Residual stress determination in oxidized bulk metallic glass using X-ray diffraction and FIB/DIC methods

Haratian, S.; Niessen, F.; Grumsen, F. B.; Villa, M.; Christiansen, T. L.; Somers, M. A. J.

Publication date: 2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
BOOK OF ABSTRACTS

ISMANAM-2019

26th International Symposium on
Metastable, Amorphous and Nanostructured Materials

July 8-12, 2019|Chennai, India

Organized by
Dept. of Metallurgical and Materials Engineering
Indian Institute of Technology Madras
https://mme.iitm.ac.in/ismanam2019
Residual stress determination in oxidized bulk metallic glass using X-ray diffraction and FIB/DIC methods

S. Haratian1, F. Niessen2, F. B. Grumsen1, M. Villa1, T. L. Christiansen1 and M. A. J. Somers1

1Materials and Surface Engineering Section, Mechanical Engineering Department, Technical University of Denmark, Kgs. Lyngby, Denmark
2Electron microscopy center, University of Wollongong, Wollongong NSW, Australia

E-mail: Sahara@mek.dtu.dk

The presence of residual stresses inside the engineering components generated by local inelastic deformation can influence material’s performance considerably during mechanical loading. Surface engineering of ZrCuAl-based bulk metallic glasses (BMGs) by low-temperature (<T\textsubscript{g}) gaseous oxidizing is hypothesized to be possible in order to build-up compressive residual stresses in the surface region, which then results in decelerating the shear band propagation during deformation. In the current study stresses introduced as a consequence of ZrO\textsubscript{2} (Al\textsubscript{2}O\textsubscript{3}) formation on thermochemically oxidized (Zr\textsubscript{55}Cu\textsubscript{30}Al\textsubscript{10}Ni\textsubscript{5})\textsubscript{98}Er\textsubscript{2} BMG were investigated. For this purpose, conventional X-ray diffraction $\sin^2\psi$ and incremental core-ring focused ion beam (FIB) milling methods have been utilized. The BMG was initially oxidized in the controlled gaseous atmospheres imposing an extremely high pO\textsubscript{2} at 600 K for 60 hr. The residual stress $\sin^2\psi$ analysis was conducted on (011) reflection of the tetragonal-ZrO\textsubscript{2} peak where it reveals the existence of compressive stress in ZrO\textsubscript{2}. Surface strain relief monitored in high-resolution SEM imaging of a deposited stochastic pattern during gradual milling and measured by digital image correlation (DIC) also indicated the occurrence of compressive residual stresses in the surface region of the oxidized BMG.