N-Dimensional Approximation of Euclidean Distance

Cardarilli, Gian Carlo; Di Nunzio, Luca; Fazzolari, Rocco; Nannarelli, Alberto; Re, Marco; Spano, Sergio

Published in:
IEEE Transactions on Circuits and Systems II: Express Briefs

Link to article, DOI:
10.1109/TCSII.2019.2919545

Publication date:
2020

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
N-Dimensional Approximation of Euclidean Distance

Gian Carlo Cardarilli Member, IEEE, Luca Di Nunzio, Rocco Fazzolari, Alberto Nannarelli, Senior Member, IEEE, Marco Re, Member, IEEE, and Sergio Spanò

Abstract—Several applications in different engineering areas require the computation of the Euclidean distance, a quite complex operation based on squaring and square root. In some applications, the Euclidean distance can be replaced by the Manhattan distance. However, the approximation error introduced by the Manhattan distance may be rather large, especially in a multi-dimensional space, and may compromise the overall performance. In this paper, we propose an extension of the \(\alpha \text{Max} + \beta \text{Min} \) method to approximate the Euclidean distance to a multi-dimensional space. Such a method results in a much smaller approximation error with respect to the Manhattan approximation at expenses of a reasonable increase in hardware cost. Moreover, with respect to the Euclidean distance, the \(\alpha \text{Max} + \beta \text{Min} \) method provides a significant reduction in the hardware if the application can tolerate some errors.

Index Terms—Euclidean distance approximation.

I. INTRODUCTION

The evaluation of the Euclidean distance is needed in many different fields of engineering, such as machine learning, communications, bioinformatics, etc. The computation of the Euclidean distance requires squaring and square root, which are expensive operators in hardware [1], [2]. For this reason, alternative distances have been introduced in the literature for different applications. Among these alternatives, the most popular is the Manhattan distance.

The performance degradation when replacing the Euclidean with the Manhattan distance depends on the application, and/or the data set. For applications in machine learning, such as K-means clustering algorithms, the work done in [3], [4] and [5] show that the Euclidean distance provides more accurate results for these algorithms when compared with the Manhattan distance.

Moreover, in [6], it is shown that, by using the Euclidean distance in facial expressions classification, a better accuracy can be obtained with respect to Manhattan distance. In [7], the authors show that the use of Euclidean metric provides more accurate results in software faults prediction. In all the applications that are sensitive to the error introduced by the Manhattan distance approximation, it is necessary to use a method that reduces the approximation error by avoiding the complex circuitry of the Euclidean distance computation.

In this paper, we propose an extension of the \(\alpha \text{Max} + \beta \text{Min} \) method to approximate the Euclidean distance from two-dimensions to a multi-dimensional space. This method provides better accuracy than the Manhattan distance especially when the dimensionality increases. We design two alternatives for the implementation of the two-dimensions (2D) \(\alpha \text{Max} + \beta \text{Min} \) approximation, and we provide a trade-off analysis for error, latency, area and power dissipation. Moreover, based on the 2D \(\alpha \text{Max} + \beta \text{Min} \) unit, we characterize the approximation error for a multi-dimensional space, and propose a tree-based multi-D hardware implementation.

The results show that the distance approximation based on the multi-dimensional \(\alpha \text{Max} + \beta \text{Min} \) method provides a significantly smaller error than the Manhattan distance and a much lower hardware cost than the Euclidean distance.

The paper is organized as follows. In Sec. II the \(\alpha \text{Max} + \beta \text{Min} \) approximation in two-dimensions is explained and its hardware implementation is described. In Sec. III, the \(\alpha \text{Max} + \beta \text{Min} \) approximation is extended to the multi-dimensional space, and error analysis and hardware architectures are presented. Conclusions are drawn in Sec. IV.

II. THE \(\alpha \text{MAX} + \beta \text{MIN} \) APPROXIMATION IN TWO-DIMENSIONS

The Euclidean distance (two-dimensional) is defined as

\[
z = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
\]

where \((x_1, y_1)\) and \((x_2, y_2)\) are the coordinates of the two points.

