[UF6]2-: A Molecular Hexafluorido Actinide(IV) Complex with Compensating Spin and Orbital Magnetic Moments

Pedersen, Kasper Steen; Meihaus, Katie R.; Rogalev, Andrei; Wihelm, Fabrice; Aravena, Daniel; Amoza, Martin; Ruiz, Eliseo; Long, Jeffrey R.; Bendix, Jesper; Clérac, Rodolphe

Published in:
Angewandte Chemie International Edition

Link to article, DOI:
10.1002/anie.201905056

Publication date:
2019

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Title: [UF6]2–: A Molecular Hexafluorido Actinide(IV) Complex with Compensating Spin and Orbital Magnetic Moments

Authors: Kasper S. Pedersen, Katie R Meihaus, Andrei Rogalev, Fabrice Wihelm, Daniel Aravena, Martin Amoza, Eliseo Ruiz, Jeffrey R Long, Jesper Bendix, and Rodolphe Clerac

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201905056
Angew. Chem. 10.1002/ange.201905056

Link to VoR: http://dx.doi.org/10.1002/anie.201905056
http://dx.doi.org/10.1002/ange.201905056
[UF₆]²⁻: A Molecular Hexafluorido Actinide(IV) Complex with Compensating Spin and Orbital Magnetic Moments

Kasper S. Pedersen,* Katie R. Meihaus, Andrei Rogalev,* Fabrice Wilhelm, Daniel Aravena, Martin Amoza, Eliseo Ruiz, Jeffrey R. Long, Jesper Bendix, and Rodolphe Clérac*

Abstract: The first structurally characterized hexafluorido complex of a tetravalent actinide ion, the [UF₆]²⁻ anion, is reported in the (NEt₄)[UF₆·2H₂O] salt (1). The weak magnetic response of 1 results from both U(IV) spin and orbital contributions, as established by combining X-ray magnetic circular dichroism (XMCD) spectroscopy and bulk magnetization measurements. The spin and orbital moments are virtually identical in magnitude, but opposite in sign, resulting in an almost perfect cancellation, which is corroborated by ab initio calculations. This work constitutes the first experimental demonstration of a seemingly non-magnetic molecular actinide complex carrying sizable spin and orbital magnetic moments.

The chemistry of uranium compounds and the diversity of potential uses for uranium in novel materials are currently experiencing a renaissance. Molecular complexes with uranium in either +III or +V oxidation states have been shown to generally exhibit slow relaxation of magnetization, together with a single U(IV) complex that appears as an exception. Such complexes are also interesting building-blocks for magnetic polynuclear complexes and one-dimensional coordination polymers. Recent spectroscopic and theoretical investigations have aimed at a detailed understanding of the electronic structure of actinide ions, which is significantly more complicated than for lanthanides. The large spin-orbit coupling of actinide ions and the less shielded nature of their 5f orbitals relative to the 4f orbitals, result in much stronger interactions of the f-electrons with the surrounding atoms. Hence, the concomitant stronger ligand field cannot be considered as a perturbation, particularly for the early members of the 5f series. Furthermore, spectroscopic data of actinide systems are typically very rich and the determination of the electronic energy level-splitting and -composition remains quite challenging. For the magnetic characterization of actinide-based materials, powder and thermodynamically averaged magnetization data bring only limited information about the underlying physics. However, since the magnetic properties are predominantly defined by the energy levels that are thermally populated at room temperature and below, any additional experimental information on these low-lying energy levels would be of great relevance. For this task, X-ray magnetic circular dichroism spectroscopy is a powerful tool able to deconvolute the macroscopically measured magnetic moment into its spin and orbital contributions. Despite its routine applications in magnetism, this technique has never been applied to molecular actinide systems. Inspired by the early works of Ryan et al. and Brown et al., we herein report the synthesis and crystal structure of (NEt₄)[UF₆·2H₂O] (1) featuring the first structurally characterized example of an octahedral fluoride complex in the tetravalent actinide family. Although the octahedral [UF₆]⁻ and [UF₆]²⁻ complexes have been well-described and structurally characterized, the existence of an octahedral [UF₆]²⁻ has only been inferred from vibrational spectroscopy, but not confirmed by X-ray crystallography. Indeed, more generally, despite the vast number of known fluoride complexes and solids of the actinide ions, no hexafluoride complex of the tetravalent actinides has ever been reported.

