Residual stress determination in oxidized bulk metallic glass using X-ray diffraction and FIB/DIC methods

Haratian, S.; Niessen, F.; Grumsen, F. B.; Villa, M.; Christiansen, T. L.; Somers, M. A. J.

Publication date: 2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Residual stress determination in oxidized bulk metallic glass using X-ray diffraction and FIB/DIC methods

S. Haratian¹, F. Niessen², F. B. Grumsen¹, M. Villa¹, T. L. Christiansen¹ and M. A. J. Somers¹

¹Materials and Surface Engineering Section, Mechanical Engineering Department, Technical University of Denmark, Kgs. Lyngby, Denmark
²Electron microscopy center, University of Wollongong, Wollongong NSW, Australia

E-mail: Sahara@mek.dtu.dk

The presence of residual stresses inside the engineering components generated by local inelastic deformation can influence material’s performance considerably during mechanical loading. Surface engineering of ZrCuAl-based bulk metallic glasses (BMGs) by low-temperature (<Tg) gaseous oxidizing is hypothesized to be possible in order to build-up compressive residual stresses in the surface region, which then results in decelerating the shear band propagation during deformation. In the current study stresses introduced as a consequence of ZrO₂ (Al₂O₃) formation on thermochemically oxidized (Zr₅₅Cu₃₀Al₁₀Ni₅)₉₈Er₂ BMG were investigated. For this purpose, conventional X-ray diffraction sin²ψ and incremental core-ring focused ion beam (FIB) milling methods have been utilized. The BMG was initially oxidized in the controlled gaseous atmospheres imposing an extremely high pO₂ at 600 K for 60 hr. The residual stress sin²ψ analysis was conducted on (011) reflection of the tetragonal-ZrO₂ peak where it reveals the existence of compressive stress in ZrO₂. Surface strain relief monitored in high-resolution SEM imaging of a deposited stochastic pattern during gradual milling and measured by digital image correlation (DIC) also indicated the occurrence of compressive residual stresses in the surface region of the oxidized BMG.