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A B S T R A C T

In this paper, an innovative agent-based model is developed to simulate emergent patterns arising from in-
dividual actions to analyze opportunities for modal shift in Denmark (ABMoS-DK). The modeling process si-
mulates the interaction between travelers (agents) and the network, and applies a heuristic algorithm to model
travelers’ rational decision making process based on tangible costs (ticket price, fixed and variable operation and
maintenance costs) and Value of Travel Time (VOTT) explained by Value of Time (VoT), travel time and level of
service. The traveler is described by a set of socio-economic attributes (income, family structure, place of re-
sidence, car/bike ownership) and the utility is derived from properties of alternative modes to determine
whether to use non-motorized, public or private transport. Fluctuation of tangible costs and value of travel time
can provide comparative advantages to the alternative modes and has the potential to affect the utility of the
mode derived by traveler and change mode choice decision. A set of “pull” and “push” policy scenarios are
formulated to help us understand how different factors affect mode choice in transport. We find that disin-
centivizing private cars has the highest potential for shifting from car use followed by incentives for sustainable
modes and expansion of public transport infrastructure. The paper concludes that capturing rational behavioural
features of consumers with fine level of heterogeneity in modelling will help to better understand the dynamics
of the transportation system and consequently assist policy makers to better identify and target consumer groups
with the highest shift potential.

1. Introduction

The Danish government has adopted the ambitious goal of be-
coming independent of fossil fuels by 2050 (The official website of
Denmark, 2017). While renewable energy is increasingly deployed to
meet power and heat demands in Denmark, the transport sector still
depends highly on petroleum products and is regarded as the most
complicated sector to decarbonize. In 2010, the transportation sector
accounted for approximately 23% of energy-related CO2 emissions
worldwide (Sims et al., 2014) and about 36% in Denmark (IEA, 2016),
60% of which are from passenger vehicles (Winther, 2015). The sig-
nificant challenges faced in moving towards a long-term decarboniza-
tion of the transportation sector include the increase of transport de-
mand, lack of available alternatives to fossil fuels, limits to vehicle
efficiency, fuel standards and heterogeneity of consumers’ behaviour.

The Nordic Energy Technology Perspectives report (IEA, 2016) re-
commended modal shift as one of the key mechanisms for dec-
arbonizing the transport sector in Nordic countries by 2050. Modal shift
takes place when one mode has a comparative advantage over another

mode (for instance, in the level of service) and promotes a behavioural
change in the travelers’ decision. Therefore, modal shift is fundamen-
tally a behavioural change: e.g., shifting to non-motorized transport,
increasing the occupancy factor of private vehicles, and higher utili-
zation of public transportation. The focus in modal shift is aimed to-
wards travelers, since freight transportation is more constrained, de-
pending on the market trends and policies that are in effect (Baindur
and Viegas, 2011).

Road transportation, is a complex socio-technical system consisting
of different components and subsystems in social and technological
areas (Adelt et al., 2018). The transport system is often conceptualized
as having three components: vehicles or equipment that move objects
(people, goods); guideways or what the vehicles move along; and an
operation plan or a set of procedures by which objects and vehicles are
moved over guideways (timetables, control systems, etc.) (Boyce,
2005). As such, the factors affecting modal choice are the existing in-
frastructure, socio-demographic factors and the use of policy tools
(Hammadou and Papaix, 2015). However, Barisa (2016) argued that
this conceptualization excludes users and the complexity of their
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heterogeneous decision-making from the system. Capacity and fre-
quency of service of public transportation constrain urban traffic (Hager
et al. 2015) and policy makers would want to ensure that the existing
infrastructure is sufficient to accommodate (Chen and Liu, 2018) tra-
velers.

The Energy-Environment-Economy-Engineering (E4) models are
tools developed for long-term energy planning and determining least-
cost decarbonization pathways (Chiodi et al., 2013; Føyn et al., 2011;
McCollum et al., 2012; Yang et al., 2015) by representing technology
changes while suffering limited ability to fully evaluate the influence of
behavioural changes on the energy system. E4 models that are currently
used to assess and support energy and climate policies at national and
EU level, do not fully integrate and represent the new challenges posed
by the energy transition such as behavioural aspects. So, there is a need
to enhance their capabilities to analyze both policy implementation
aspects and the design of long-term low-carbon transition. Due to the
lack of representation of consumers’ behaviour in E4 models, the con-
tribution of modal shift to GHG emissions reduction was initially
evaluated through “what-if” analyses, which assessed the effect of
exogenously assumed levels of transfer of mobility demand from one
mode to another on the environment (GEA writing team, 2012; IEA,
2009). In a review of E4 models, Schäfer (2012) concluded that ac-
counting for behaviour changes in E4 models is “indispensable” when
developing overarching climate change mitigation strategies for the
transport sector.

Several researchers have attempted to integrate transport beha-
vioural features in bottom-up (BU) optimization E4 models. For this
class of models, Venturini et al. (2018) recognized two main ap-
proaches to incorporate behaviourally realistic modal shift. One con-
sists in linking the BU E4 model with an external transport model that
handles the behavioural features and determines modal shares
(E3MLab, 2014; Waisman et al., 2013; Girod et al., 2012; Brand et al.,
2012). The other approach endogenously assesses modal shift within an
energy system model, by enlarging the traditional model structure to
include transport-specific variables and transport infrastructure (Daly
et al., 2014; Pye and Daly, 2015; Tattini et al., 2018a; Tattini et al.,
2018b). These studies attempted to identify the limits for the travel
time that users are willing to spend for commuting, as well as the
budget they are willing to commit to meet transport demand: Travel-
Time Budget (TTB) and Travel-Money Budget (TMB) respectively
(Schäfer and Victor, 2000). Typically, people are willing to spend an
average of 1.1 h/day on commuting and devote only a small fraction of
the households’ total budget (approximately 3–5%, for households that
do not own a personal car) towards transportation (Schäfer and Victor,
2000). When income increases, users shift to faster modes of trans-
portation; wealthier societies have increased mobility levels (Schäfer
and Victor, 2000).

Discrete choice model is a methodological approach to simulate
how users select the desired mode of transport for meeting travel de-
mand. Several studies in the field of travel mode choices have used
discrete choice models (Chikaraishi and Nakayama, 2016), multinomial
logit regression (Arbués et al., 2016; Thrane, 2015), nested logit (Lu
et al., 2015), generalized extra value, mixed logit and probit (Can,
2013; Eboli et al., 2016) based on the random utility maximization
theory (McFadden, 1978). Such analysis models the choice of a decision
maker among a set of finite alternatives. These approaches have some
limitations, such as: i) the strict model structure needs to be specified in
advance; ii) they are unable to model non-linear systems; and iii) they
consider only conditions that hold across an entire population of ob-
servations (Shukla et al., 2013 In: Maggi and Vallino, 2016). However,
due to heterogeneity of consumers and complex decision-making pro-
cess based on a large number of parameters, behavioural changes
concerning mode of transport are subject to high degree of uncertainty.
Therefore, discrete choice models are not sufficient to model the com-
plex behaviour involved in modal choice decisions. Moreover, re-
searchers are usually interested to investigate the impacts of

transportation plans on the behaviour of individual households, persons
or subgroups (Shirzadi-Babakan et al., 2015).

