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Abstract 

A soft sensor for on-line risk-based monitoring was applied for a 700-L Streptococcus thermophilus 

cultivation using a biochemical model that was coupled with a compartment model, the latter to 

account for mixing effects. The process risk, defined as the likelihood of not achieving the target 

biomass production per batch, was calculated continuously during the cultivation process. A Monte 

Carlo simulation accounted thereby for uncertainties in the model parameters. In the present 

cultivation, the estimated process risk was to lose ca. 3.5 % of the total production capacity. The 

compartment model allowed the prediction of the spatial distribution of the pH in the bioreactor. 

The compartment model was based on a computational fluid dynamics (CFD) simulation and its 

computational speed (< 2 s for one simulation) enables both on-line applications, e.g., as soft sensor, 

and rapid off-line process condition testing, in contrast to a CFD simulation that takes several 

hours/days to simulate. With the on-line soft sensor, pH gradients between pH 5.8 and 6.1 were 
predicted with an accuracy of ± 0.1 pH units in comparison to experimental measurements. This 

process analytical technology (PAT) tool was therefore further applied to test different scenarios 

with the aim to propose a better base addition position for pH control to reduce pH gradients in the 

bioreactor.  

 

Keywords: Compartment model; Lactic acid bacteria fermentation; Monte Carlo simulation; Soft 

sensor; Risk assessment; Process analytical technologies (PAT)  
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1 Introduction 

More and more scientific and risk-based methodologies have been implemented in pharmaceutical 

and related processes since the publications of the process analytical technology (PAT) guidance 

[1] and the quality by design (QbD) approach [2] [3]. These methodologies assist the industry to 

understand the manufacturing process and to control the process in a way that the quality of the 

product is assured by design. In the quality by design approach, the desired product attributes, such 

as purity, stability, and concentration, are defined, and critical quality attributes (CQAs) are 

identified. Critical process parameters (CPPs), i.e. process parameters that have an impact on the 

CQAs, are then determined based on process characterization studies [4]. CPPs may include 

temperature, pH, feed flow rate etc. The acceptable range of the CPPs is defined as the design space 

that leads to the desired product quality. During production, these parameters need to be controlled 

by the PAT system and maintained within the design space to ensure a robust process operation and 

to ensure product quality in bioprocesses [5]. 

Models are implemented to predict the CQAs by using the measured CPPs as model inputs in the 

framework of PAT [6]. Commonly, statistical models such as multivariate data analysis are applied 

to predict the effect of the CPPs on the CQAs [7,8]. Nevertheless, mechanistic models and hybrid 

models (a combination of mechanistic and data-driven modelling techniques) are used as well [9–

12]. Since the CQAs can be hardly measured in real time, the models are especially beneficial in a 

soft sensor for on-line monitoring and control of industrial processes [13]. They enable to follow 

the dynamics of the CQAs in real time and to control the process accordingly.  

Traditionally, risk assessment is conducted in the process design phase to identify process 

parameters with a high risk, which are then further investigated for process characterization [3,14]. 

Risk management methods such as Failure Mode Effects Analysis (FMEA) provide a method to 

evaluate these risks [15]. The risk is thereby weighted based on the severity, occurrence and 

detection of a process failure, i.e. a deviation from the parameter’s nominal operating point. The 

severity is a measure for the seriousness of the consequences (with respect to the target product) if 

such a process failure happens; the occurrence is the expected probability of this event; and the 

detection indicates to which extent this process failure can or cannot be detected timely before the 

product is used [15]. 

To date, risk is quantified statically during the process design phase [16] but often not quantified 

dynamically in real time while a process is running. To achieve on-line risk quantification, we 

applied a Monte Carlo simulation in a model-based soft sensor for on-line monitoring and risk 

quantification in a 700 L lactic acid bacteria cultivation. Lactic acid bacteria cultures are produced 

in large-scale bioreactors to be used subsequently in the dairy industry e.g. for yogurt or cheese 

production. The applied model comprised a compartment, chemical, and bio-kinetic model. The 

compartment model was based on a computational fluid dynamics (CFD) model to account for 

heterogeneous process conditions (especially pH) in the process. The pH value is an important 

critical process parameter in lactic acid bacteria cultivations as lactic acid bacteria are fast acidifiers. 

In the Monte Carlo simulation, several uncertainties were considered: model parameter 

uncertainties, process input variations, and on-line measurement errors. The soft sensor predicted 

therefore a probability distribution of the state variables on-line, including the critical quality 

attribute for the case study defined as the biomass yield. The probability of not achieving the target 

biomass production and the corresponding risk were quantified based on the predicted probability 

distribution and updated on-line. 
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There are several important applications where this study makes an original contribution to. Thanks 

to the computational speed of the compartment model (compared to a CFD model) it could be 

applied for on-line applications, which is out of the question for a CFD model. Both, on-line pH 

gradient monitoring and risk quantification are demonstrated, which could improve bioprocess 

control. In addition, this model was utilized for testing different base addition control strategies. A 

design change of the bioreactor was proposed to achieve a better distribution of the base in the 

bioreactor and hence to reduce the pH gradient. 

2 Materials and Methods 

2.1 Cultivation conditions and analysis 

A 700-L batch cultivation of the homolactic Streptococcus thermophilus (provided by Chr. Hansen 

A/S, Hørsholm, Denmark) was carried out in a stirred tank bioreactor at a stirring speed of 130 rpm, 

40 °C, and with N2 headspace gassing. The stirred tank bioreactor (Chemap AG, Switzerland) was 

equipped with three 6-blade Rushton turbines, had four baffles, and was filled with approx. 700 L 

cultivation medium initially (Figure 1 A). The pH was controlled by adding ammonia solution 

(24 % (w/v) NH4OH) at the bottom of the bioreactor with the pH set point at 6. The pH controlling 

sensor was located 0.3 m above the bottom of the bioreactor close to the bioreactor wall. In addition, 

pH sensors (CPS471D, Endress+Hauser AG, Switzerland) measured the pH at heights of 0.1 m and 

1.6 m with a distance of 0.1 m to the reactor wall. The initial pH was 6.8. The cultivation medium 

contained 70 g L-1 lactose, 10 g L-1 casein hydrolysate, 12 g L-1 yeast extract, 11.5 mM K2HPO4, 

36.6 mM sodium acetate, 8.2 mM trisodium citrate, 0.8 mM MgSO4, and 0.3 mM MnSO4.  

The dry cell weight was determined from cultivation broth samples that were first centrifuged, then 

washed twice with 0.9 % NaCl, and finally dried at 70 °C for 24 h. Organic acids and sugars were 

quantified from filtered (0.2 µm) samples in an HPLC (Dionex UltiMate 3000, Thermo Fisher 

Scientific, Waltham, MA). It was equipped with a refractive index detector (ERC RefractoMax 

520) and an Aminex® HPX-87H column (Bio-Rad Laboratories, Hercules, CA), and operated at a 

flow rate of 0.6 mL min-1 at 50 °C using 5 mM H2SO4 according to suppliers instructions. 