Figure 1. Molecular structure of the [UF₆]²⁻ complex in 1 (thermal ellipsoids drawn at 50% probability level) and the hydrogen bonding pattern linking [UF₆]²⁻ complexes into supramolecular chains running along the crystallographic c direction (see Supporting Information, Figure S1). Selected bond lengths (Å) and angles (°): U–F₁ 2.124(2), U–F₂ 2.177(2), U–F₃ 2.181(2), ∠cis–F–U–F 89.23(7)–90.90(7). Color codes: U, purple; F, green; O, red; C, black; H, grey.

* Authors.

[1] Ass.; Prof. Dr. K. S. Pedersen, Dr. H. R. Clérac
Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 33600 Pessac, France
E-mail: clerac@crpp-bordeaux.cnrs.fr
[2] Prof. Dr. K. S. Pedersen
Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark).
E-mail: kasper@kemi.dtu.dk
[3] Dr. K. Meihaus, Prof. Dr. J. R. Long
Department of Chemistry, University of California, Berkeley, California 94720 (USA).
[4] Dr. A. Rogalev, Dr. F. Wilhelm
European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex 9 (France).
E-mail: rogalev@esrf.fr
[5] Dr. D. Aravena
Departamento de Química de los Maté-riales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Casilla 40, Correo 33, Santiago (Chile).
[6] M. Amoza, Prof. Dr. E. Ruiz
Departamento de Química Inorgánica y Orgánica and Instituto de Química Teórica e Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain).
[7] Prof. Dr. J. R. Long
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (USA).
[8] Prof. Dr. J. R. Long
Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720 (USA).
[9] Prof. Dr. J. Bendix
Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen (Denmark).

Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under: https://doi.org/10.1002/anie.201905056.
The reaction of UF₄·H₂O (x = 1.5) with NEt₄·H₂O in propylene carbonate under a dry N₂ atmosphere yields a pale green solution. Addition of acetone induces the crystallization of a pale-green material suitable for single-crystal X-ray diffraction. The crystal structure analysis of (NEt₄)₂[UFe₆]·2H₂O (1) reveals the presence of slightly compressed octahedral [UFe₆]²⁻ complexes (Figure 1), with U–F bond lengths being longer for fluoride ligands engaged in hydrogen bonding (2.177(2) and 2.181(2) Å versus 2.124(2) Å; Figure S1). The U–F bond lengths are also significantly longer than those found in [UF₆]⁻ (av. U–F 2.07 Å) and [UF₅] (av. U–F 1.98 Å), but comparable to those of organometallic U(IV) complexes such as [Cp*₂UF₆(py)] (Cp* = pentamethylcyclopentadienide, py = pyridine; av. U–F 2.15 Å) and [Cp₂UF] (Cp = cyclopentadienide; U–F 2.11 Å).

The temperature dependence of the magnetic susceptibility-temperature product, χT, of 1 is shown in Figure 2a. From 0.35 cm² K mol⁻¹ at 300 K, it nearly vanishes to 5×10⁻³ cm² K mol⁻¹ at 1.8 K, which is far from the 1.60 cm² K mol⁻¹ value expected for the Russell-Saunders atomic ground state term of the 5f² configuration (Hₜₐₐ, gₜ = 4/5). The electronic ground state of U(IV) in octahedral symmetry is a singlet state composed of a linear combination of the |mᵤ = 0⟩ and |mᵤ = ±4⟩ states. Thus, the magnetic susceptibility is expected to be dominated by temperature-independent paramagnetism (TIP). The simulated χT product, using the model developed in ref. 13 with our ab initio results (vide infra), is shown in Fig. 2a. The experimental departure from the idealized TIP dependence differs from the behavior of [UCls]²⁻ and [UBrs]²⁻ analogues, but is nevertheless commonly observed for U(IV) systems. In order to obtain experimental information on the nature of the electronic ground state of uranium 1, X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) were employed.