An alternative approach is agent-based modeling (ABM), which is
capable of simulating a large number of heterogeneous individuals with
different attributes, characteristics, behaviour and perception re-
presented as agents. Agent-based modeling and simulation (ABMS) is
an approach for modeling complex systems composed of collection of
autonomous decision-making entities called agents that execute various
behaviours appropriate for the system they represent (Bonabeau, 2002;
Macal and North, 2010). Ahanchian and Biona (2017) provided an
extensive list of researches using ABM approach within different con-
texts.

During the past decade, several studies have used agent-based
modeling approach within the context of traffic. Adelt et al. (2018)
proposed a general-purpose simulation framework, “Simulation of the
governance of complex systems (SimCo)” to model and analyse inter-
action processes in networked systems and study the complexity of
socio-technical systems where a large number of actors act and interact,
producing emergent effects at the system level and are only partly
controllable. The study demonstrated that ABM is a useful method to
tackle the issue of governability of complex socio-technical systems and
thus to stimulate the inconclusive debate which has been going on in
sociology and political science for decades. The framework has been
applied to the case of road transportation. Many researchers used the
Multi-Agent Transport Simulation (MATSim) to simulate the dynamics
of transport system such as route choice (Maciejewski and Nagel, 2012)
and bicycle traffic (Ziemke et al., 2018). Kaddoura and Nagel (2016)
analyzed the heterogeneous values of travel time saving, Ben-Dor et al.
(2018) assessed the impacts of dedicated bus lanes on urban traffic
congestion and modal split and Hörl et al. (2018) showed that im-
plementing a discrete mode choice model may drastically increase the
convergence speed of the simulation. Moreover, AnyLogic tool is used
to develop agent-based model to simulate shared-taxi system (Martinez
et al., 2014), carsharing (Martinez et al., 2016), shared self-driving
urban mobility (Martinez and Viegas, 2017) and automated vehicles as
last mile connection of train trips (Scheltes and Correia, 2017) and
analyzed the impacts of these developments on transport system.

Table 1 lists studies that use ABM as a tool for analysing mobility
behaviour. The review of the literature shows the importance of in-
corporating behavioural aspects in traffic related analysis and the
capability of agent-based modeling approach to simulate behavioural
aspects. However, the studies regarding mode choice consider only an
urban area (city) as a geographical scope. Maggi and Vallino (2016) in
their critical review of literature on ABM focusing on transport con-
cluded that there is still a gap in urban transport agent-based modelling:
They are usually focused on sub-categories of city inhabitants, such as
school pupils, students, pedestrians or car owners, without a systemic
view. Moreover, they discussed the need to implement real surveys in
order to calibrate the ABMs using first-hand data (Maggi and Vallino,
2016).

In our study, we developed a novel agent-based model, Agent-Based
Modal Shift Simulation for Denmark (ABMoS-DK), and apply it to si-
mulate modal shift in the inland transportation sector with a systematic
approach. Within ABMoS-DK, agents are independent in making deci-
sion while there is a feedback from agents’ action and consequently
indirect interaction between agents for choosing the mode emerges
such as “SimCo” framework developed by Adelt et al. (2018) and ABM
package of TRansportation ANalysis SIMulation System (TRANSIMS)
(Bonabeau, 2002). However, as far as the authors are aware, there is no
previously published work presenting agent-based modeling approach
with the focus on utility maximization based on defining the direction
and importance of the effect of tangible costs and Value of Travel Time
(VOTT). Moreover, the novelty of ABMoS-DK is capturing the realistic
heterogeneity of travelers’ rational decision-making and integrating
several dimensions of mobility parameters such as travel cost, travel
time, emerging congestion, level of service of modes, availability of
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mode and capacity saturation within the context of modal choice.
ABMoS-DK is used to address the following research questions:

1. How effective are strategies for influencing the travelers’ decision on
choosing the mode of transport?

2. How much is the maximum shift potential from the viewpoint of
travelers without considering technological changes?

3. Which groups of agents (e.g., geographical zones, travel demand
length, urbanization pattern and income groups) are most sensitive
to various strategies for incentivizing modal shift?

2. Data and methods

2.1. Data

Based on the Great Belt Corridor, Denmark is divided to East (DKE)
and West (DKW) regions. According to settlement patterns, each region
is further divided into urban (U), suburban (S) and rural (R) areas
(Eurostat, n.d.). Fig. 1 shows the structure for the data collection and
how it relates to the calculations done in ABMoS-DK. The Danish Na-
tional Travel Survey (also denominated TU survey), an interview-based
survey that documented the travel behaviour of the Danish population
by recollecting mobility diaries, and socio-economic data from 2006 to
present (Christiansen and Skougaard, 2015) is used to capture the at-
tributes of travelers. The TU Survey interviewed 23,753 targeted tra-
velers in 2010 and collected data on their personal income, household
structure, trip details including timing, origin and destination. This

resulted in a database with 29,089 distinct journey records that in-
cluded the distance, the mode, timing and socio economic data on the
person making the trip (TU Survey, 2018). The socio-economic char-
acteristics on the household level (i.e., annual income, car/bike own-
ership and place of residence), individual attributes (i.e., age, gender,
education level and etc.) and the trip characteristics (i.e., trip length,
departure time and trip purpose) were assigned to agents through an
SQL database.

The Danish Land Transport Model (LTM) was used (http://www.
landstrafikmodellen.dk) (Rich and Hansen, 2015) as a supporting
model of this study to determine the properties of different modes. LTM
is a four-stage simulation transport model of Denmark (Rich, 2015),
which represents all transport activities within, into, and through
Denmark (Jensen et al., 2017). LTM was used to quantify Value of Time
(VoT), average speed of each mode and average congestion time across
urbanization areas, penalty parameters of congestion, in-vehicle, ac-
cess/egress and waiting time together with the annual inland transport
demand disaggregated on urbanization type in each region. Shares of
transport modes based on passenger-kilometer in 2015 are presented in
Fig. 2. The private cars are responsible for the majority of travel de-
mand (83.7%), all public transits take 12.3% and the train has the
highest share (7.0%) followed by bus (3.0%), S-train (1.7%) and metro
(0.5) while the non-motorized modes take 4.0% of total inland travel
demand.

Fig. 3 presents the travel demand disaggregated on urbanization
type in 2015 from LTM. It shows that most of the trips in east take place
in urban area while in west, rural area has the highest share.

Table 1
Literature containing ABM as a tool for transport studies.