2.2 Design and validation of the compartment model 

A compartment model was designed based on the steady state velocity profiles that were obtained 

from a CFD simulation. The CFD simulations that were conducted in ANSYS CFX 17.1 (ANSYS, 

Inc., US-PA) are described in detail elsewhere [17]. The CFD model was validated at 240 rpm with 

NaOH tracer pulse experiments from the top of the bioreactor using multi-position pH 

measurements that were distributed vertically in the bioreactor. Both the dynamic pH change after 

the pulse addition and the mixing time have been accurately predicted by the CFD model. A 

biokinetic model was then coupled with the CFD model to simulate a lactic acid bacteria cultivation. 

Both the biokinetics and pH gradients could be predicted accurately, but the simulation time was 4 

days on 20 CPU cores on the DTU High Performance Computing Cluster 

(https://www.hpc.dtu.dk/). In order to achieve a faster simulation time, which is required for on-

line applications such as in a soft sensor, a compartment model was designed and applied in this 

study. 

The compartment model was designed utilizing the information of the CFD model. In the 

compartment model, each recirculation loop that was revealed by the velocity profiles of the CFD 

simulation was considered as one compartment (Figure 1 B and C, and Supplementary Figure S1). 

This was based on the fact, that mixing is very fast in each recirculation loop and hence could be 

regarded as a well-mixed regime. To further define the boundaries and the inflow and outflow of 

fluids among the compartments, the following procedure was used: (i) Horizontal planes were set 

up every 1 cm in the CFD model (CFX-Post) and the axial velocities and node areas were exported 
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for each plane from the CFD results. (ii) The flow rates were calculated as the product of the 

velocity and the area, and the positive (upward) and negative (downward) axial flow rates were 

separated. (iii) The arithmetic means of both the positive and negative flows were calculated 

separately. (iv) The local minima (here five) of the mean positive axial flow rates defined the 

interfaces between the compartments (here six compartments) (Supplementary Figure S2). These 

positions matched with the local maxima of the mean negative flow rates over the bioreactor height. 

(v) The arithmetic mean of the mean positive flow and of the absolute mean negative flow of the 

interface planes were set as the flow between the compartments. In this way, a continuity is ensured, 

which avoids mass accumulation in compartments. The properties of the compartment model can 

be found in Table 1. 

In addition, a 7th compartment was designed capturing the 10 cm at the top of the bioreactor, which 

was necessary to support the tracer pulse simulation (see the Supplementary Material). The 

resulting configuration of the compartmental model is shown in Figure 1 C.  

The compartment model has been implemented in MATLAB (The MathWorks®, Natick, MA) as 

an ordinary differential equation (ODE) system. To simulate the lactic acid bacteria cultivation the 

biokinetic and the pH model (see below) were defined together with the compartment model that 

represented the stirrer speed of 130 rpm in the ODE system. For comparison, a one-compartment 

model with a volume of 700 L was simulated in MATLAB to model the cultivation without the 

effects of gradients (see the Supplemental Material for the results). 

2.3 Biokinetic model and pH simulation 

The dynamic model comprised a biological and a chemical model as described in detail in Spann 

et al. [18]. The biokinetic model predicted the evolution of the state variables, such as biomass, 

lactic acid, and lactose concentration. The chemical model was a mixed weak acid/base model 

describing the dissociation reactions of the charged components, such as ammonium and lactate. 

2.3.1 The biokinetic model 

The biokinetic model was based on the global stoichiometric process equation [19] (Eq. (1)-(2)). 

where qS represents the volumetric substrate consumption rate, qNH the volumetric ammonia 

consumption rate, qPh the volumetric phosphoric acid consumption rate, qX the volumetric biomass 

growth rate, qP the volumetric lactic acid secretion rate, and qGal the volumetric galactose secretion 

rate. 

The biomass growth rate was modelled as a function that depended on the maximum specific 

growth rate (µmax), the lag-time (flag), lactose inhibition and limitation (fS) [20], lactate inhibition(fP) 

[21], the pH in the cultivation broth (fpH), and the biomass concentration (CX) [22] (Eq.(3)-(4)). 

Thereby, the different cultivation conditions and their effects on biomass growth were considered 

as shown, for example, in Aghababaie et al. (2015). 

𝑳𝒂𝒄𝒕𝒐𝒔𝒆 +  𝑨𝒎𝒎𝒐𝒏𝒊𝒂 +  𝑷𝒉𝒐𝒔𝒑𝒉𝒐𝒓𝒊𝒄 𝒂𝒄𝒊𝒅 → 𝑩𝒊𝒐𝒎𝒂𝒔𝒔 + 𝑳𝒂𝒄𝒕𝒊𝒄 𝒂𝒄𝒊𝒅 + 𝑮𝒂𝒍𝒂𝒄𝒕𝒐𝒔𝒆 (1) 

𝐪𝐒 ∙ 𝐂𝐇𝟐𝐎 + 𝐪𝐍𝐇 ∙ 𝑵𝑯𝟑 + 𝐪𝐏𝐡 ∙ 𝑯𝟑𝑷𝑶𝟒 → 𝐪𝐗 ∙ 𝐂𝐇𝐚𝐎𝐛𝐍𝐜𝐏𝐝 + 𝐪𝐏 ∙ 𝐂𝐇𝟐𝐎 + 𝐪𝐆𝐚𝐥

∙ 𝐂𝐇𝟐𝐎 
(2) 
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𝒅𝑪𝑿

𝒅𝒕
= µ𝒎𝒂𝒙 ∙ 𝒇𝒍𝒂𝒈 ∙ 𝒇𝑺 ∙ 𝒇𝑷 ∙ 𝒇𝒑𝑯 ∙ 𝑪𝑿 (3) 

 

𝒅𝑪𝑿

𝒅𝒕
= µ𝒎𝒂𝒙 ∙ (𝟏 − 𝒆

−
𝒕

𝒕𝒍𝒂𝒈) ∙
𝑪𝑺

𝑪𝑺 + 𝑲𝒔 +
𝑪𝑺

𝟐

𝑲𝑰

∙
𝟏

𝟏 + 𝒆𝑲𝑷,𝑳𝒂(𝑪𝑳𝑨−𝑲𝑳𝒂𝟏)
∙ 𝒆

−(
(𝒑𝑯𝒐𝒑𝒕−𝒑𝑯)

𝟐

𝝈𝒑𝑯
𝟐 )

∙ 𝑪𝑿 (4) 

where tlag is the lag-time coefficient, CS the carbon source (lactose) concentration, KS the Monod 

half-saturation coefficient, KI the substrate inhibition parameter, KP,La the second lactate inhibition 

parameter, CLA the lactate concentration, KLa1 the pH dependent lactate inhibition parameter (Eq. 

(5)), pHopt the optimal pH parameter in the pH function, and σpH the spread parameter in the 

Gaussian pH function. 