The \(\alpha \text{Max} + \beta \text{Min} \) approximation is defined as

\[
z_A = \alpha \cdot \text{Max} + \beta \cdot \text{Min}
\]

where Max and Min are the maximum and the minimum, respectively, between \(|x_2 - x_1|\) and \(|y_2 - y_1|\), and \(\alpha\) and \(\beta\) are two constants which minimize the approximation error [8]. The smallest error is obtained for

\[
\alpha_0 = \frac{2 \cos \frac{\pi}{8}}{1 + \cos \frac{\pi}{8}} = 0.9604 \ldots, \quad \beta_0 = \frac{2 \sin \frac{\pi}{8}}{1 + \cos \frac{\pi}{8}} = 0.3978 \ldots
\]

\(\alpha_0\) and \(\beta_0\) can be approximated by fractions of simple multiples of powers of two. Table I shows some values from [8].

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>largest error (%)</th>
<th>average error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>1/2</td>
<td>11.80</td>
<td>8.68</td>
</tr>
<tr>
<td>1/1</td>
<td>1/4</td>
<td>11.61</td>
<td>3.20</td>
</tr>
<tr>
<td>1/1</td>
<td>3/8</td>
<td>6.80</td>
<td>4.25</td>
</tr>
<tr>
<td>15/16</td>
<td>15/32</td>
<td>6.25</td>
<td>3.08</td>
</tr>
</tbody>
</table>

TABLE I

VALUES OF \(\alpha\) AND \(\beta\) AND APPROXIMATION ERRORS.
To characterize the approximation error, we resort to the unit vector (Fig. 1). The magnitude of the vector is $|z| = 1$ and the coordinates of the two points are $(0, 0)$ and (x, y). By rotating the vector, we evaluate the $a\text{Max}+\text{bMin}$ distance for different angles from $\theta = 0$ to $\theta = \pi/2$.

We also compare the $a\text{Max}+\text{bMin}$ method with the Manhattan distance. Since in the first quadrant both x and y are positive, the Manhattan distance is

$$z_M = x + y .$$

For the $a\text{Max}+\text{bMin}$ method, we choose two sets of (a, β): $a_1 = 1$, $\beta_1 = 3/8$ and $a_2 = \frac{15}{16}$, $\beta_2 = \frac{15}{32}$, because, according to Table I, these pairs of values give the best trade-off error vs. simple multiples. Therefore, for the $a\text{Max}+\text{bMin}$ method we have

$$z_{A1} = \text{Max} + \frac{3}{8}\text{Min} \quad (1)$$

$$z_{A2} = \frac{15}{16}\text{Max} + \frac{15}{32}\text{Min} \quad (2)$$

where $\text{Max}=x$ for $\theta \leq \pi/4$ and $\text{Max}=y$ for $\theta > \pi/4$.

The relative error for $0 \leq \theta \leq \pi/2 = 90^\circ$ is shown in Fig. 2 for double-precision simulations. For the Manhattan method the largest error is $\epsilon_M = 0.41$ and the average error is $\bar{\epsilon}_M = 0.30$. For the $a\text{Max}+\text{bMin}$ method, the errors are significantly smaller:

1) maximum $\epsilon_{A1} = 0.0680$ and average $\bar{\epsilon}_{A1} = 0.047$;
2) maximum $\epsilon_{A2} = 0.0625$ and average $\bar{\epsilon}_{A2} = 0.035$.

Clearly, the approximation provided by the $a\text{Max}+\text{bMin}$ method is superior.

A. $a\text{Max}+\text{bMin}$ Hardware Implementation for 2D

In this section, we evaluate the performance of the approximation unit for the two sets of values $(a_1, \beta_1)=(1, \frac{3}{8})$ and $(a_2, \beta_2)=(\frac{15}{16}, \frac{15}{32})$.

For the implementation of the units we opted for a 45 nm CMOS library of standard cells, the synthesis is based on Synopsys tools. The FO4 delay\(^1\) for this low power library is 64 ps and the area of the NAND-2 gate is 1.06 μm^2.

The units are implemented in fixed-point with the following bit-widths: 32, 24, 16 and 8. We assume that the inputs to the units are $x = x_2 - x_1$ and $y = y_2 - y_1$.

