proposed model achieves a better trade-off between accuracy
and computational requirements than the enumeration model.

TABLE IX
Performance of Proposed Model and Enumeration Model

(Optimizing the Bidding Decisions of Producer 4)

k4k4k4 Profit (£) Computational
time (sec)

Enumeration model,
KKK = 10 1 1,554,520 3

Enumeration model,
KKK = 100 1.24 1,580,650 26

Enumeration model,
KKK = 1,000 1.237 1,660,020 303

Enumeration model,
KKK = 10,000 1.2368 1,662,579 2,732

Proposed model 1.2305 1,627,065 47

TABLE X
Performance of Proposed Model and Enumeration Model

(Optimizing the Bidding Decisions of Producer 5)

k5k5k5 Profit (£) Computational
time (sec)

Enumeration model,
KKK = 10 1.1 385,991 3

Enumeration model,
KKK = 100 1.12 399,046 24

Enumeration model,
KKK = 1,000 1.115 449,525 295

Enumeration model,
KKK = 10,000 1.1147 455,668 2,506

Proposed model 1.1226 455,145 44

IV. CONCLUSION AND FUTURE WORK

Although state-of-the-art bi-level optimization constitutes
the most popular methodological framework for developing
models of the deregulated electricity market, it neglects the
physical non-convex cost components and constraints of mar-
ket participants, due to its inherent inability to capture binary
decision variables in its representation of the market clearing
process. This limitation renders it problematic in accurately
modeling markets with complex bidding and UC clearing
mechanisms which are present in many regions worldwide.
This paper has provided a novel modeling approach that
enables incorporation of the non-convex generation operating
characteristics into the market clearing representation of bi-
level optimization market models. This approach is based on
the relaxation and primal-dual reformulation of the original,
non-convex lower level problem and the penalization of the
associated duality gap.

Case studies have demonstrated the effectiveness and value
of the proposed approach through three different types of
tests. The first one demonstrates that the proposed approach
can closely approximate the market clearing solution of the
actual UC clearing algorithm, since very small deviations in
generation dispatch, prices and social welfare are observed.
The second one demonstrates that the strategic producers’
bidding decisions devised by the proposed model are more
profitable than the respective decisions of the state-of-the-art
bi-level optimization approach, and very close to the optimal
decisions as calculated through a brute-force enumeration
method. In summary, the proposed approach enables strategic
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players to receive more accurate feedback regarding the impact
of their bidding decisions on the market clearing outcome and
therefore can make better informed bidding decisions, with
respect to the state-of-the-art models.

The third test demonstrates the ability of the proposed model
to reveal and quantitatively analyze the potential of strate-
gic behavior in terms of misreporting non-convex operating
characteristics, which cannot be explored with state-of-the-
art models. Beyond the example case of the no-load cost
analyzed in the presented case studies, similar examples can be
conceived for other non-convex characteristics, including start-
up and shut-down costs, minimum stable generation limits,
and minimum-up / down time constraints. A comprehensive
analysis of such cases deserves further research efforts.

It should be stressed that the presented model is based on
certain assumptions regarding the bidding, clearing and pricing
mechanisms of the market (Section I-A). Specifically, the
modeled market involves the complex bidding and UC clearing
mechanisms adopted in certain markets in the USA and the
pricing mechanism proposed in [35], while side payments
are not explicitly considered. The integration of the proposed
approach in different market designs is a challenging task
that deserves further research efforts. Some examples include:
a) the bidding and clearing mechanisms of certain European
markets (such as CWE and the Nord Pool), where bidding is
based on complex orders and clearing is based on an iterative
process to deal with paradoxically accepted / rejected orders,
b) more complex pricing mechanisms, such as convex hull
pricing, which are employed in certain markets in the USA
to reduce side payments, and c) side payments which are
calculated separately and after the market clearing process.
The integration of the proposed approach in such market
designs can offer valuable insights regarding the impact of
different bidding, clearing and pricing mechanisms on the
strategic behavior of market players.