The inhibition of the lactic acid bacteria growth caused by lactate was pH dependent [23], and 

described by Eq. (5): 

𝑲𝑳𝒂𝟏 = 𝑲𝑳𝒂 ∙
𝟏

𝟏 + 𝒆𝑲𝑷,𝒑𝑯𝟏∗(𝒑𝑯−𝑲𝑷,𝒑𝑯𝟐)
 (5) 

where KLa represents the lactate inhibition parameter, and KP,pH1 and KP,pH2 are the first and 

second lactate inhibition pH parameter, respectively.  

The lactic acid synthesis was considered to be growth dependent [24]:  

𝒅𝑪𝑷

𝒅𝒕
= 𝜶 ∙

𝒅𝑪𝑿

𝒅𝒕
 (6) 

where CP is the lactic acid concentration, and α the growth related production coefficient of lactic 

acid. 

The lactose consumption rate was the sum of the biomass growth and the lactic acid synthesis rate 

considering the secretion of galactose (Ygal representing the galactose yield) since the used strain 

metabolizes only glucose and secretes galactose under the present cultivation conditions: 

𝒅𝑪𝑺

𝒅𝒕
= −(𝟏 + 𝒀𝒈𝒂𝒍) ∙ (

𝒅𝑪𝑿

𝒅𝒕
+

𝒅𝑪𝑷

𝒅𝒕
) (7) 

The kinetic parameters were estimated from the data obtained in five lab-scale cultivations, and 

validated with an independent data set. The experiments were conducted under different substrate 

(20 and 70 g L-1) and pH conditions (5.5 <= pH <= 7.0) including identifiability and uncertainty 

analysis [18]. The derived parameters including the uncertainty of the estimated parameter values 

are listed in Table 2. 

2.3.2 The mixed weak acid/base model 

The objective of the mixed weak acid/base model was to predict the pH (as the negative logarithm 

of the hydrogen ion activity: pH = –log10{H+}). To this end, this model part comprised the 

dissociation reactions of the charged components in the cultivation [25], such as ammonium, 
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lactate, phosphate, carbonate, etc. which are relevant in the investigated pH range (Table 3) [18]. 

The pKa values were derived from Dawson (1969) [26] and [27] (Table 2), and the activity 

coefficients (fi) were calculated by a modified Debye-Hückel model by Davies [28]: 

𝒍𝒐𝒈(𝒇𝒊) = −𝟏. 𝟖𝟐𝟓 ∙ 𝟏𝟎𝟔 ∙ (𝟕𝟖. 𝟑 ∙ 𝑻)−𝟏.𝟓 ∙ 𝒛𝒊
𝟐 ∙ (

√𝑰

𝟏 + √𝑰
− 𝟎. 𝟑 ∙ 𝑰) (8) 

Where T represents the temperature in the cultivation broth, zi the charge of the i-th ion, and I the 

ionic strength: 

𝑰 =
𝟏

𝟐
∑ 𝒛𝒊

𝟐𝑪𝒊

𝒊

 (9) 

A P-controller with a controller gain (KP) of (5 mol L-1 ∙ liquid volume [L]) was applied to maintain 

the pH at the set point (pHset) value of 6 by adding ammonia solution: 

𝑵𝑯𝟒𝑶𝑯𝒂𝒅𝒅 = 𝑲𝑷 ∙ (𝒑𝑯𝒔𝒆𝒕 − 𝒑𝑯) (10) 

To summarize the model structure, the biokinetic model predicts the biomass growth and lactic acid 

production. The mixed weak acid/base model simulates the dissociation of the charged components 

in the cultivation broth, such as lactic acid/lactate or ammonia/ammonium with the objective to 

predict the pH. The changing lactic acid concentration is predicted by the biokinetic model and is 

then used in the mixed weak acid/base model. The pH can be predicted based on the simulated H+ 

concentration, and ammonia solution is subsequently added to maintain the pH. The added amount 

of ammonia is also considered in the mixed weak acid/base model, hence there is a dynamic 

interplay of both model parts. 

The model was implemented and solved in MATLAB. The numerical solver ode15s was used 

because the present model contains slow (e.g. the biomass growth rate) and fast time constants (e.g. 

the ammonia dissociation rate and the flow rates between the compartments) resulting in a stiff 

system of ordinary differential equations. 

2.4 Probabilistic soft sensor for on-line monitoring 

The aim of the probabilistic soft sensor is to predict the measurable and unmeasurable process 

variables, such as the biomass and substrate concentration, and the pH in real time. The algorithm 

for the probabilistic sensor is shown in Table 4 and the details of the soft sensor including a 

validation with 2 L lab-scale experiments can be found elsewhere [18]. 

Once the process is started, the soft sensor is updated in 5 min intervals (Table 4). The initial process 

conditions are defined as specified for the experiment (Table 4, step 1-2). The soft sensor uses the 

latest on-line measurements of the process, namely the added ammonia quantity and the pH (Table 

4, step 3) to update the model parameters µmax and tlag (Table 4, step 4). The parameters are updated 

in 5 min intervals, and are then used as input to the dynamic model that predicts both the current 

value and the future course of the state variables (Table 4, step 5). In this study, the soft sensor was 

applied off-line once the cultivation was performed for demonstration purposes. The on-line 

measurements were hereby used as they would be available on-line. The off-line measurements 

were only used to assess the goodness of the model fit (see below) but not to update the soft sensor. 

A Monte Carlo simulation of the dynamic model is performed every interval as explained in detail 

in Spann et al. [18] (Table 4, step 5). To this end, the input uncertainties are first identified and 
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defined. Second, random input samples are generated, and third, the Monte Carlo simulation is 

performed. In this study, uncertainties in the model parameters, initial conditions, and the ammonia 

addition are considered. The Latin hypercube sampling technique is used to generate N = 200 

random samples (Supplementary Figure S3) from the input uncertainty domain [29,30]. 200 model 

simulations were therefore performed every interval that the soft sensor was updated providing a 

probability distribution of the model outputs. The model predictions of the biomass production were 

then assessed for the on-line risk quantification. 

2.5 Assessment of the soft sensor predictions  

The quality of the soft sensor predictions was assessed with the root mean sum of squared errors 

(RMSSE) with respect to the off-line measurements: 

𝑹𝑴𝑺𝑺𝑬 = √
𝟏

𝒏
∑(𝒚𝒎𝒆𝒂𝒔,𝒊 − �̂�𝒊)

𝟐
𝒏

𝒊

 (11) 

where n is the number of measurements, ymeas the off-line measurement at the corresponding time 

point, and ŷ the model predictions. 

2.6 Process risk quantification 

The risk of not achieving the target production of biomass was calculated on-line as a result of the 

soft sensor predictions (Table 4, step 6). The biomass was selected because the lactic acid bacteria 

were the desired product of this process. The target biomass production was defined as 4410 g 

biomass per batch that was based on previous 2 L lab-scale experiments (see the Supplementary 

Material for the detailed calculation). The loss/surplus (here named consequence) for each of the j 

Monte Carlo simulation predictions was then calculated as the difference between the model 

prediction (ŷ) and the target: 

 𝒄𝒐𝒏𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆𝒋 = �̂�𝒋 − 𝒕𝒂𝒓𝒈𝒆𝒕 (12) 

Risk is generally defined in the process industries as the likelihood of an undesirable event (u.e.) 

times the consequence of that event [31]. The risk of several undesirable events is consequently the 

sum of their individual risks (Eq. (13)). In this study, the consequence of an undesired event was 

the loss of the biomass in terms of total biomass amount per batch (Eq. (12)). The likelihood (𝓛) of 

this event was the probability of this event that was predicted by the Monte Carlo simulation. 