Reference Geographic Scope Focus Input data

Dia, 2002 Brisbane, Australia Modelling individual driver behaviour Behavioural survey of drivers
Shafiei et al. 2012 Iceland Predicting the evolution of market share of electric vehicles CreditInfo report
Mallig et al. 2013 Stuttgart, Germany Modeling travel demand in Stuttgart region Travel survey and official statistics
Fagnant and Kockelman, 2014 A hypothetical mid-size

city in US
Shared autonomous vehicles and environmental implications US National Household Travel Survey

Novosel et al. 2015 Croatia Simulate hourly distribution of transport demand Official data of the region
Hager et al. 2015 Stuttgart, Germany Modeling the traffic behavior in growing metropolitan areas Household survey and statistics
Shirzadi-Babakan and Taleai,

2015
Tehran, Iran Evaluate impacts of different transport development plans on choices

of residential location and commuting mode of tenant households
Survey and official statistics

Zou et al. 2016 Beijing Predict mode choice and departure time changes Behaviour survey of travelers
Djavadian and Chow, 2017 Oakville, Ontario Modeling ‘Mobility as a Service’ with a two-sided flexible transport

market
Network data for Oakville and
Transportation Tomorrow Survey

Access/egress time

Waiting time

In-vehicle time

Availability of
infrastructure

Annual income Car/bike ownership

Residential region
(east/west)

Urbanization type (urban/suburban/rural)

Travel time Travel distnace

Trip purpose (business/non-business)

Data from LTM Data from TU Survey

Assign the attribute
of agents

Define properties of
modes

Mode choice

Agent-based model

Value of Time
(VoT)

Average speed

Congestion time

Penalty parameters

Total demand disaggregated on urbanization
type in each region

Age, gender and
education level

Fig. 1. Data parameters within ABMoS-DK.
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2.2. Methodological framework

The methodological framework is presented in Fig. 4. The base year
of the model is 2010 and the model runs until 2050. First, the model
reads the TU survey database and parametrize the attributes of het-
erogeneous agents with socio-economic characteristics and travel de-
mand from 2010 until 2015. For the modeled years after 2015 until
2050, the majority of agents continue and some agents are generated
with the same characteristics from the database randomly to reflect the
changes in socio-economic and population synthetics. Since the travel
behaviour data is not available for future years, we run a Monte Carlo
simulation for generating agents. Then each traveler agent searches for
the available mode and derive a utility for each available option based
on tangible costs and value of travel time. The agent chooses the mode
of transport with the highest utility based on rational choice theory.
The model uses rational choice theory for expressing and scoring the
direction and importance of the effect of tangible cost or value of travel
time (properties of modes) built on the premise of individual utility
maximization. ABMoS-DK simulates mobility behaviour of travelers
and forecast modal shares endogenously for future years.

In the TU survey, each interviewee has an associated weighting
factor that is determined in a way so that the surveyed population
synthesizes and reproduces the real Danish population. The 2015 ver-
sion of TU Survey consists of 134,044 interviews, 23,753 of which were
conducted in 2010 (TU Survey, 2018). The yearly records of interviews
are defined as number of agents for the years until 2015 and the model
generated total of 11,087,601 agents for future milestone years (i.e.,
2020, 2030, 2040 and 2050) including 50 replications. In ABMoS-DK,
each agent represents a group of travelers with homogenous socio-
economic characteristics and the heterogeneity of travelers is defined
by generating population of agents to simulate that different groups of
transport users have specific preferences. The weighting factor is used
to specify the number of people represented by each heterogeneous
agent. The huge number of agents in the model captures a fine re-
solution of heterogeneity of socio-economic characteristics. Since the

mode choice results from bottom-up travelers’ behaviour, the ABM
approach will also enable the user to study aggregate properties on
desired level. This could help policy makers to analyze the potential of
imposing policies in different geographical zones, on specific group of
people (e.g., age, income, gender, education level, car ownership) and
for certain trip purposes in long-time horizon.

To facilitate the analysis of results and better understand the trends,
we have further grouped agents based on region, trip length, urbani-
zation type for place of residence and annual household income. The
place of residence is defined as Denmark east and west while the ur-
banization pattern is Urban (U); Suburban (S) and Rural (R). The
classification of trip lengths is: Extra-short (XS) less than or equal to
5 km; Short (S) between 5 and 25 km; Medium (M) between 25 and
50 km; Long (L) more than 50 km. The household income groups are:
Very Low (VL) less than 200 kDKK1/year; Low (L) between 200 and
500; Medium (M) between 500 and 800; High (H) more than
800 kDKK/year. The agents look for an appropriate mode of transport
in the traffic system to meet annual travel demand. They decide on the
preferred mode of transport according to personal attributes and
properties of modes through mode choice algorithm. The ABMoS-DK is
capable of analyzing behavioural preferences of travelers and under-
stand the factors that explain their rational behaviour. These factors
could be changed through policy scenarios to affect their decision and
consequently shifting to more sustainable modes.

ABMoS-DK is simulated using AnyLogic multimethod simulation
tool developed at Experimental Object Technologies (http://www.
xjtek.com) which is a tool for modeling and simulation of complex
systems (Borshchev et al., 2000; Borshchev et al., 2002). ABMoS-DK
runs on Java platform hosted by AnyLogic hybrid engine.

2.3. Modes of transport

The modes of transport are the transport technologies which have
various properties and infrastructure defining the technological sub-
system. These transport technologies construct the option list to be
chosen by transport user agents based on agents’ attributes and prop-
erties of technologies to meet travel demand. Table 2 shows the
availability of infrastructure, maximum constrained length and analy-
tically elaborated equations inspired from LTM and Tattini et al.,
(2018b) to calculate tangible costs and value of travel time of each
mode of transport in ABMoS-DK, categorized as private, non-motorized
and public transport.

2.3.1. Private car
The infrastructure for driving a private car is defined as having

access to car at household level and having driving license for an or-
dinary passenger car (i.e., category B). However, the passenger of pri-
vate car is not required to have a driving license. The tangible cost
associated with private cars includes tire, maintenance, insurance,
ownership tax, parking cost, depreciation cost and other costs re-
presented in Eq. (1) and the annual fuel cost calculated using Eq. (2) all
taken from FDM (2017):

Car 83.7%

Bicycle 3.2%

Walk 0.8%

Bus 3.0%

Train 7.0%

S-train 1.7%

Metro 0.5%

Public 12.3%

Car Bicycle Walk Bus Train S-train Metro

Fig. 2. Shares of different transport modes in 2015, Million passenger kilometer
(LTM).
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Fig. 3. Travel demand disaggregated on urbanization type in 2015 (LTM).
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database

Year<=2015 Choose the mode Export the
results

Generate random
agents

(Monte Carlo)
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Fig. 4. Methodological framework.

1 1 Euro equals 7.447 Danish Kroner (DKK) as of 09 January 2018.
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Tangible

pc
Trip

a
Fuel

a
Tire

a
Maintenance

a
Insurance

a
Tax

a
Dep

a
Other

a (1)

= ×C M FP EF/a
Fuel

a pc pc, (2)

where C denotes cost (DKK), pc denotes private mode of transport, a
stands for annual, Ma denotes annual mileage (km/year), FP denotes the
fuel price (DKK/liter) and FE represents fuel economy (km/liter). The
value of travel time for private car is calculated based on value of time
(as a mediator parameter to monetize travel time) which changes across
households’ income and trip purpose using Eq. (3) while Eq. (4) cal-
culates the in-vehicle time of the trip:

=C VoT × T + T × Penalty( )pc
VOTT

IC TP pc
InVehicle

pc,UT
Congestion

pc,TP
Congestion

, (3)

=T L S/pc
InVehicle

pc
Trip

pc UT
Average

, (4)

VoT is the value of time changing across households’ income class
(IC) and trip purpose (TP) (e.g., business vs. non-business trip) ex-
pressed in the unit of DKK/min. T represents travel time (in minute) and
includes in-vehicle and congestion time. The congestion time varies
across urbanization type and congestion penalty varies across trip
purpose (TP) both taken from LTM. Congestion penalty represent the
inconveniences associated with congested driving time. L stands for trip
length and S is the average speed changing across urbanization type
(UT). VoT and average speed for each mode across urbanization type
are taken from LTM. In this model it is assumed that in urban areas
during rush hour, the speed of private cars decreases by 30% while the
congestion time of private cars increases by 30% calculated from LTM.
Moreover, if the agent is a member of car sharing scheme, the cost is
equal to the duration of trip multiplied by cost of car sharing per minute
plus the value of travel time associated with driving. The algorithm uses
the same VOTT associated with private cars for passengers in a car
sharing scheme.