The uranium M₄,5 XAS spectra are dominated by strong resonance lines, so-called “white lines”, due to dipole-allowed transitions from the spin-orbit split 3d⁵5f² levels into the magnetic 5f states along with much weaker 3d → 6p and 3d → continuum transitions. According to the dipole selection rule (ΔJ = ±1), the larger M₅ white line intensity primarily reflects the population of the 5f₁₂ states and the weaker M₄ intensity only the 5f₁₀ states. In Figure 3a, the XAS M₄,5 spectra are shown on the same relative energy scale that is obtained by shifting the original spectra (Figure 3b, gray trace) in order to perfectly overlap the first EXAFS oscillation (inset Figure 3a). It is apparent, that the absorption maxima of the M₅ and M₄ white lines are at different photon energies separated by ~0.8 eV, with the M₅ peak being at lower photon energies. This energy splitting is due to spin-orbit coupling of the 5f states. In a spherically symmetric ligand field, the magnitude of this gap can be approximated by ΔE = 7/2ζₐ, where ζₐ is the spin-orbit parameter for the 5f electrons. The angular part of the spin-orbit interaction for the 5f states, ⟨ξ·σ⟩, can be obtained using the so-called spin-orbit sum rule which relates its ground state expectation value to the branching ratio of the isotropic X-ray absorption intensities. The experimental BR value, 0.727 ± 0.005, of 1 results in ⟨ξ·σ⟩/ℏ² = −5.7, which is significantly larger than the values obtained by atomic calculations on the 5f⁰ configuration of −3, −4, and −3.88 in the...
COMMUNICATION

Russell-Saunders, $jj$, and intermediate coupling scheme, respectively.\cite{17} One should bear in mind that the spin-orbit sum rule has been derived assuming no hybridization between the core and valence state and neglecting the core-valence interaction. The observed deviation from theory is thus not unexpected because of the highly localized nature of the 5f states in 1, where core-valence interaction could be very strong. Indeed, such discrepancies with theoretical models have already been observed in electron energy loss spectroscopy results obtained on various U(IV) oxide minerals.\cite{18}

The normalized XMCD spectra at the uranium M_{4,5} edges are shown on Figure 3b. Sizeable dichroism signals are observed at both M_{4} and M_{5} edges. The spectral shape of the XMCD at the M_{5} edge is in qualitative agreement with the one estimated from multiplet calculations for the 5f^{2} configuration with an octahedral ligand field (Figure 3b, green trace), and with experimental results on U(IV)-containing metals.\cite{19} This favorable comparison of uranium M_{5} XMCD spectral shape, which is extremely sensitive to the 5f occupation, confirms also the 5f^{2} configuration of uranium in 1. To deduce the magnitudes of the magnetic moments carried by the uranium 5f states, one can use the so-called magneto-optical sum rules, which relate the integrals of the XMCD spectra to the orbital (orbital sum rule)\cite{20} and spin (spin sum rule)\cite{21} magnetic moments. Unfortunately, the spin sum rule is based on the same approximation as the spin-orbit sum rule, and can therefore hardly be applied to our XMCD spectra. Nevertheless, the orbital sum rule remains valid irrespective of this approximation and numerical integration of the XMCD spectra shown in Figure 3b affords $M_{\text{orbit}} = 0.47 \mu B$. The spin moment, $M_{\text{spin}}$, may hereafter be determined by scaling the magnetization curve measured by monitoring the M_{5} XMCD signal as a function of applied magnetic field (shown in Figure 2b) to the macroscopic magnetization data. This procedure allows the estimation of the absolute magnetization at 17 T, which amounts to only $M_{\text{total}} = 0.060(4) \mu B$, thereby yielding $M_{\text{spin}} = -0.41 \mu B$ through the $M_{\text{total}} = M_{\text{total}} + M_{\text{spin}}$ relation. Thus, the analysis of the XMCD spectra reveals, unambiguously, the existence of sizable orbital and spin magnetic moments in 1 despite a low bulk magnetic moment. Similar cancellation of spin and orbital magnetizations for uranium has been already observed in itinerant 5f systems like UF_{2} using neutron scattering and confirmed by XMCD.\cite{22} Here we demonstrate that the spin-orbital cancellation is not limited to metallic systems with strongly delocalized 5f states but is also present in a molecular system with much higher degree of 5f localization.