 𝒑𝒓𝒐𝒄𝒆𝒔𝒔 𝒓𝒊𝒔𝒌 = ∑ 𝒄𝒐𝒏𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆𝒎 ∙ 𝓛(�̂�𝒎 | 𝑴𝑪) 

𝒎

 (13) 

where m ϵ j is the number of undesirable events (u.e.) and MC represents the given Monte Carlo 

results. 

3 Results and Discussion 

A model-based soft sensor was applied to predict unmeasurable attributes such as the biomass 

concentration in a lactic acid bacteria cultivation and to quantify the risk of not achieving the target 

biomass production. To this end, a CFD-based compartment model was used to provide a reliable 

risk quantification since there exist pH gradients in the 700 L bioreactor that occur during the 
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cultivation due to insufficient mixing. In addition, the compartment model was utilized to test 

different scenarios with the aim to propose a better base addition position for pH control in order 

to reduce pH gradients in the reactor. The computation time for the compartment model was less 

than 2 s on an Intel® Core™ i7-5600U CPU @2.6 GHz (1000 repetitions showed this 

performance), which was considerably faster than the 4 days on 20 CPU cores on the DTU High 

Performance Computing Cluster (https://www.hpc.dtu.dk/) that was required for the CFD 

simulation. Thanks to this computational speed of the compartment model, the presented on-line 

applications and off-line scenario tests are feasible in a reasonable time. The compartment model 

has been validated and benchmarked against the CFD model and experimental data as described in 

detail in the Supplementary Material. 

3.1 On-line pH gradient monitoring 

The probabilistic soft sensor was applied to a historical cultivation data set of a 700 L S. 

thermophilus cultivation, whereas the historical on-line data (pH and balance readout of the 

ammonia addition) were used as they would be available on-line. The soft sensor used the on-line 

data to update the model parameters µmax and tlag in 5 min intervals, as described in the Materials 

and Methods section and in Spann et al. [18]. A Monte Carlo simulation of the dynamic model was 

performed within the soft sensor to account for uncertainties in the model parameters, the on-line 

measurement of the ammonia addition quantity, and the initial biomass inoculation and lactose 

concentration. The Monte Carlo simulation with 200 input samples accounting for the listed 

uncertainties propagated the error to the model outputs, such as the pH (Figure 2 left column) and 

the biomass, lactose, and lactic acid concentration (Figure 2 right column). The output of the soft 

sensor was therefore a probability distribution of the state variables, and the 95 % confidence 

intervals of the model predictions are shown. The predictions of the earlier, current, and future 

states of the system are shown as an example at different times: 2 h, 4 h, and 6 h (Figure 2 rows). 

This means that given the on-line information after 2 h of cultivation time, the soft sensor predicted 

the output that is shown in Figure 2 A. After 4 h of cultivation time, the soft sensor had more 

information available and produced the predictions shown in Figure 2 B. At the end of the 

cultivation after 6 h of cultivation time, the soft sensor output is depicted in Figure 3 C. Each time 

the soft sensor is updated with new information, i.e., every 5 minutes, it predicted the entire 

cultivation time, from the start to the end (0-6 h). The virtual implementation of the soft sensor with 

updates in 5 min intervals may be found in the Supplementary Movie.  

The initial pH was ca. 6.8 and then dropped due to lactic acid secretion until the controlling pH 

value 6 was reached, which is the point when the base addition started (Figure 2 left column). In 

the first 2.5 h, no ammonia was added since the pH > 6 at the controlling position (for the position 

of the pH controlling sensor see Figure 1). There was consequently also no pH gradient predicted 

until the ammonia solution was added, as the cell density was maintained homogeneously 

distributed in the liquid phase. 

As soon as the base addition started, a pH gradient was formed (Figure 2 B and C): In the bottom 
compartment of the bioreactor where the ammonia solution was added, a pH of up to 6.1 ± 0.02 

was predicted due to the base addition. In the compartment 6 (second compartment from the top of 
the bioreactor), the pH dropped down to 5.8 ± 0.02 during the exponential growth phase due to 

lactic acid production. The pH gradients were qualitatively predicted with a deviation of 0.1 pH 

units with the mixed weak mixed acid/base model (Figure 3). The small mismatch of the pH 

gradient predictions is likely related to the mixed weak acid/base model because it did not represent 

the medium components and reactions entirely. The accuracy of the predictions could be improved 

in several ways: (1) Additional components such as acetic acid and amino acids that are present in 

the cultivation could be added to the mixed weak acid/base model. (2) Further chemical 

mechanisms such as precipitation could be included in the model. (3) A finer compartment model 

design (i.e. increasing the number of compartments) can help to represent the fluid dynamics better 
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quantitatively (approximating that of the CFD simulation). However, this would lead to longer 

mixing times in the compartment model, and hence the predicted pH gradient might increase. The 

deviation of 0.1 pH units could also have resulted from calibration and measurement errors (e.g. 

drift of the pH sensors), which can be improved by the use of several pH sensors to double-check 

the results. Nonetheless, the difference of 0.1 pH unit between the prediction of the compartmental 

model and the measurements is deemed acceptable for the process design and monitoring purposes, 

as this difference is not likely to cause significant errors on the microbial growth kinetics. In 

addition, further experiments are needed to statistically verify the goodness of the model predictions 

at the 700-L scale. 

Cells, which are exposed to the lower pH of ca. 5.9 (as measured at the top of the bioreactor), might 

grow 10 % slower than at pH = 6.2 (as measured at the bottom of the bioreactor). The pH function 

fpH = 0.89 at pH 5.9, while fpH = 0.98 at pH 6.2. Nevertheless, the question remains how fast S. 

thermophilus responds to the extracellular pH changes [32], and whether these fluctuations 

influence the microbial activity and productivity [33]. The applied biokinetic model does not 

include these dynamic response effects yet, which is clearly of interest in future studies. In addition 

to the investigated pH gradients, the model has also been applied to predict the gradients in the 

biological state variables, such as lactose, lactic acid, and biomass (see the Supplemental Material). 

These gradients were statistically not significant. 

The results of the on-line prediction of the pH gradient could be used at the production scale to 

minimize the risk of faulty batches for example by (i) monitoring the extent of the gradients; (ii) 

controlling the process; and (iii) rethinking about an improved bioreactor, impeller, or base addition 

design. In case the soft sensor is implemented as a monitoring tool – as shown in this study – plant 

operators could manually supervise the process and take actions in case the pH gradients reach a 

critical level. They could take risk-based decisions as they have a measure for whether the mixing 

is sufficient with respect to the pH. The soft sensor could also be applied for automated on-line 

control. In order to avoid extensive pH gradients, the impeller speed could be increased, for 

example. Apart from this, the cultivation temperature could also be altered, in order to regulate the 

biomass growth rate (which is not included in the presented model). A decreased biomass growth 

rate would indeed decrease the lactic acid production, and hence the pH gradient might decrease. 