The first stage of the $a\text{Max}+\text{bMin}$ unit, depicted in Fig. 3 a), consists of the following blocks:

Block difference determines the largest input. It performs the difference $x - y$ if the numbers have same sign, or the sum if the signs are different. The Max is selected according to the outcome of the addition/subtraction and the sign of the operands (bit SEL).

In parallel with the Max/Min computation, the two blocks **abs val** process x and y to determine their absolute value: sign checking followed by two’s complementation when negative.

The selection of Max and Min is performed by the two multiplexers **mux**.

The second stage of the unit, Fig. 3 b) and c), differs depending on the (α, β) values.

For the (α_1, β_1) values, the approximation is done by a Carry-Save Adder (3:2 CSA) followed by a Carry-Propagate Adder (CPA) to compute

$$\text{Max} + \frac{3}{8}\text{Min} = \frac{1}{8}(8\text{Max} + 2\text{Min} + \text{Min})$$

In this way, we decompose the product in wired-shifts and sums. Since we need to add three addends, we use the CSA

1\(^A\) A 1 FO4 delay is the delay of an inverter of minimum size with a load of four minimum sized inverters.
to reduce the operands from 3 to 2, and then we perform a carry-propagate addition in the CPA. At the end of the approximation, the result is shifted of 3 positions to the right (division by 8).

For the \((\alpha_2, \beta_2)\) values, the approximation is:

\[
\frac{15}{16} \text{Max} + \frac{15}{32} \text{Min} = \frac{1}{32} (32 \text{Max} - 2 \text{Max} + 16 \text{Min} - \text{Min})
\]

The multiplications by constants 15 and 15×2 are implemented by the subtractions 16X – X and 32X – 2X, respectively. In this case, we need a 4:2 CSA to sum up the four terms. The complementation is done by inverting the bits (one’s complement) and by adding “1” in the least-significant position of the sum in CSA and CPA, as illustrated in Fig. 3 c).

For both variants of the \(\alpha\text{Max}+\beta\text{Min}\) unit the critical path is through the blocks difference – mux – CSA – CPA, and it is roughly the delay of two n-bit adders.

The implementation results are reported in Table II.

By comparing the \(\alpha\text{Max}+\beta\text{Min}\) alternatives (1) and (2), Type 2 is slightly slower because of the extra XOR delay in the CSA (4:2 vs. 3:2) and the longer carry chain due to the 5 positions shifting. Moreover, in Type 2 both area and power are about 50% larger than Type 1, because of the extra gates in the CSA 4:2 and in the CPA.

Table II also reports the results of the implementation of a Manhattan approximation unit.

The Manhattan distance approximation unit consists of two abs val blocks followed by a CPA. However, the abs val block is reduced to a conditional bit-complemeneter (when the number is negative) and the two’s complement carry is added in the CPA. If both numbers are negative, one of the two carries is pre-added in a n-bit array of half-adders. In this way, we avoid to propagate the carry when producing the absolute value.

This method of transforming the carry necessary for two’s complementation, can also be applied to the \(\alpha\text{Max}+\beta\text{Min}\) unit. However, since the latency of block abs val is hidden by the latency of block difference in Fig. 3 a), we prefer to compute the absolute values and avoid transferring the two’s complement carries to simplify the operations in the CSA.

The delay of \(\alpha\text{Max}+\beta\text{Min}\) (1) is about double that of the Manhattan unit. By interpolating the delay values obtained from the hardware implementation (Table II) for a generic number of bits, we obtain:

\[
\begin{align*}
t_A1(n) &= 20 + 2 \cdot 100 \log_2 n \quad (\text{Max}+\beta\text{Min} \text{ (1)}) \\
t_M(n) &= 100 + 90 \log_2 n \quad \text{(Manhattan)}
\end{align*}
\]

This result shows clearly that the two adders (difference and CPA in Fig. 3) determine the critical path of the \(\alpha\text{Max}+\beta\text{Min}\) unit.