2.3.2. Non-motorized transport (NMT)
The non-motorized modes of transport include walking and bicy-

cling which are options only available for extra short and short trips.
There is no tangible cost associated with walking. As suggested by
Hammadou and Papaix (2015), ageing largely influences walking ac-
tivities. Therefore, if the agent is under the age 18 or over age 65, the
average speed of walking across all urbanization types is decreased by
20%. The value of travel time of walking is calculated based on value of
time (as a mediator parameter to monetize travel time) which changes
across households’ income and trip purpose using Eq. (5):

=C VoT × L /S( )w
VOTT

IC TP w
Trip

w,UT,age
Average

, (5)

where w stands for walk and S is the average speed of walk changing
across urbanization type (UT) and age of traveler.

Eq. (6) calculates the tangible cost of cycling. If the agent owns an
electric bike, the electricity price and maintenance cost will constitute

the tangible cost. For electric bikes, on average, a 250-W battery will
provide a range of 55 km, and the cost of charging is 5.25 DKK/kWh
(Mobycon, 2014) so full battery charge costs 1.32 DKK and one kilo-
meter by electric biking costs 0.024 DKK. Therefore, trips using electric
bikes are constrained to 55 km and the tangible costs of cycling are
given as:

= × + ×C L C C( 0. 024)b
Tangible

b
Trip

b
Maintenance

if e bike
Electricity

(6)

where, b denotes bicycle. The maintenance cost of cycling is taken from
triangular probability distribution (i.e., min = 0.01, max = 1,
mode = 0.5) DKK/km. In ABMoS-DK agents between 14 and 50 years
old who own a bicycle may ride for up to 25 km, cycling is only an
option for agents younger than 75 years and agents within the other age
classes will have 20% higher VOTT associated with riding a bicycle
determined from LTM. The VOTT of cycling is calculated using Eq. (7).

=C VoT × L /S( )b
VOTT

IC TP b
Trip

b,UT,age
Average

, (7)

2.3.3. Public transport
The public modes include bus, train, S-train (urban-suburban rail-

ways) and metro. The tangible cost of each mode of public transport
equals to ticket cost, which is related to trip length and provided exo-
genously while the VOTT of each public modes are calculated en-
dogenously using Eq. (8):

=C VoT × T + T × Penalty

+ T × Penalty

( ( )

( ))
pt
VOTT

IC TP pt
InVehicle

pt,UT
Wait

pt
Wait

pt,UT
ACC/EGR

pt
ACC/EGR

,

(8)

where pt stands for public transport (i.e., bus, train, S-train and metro),
penalty parameters for waiting (Wait) time and access/egress time
(ACC/EGR) is constant and equal to 1.5 taken from LTM and represent
the inconveniences associated with waiting and access egress time. The
in-vehicle time is calculated using Eq. (9).

=T L S/pt
InVehicle

pt
Trip

pt UT
Average

, (9)

It is assumed that the agent could study or work while commuting in
public transport (Malokin et al., 2015) introduced as intangible benefit.
Therefore, for educated agents with medium or long commuting dis-
tance, there is no in-vehicle time associated with the value of travel
time. Eq. (10) calculates the total cost across the consumer groups and
for each 7 alternative modes in the model.

= × + ×C C Cm
Total

m
Tangible

m
VOTT

1 2 (10)

where parameter defines the direction and importance of the effect of
tangible cost and value of travel time attribute on the utility of alter-
native estimated based on travel budget and travel time across income
groups and later calibrated.

2.4. Mode choice

Fig. 5 presents the flowchart of ABMoS-DK to determine the mode of
transport based on the traveler’s personal attributes, expectations,
properties of modes and availability of infrastructure. The traveler’s
heterogeneity is incorporated to take into account that different users
have specific preferences affecting modal choice. Each agent in-
dividually assesses its situation and makes decision on the basis of a set
of rules (Bonabeau, 2002).

Each agent derives a utility for each alternative mode calculated
based on the observed factors of the trip i.e., tangible costs and value of
travel time, and the traveler chooses the mode with the highest utility.
The derived utility of each mode also depends on the socio-economic
and behavioural characteristics of the households (urbanization pat-
tern, income level and value of time). The expectations of travelers are
adopted according to the budget (travel money budget) and time (travel
time budget) they are willing and able to spend to meet travel demand

Table 2
The details of each mode.

Availability of
infrastructure

Maximum
length (km)

Tangible Cost Value of
Travel Time
(VOTT)

Private car All zones Unlimited Eq. (1) Eq. (3)
Walk All zones 15 N/A Eq. (5)
Bike All zones 25 Eq. (6) Eq. (7)
Bus All zones Unlimited Ticket price Eq. (8)
Train All zones Unlimited Ticket price Eq. (8)
S-Train Greater

Copenhagen Area
63 Ticket price Eq. (8)

Metro Copenhagen City 14.2 Ticket price Eq. (8)
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across income groups. For instance, the competition between faster and
more expansive modes (e.g. car) with slower but cheaper modes (e.g.
bus or rail) is ensured by evaluating the derived utilities of each mode
based on the travel budget and travel time representing expectation of
travelers. However, agents have memory and in case that the derived
utilities of alternative choices are equal, the agent continues to habi-
tually repeat previous behaviour (taken from TU survey).

2.5. Interactions

Within ABMoS-DK, traveler agents make decision independently
and neither communicate with others nor learn from other agents.
Therefore, there is no direct interaction between traveler agents.
However, a large number of agents act autonomously at micro level and
choose a specific mode of transport affecting some properties of the
available modes in the network. The more agents using private car in a
certain zone emerges congestion which affects speed, in-vehicle and
congestion time in Eq. (3). The more agents choosing a certain mode of
public transport in specific zone, increases the waiting time in Eq. (8).
Moreover, by approaching saturation capacity of the modes, the in-
conveniences associated with congestion and waiting time increases.
Agents who enter the mode choice, observe the situation of the traffic
system and sense the properties of modes emerged from action of other
agents. Hence, the derived utility of mode changes, which might affect
the mode choice decision. The interactions are mediated by the system
dynamics emerged from the action of travelers in the traffic system such

as “SimCo” framework developed by Adelt et al. (2018) and ABM
package of TRANSIMS (Bonabeau, 2002). Therefore, the modeling
process simulates the interaction between travelers (agents) and the
network.

2.6. Generating agents

The TU survey contains data for the model years 2010–2015.
For the years 2016–2050, agents are randomly generated and
their associated characteristics are taken from the TU survey
database i.e., ABMoS-DK generates a random number N

the Last IndexOfDatabase[0, ) and takes the attributes of Nth agent. Two
criteria i.e. forecast of travel demand split by urbanization area and
projection of synthetic population are defined to stop random agent
generation. This loop iterates until Eq. (11) and Eq. (12) are satisfied:

× ×L W N D
j UT j

Trip
j
Factor Days

i
UT

, (11)

L stands for trip length originated in one of the urbanization types
(i.e., east/west, urban, suburban or rural), j is the representing agent, W
is a weighting factor taken from TU survey representing the number of
people with the homogenous characteristics and travel demand in the
entire Danish population. N is the number of days in a year (varies
across working and non-working days). The right hand side of the Eq.
(11) is the forecast of travel demand in year i taken from LTM dis-
aggregated on urbanization type.