However, this might also result in a longer cultivation time. A model-based control algorithm could 

be implemented to predict the best control strategy [34,35]. In case severe gradients occur 

frequently, results of such a model might also be an incentive for the production department to re-

evaluate the bioreactor design, especially parts like the impeller or base addition inlet that could be 

modified more easily than the bioreactor itself. In case the impeller speed is changed, the current 

model is no longer sufficient to predict the mixing. Instead of a fixed compartment model 

representing a fixed impeller speed (and viscosity, etc.), a dynamically changing compartment 

model is needed. This could adjust its features depending on the process conditions. However, this 

is not the objective of the presented study. 

The probabilistic soft sensor predicted in addition to the pH gradients the biological state variables, 

such as the biomass, lactose (substrate), and lactic acid concentration (Figure 2 right column). With 

the cultivation time, the update of the parameters µmax and tlag improved the prediction. After 3 h, 

the RMSSE for the biomass concentration prediction – the target product – was smaller than 
0.4 ± 0.1 g L-1 that corresponds to an error of less than 10 % with respect to the final biomass 

concentration. This soft sensor, if implemented at a production site, provides the plant operators 

with a PAT tool to monitor the course of the cultivation with biological variables instead of the 

base addition profiles that have little direct meaning. A further strength of the soft sensor is that it 

could be applied to predict the end time of the cultivation, i.e. when the target cell mass will be 

achieved [36]. Downstream capacities, including primed machines and workforce, could be 

scheduled and prepared accordingly. Furthermore, also subsequent steps in the upstream process, 
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such as cleaning or pre-cultures for subsequent cultivations could be optimally planned. Overall, it 

might reduce the downtime of the plant equipment leading to a more economical operation. 

3.2 On-line process risk quantification  

A frequently asked question during the production process is, “What is the risk of not achieving the 

target yield (titer, productivity, etc.)?” In order to demonstrate the capability of the probabilistic 

soft sensor to quantify and update this risk while the process is running, we selected the biomass 

yield and total biomass production per batch as an example.  

The target yield was defined to be 0.09 ± 0.003 g biomass per g lactose based on previous 2 L lab-

scale experiments. The target was to achieve at least the same yield when the process was scaled 

up to the 700 L bioreactor. The undesired event was therefore to achieve less than the target yield. 

The risk was considered as the loss of product (biomass) per batch. It is quantified as the sum of 

the likelihood of the undesirable events times the amount of lost product (see Materials and 

Methods). 

In our case, we got the likelihood from the output of the Monte Carlo simulation that considered 

uncertainties in the model parameters, initial process conditions, and the ammonia solution addition 

balance readout. The output of the probabilistic soft sensor were 200 model predictions. We 

considered the probability distribution of the biomass concentration prediction. The risk 

quantification method will be first presented with the biomass concentration of the final model 

prediction after 6 h of the cultivation as an example. Subsequently, the results of the on-line risk 

quantification considering the dynamic model updates will be shown.  

First, the biomass yield was calculated and a histogram of the predicted probability distribution is 

shown (Figure 4 A). The biomass yield distribution ranged from 0.076 to 0.096 g biomass (g 

lactose)-1. Some simulations did not reach the target yield. Second, the cumulative distribution 

function of the predicted yield minus the target yield was calculated (Figure 4 B). In this example, 

the probability of not achieving the target yield was 75 %. In other words, 75 % of the 200 

simulations predicted that the final biomass yield was smaller than the desired target yield. 25 % of 

the Monte Carlo predictions were accordingly equal or larger than the target yield. Third, the 

biomass production of the entire batch was calculated considering the bioreactor volume (Figure 4 

C). The total production amount might be of higher interest for a company than the yield as the 

obtained total mass is crucial for sale. Product quality aspects were not considered in this work but 

could of course be included in the model. The risk is equivalent with the area under the cumulative 

distribution function that corresponds to the undesired events (Figure 4 C, grey shaded area). In this 

example, the risk was the loss of 140 g biomass per batch. 

As a result of the probabilistic soft sensor, the risk could be predicted on-line considering the model 

updates every 5 minutes (Figure 5). In this study, the predicted biomass concentration at the end of 

the cultivation (after 6 h) was considered. However, the time point and the desired product or other 

process attributes could be amended for other studies.  

In the beginning of the cultivation, the risk could not be properly predicted as no or only little 

information from the on-line measurements was available (Figure 5, Initialization phase). As more 

on-line data was provided, the soft sensor could be updated, and hence the model predictions 

became more accurate. The on-line risk calculation needed therefore an initialization phase, waiting 

for enough on-line data (ammonia addition and pH measurements) to update the lag-time parameter 

and the maximum specific growth rate parameter. Once enough on-line data was available, a proper 

on-line risk quantification was achieved during the process operation. In this study, the initialization 

phase was set until tlag was finally updated after 2 h and 25 min, when the base addition started. 
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Nevertheless, the boundaries for the initialization phase need to be adapted in case the system would 

be applied for a different cultivation system. 

The risk was low, i.e. close to zero, when all Monte Carlo simulations achieved the target. In the 

present case, the risk is low after 2.5 h (Figure 5, Risk prediction phase). Later, the risk became 

higher between 3-4 h reaching a predicted risk of 140 g biomass that could be lost per batch. Next, 

the risk was predicted to be low again after 4 h and 30 min, and finally, when the soft sensor was 

updated after 6 h cultivation, the risk was 140 g biomass per batch. This oscillating risk prediction 

could be attributed to the on-line update of the µmax parameter that was dependent on the base 

addition. The base addition reflects the lactic acid secretion by the lactic acid bacteria and hence 

the biomass growth can be predicted. The on-line risk quantification captured therefore effects of 

the biomass growth rate. The growth rate changed in the presented cultivation. This resulted in the 

oscillations of the predicted biomass yield that led to the oscillating risk prediction (Supplementary 
Figure S4). The predicted risk is nevertheless within the 1σ range of the target yield (0.09 ± 0.003 

g biomass (g lactose)-1) and regarded as natural variability of the process. This indicated that there 

was no yield decrease in the presented 700 L cultivation compared to the 2 L lab-scale experiments. 

However, replicates of the 700 L cultivations would be needed to validate the results statistically. 

For an industrial application, the risk could be calculated as profit loss, i.e. an economic risk 

assessment [37,38], as the economic aspect is the driving force for the production. The risk could 

then be quantified in e.g. $ per batch. Furthermore, possible loss of product quantity during the 

downstream operations could also be considered. The benefit from the monitoring system is that 

one can reflect and take action either by automated on-line control or manually, i.e. the action by a 

process operator. The operators could obtain an on-line measure to assess the risk of faulty batches 

and react accordingly, e.g. by increasing the stirrer speed to decrease pH gradients. In future, the 

soft sensor could be applied for on-line control, and hence controlling process parameters in such 

a way that the risk of losing product or profit remains as low as possible. To this end, it might also 

be necessary to include further uncertainties in Monte Carlo simulation, such as stochastic 

variabilities, e.g. process equipment failures [39]. 