Also the area and the power dissipation of the \(\alpha\text{Max}+\beta\text{Min}\) units are larger than in the Manhattan unit. However, the smaller error in \(\alpha\text{Max}+\beta\text{Min}\) may allow, for some applications, to converge more rapidly and save both execution time and energy.

As for the computation of the Euclidean distance \(\sqrt{x^2+y^2}\), it requires squaring (multiplication), addition and square root. Especially square root is a complicated operation in hardware, There are several alternatives for its implementation, but all have long latency or large area [9].

To give an idea of the costs for the Euclidean distance computation, we report in Table III only the implementation results for a squarer/multiplier for 32, 24, 16 and 8 bits operands. Square root is normally a multi-cycle operation for precisions above 8 bits, and fast implementation methods normally require one or more multipliers [9].

Table III show that latency, area and power dissipation make the computation of the Euclidean distance very expensive if we need more accuracy than the one provided by the \(\alpha\text{Max}+\beta\text{Min}\) approximation.

III. Extension to N Dimensional Euclidean Distance

In this section, we extend the \(\alpha\text{Max}+\beta\text{Min}\) approximation to a N-dimensional hyperspace. The 2D \(\alpha\text{Max}+\beta\text{Min}\) approximation is based on determining the maximum (and the minimum) between the length of the two segments which is a binary operation. We refer to the approximation (1) as \(\text{amax}\) in the following.

To extend the method to N dimensions, we can apply the approximation iteratively N-1 times. For example, for 3-D we need to apply (1) twice:

\[
\text{approx.dist._3D} = \text{amax} (\text{amax}(x, y), z)
\]

Clearly, since \(\text{Max}\) and \(\text{Min}\) are not linear operators, the approximation \(\text{amax}\) is not associative for \(D > 2\).

Since \(\text{amax}\) is a binary operator, the dimensions can be arranged in a binary tree. For example for 4-D:

\[
\text{approx.dist._4D} = \text{amax} (\text{amax}(x, y), \text{amax}(z, w))
\]

which requires three \(\text{amax}\) units, but has depth of two levels and reduced latency with respect to the iterative implementation of the approximation.

Next, we determine the maximum and average error for the multidimensional \(\alpha\text{Max}+\beta\text{Min}\) approximation. We compute
Therefore:
\[\epsilon_{MAX}^{2D} = \frac{1 + \beta^2}{\sqrt{1 + \beta^2}} - 1 = \frac{\sqrt{73}}{8} - 1 = 0.068000468 \]

The case can be extended to any \(x \) and \(y = x \tan \theta \) with \(\theta \in [0, \frac{\pi}{4}] \).

\section*{B. Maximum Relative Error in 3D}

For the three-dimensional space, we extend the case of Fig. 4 to the third coordinate \(z \) with \(x = 1, y = \tan \theta \) and \(z = \tan \phi \) for \(\theta \in [0, \frac{\pi}{4}] \) and \(\phi \in [0, \frac{\pi}{4}] \). As a result, \(0 \leq y \leq x = 1 \) and \(0 \leq z \leq x = 1 \).

The Euclidean distance is
\[d_{3D} = \sqrt{1 + y^2 + z^2} \]

For the 3D case, we have to apply the binary \(\alpha \text{Max+} \beta \text{Min} \) approximation twice. Since \(y \leq x \) and \(z \leq x \), \(Max = x = 1 \). Moreover, the result of applying the first \(\alpha \text{Max+} \beta \text{Min} \) approximation to \(x \) will result in the maximum for the second approximation:
\[d_{3D} = (1 + \beta y) + \beta z \]

By combining (7) and (8), we obtain the relative error
\[\epsilon_{3D} = \frac{1 + \beta y + \beta z}{\sqrt{1 + y^2 + z^2}} - 1 \]

which is a second degree symmetric system. By simulation of random values for \(y \leq x \) and \(z \leq x \), we determine the maximum relative error occurring when \(y = z \). Consequently, for (10), we obtain:
\[y = \beta \text{ and } z = \beta \]

By substituting \(y \) and \(z \) in (9), we obtain
\[\epsilon_{MAX}^{3D} = \frac{1 + 2\beta^2}{\sqrt{1 + 2\beta^2}} - 1 = \frac{\sqrt{82}}{8} - 1 = 0.131923142 \]

Therefore, the maximum relative error for the \(\alpha \text{Max+} \beta \text{Min} \) method in 3D is about 13\%, obtained for the points between \((0, 0, 0) \) and \((x, \beta x, \beta x) \).