Mode choice

Monte Carlo Simulation

Start

Year i=2010
Agent j=0

i<=2015

j*weighting factor<=
Synthetic population

Read the database
& assign attributes

Calculate tangible cost and
value of travel time for each

mode per trip

Agent j++

Year i++

End

No

Generate a random number
[0, the last index of database)

Yes
No

Calculate the utility of modes
and choose the mode with

highest utility

Yes

i<=2050

No

Take the attributes of Nth
agent in database

Generate agent j

Eqs (11 &12) are
satisfied?No Yes

Yes

The properties of mode
is changed?

Yes

Export the results
No

Fig. 5. Flowchart of ABMoS-DK.
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The annual historical demographic data and projection of synthetic
population of country is taken from statistics Denmark out to the year
2050 (Statistics Denmark, n.d.). The second criteria for stopping
random agent generation intends to reproduce the annual projection of
synthetic population using Eq. (12):

W P
year

Factor i

i (12)

where Pi represents the synthetic population projections by statistics
Denmark. In other words, the agents are generated using a Monte Carlo
simulation such that the aggregation of demand in each urbanization
area together with population synthesis matches the LTM demand and
demographic data respectively.

Several experiments were completed to determine how the number
of Monte Carlo replications affected the confidence level. Fig. 6 re-
presents the Relative Standard Error (RSE) calculated using Eq. (13).
Increasing the number of replications decreases the RSE while in-
creasing the simulation time. The trial showed that 50 replications
(generating approximately 11 million agents) results in a RSE well
below 2% with a simulation time of 434 s (Fig. 6). Therefore, in order to
resolve the problem of uncertainty raised from random agent’s gen-
eration, we run the model for years 2015–2050 with 50 replications.

RSE = SE
meanValueTotal AllModes

2

(13)

Fifty replications is in line with similar Monte Carlo-based studies of
this nature. For instance, Qu and Zhou (2017) executed 10 iterations to
reduce sampling errors. Boateng and Awuah-Offei (2017) run the
Monte Carlo simulation 20 times with 20,000 agents. Ahanchian and
Biona (2017) and Sopha et al. (2011) performed 30 replications.

2.7. Calibration and validation

ABMoS-DK reads the database and assigns the attributes of traveler
(such as age, gender, education level, car/bike ownership, membership
in car sharing scheme, driver’s license ownership and income) to agent
and calculate trip characteristics (such as departure time and day, ur-
banization type of origin and destination, trip purpose and trip length).
The properties of modes (such as availability of infrastructure, average
speed, average access/egress time, average waiting time and average
in-vehicle time in each urbanization type) taken from LTM are assigned
to modes. The agents with specific travel demand follow the mode
choice algorithm to decide on the mode of transport. The calibration
process accomplished by adjusting the number of working days and
non-working days in the year, the congestion during rush hours, speed,
access/egress, waiting time and the importance of the effect of tangible
cost and value of travel time to reproduce the historical modal share in
2010. The calibrated and adjusted model was run to check the ability of
reproducing the historical modal share in 2015 from LTM. The left hand
side of Fig. 7 shows the results of modal shares compared to the his-
torical data from LTM in 2010 while the right hand side shows the
results of modal shares compared to the historical data from LTM in
2015. The calibrated model is then run until the last year of simulation
in order to forecast the modal shares.

2.8. Scenario definition

One reference scenario and four alternative scenarios are developed
based on recent policy debates adopted from (Mathiesen, and Kappel,
2013) and tested to determine the effect on modal shift, and shift away
from private cars in particular. All scenarios include the current ex-
pansion of existing Copenhagen Metro, which includes 15.5 km of new
underground railway and 17 new stations. The new city ring line is
planned to be opened in 2020.

2.8.1. Business as usual (BAU)
The BAU scenario represents a continuation of current conditions

based on the TU and LTM. The business as usual serves as the base
(reference) scenario in our study.
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2.8.2. Expansion of public infrastructure (EPI)
Encouraging the travelers to shift to more sustainable modes could

be promoted by increasing the utility of public modes (e.g., decreasing
value of travel time: access/egress and waiting time) provided that the
infrastructure is available in the area. In this scenario, we analyze the
effect of developing metro in the Denmark west urban areas (i.e.,
Aarhus, Aalborg and Odense). S-train railways would also be available
in western urban and suburban areas by 2025, and the frequency of all
trains and buses is increased by 10% with respect to reference scenario.
Based on the timetable of public modes, some modes are not available
in some areas during nighttime. In this scenario, however, there is
public transport available every two hours.

2.8.3. Incentives for sustainable modes (ISM)
Decreasing the tangible cost of more sustainable modes increases

the utility of these modes and might affect the mode choice decision.
ISM examines the impact of decreasing public transport ticket price by
20% in 2025. Additionally, free parking is assumed to be available for
train and S-train users, thus eliminating the access and egress time to
public transport. The access and egress stage (parking a private car) is
added to the primary mode of the trip. Finally, in this scenario, all bi-
cycles are assumed to be electric with free recharging of the battery,
thereby extending the maximum trip length to 55 km.

2.8.4. Disincentives for private cars (DPC)
Increasing the tangible cost of private cars decreases the utility of

this mode. DPC examines increasing the fuel tax by 50%; increasing
registration and annual ownership tax of a fossil fuel dependent vehicle
by 50%; doubling the parking cost, and collecting toll on vehicles
coming into Copenhagen (30 DKK per trip irrespective of trip length
during weekdays from 6 am to 6 pm).

2.8.5. Combination of all scenarios (COM)
A set of alternative “pull” and “push” scenarios acting in-

dependently of others are developed to evaluate the effect of im-
portance of tangible cost and value of travel time on mode choice. In
this scenario integration of above policy instruments are tested to
achieve greater performance from the overall strategy (May et al.,
2006).

3. Results

ABMoS-DK determines the maximum shift potential in the inland
passenger transport sector of Denmark endogenously from the per-
spective of consumers while interacting with the network. The analysis
shows that the total demand in 2010 was 69.845 Bpkm which would
increase to 91.375 Bpkm in 2050 representing an increase of around
30.8% compared to base year under reference scenario. The Monte
Carlo simulation was performed 50 times to calculate the absolute
value of the modal split (Billion-passenger-kilometer) together with the
standard deviation. However, in order to have a comparable analysis
with respect to effectiveness of scenarios, the results in this section
present the percentage of modal choice. Due to the definition of sce-
narios, modal shift takes place from 2030 onwards.

Table 3 shows the percentage change of modal shares across sce-
narios in 2050 compared with the reference scenario in the whole
country. The contribution of scenario which encourage the travelers to
reduce car ridership and shift to other modes, demonstrates the effec-
tiveness of scenario. To provide an overview regarding the effectiveness
of scenarios, the changes with more than 10 percent are colored. The
green color represents changes towards sustainability while the pink
color represents the deterioration of the situation.

The results of the analysis in BAU (reference) scenario show that in
2050, the demand for car ridership increases by 31.7% with respect to
the base year (2010), because of its availability almost everywhere,
often associated with higher travel speed and in some cases, with lower
total costs. The demand for metro increases by 135.2% saturating the
current and the new city ring infrastructure due to the level of service.
Train ridership also increases by 69.7% due to relatively higher speed
and comparative lower cost for long trips. Since, there is no tangible
cost for walking, the demand in this mode increases by 25.0% while,
biking increases slightly by 0.6%. The results show that S-train and bus
ridership decrease by 4.3% and 25.3% respectively which might be
substituted by other modes due to comparative lower level of service.