3.3 Scenario Tests with Different Base Addition Positions 

The compartment model could also be applied for process design besides the above mentioned on-

line monitoring and control applications. It could be applied to simulate different scenarios, e.g. to 

test different base addition strategies and pH sensor locations in order to decrease the pH gradient 

as performed in this study. 

In the studied system, the base was added below the bottom impeller and the controlled pH was 

measured in compartment 2. Here, a pH gradient between 5.8 and 6.1 was predicted in the 

exponential growth phase as discussed above (Figure 3). In case the base addition would be placed 

underneath the middle impeller in the bioreactor, a pH gradient between 5.9 and 6.05 was predicted 

using the compartment model (Figure 6 A). If the base addition was placed below the top impeller 

while the controlled pH was still measured in compartment 2, a pH gradient between 5.95 and 6.3 

was predicted (Figure 6 B). If the base would be added to the top of the bioreactor, a pH gradient 

between 5.95 and 7.0 was predicted (Figure 6 C). 

According to these results, the pH gradient could be significantly reduced if the base inlet would 

be placed below the middle impeller. In the worst-case scenario, with the base addition from the 

top together with the measurement of the pH at the bottom (the measurement input to the controller 

is in compartment 2, Figure 6 C) the pH gradient would increase drastically. In general, also other 

combinations of the position of both the base addition and the controlling pH measurement could 

be assessed. Experimental validation of the proposed design for the sensor location using the 

simulation of the compartmental model iteratively would help to improve the optimization of the 
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process. Another alternative would also be multiple point injection of the base at the large scale as 

suggested for the chemical industry in order to reduce the gradients [40]. 

Indeed, the compartment model could complement the process design phase at an early stage; in 

particular, it allows exploring and testing different scenarios with a short simulation time. Using a 

CFD simulation instead requires much longer simulation times and more computational 

resources [41]. However, we believe that a detailed analysis of the best candidates would be needed 

subsequently with a high resolution CFD simulation to substantiate the results. As an example, the 

gradients in the area in the vicinity of the base addition point could not be simulated with the 

compartment model. A higher pH is expected here as the base concentration is very high [42], 

which could be predicted by the CFD simulation with a higher spatial resolution [17]. Compartment 

models offer an opportunity as a compromise between the computational complexity for describing 

mixing and the simulation speed that is needed for various applications such as on-line monitoring 

and control applications, as well as fast off-line simulations, e.g. to test different scenarios for 

reactor geometry, mixing equipment and sensor locations [43]. 

Moreover, thanks to the promising results obtained in this study with a 700 L bioreactor, it is now 

intended to apply the CFD-based compartment model to larger (production-scale) bioreactors, e.g. 

> 50 m3, and to support industrial production processes. The presented tools can for example be 

applied to investigate to which extent pH gradients exist at production scale, whether they could 

have an influence on the metabolic activity and especially the biomass growth and product quality, 

and to design scale-down experiments at the lab scale that mimic large-scale conditions [33,44,45]. 

We expect that the risk-based process monitoring methodology and the underlying modeling can 

be used for a number of application in process scale-up and optimization studies such as (i) to 

calculate profit risks for evaluating different automation or control strategies, (ii) scenario testing 

and evaluation as part of design of experiments to find out the process condition space for 

experimentally study, among others. 

4 Conclusion 

A soft sensor was applied as a PAT tool that was based on a mechanistic model and a CFD-based 

compartment model. These applications were feasible thanks to the computational speed of the 

compartment model that could not be achieved by a CFD model. An on-line risk assessment tool 

was proposed to quantify both pH gradients and the risk of not achieving the target production in a 

lactic acid bacteria cultivation. It provided, on the one hand, an on-line prediction of the pH gradient 

in the bioreactor, which is a critical process parameter. This would enable plant operators to assess 

the mixing and the base addition strategy. On the other hand, the soft sensor quantified the risk of 

not achieving the target biomass production. The likelihood of the undesired event, i.e. the target 

biomass production could not be achieved, was calculated based on the probabilistic model 

predictions that were obtained from the Monte Carlo simulation of the soft sensor model. The 

Monte Carlo simulation was performed to consider uncertainties in the model parameters, on-line 

measurements, and initial process conditions. In the investigated 700 L cultivation, the risk was to 

lose max. 140 g biomass per batch. The compartment model could also be applied to test different 

scenarios by simulating the effect of different base addition positions. The model suggested for the 

studied system that the pH gradients could be decreased if the base inlet would be moved to the 

middle of the bioreactor. The future objective of this study is the implementation of the soft sensor 

for risk-based decision making and control in large-scale cultivations under consideration of 

techno-economic risks.  
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7 Nomenclature 

a Ordinate intercept of the SRC model 

bi Linear regression coefficient for the i-th model parameter 

CGal galactose concentration (g L-1) 

CGlc glucose concentration (g L-1) 

CLA lactate concentration (g L-1) 

𝐶𝑂𝐻− OH- concentration (mol L-1) 

CP total lactic acid (lactate and lactic acid) concentration (g L-1) 

CS lactose (substrate) concentration (g L-1) 

CtCO total carbonic acid (H2CO3
∗  and 𝐻𝐶𝑂3

−) concentration (mol L-1) 

CtNH total concentration of 𝑁𝐻4
+ and 𝑁𝐻3 (g L-1) 

CtPh total concentration of 𝐻3𝑃𝑂4, 𝐻2𝑃𝑂4
−, and 𝐻𝑃𝑂4

2−(g L-1)  

CtZ total concentration of the unknown compound (dissociated and undissociated form) (mol L-1) 

CX biomass concentration (g L-1) 

fd divalent activity coefficients (-) 

flag lag-time function (-) 

fm monovalent activity coefficients (-) 

fP lactic acid inhibition function (-) 

fpH pH dependency function (-) 

fS substrate limitation and inhibition function (-) 

H2CO3
∗  dissolved CO2 and H2CO3 

I ionic strength (g L-1) 

KC1
′  apparent equilibrium constant for the carbonic acid system (-) 

KI substrate inhibition parameter (g L-1) 

KLa lactate inhibition parameter (g L-1) 

KLa1 pH dependent lactate inhibition parameter (g L-1) 

KLA
′  apparent equilibrium constant for the lactic acid system (-) 

KNH
′  apparent equilibrium constant for the ammonia system (-) 

KP P-controller controller gain 

KP,La 2. lactate inhibition parameter (L g-1) 

KP,pH1 lactate inhibition pH parameter (-) 

KP,pH2 2. lactate inhibition pH parameter (-) 

KP1
′  apparent equilibrium constant for the phosphoric acid system (-) 

KP2
′  apparent equilibrium constant for the dihydrogen phosphate system (-) 
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Kr,C1
′  apparent reverse rate constant for carbonic acid dissociation (s-1) 

Kr,LA
′  apparent reverse rate constant for lactic acid dissociation (s-1) 

