Nano structuring of silicone elastomers for optical applications

Yu, Liyun; Eriksen, Sofie Helvig; Kristensen, Anders; Skov, Anne Ladegaard

Publication date: 2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Nano structuring of silicone elastomers for optical applications

Liyun Yu², Sofie Helvig Eriksen², Anders Kristensen² and Anne Ladegaard Skov⁷

¹ Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 227, 2800 Kgs. Lyngby, Denmark; ² Department of Health Technology, DTU, Ørsteds Plads 344, 2800 Kgs. Lyngby, Denmark.

Abstract

Color pixels composed of plasmonic nanostructures provide a highly promising approach for new display technologies, capable of vivid, robust coloration and incorporating the use of low-cost plasmonic materials. Silicone elastomers, usually in the shape of polydimethylsiloxane (PDMS) elastomers, are commonly used to replicate structures mainly on the micro scale but recently also on the nano scale. PDMS dielectric elastomers are promising materials and have the potential to be used in novel applications, especially due to the ability to be formed into complex shapes and still provide actuation. This work deals with the development of PDMS based silicone elastomers with the ability to easily replicate structures on the nano scale of the silicon (Si) stamps in order to achieve the color tuning for potential optical applications.

Keywords: silicone, PDMS elastomer, plasmonic color, replicate nanostructure, optical applications

1. Introduction

Silicone elastomers with nano structures have been used for waveguides [Fig.1]. Nano structures covered with metal (e.g. silver) cause plasmonic colors. A plasmonic array device changing color by mechanical deformation has been fabricated [Fig.2] [1].

Figure 1. An illustration of a waveguide.

Figure 2. Working principle of the stretchable plasmonic device. Top: (a, b, c) color change of the device under different stretching conditions. Bottom: corresponding schematic of the nanostructure array.

2. Experimental

Materials

Mold: Si stamp
PDMS elastomer: Sylgard 184 from Dow Corning

Preparation

Si stamp cast PDMS solution @ RT for 10 hours
settle the solution @ RT for 10 hours
80°C for 2 hours curing
release elastomer from Si stamp

Figure 3. Fabrication process of PDMS reproduction with replicate nanostructures on the Si stamp.

Color tuning

Mechanical deformation

Electrical deformation

3. Results

Appearance

(a) (b) (c)

Figure 4. The Si stamp shows reflection colors from different angles (a), PDMS reproduction shows reflection colors from different angles (b), PDMS reproduction shows plasmonic color observed perpendicularly (c).

Structure

(a) (b) (c)

Figure 5. The Si stamp with nanopillar array (a), PDMS reproduction (b), PDMS reproduction after silver deposition (c).

Morphology

(a) (b) (c)

Figure 6. SEM images of the top surface (a, b) and cross-section (c) of the PDMS reproduction.

Table 1. Dimension parameters of the Si stamp and PDMS reproduction.

<table>
<thead>
<tr>
<th></th>
<th>Si stamp</th>
<th>PDMS reproduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pillar diameter (nm)</td>
<td>200</td>
<td>230</td>
</tr>
<tr>
<td>Pillar spacing (nm)</td>
<td>400</td>
<td>340</td>
</tr>
<tr>
<td>Pillar height (nm)</td>
<td>205</td>
<td>60</td>
</tr>
</tbody>
</table>

4. Conclusions

This work investigated the fabrication methods to create a dielectric PDMS elastomer embedded with nanostructures. After obtaining the PDMS reproduction, the surface with reflection and plasmonic colors can achieve color tunable if the array structure of the nanopillars is altered through the mechanical or electrical deformation. The color change response depends on the mechanical and dielectric properties of the PDMS elastomers. This design strategy has the potential to open the door for next-generation flexible photonic devices for a wide variety of visible-light applications.

Acknowledgments

The authors gratefully acknowledge the financial support of InnovationsFonden.

References