The expansion of public infrastructure scenario is to analyze the
impact of developing the infrastructure of public transit on modal
choice. The results of this scenario show that expansion of metro and S-
train infrastructure provide opportunities to increase their ridership by
594.7% and 110.9% in 2050 compared to the reference scenario re-
spectively. Moreover, increasing the frequency of public transit de-
creases the waiting time thus the value of travel time of public modes
decrease resulting in 14.9% and 8.0% increase of ridership for bus and
train respectively. Biking increases slightly by 1.1% while the use of
private cars and walking are decreased by 7.1% and 40.6% respec-
tively. This might be due to better performance and comparative ad-
vantages of public transport which encourage the travelers to shift to
these modes.

The result of incentives for sustainable modes scenario shows that
incentivizing the use of public transit and electric bikes increase the
share of metro by 554.6% followed by S-train (422.5%), bike (66.4%)
and train (61.8%) compared to the reference scenario in 2050.
However, the bus ridership, private cars and walking experience de-
crease of 1.0%, 19.0% and 28.7% respectively, which are obviously
covered by other public modes. The incentives for sustainable modes
scenario which decreases the tangible cost of public transit and electric
bikes, seems to be more successful with regards to reducing car rider-
ship compared to expansion of public infrastructure scenario by de-
creases the value of travel time. This might be due to the perception of
travelers and the importance level of tangible cost over value of travel
time. These two scenarios could be categorized as pull policy.

The results of disincentives for private cars scenario show that in-
creasing the cost of private cars as a “push” policy discourages the use
of cars by 29.8% compared to the reference scenario in 2050.
Therefore, metro increases by 772.4% followed by S-train (282.9%),
bus (234.5%), bike (175.8%) and walk (1.5%) respectively. The higher
shift potential of car use under disincentives for private cars scenario
compared to previous scenarios might be due to the fact that travelers
prefer to avoid paying more tangible cost rather than receiving

Table 3
The change of modal shares across scenarios in 2050 compared with the reference scenario.

w.r.t BAU Private Walk Bike Bus Train S-train Metro

Business as Usual (BAU) in 2010 31.70% 25.00% 0.60% -25.30% 69.70% -4.30% 135.20%

Expansion of Public Infrastructure (EPI) in 2050 -7.10% -40.60% 1.10% 14.90% 8.00% 110.90% 594.70%

Incentives for Sustainable Modes (ISM) in 2050 -19.00% -28.70% 66.40% -1.00% 61.80% 422.50% 554.60%

Disincentives for Private Cars (DPC) in 2050 -29.80% 1.50% 175.80% 234.50% 85.80% 282.90% 772.40%

Combination of all scenarios (COM) in 2050 -49.30% -53.70% 464.80% 158.10% 112.40% 853.20% 906.10%
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subsidies or spending less time.
A combination of “pull” and “push” scenarios simultaneously might

provide the most promising results with regards to decrease of car use
representing 49.3% car use reduction with respect to the reference
scenario in 2050. The results show that the combination of scenarios
increases the use of metro by 906.1%, followed by S-train (853.2%),
bike (464.8%), bus (158.1%) and train (112.4%) respectively. In this
scenario, walking decreases by 53.7% which is due to comparative
advantages of other modes over walk.

The bottom-up agent-based modeling approach is flexible with re-
gards to aggregating the simulated behaviour of consumer groups. By
understanding the modal shift potential of different groups, the policies
could be prioritized targeting group of agents. Fig. 8 demonstrates the
absolute value of travel demand grouped based on regions, trip length,
urbanization type and income in 2050 (Bpkm). Aggregating the results
based on regions show that the total demand in west (51.590 Bpkm) is
higher than east (39.785 Bpkm) probably due to bigger area, less con-
centration of residential places and consequently longer travel dis-
tances. Summing the results based on trip length indicates that the long
distance trips have the highest demand equal to 36.621 Bpkm followed
by short distance 27.225, medium distance 18.558 and X-short distance
trips 8.971 Bpkm. Aggregating the results based on urbanization type of
residential location depicts that the total demand in rural area is
33.657 Bpkm followed by suburban (30.455) and urban are (27.263)
which might be due to longer distances in rural areas. Aggregating the
results based on annual income illustrates that the total travel demand
has the highest value in very low income group (32.259 Bpkm) followed
by medium (22.877), low (18.729) and high (14.51) Bpkm.

The effectiveness of scenarios for each of the above categories are
further analyzed below. The scenarios change the share of modes and
do not affect the total demand in each category. Table 4 compares the
modal share potential across alternative scenarios in east and west in

2050. Private cars have the highest share of regional demand in the
reference scenario representing 81.4% in east and 86.4% in west.
However, the results show that implementing strategies in east is more
effective at reducing car use compared to west probably due to shorter
trip demands and better performance of public transport. By im-
plementing the combination of scenarios, the share of private cars could
be reduced to 32.1% and 50.9% in east and west respectively. In the
reference scenario, the share of bicycling is 2.9% in east and 2.4% in
west. Apparently, expanding the public infrastructure affects bicycling
slightly while the incentives for sustainable modes increase the share of
bicycling to 4.4% and 4.3% in east and west respectively. Increasing the
cost of private cars encourages travelers to use bike and increase the
share of this mode to 6.8% and 7.4% in east and west respectively.
Combination of scenarios is more effective for increasing the share of
bicycling in western region (16.0%) compared to eastern region
(12.9%) perhaps because of more expensive cost of private cars, agents
prefer to shift to other mode. However, since the public infrastructure
could not cover some travel demands is west, agents shift to bike.
Walking has slight share compared to other modes in both regions.
Although in some scenarios the share of walking reduces with respect to
the reference scenario, bikes compensate this reduction and the total
share of non-motorized modes provide promising results. The S-train
and metro infrastructure are not available in west under business as
usual, incentives for sustainable modes and disincentives for private
cars scenarios. However, by expanding the infrastructure, S-train and
metro could be responsible to accommodate 2.6% and 1.3% of total
demand in the western region respectively and by implementing the
combination of scenarios these values could reach to 6.1% and 1.7%
respectively. In the reference scenario, the share of all public modes is
15.2% and 10.1% in east and west. The results show that the simulated
scenarios contribute in increasing the share of public modes in east
more than west.

39.785

51.590

Regions

East West

8.971

27.225

18.558

36.621

Trip length

Extra short Short Medium Long

27.263

30.455

33.657

Urbanization type

Urban Suburban Rural

35.259

18.729

22.877

14.510

Income categories

Very low Low Medium High

Fig. 8. Absolute value of travel demand grouped based on regions, trip length, urbanization type and income in 2050 (Bpkm).

Table 4
Comparing the modal share potential across scenarios in 2050 (east vs. west) in percentage.