Kr,NH
′  apparent reverse rate constant for NH4 dissociation (s-1) 

Kr,P1
′  apparent reverse rate constant for H3PO4 dissociation (s-1) 

Kr,P2
′  apparent reverse rate constant for 𝐻2𝑃𝑂4

− dissociation (s-1) 

Kr,W
′  apparent reverse rate constant for water dissociation (s-1) 

Kr,Z
′  apparent reverse rate constant for the dissociation of the unknown component (s-1) 

KS substrate limitation parameter (g L-1) 

KW
′  apparent equilibrium constant for the water system (-) 

KZ
′  apparent equilibrium constant for the unspecified compound system (-) 

n number of measurements 

pHopt optimal pH parameter in the pH function (-) 

pHset pH control set point (-) 

𝑝𝐾𝐶1 pKa constant for carbonic acid dissociation 

𝑝𝐾𝐿𝐴 pKa constant for lactic acid dissociation 

𝑝𝐾𝑁𝐻  pKa constant for NH4 dissociation 

𝑝𝐾𝑃1 pKa constant for H3PO4 dissociation 

𝑝𝐾𝑃2 pKa constant for 𝐻2𝑃𝑂4
− dissociation 

𝑝𝐾𝑊 pKa constant for water dissociation 

𝑝𝐾𝑍 pKa constant for the unspecified compound dissociation 

qGal volumetric galactose secretion rate (C-mol L-1 h-1) 

qNH volumetric ammonia consumption rate (mol L-1 h-1) 

qP volumetric lactic acid secretion rate (C-mol L-1 h-1) 

qPh volumetric phosphoric acid consumption rate (mol L-1 h-1) 

qS volumetric substrate consumption rate (C-mol L-1 h-1) 

qX volumetric biomass growth rate (C-mol L-1 h-1) 

  

RMSSE root mean sum of squared errors (g L-1) 

SRCi standardized regression coefficient of the i-th parameter 

T temperature in the bioreactor (K) 

t time variable (h) 

tlag lag-time coefficient (h) 

Ygal galactose yield (g g-1) 

zi charge number of the i-th ion 

�̂�𝑖 i-th model value of one output (g L-1) 

𝑦𝑚𝑒𝑎𝑠,𝑖 i-th measurement value of one output (g L-1)  

 

Greek Letters 

α growth related production coefficient of lactic acid (g g-1) 

�̂�𝑖,𝑗 i-th parameter value used on the j-th Monte Carlo simulation 
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µmax maximum specific growth rate (h-1) 

σ standard deviation 

σpH spread parameter in the gaussian pH function 

𝜎�̂�𝑖
 standard deviation of the estimated parameter  

𝜎�̂�𝑋
 standard deviation of the biomass concentration distribution  
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9 Figure legends 

 

Figure 1. Simplified bioreactor setup with dimensions in cm (A), the steady-state velocity profile 

predicted by the CFD model (B), and the compartment model (C). A bioreactor with three six-blade 

Rushton turbines, four baffles, and a liquid volume of 700 L was used. The ammonia (alkali inlet) 

was added at the bottom of the bioreactor. 7 compartments were designed based on the axial 

velocities of the steady-state CFD solution resembling a stirrer speed of 130 rpm. 

 

Figure 2. Probabilistic soft sensor to predict the pH gradient (left column), biomass growth, lactic 

acid production, and substrate consumption (right column). The soft sensor using the compartment 

model was applied to data of a 700 L S. thermophilus batch cultivation. Predictions of the pH at the 

controlling position (blue line), the pH at the bottom compartment (blue dots), the pH in the top 

compartment (blue dashed line), biomass (cyan), lactic acid (magenta) and lactose (green) are 

shown. The soft sensor outputs that were created with the on-line information after 2, 4, and 6 h of 

cultivation time are shown in the boxes A, B, and C, respectively. The off-line measurements for 

biomass (gray dots with standard deviation), lactic acid (grey squares), and lactose (gray circles) 

are shown for comparison only but were not used for the on-line update of the parameters. 

 

Figure 3. Compartment model predictions and measurements of the pH gradient in the 700 L S. 

thermophilus cultivation with a stirrer speed of 130 rpm. Monte Carlo simulation of the 

compartment model with the mixed weak acid/base model (dashed line) and measurements (dots) 

that were recorded every 1 s. The 95 % confidence interval is shown. 

 

Figure 4. Probability distribution of the target biomass yield and production quantity. The 

probability distribution of the biomass yield after 6 h of cultivation as predicted by the Monte Carlo 

simulation (A); Cumulative distribution function of the yield with respect to the target yield (B); 

Cumulative distribution function of the total biomass production per batch (C). The grey shaded 

area under the cumulative distribution function represents the risk. 

 

Figure 5. On-line risk quantification during the cultivation. The risk as biomass production loss 

per batch was quantified on-line based on the output of the probabilistic soft sensor that was updated 

in 5 min intervals. Limited on-line measurements were available in the beginning of the cultivation 

that did not enable a proper risk quantification (Initialization phase). With more on-line data, the 

dynamic model parameters could be updated in the soft sensor allowing the risk prediction (Risk 

prediction phase). 

 

Figure 6. pH gradients predicted by the compartment model when the base would be added at 

different positions. Base addition below the middle impeller (A), below the top impeller (B), and 

from the top of the bioreactor (C). 
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10 Tables 

Table captions 

Table 1. Properties of the compartment model at 130 rpm (half of the bioreactor was modelled). 

Table 2 Kinetic parameters of the dynamic model for the S. thermophilus cultivation. 

Table 3. Kinetics of the mixed weak acid/base model. fm and fd are the mono- and divalent activity 

coefficients, respectively; see Musvoto et al. [25] and Loewenthal et al. [27]. 

Table 4. Methodology of the probabilistic soft sensor 

 

 

Table 1. Properties of the compartment model at 130 rpm (half of the bioreactor was modelled). 

Compartment 
interconnection 

Interface area 
[m2] 

Velocity [m s-1] Compartment no. Volume [m3] 

1 ↔ 2 0.1754 0.0693 1 0.0388 

2 ↔ 3 0.1839 0.0476 2 0.0364 

3 ↔ 4 0.1754 0.0810 3 0.0671 

4 ↔ 5 0.1839 0.0527 4 0.0768 

5 ↔ 6 0.1754 0.0669 5 0.0396 

6 ↔ 7 0.1847 0.0541 6 0.0806 

   7 0.0191 
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Table 2 Kinetic parameters of the dynamic model for the S. thermophilus cultivation. 