APPENDIX

This appendix provides the detailed formulation of Γi,t,
i.e., the derivative of the contribution of the minimum up /
down time constraints (1o)-(1t) in the Lagrangian function of
the relaxed LL problem LLL with respect to the variable ui,t.
For simplicity and without loss of generality, it is assumed
that HU

i = HD
i = 0,∀i [39]. The case-specific expressions of

Γi,t, depending on the minimum up/down times parameters
TU
i , TD

i (assuming TU
i = TD

i ), and the considered period t
are provided as follows:

1) TU
i = TD

i = 1:

Γi,t = (φUi,t − φUi,t+1)TU
i − (φDi,t − φDi,t+1)TD

i −
φUi,t + φDi,t,∀i,∀t ∈ {1, . . . , NT − TU

i };
(7a)

Γi,t = φUi,t(−1)− φDi,t(TD
i − 1),∀i,∀t = NT ; (7b)

2) TU
i = TD

i = 2:

Γi,t = (φUi,t − φUi,t+1)TU
i − (φDi,t − φDi,t+1)TD

i −
t∑

s=1

φUi,s +
t∑

s=1

φDi,s,∀i,∀t ∈ {1, . . . , TU
i };

(8a)

Γi,t = (φUi,t − φUi,t+1)TU
i − (φDi,t − φDi,t+1)TD

i −
t∑

s=t−TU
i +1

φUi,s +
t∑

s=t−TD
i +1

φDi,s,

∀i,∀t ∈ {TU
i + 1, . . . , NT − TU

i };

(8b)

Γi,t = φUi,tT
U
i − φDi,tTD

i −
t∑

s=t−TU
i +1

φUi,s+

t∑
s=t−TD

i +1

φDi,s − (χU
i,t+1 − χD

i,t+1)(NT − t),

∀i,∀t = NT − TU
i + 1;

(8c)

Γi,t = −
NT−TU

i +1∑
s=t−TU

i +1

φUi,s +

NT−TD
i +1∑

s=t−TD
i +1

φDi,s+

(χU
i,t − χD

i,t)(NT − t+ 1)−
t∑

s=NT−TU
i +2

χU
i,s +

t∑
s=NT−TD

i +2

χD
i,s,∀i,∀t = NT .

(8d)

3) TU
i = TD

i = 3, . . . , 11:

Γi,t = (φUi,t − φUi,t+1)TU
i − (φDi,t − φDi,t+1)TD

i −
t∑

s=1

φUi,s +
t∑

s=1

φDi,s,∀i,∀t ∈ {1, . . . , TU
i };

(9a)

Γi,t = (φUi,t − φUi,t+1)TU
i − (φDi,t − φDi,t+1)TD

i −
t∑

s=t−TU
i +1

φUi,s +
t∑

s=t−TD
i +1

φDi,s,

∀i,∀t ∈ {TU
i + 1, . . . , NT − TU

i };

(9b)

Γi,t = φUi,tT
U
i − φDi,tTD

i −
t∑

s=t−TU
i +1

φUi,s+

t∑
s=t−TD

i +1

φDi,s − (χU
i,t+1 − χD

i,t+1)(NT − t),

∀i,∀t = NT − TU
i + 1;

(9c)

Γi,t = −
NT−TU

i +1∑
s=t−TU

i +1

φUi,s +

NT−TD
i +1∑

s=t−TD
i +1

φDi,s+

(χU
i,t − χD

i,t)(NT − t+ 1)−
(χU

i,t+1 − χD
i,t+1)(NT − t)−

t∑
s=NT−TU

i +2

χU
i,s +

t∑
s=NT−TD

i +2

χD
i,s,

∀i,∀t ∈ {NT − TU
i + 2, . . . , NT − 1};

(9d)
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Γi,t = −
NT−TU

i +1∑
s=t−TU

i +1

φUi,s +

NT−TD
i +1∑

s=t−TD
i +1

φDi,s+

(χU
i,t − χD

i,t)(NT − t+ 1)−
t∑

s=NT−TU
i +2

χU
i,s+

t∑
s=NT−TD

i +2

χD
i,s,∀i,∀t = NT .