BAU EPI ISM DPC COM BAU EPI ISM DPC COM

Private 81.4 73.2 55.9 46.5 32.1 86.4 82.2 77.8 68.9 50.9

Sum Non-motorized 3.4 3.1 4.8 7.2 13.2 3.4 3.1 5 8.6 16.5

Walk 0.5 0.3 0.4 0.4 0.3 1.1 0.6 0.7 1.1 0.4

Bike 2.9 2.8 4.4 6.8 12.9 2.4 2.5 4.3 7.4 16

Sum Public 15.2 23.7 39.3 46.3 54.7 10.1 14.7 17.2 22.6 32.6

Bus 2.2 2.4 1.6 7 4.9 1.7 2.1 2.2 6.1 5.1

Train 8.4 9.6 11.9 14.6 15.5 8.4 8.7 15 16.5 19.7

S-train 3.1 3.2 16.2 11.9 21.6 0 2.6 0 0 6.1

Metro 1.5 8.5 9.7 12.9 12.7 0 1.3 0 0 1.7

Denmark east Denmark west

The darker color represents better effect towards decarbonization.
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Table 5 shows the modal share potential across scenarios in 2050
based on four trip length categories. The results show that the simulated
scenarios are more effective for reducing car use in long trips followed
by extra short, medium and short trips and the highest shift potential
could be achieved by targeting long distance trips. However, the sce-
narios are more effective to increase the total share of non-motorized
modes in extra short trips followed by short and medium trips. Train is
only a choice for medium and long trips while metro is not a choice for
long trips. These scenarios are more effective to increase the total share
of public modes in long distances followed by medium, short and extra
short trips.

Table 6 compares the modal share potential across scenarios in 2050
in urban, suburban and rural areas. Metro is only a choice in Co-
penhagen area, while S-train is not available in rural areas. Therefore,
private cars are responsible for the majority of trips in rural area. The
scenarios are more effective to reduce the share of car use in urban area
followed by suburban and rural area. This is due to longer trips and
limited availability of public transit in rural areas. In urban and sub-
urban areas, the public transits play a significant role as substitute for
car use while in rural areas, bicycling becomes an important mode of
transport in lieu of cars.

Table 7 compares the modal share potential across scenarios in 2050
aggregated based on four income groups. The results show the lower
the income, the higher the tendency to use non-motorized modes of
transport. Increasing the cost of cars is more effective to reduce car use
in very low income group. Combined with expanding the public in-
frastructure and incentivizing sustainable modes the share of private

cars in low income category reduces to 22.8%. Wealthier people prefer
to spend less time in transport modes so they choose the faster but more
expensive modes of transport. Bus accommodates 3.9% of total demand
for very low income category and the popularity of this mode decreases
by increasing the income. Metro has almost the same share among the
income categories while train and S-train are preferred by those in the
medium and high income categories probably for commuting to work.

4. Discussion

4.1. Methodology insights

The model framework adopted for this study has several advantages
compared to other methods for evaluating modal shift potential with
systematic approach. First, ABMoS-DK is capable of evaluating the ef-
fect on modal shift from a wide range of policies, e.g. involving the level
of service of the modes, consumers’ expectation, support schemes to
public transport and disincentives to the use of private car. Second,
ABMoS-DK is flexible with regards to the level of aggregation. Third,
ABMoS-DK is scalable, as it allows the evaluation of modal shares for a
smaller portion of the entire system represented. Fourth, it is robust, as
it provides consistent results that closely match those of the LTM.
Finally, it is fast, taking approximately 15 min to assess modal shares
for scenarios developed.

However, our approach also has some limitations. Due to lack of
data, agents decide on mode of transport independently and they do not
communicate and do not learn from others while there is an interaction

Table 5
Comparing the modal share potential across scenarios in 2050 based on trip length categories (percentage).

BAU EPI ISM DPC COM BAU EPI ISM DPC COM BAU EPI ISM DPC COM BAU EPI ISM DPC COM

Private 64 62.8 62.1 46.9 38.9 96.3 87.4 85.3 71.4 56.2 91.9 87.7 67.7 67.2 39.3 76.3 70.5 57.5 48.8 35.4
Sum Non-
motorized 27.6 25.8 33.5 37.5 53.6 1.9 1.6 2.9 12.4 21.8 0.5 0.5 3.3 3 14.9 0.1 0 0.1 0 0.6

Walk 6.9 4.8 5.8 8.2 3.7 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bike 20.6 21 27.7 29.3 49.9 1.6 1.6 2.9 12.4 21.8 0.5 0.5 3.3 3 14.9 0 0 0.1 0 0.6

Sum Public 8.4 11.4 4.5 15.6 7.5 1.8 11 11.8 16.2 22 7.5 11.8 29 29.8 45.7 23.6 29.5 42.4 51.2 64

Bus 6.9 4.3 1.6 5.5 0.7 0 0 0 0.2 0 0.1 0.1 0 2.7 0.2 3 4.4 4.4 13.2 12.1

Train 0 0 0 0 0 0 0 0 0 0 6.1 7 6.1 12.8 9.8 17.9 19.2 31 32.6 39.7

S-train 0.9 1.5 0 0.7 0 0.1 0.1 0.2 1.9 4.8 0.9 1.3 20.5 11.8 32.4 2.6 6 7.1 5.3 12.1

Metro 0.6 5.6 2.9 9.4 6.7 1.7 10.9 11.5 14.1 17.2 0.4 3.4 2.4 2.5 3.4 0 0 0 0 0

Extra short ≤ 5 km   5 km < Short ≤ 25 km 25 km < Medium ≤ 50 km 50 km < Long

The darker color represents better effect towards decarbonization.

Table 6
Comparing the modal share potential across scenarios in 2050 based on urbanization type (percentage).

BAU EPI ISM DPC COM BAU EPI ISM DPC COM BAU EPI ISM DPC COM

Private 68.7 55.6 42.7 34.4 19.9 84.9 79.3 63.4 54.7 35 96.3 95.7 93.3 82.7 67.6
Sum Non-
motorized 4.1 3.5 4.8 8.3 10.9 3.5 3.3 4.8 7 10.5 2.8 2.5 5 8.7 22.5

Walk 0.5 0.1 0.7 0.4 0.1 0.9 0.8 0.8 1.2 0.6 0.9 0.4 0.3 0.7 0.3

Bike 3.6 3.4 4.2 7.8 10.8 2.5 2.5 4 5.8 9.9 1.9 2.1 4.7 7.9 22.2

Sum Public 27.1 40.9 52.5 57.3 69.2 11.7 17.4 31.9 38.3 54.5 0.9 1.7 1.7 8.6 9.9

Bus 2.6 1.6 1.3 3.7 1.3 3.1 3.6 3 7.6 4.6 0.3 1.7 1.6 8.5 8.9

Train 20.4 21.7 26.8 29.6 31.8 6.4 7.7 17 19.9 24.1 0.6 0 0.1 0.1 1

S-train 1.9 2.6 10.2 5.2 14.3 2.2 6.1 11.9 10.8 25.9 0 0 0 0 0

Metro 2.2 15 14.2 18.8 21.7 0 0 0 0 0 0 0 0 0 0

Urban Suburban Rural

The darker color represents better effect towards decarbonization.
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with the network. Moreover, the methodology requires extensive
survey data to define the characteristics of consumers, which are input
to the model as agents’ attributes and could be challenging to acquire in
some countries. The modal perception of the agents, which drives their
modal choice is represented in a simplified way with respect to the
traditional utility functions (Train, 1986). Perhaps the model could be
developed by calculating the probability of derived utility over all al-
ternative choices such as logit function. The modal perceptions are
represented in the model as tangible costs and value of travel time,
which are calculated with data widely available (ticket price, fuel price,
vehicle taxes, value of time, average speed of each mode, average
congestion time, access/egress and waiting time). From an energy-en-
vironmental perspective, the model does not account energy con-
sumption nor any kind of emission. From an economic perspective, the
model does not track the investment costs of the transport technologies
nor those of the transport infrastructure. However, these limitations do
not affect the objective of this study.