\section*{C. Maximum Relative Error in m-D}

For multi-dimension \(m\)-D, when \(m > 3 \), we opted for simulation of random vectors to empirically find the maximum error for the \(\alpha \text{Max+} \beta \text{Min} \) approximation. Table IV reports the maximum and average errors from \(m = 2 \) to \(m = 10 \). The error values are also plotted in Fig. 5. The maximum relative error for \(m \in [2, 10] \) are obtained in the vector starting in the origin and with ending coordinates in \(\vec{V} \).

Table IV also reports the average error for multi-dimensional Manhattan distance (rightmost column). By comparing \(\epsilon_{ave} \) for the two approximation methods, the Manhattan distance error is about one order of magnitude higher than the \(\alpha \text{Max+} \beta \text{Min} \) approximation. For example, for \(6\text{D} \) \((m=6)\) the average error is about 10\% for \(\alpha \text{Max+} \beta \text{Min} \) and about 120\% for Manhattan with respect to the Euclidean distance.
We illustrate in Fig. 5 the trends of the errors for \(m \in [2, 17] \). For the Manhattan distance (top plots) the errors grow linearly (the scale is logarithmic in the figure). As for \(\alpha \text{Max}+\beta\text{Min} \) distance, the maximum error increases by about 5\% (Table IV) when the tree depth increases \(m = \{3, 5, 9, 17\} \), and the trends are rather flat until an extra level is added.

D. Hardware Implementation for Multi-Dimensional \(\alpha \text{Max}+\beta\text{Min} \) Approximation

The hardware implementation for a multi-dimensional \(\alpha \text{Max}+\beta\text{Min} \) (1) unit, is obtained by building a binary tree of 2D units. Fig. 6 shows the implementation of 3D, 4D, and 5D \(\alpha \text{Max}+\beta\text{Min} \) (1) approximation units. Only the inputs at the first level of the tree require the block to compute the absolute value (marked with a square in the figure).

Table V reports the implementation results of the multi-dimensional \(\alpha \text{Max}+\beta\text{Min} \) (1) and Manhattan approximation units for the 24-bit case.

The latency of the multi-dimensional \(\alpha \text{Max}+\beta\text{Min} \) units grows about 1.0 ns per tree-level. The units can be pipelined by placing registers after each level to reach a throughput of 1 GOPS \((10^9 \text{ operations per second})\).

If the error by the multi-dimensional Manhattan approximation is tolerable, its hardware cost is clearly much smaller; absolute values for each dimension, followed by an adder tree and a final CPA.

In contrast, the cost of the implementation of the Euclidean distance is much higher than the multi-dimensional \(\alpha \text{Max}+\beta\text{Min} \) approximation. A squarer, or multiplier, is required for each dimension resulting in either long latency (multiplications executed sequentially), or large area (one multiplier for each dimension). Moreover, the square root is even more expensive than squaring. If we opt for an iterative implementation (Newton-Raphson or SRT) its latency is several clock cycles, while for a faster solution \(\text{(e.g., polynomial approximation)} \) a few parallel multipliers are needed.

IV. Conclusions

In this paper, we present the extension of the \(\alpha \text{Max}+\beta\text{Min} \) method for the approximation of the Euclidean distance from two to multi-dimensions. The approximation error in \(\alpha \text{Max}+\beta\text{Min} \) is much smaller than the error obtained by Manhattan distance, and the hardware cost (delay, area, power dissipation) of the \(\alpha \text{Max}+\beta\text{Min} \) units is much lower than the implementation of the Euclidean distance by squarers and square root. Consequently, the \(\alpha \text{Max}+\beta\text{Min} \) method is a viable solution when the approximation error by the Manhattan distance is not acceptable for the application, and the hardware cost of the exact Euclidean distance computation is too high.

REFERENCES