Ab initio CASSCF\cite{23} and NEVPT2\cite{24} calculations on the [UF_{3}]^{2-} complex predict significantly lower orbital and spin magnetic moments of the ground state ($M_{\text{orbit}} = -0.051 \mu B$ and $M_{\text{spin}} = 0.018 \mu B$, NEVPT2). Considering the idealized high-symmetry environment of the [UF_{3}]^{2-} moiety, it is reasonable to explore the influence of vibronic effects on the magnetic properties of the complex. The calculations indicate that the A_{1g} ground state is separated from the excited states by more than 1000 cm\textsuperscript{-1} for both the crystal structure model and an idealized octahedral geometry. Thus, there is no ground state degeneracy and vibronic effects must be related to a pseudo-Jahn-Teller mechanism.\cite{25} To evaluate if vibronic coupling impacts the magnetic moments, a Hamiltonian was built with diagonal elements corresponding to state energies including spin-orbit effects and a Zeeman term. The state interaction between the ground state, 0, and an excited state, a, is represented by the following expression:

$$\mathcal{H}_{\text{so}} = -\mu_{B} M_{\text{spin}} (g_{\text{s}} S_{\text{so}} + L_{\text{so}}) \mathbf{H} + F_{\text{so}} \mathbf{A},$$

where $S_{\text{so}} = \{ \Psi_{i}^{\text{so}} | \Psi_{i}^{\text{so}} \}$ and $L_{\text{so}} = \{ \Psi_{i}^{\text{so}} | \mathbf{L} \Psi_{i}^{\text{so}} \}$ for $i = x, y$ and $z$. The first term corresponds to the Zeeman interaction and the second is the linear vibronic contribution with coupling constants:

$$F_{\text{so}} = \left( \Psi_{i}^{\text{so}} | \frac{\partial \mathcal{H}_{\text{so}}}{\partial \mathbf{A}} | \Psi_{i}^{\text{so}} \right)$$

where $\mathcal{H}_{\text{so}}$ is evaluated considering the crystallographically determined geometry, and $\Psi_{0}$ and $\Psi_{a}$ are ground and excited state wave functions, respectively (see Supporting Information for further details). Vibronic mixing quickly increases the magnetic moment and then stabilizes for low displacement values (ca. $z = 0.03$ Å; Figure 5). If we consider 0.03 Å as a representative displacement, we obtain $M_{\text{total}} = 0.48 \mu B$, and $M_{\text{spin}} = -0.26 \mu B$, which are in reasonable agreement with the experiment. Thus, the influence of the vibronic couplings on the magnetic properties is remarkably important for the [UF_{3}]^{2-} complex, but there are no reasons to believe that this effect is restricted to this particular system. Indeed, the magnitude of the magnetic moment in UO_{2} could only be explained by invoking dynamic Jahn-Teller couplings,\cite{23} and the inelastic neutron scattering spectra of the lowest-lying crystal field states of UF_{2} and UCl_{2} have revealed the signatures of strong couplings between electronic states and vibrations.\cite{24}

To conclude, this work reports on the [UF_{3}]^{2-} complex, which is the first example of a structurally characterized hexafluoro actinide(IV) complex. Despite of the very weak magnetic moment of [UF_{3}]^{2-}, the detailed study and analysis of its magnetic properties combining state-of-the-art X-ray absorption spectroscopy, magnetometry and quantum chemical calculations have demonstrated the existence of relatively large spin and orbital magnetic moments. These moments are roughly one hundred times larger than those found in related 5d systems with electronic singlet ground states.\cite{25} These significant spin and orbital components should be considered in the future analyses of the magnetic exchange interactions in uranium(IV)-based materials and fuel the curiosity for a fundamental understanding of the electronic structure and magnetism of other actinide-containing molecules and materials.

Acknowledgements

K.S.P. and R.C. thank the Danish Research Council for Independent Research for a DFF-Sapere Aude Research Talent grant (4090-00201), the University of Bordeaux, the Region Nouvelle Aquitaine, the CNRS, the GdR MCM-2 and the MOLSPIN COST action CA15128. R.C and J.R.L. are grateful to the France-Berkeley Fund and the CNRS (PICS N°06485) for funding. Research at the University of California, Berkeley was supported by NSF Grant CHE-1800252 to J.R.L. D.A. thanks FONDECYT Regular 1170524 project for financial support. Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02). M.A. and E.R. thank Ministerio de Economia y Competitividad for grant PGC2018-093863-B-C21 and for computational resources to

This article is protected by copyright. All rights reserved.
The electronic ground state of the weakly magnetic U(IV) was studied in great details for the simple, structurally characterized, $[\text{UF}_6]^2-$ anion combining X-ray absorption spectroscopy, magnetometry and quantum chemical calculations. The decomposition and quantification of the relatively large spin and orbital magnetic moments provide key information for an improved understanding of the complex electronic structures of actinide ions.