(9e)

4) TU
i = TD

i = 12:

Γi,t = (φUi,t − φUi,t+1)TU
i − (φDi,t − φDi,t+1)TD

i −
t∑

s=1

φUi,s +
t∑

s=1

φDi,s,∀i,∀t ∈ {1, . . . , TU
i };

(10a)

Γi,t = φUi,tT
U
i − φDi,tTD

i −
t∑

s=t−TU
i +1

φUi,s+

t∑
s=t−TD

i +1

φDi,s,−(χU
i,t+1 − χD

i,t+1)(NT − t),

∀i,∀t ∈ {TU
i + 1, . . . , NT − TU

i + 1};

(10b)

Γi,t = −
NT−TU

i +1∑
s=t−TU

i +1

φUi,s +

NT−TD
i +1∑

s=t−TD
i +1

φDi,s+

(χU
i,t − χD

i,t)(NT − t+ 1)−
(χU

i,t+1 − χD
i,t+1)(NT − t)−

t∑
s=NT−TU

i +2

χU
i,s +

t∑
s=NT−TD

i +2

χD
i,s,

∀i,∀t ∈ {NT − TU
i + 2, . . . , NT − 1};

(10c)

Γi,t = −
NT−TU

i +1∑
s=t−TU

i +1

φUi,s +

NT−TD
i +1∑

s=t−TD
i +1

φDi,s+

(χU
i,t − χD

i,t)(NT − t+ 1)−
t∑

s=NT−TU
i +2

χU
i,s+

t∑
s=NT−TD

i +2

χD
i,s,∀i,∀t = NT .

(10d)

5) TU
i = TD

i = 13, . . . , 23:

Γi,t = (φUi,t − φUi,t+1)TU
i − (φDi,t − φDi,t+1)TD

i −
t∑

s=1

φUi,s +
t∑

s=1

φDi,s,∀i,∀t ∈ {1, . . . , NT − TU
i };

(11a)

Γi,t = φUi,tT
U
i − φDi,tTD

i −
t∑

s=1

φUi,s +
t∑

s=1

φDi,s−

(χU
i,t+1 − χD

i,t+1)(NT − t),∀i,∀t = NT − TU
i + 1;

(11b)

Γi,t = −
NT−TU

i +1∑
s=1

φUi,s +

NT−TD
i +1∑

s=1

φDi,s+

(χU
i,t − χD

i,t)(NT − t+ 1)−
(χU

i,t+1 − χD
i,t+1)(NT − t)−

t∑
s=NT−TU

i +2

χU
i,s +

t∑
s=NT−TD

i +2

χD
i,s,

∀i,∀t ∈ {NT − TU
i + 2, . . . , TU

i };

(11c)

Γi,t = −
NT−TU

i +1∑
s=t−TU

i +1

φUi,s +

NT−TD
i +1∑

s=t−TD
i +1

φDi,s+

(χU
i,t − χD

i,t)(NT − t+ 1)−
(χU

i,t+1 − χD
i,t+1)(NT − t)−

t∑
s=NT−TU

i +2

χU
i,s +

t∑
s=NT−TD

i +2

χD
i,s,

∀i,∀t ∈ {TU
i + 1, . . . , NT − 1};

(11d)

Γi,t = −
NT−TU

i +1∑
s=t−TU

i +1

φUi,s +

NT−TD
i +1∑

s=t−TD
i +1

φDi,s+

(χU
i,t − χD

i,t)(NT − t+ 1)−
t∑

s=NT−TU
i +2

χU
i,s +

t∑
s=NT−TD

i +2

χD
i,s,∀i,∀t = NT .

(11e)

6) TU
i = TD

i = 24:

Γi,t = φUi,tT
U
i − φDi,tTD

i − φUi,1 + φDi,1−
(χU

i,t+1 − χD
i,t+1)(NT − t),∀i,∀t = 1;

(12a)

Γi,t = −φUi,1 + φDi,1 + (χU
i,t − χD

i,t)(NT − t+ 1)−

(χU
i,t+1 − χD

i,t+1)(NT − t)−
t∑

s=NT−TU
i +2

χU
i,s+

t∑
s=NT−TD

i +2

χD
i,s,∀i,∀t ∈ {2, . . . , NT − 1};

(12b)

Γi,t = −φUi,1 + φDi,1 + (χU
i,t − χD

i,t)(NT − t+ 1)−
t∑

s=NT−TU
i +2

χU
i,s +

t∑
s=NT−TD

i +2

χD
i,s,∀i,∀t = NT .

(12c)
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