Symbol Value Std. deviation Reference 

Biological model   

KI 164 g L-1 n.d. [20] 

KLa 19.80 g L-1 0.05 g L-1 [18] 

KP,La 0.24 L g-1 0.03 L g-1 [18] 

KP,pH1 20 n.d. [18] 

KP,pH2 7 n.d. [18] 

KS 0.79 g L-1 n.d. [20] 

pHopt 6.39 0.06 [18] 

tlag updated in the soft sensor  

Ygal 0.69 g g-1 0.04 g g-1 [18] 

α 5.19 g g-1 0.01 g g-1 [18] 

µmax Initial value: 2.06 h-1, updated in the soft sensor [18] 

σpH 1.42 0.04 [18] 

Mixed weak acid/base model  

Kr,C1
′  107 s-1 [25] 

Kr,LA
′  107 s-1 [25] 

Kr,NH
′  1012 s-1 [25] 

Kr,P1
′  108 s-1 [25] 

Kr,P2
′  1012 s-1 [25] 

Kr,W
′  1010 s-1 [25] 

Kr,Z
′  107 s-1 [25] 

𝑝𝐾𝐶1 3404.7 (𝑇 − 14.8435 + 0.03279 ∙ 𝑇)⁄  [27] 

𝑝𝐾𝐿𝐴 3.86 [26] 

𝑝𝐾𝑁𝐻  2835.8 (𝑇 − 0.6322 + 0.00123 ∙ 𝑇)⁄  [27] 

𝑝𝐾𝑃1 799.3 (𝑇 − 4.5535 + 0.01349 ∙ 𝑇)⁄  [27] 

𝑝𝐾𝑃2 1979.5 (𝑇 − 5.3541 + 0.01984 ∙ 𝑇)⁄  [27] 

𝑝𝐾𝑊 14 [27] 

𝑝𝐾𝑍 9.4 [18] 

T 313 K measured process 

condition 

Initial Conditions 

CGal,t=0 0.0 g L-1  

CGlc,t=0 0.0 g L-1  

CP,t=0 0.0 g L-1  

CS,t=0 70 g L-1 2.3 g L-1  

CtCO,t=0 1.002 ∙ 10−5 𝑚𝑜𝑙 𝐿−1  

CtNH,t=0 0.005 g L-1   

CtPh,t=0 2 g L-1   

CtZ,t=0 2 mol L-1  

CX,t=0 0.025 g L-1 8 ∙ 10-4 g L-1  
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Table 3. Kinetics of the mixed weak acid/base model. fm and fd are the mono- and divalent activity 

coefficients, respectively; see Musvoto et al. [24] and Loewenthal et al. [26]. 

Dissociation 

process 

Reaction reaction rate vector apparent 

equilibrium constant 

Ammonium 𝑁𝐻4
+ ↔ 𝑁𝐻3 + 𝐻+ Kr,NH

′ ∙ KNH
′ ∙ [𝑁𝐻4

+] − 𝐾𝑟,𝑁𝐻
′ ∙ [𝑁𝐻3] ∙ [𝐻+] KNH

′ = 10−𝑝𝐾𝑁𝐻 

Phosphate 1 𝐻3𝑃𝑂4 ↔ 𝐻2𝑃𝑂4
− + 𝐻+ Kr,P1

′ ∙ KP1
′ ∙ [𝐻3𝑃𝑂4] − 𝐾𝑟,𝑃1

′ ∙ [𝐻2𝑃𝑂4
−] ∙ [𝐻+] KP1

′ = 10−𝑝𝐾𝑃1 𝑓𝑚
2⁄  

Phosphate 2 𝐻2𝑃𝑂4
− ↔ 𝐻𝑃𝑂4

2− + 𝐻+ Kr,P2
′ ∙ KP2

′ ∙ [𝐻2𝑃𝑂4
−] − 𝐾𝑟,𝑃2

′ ∙ [𝐻𝑃𝑂4
2−] ∙ [𝐻+] KP2

′ = 10−𝑝𝐾𝑃2 𝑓𝑑⁄  

Carbonate 1 𝐻2𝐶𝑂3
∗ ↔ 𝐻𝐶𝑂3

− + 𝐻+ Kr,C1
′ ∙ KC1

′ ∙ [𝐻2𝐶𝑂3
∗] − 𝐾𝑟,𝐶1

′ ∙ [𝐻𝐶𝑂3
−] ∙ [𝐻+] KC1

′ = 10−𝑝𝐾𝐶1 𝑓𝑚
2⁄  

Lactate 𝐶3𝐻6𝑂3 ↔ 𝐶3𝐻5𝑂3
−

+ 𝐻+ 

Kr,LA
′ ∙ KLA

′ ∙ [𝐶3𝐻6𝑂3] − 𝐾𝑟,𝐿𝐴
′ ∙ [𝐶3𝐻5𝑂3

−] ∙ [𝐻+] KLA
′ = 10−𝑝𝐾𝐿𝐴 𝑓𝑚

2⁄  

Water 𝐻2𝑂 ↔ 𝑂𝐻− + 𝐻+ Kr,W
′ ∙ KW

′ − 𝐾𝑟,𝑊
′ ∙ [𝑂𝐻−] ∙ [𝐻+] KW

′ = 10−𝑝𝐾𝑊 𝑓𝑚
2⁄  

Unknown 

compound 
𝑍𝐻+ ↔ 𝑍 + 𝐻+ Kr,Z

′ ∙ KZ
′ ∙ [𝑍𝐻+] − 𝐾𝑟,𝑍

′ ∙ [𝑍] ∙ [𝐻+] KZ
′ = 10−𝑝𝐾𝑍 𝑓𝑚

2⁄  
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Table 4. Methodology of the probabilistic soft sensor 

Step 1 Define the initial process conditions (x0) of the real process and model  

Step 2 Start the cultivation 

Iterate step 3 to 7 in 5 minutes intervals until tend (cultivation completion) 

Step 3 Read on-line measurements 

 pH and ammonia addition rate (pH, qNH,add) 

Step 4 Update the kinetic parameters µmax and tlag 

 Step 4.1 Data reconciliation 

  
𝑁𝐻4

+ + 𝐶3𝐻5𝑂3
− = 𝑞𝑁𝐻,𝑎𝑑𝑑 + 𝑞𝑃 = 0 

𝑞𝑋 = 𝑞𝑋 𝑎⁄  

 Step 4.2 Parameter update 

  
µ𝑚𝑎𝑥,𝑘 =

𝑞𝑋,𝑢𝑝𝑑𝑎𝑡𝑒𝑑

𝑓𝑙𝑎𝑔,𝑘−1 ∙ 𝑓𝑆,𝑘−1 ∙ 𝑓𝑃,𝑘−1 ∙ 𝑓𝑝𝐻,𝑘−1 ∙ 𝑋𝑘−1
 

𝑡𝑙𝑎𝑔,𝑘 = 𝑡𝑙𝑎𝑔,𝑘−1 + (𝑡𝑝𝐻=6,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑡𝑝𝐻=6,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) 

Step 5 Monte Carlo simulation of the model 

 Step 5.1 Define the input uncertainty space (once/ not every interval) (σθ,σx0
) 

 Step 5.2 Sample the independent input matrix (once/ not every interval)  

  SAMPLE MATRIX (Θl x N) 

 Step 5.3 Monte Carlo simulation  

  
for 1:N 

Solve y(t) = Model(θj,x0) 

Step 6 Process risk quantification 

 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑟𝑖𝑠𝑘 = ∑ 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ∙ 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

𝑚

 

Step 7 Save current state 
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