Overall, the methodology adopted for this study allows for an
analysis of how modal shift occurs as consequence of certain policies in
a fast, reliable and scalable way, while the availability of the data re-
quired makes it replicable for any other geographical context. The en-
ergy-environmental-economic limitations identified can be addressed in
future research by soft-linking the ABMoS-DK model with an E4 tech-
nology-rich energy optimization model, e.g. TIMES-DK (Balyk et al.,
2019). The soft-link with TIMES-DK could open a new prospect to
better represent the implications of human behaviour on the transport
sector, evaluating the influence of modal shift on the future develop-
ment of the energy system and the contribution of integrating beha-
vioural aspects within the context of modal shift to the decarbonization
of the energy system.

4.2. Policy insights

The analyses carried out within this study are meant to suggest to
Danish policy makers which policy levers should be implemented to
encourage a shift from private car to less carbon-intensive modes, such
as non-motorized and public transport. This study has analyzed the
modal shift resulting from a range of policy measures affecting the level
of service of the modes. Public transport and non-motorized modes
compete with car in different trip distances: the study found that metro,
bicycle and walk are valid substitutions to car in short distance, while
train, S-train and bus in long distance. The analyses discovered that for
Denmark the highest shift away potential from car lies in urban areas,
where more modal alternatives are available. Moreover, very low and
low income groups are more receptive of the policies analyzed in this
study and are most willing to shift away from car.

5. Conclusions

Agent-based modeling is capable of simulating the mode choice
behaviour and perceptions of a large number of heterogeneous in-
dividuals with different characteristics. This study presents ABMoS-DK,
a novel agent-based modeling approach that allows to evaluate the
modal split for the inland passenger transportation sector in Denmark,
which is able to capture a fine resolution of rational behavioural het-
erogeneity. The socio-economic characteristics of heterogeneous agents
are taken from Danish national travel survey and the characteristics of
modes are formulized to calculate tangible costs and value of travel
time using LTM as a supporting model. The agents as rational decision-
makers determine the level of importance of cost versus time and
choose the mode with highest utility to meet travel demand and the
model determines the maximum shift potential from the viewpoint of
travelers while interacting with the network. The model determines
endogenously the modal shares from 2010 until 2050 by simulating
level of service of modes and consumers’ rational behaviour to under-
stand current transport modal distributions, factors affecting the mode
choice decisions, and opportunities for improving network performance
through a number of policy scenarios.

The analysis of the trend of modal split of the alternative scenarios
points out that introducing effective taxation schemes, parking pricing
and toll collection; decreasing the public transit ticket price, park and
ride facilities and charging infrastructure for electric bikes; increasing
the frequency and expansion of public transit infrastructure are ap-
plicable measures for encouraging travelers to shift away from car use.
The results of the scenario analysis suggest that implementing analyzed
scenarios in Denmark east are more effective to reduce car use com-
pared to west. Moreover, the major potential to shift away car use is for
long distance trips while the analyzed policies are more effective in
urban areas where more modal alternatives are available. Finally, very
low and low income groups are more receptive of the policies analyzed
in this study and are more willing to shift away from car. This result
suggests that policy makers shall first target the most sensitive con-
sumer groups.

We find that expanding the public transport infrastructure provide
comparative advantages over other modes and reinforces the perfor-
mance of public transit through decreasing travel time. Therefore, the
travelers are encouraged to reduce car use by 7.1% in 2050 compared
to the reference scenario and shift to public modes. Incentivizing sus-
tainable modes decreases the tangible cost of public transit and electric
bikes and encourage the travelers to use more sustainable modes of
transport and reduce car use by 19.0% in 2050 compared to the re-
ference scenario. The latter scenario is more successful than the former
scenario due to the perception of travelers and their willingness to pay
less money rather than spend less time. Changing the Danish vehicle

Table 7
Comparing the modal share potential across scenarios in 2050 aggregated based on income groups (percentage).

BAU EPI ISM DPC COM BAU EPI ISM DPC COM BAU EPI ISM DPC COM BAU EPI ISM DPC COM

Private 83.3 75.8 65.1 45.9 22.8 86.5 81.5 72.2 65.5 51.5 86.2 81.9 73.2 71 60 80.5 74.4 62.7 63.5 51.2
Sum Non-
motorized 5 4.5 8.1 15.6 30.9 2.7 2.4 3.7 4.7 8.4 2.3 2.1 2.5 2.7 3.7 2.2 2 2.2 2.2 2.9

Walk 1.5 1 1.1 1.3 0.6 0.8 0.4 0.5 1.1 0.5 0.2 0 0.1 0.3 0.1 0.1 0 0.1 0.1 0

Bike 3.5 3.5 7 14.3 30.3 2 2 3.2 3.6 7.9 2.1 2.1 2.4 2.4 3.6 2 2 2.1 2.1 2.9

Sum Public 11.6 19.7 26.8 38.5 46.3 10.8 16.1 24.1 29.8 40.2 11.5 15.9 24.3 26.3 36.3 17.3 23.6 35.1 34.3 45.9

Bus 3.9 5.2 4.7 15.3 12 0.9 0.7 0.3 2.9 2.3 0.6 0.4 0.2 0.7 0.3 0.6 0.4 0.2 0.5 0.1

Train 4.6 4.3 11.1 10.6 14.2 8.1 8.9 13.4 16.2 18.3 10 11.1 13.9 17.5 18.8 15.6 17.4 20.1 23.5 24.9

S-train 2.5 5.6 6.6 7 14 1.1 2 6.2 5 12.6 0.4 0.8 6.9 3.6 11.5 0.2 0.3 9.3 3.1 12.8

Metro 0.6 4.6 4.4 5.6 6.1 0.6 4.5 4.2 5.8 7 0.5 3.6 3.3 4.5 5.6 0.9 5.5 5.5 7.1 8.2

Very Low ≤ 200 kDKK/year 200 < Low ≤ 500 500 < Medium ≤ 800 800 < High

The darker color represents better effect towards decarbonization.
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registration tax increases the total purchase price of private cars and
consequently disincentivize the use of private cars and according to our
analysis, could reduce car use by 29.8% in 2050 compared to BAU. The
higher reduction potential of car use by disincentivising private cars
compared to other scenarios might be due to the fact that travelers
prefer to avoid paying more cost rather than receiving subsidies or
spending more time. The various strategies are “complementary” (May
et al., 2006) when combined; meaning that their combined im-
plementation shifts more demand from car than each policy alone.
Under an ambitious policy package to move away from private cars,
Denmark has the potential to nearly cut car use in half (49.3%) by 2050
compared to BAU.

The proposed ABMoS framework could be used by policy makers to
analyze the potential modal shift resulting from imposing policies in
different geographical zones, targeting specific consumer groups (with
similar characteristics concerning e.g., age, income, gender, education
level, car ownership) and certain trip purposes in the long-term. By
representing the heterogeneity of consumers’ preferences and rational
behaviour regarding mode choice simulation, policy makers could
better understand the dynamics of the transportation system and target
consumer groups with the highest shift potential. This paper contributes
to producing a plan for achieving the 2050 decarbonization target
within the Danish inland passenger transport sector by capturing ra-
tional behavioural realism of consumers.
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