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Assessment of extracellular matrix-related biomarkers in

patients with lower extremity artery disease
Anna Hernández-Aguilera, PhD,a Signe Holm Nielsen, MS,b,c Cristina Bonache, BS,a

Salvador Fernández-Arroyo, PhD,a Vicente Martín-Paredero, PhD, MD,d Montserrat Fibla, PhD,a,e

Morten A. Karsdal, PhD,b Federica Genovese, PhD,b Javier A. Menendez, PhD,f Jordi Camps, PhD,a and

Jorge Joven, PhD, MD,a Reus, Tarragona, and Girona, Spain; and Herlev and Kongens Lyngby, Denmark
ABSTRACT
Background: The prevalence of lower extremity artery disease (LEAD) is high (20%-25%) in the population older than
65 years, but patients are seldom identified until the disease is advanced. Circulating markers of disease activity might
provide patients with a key opportunity for timely treatment. We tested the hypothesis that measuring blood-specific
fragments generated during degradation of the extracellular matrix (ECM) could provide further insight into the path-
ophysiologic mechanism of arterial remodeling.

Methods: The protein profile of diseased arteries from patients undergoing infrainguinal limb revascularization was
assessed by a liquid chromatography and tandem mass spectrometry, nontargeted proteomic approach. The informa-
tion retrieved was the basis for measurement of neoepitope fragments of ECM proteins in the blood of 195 consecutive
patients with LEAD by specific enzyme-linked immunosorbent assays.

Results: Histologic and proteomic analyses confirmed the structural disorganization of affected arteries. Fourteen of 81
proteins were identified as differentially expressed in diseased arteries with respect to healthy tissues. Most of them were
related to ECM components, and the difference in expression was used in multivariate analyses to establish that severe
arterial lesions in LEAD patients have a specific proteome. Analysis of neoepitope fragments in blood revealed that
fragments of versican and collagen type IV, alone or in combination, segregated patients with mild to moderate
symptoms (intermittent claudication, Fontaine I-II) from those with severe LEAD (critical limb ischemia, Fontaine III-IV).

Conclusions: We propose noninvasive candidate biomarkers with the ability to be clinically useful across the LEAD
spectrum. (J Vasc Surg 2018;-:1-8.)

Keywords: Atherosclerosis; Biomarker; Collagen; Extracellular matrix; Neoepitopes; Peripheral artery disease; Versican
Atherosclerosis is a progressive, age-related disease that
may simultaneously affect multiple arteries. The interest
in noncoronary atherosclerosis is increasing because
patients with manifestations in several vascular beds
have poorer prognosis than those with just one territory
affected.1 This association is particularly evident in pa-
tients with lower extremity artery disease (LEAD; also
known as peripheral artery disease, PAD). There are
>200 million patients with LEAD in industrialized coun-
tries, and the convergent epidemics of diabetes and
obesity suggest bleak prospects.1,2 Despite its major
prognostic impact, limited information is available on
asymptomatic PAD. The life expectancy of a patient
with either intermittent claudication (IC) or critical limb
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ischemia (CLI) is low, and once diagnosed, patients
have significantly less chance of receiving risk factor
modification than patients with coronary disease.3,4 The
challenge is to establish whether lesions in lower extrem-
ity arterial occlusive disease have a specific proteome
and to propose noninvasive surrogates to anticipate
prevention strategies.
Locoregional hemodynamic and rheologic factors favor

the progression of atherosclerotic lesions in lower extrem-
ity arteries, and reduction in lumen caliber governs the
course of symptoms in patients with LEAD.5 Vessel wall
remodelingandangiogenesis inperipheral arteries appear
to be crucial processes to understanding of the overall
response to atherosclerotic injuries.6 In this scenario, the
Author conflict of interest: S.H.N., M.A.K., and F.G. are full-time employees of

Nordic Bioscience, and M.A.K. holds stock in Nordic Bioscience.

Additional material for this article may be found online at www.jvascsurg.org.

Correspondence: Jorge Joven, PhD, MD, Unitat de Recerca Biomèdica, Hospital

Universitari Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat

Rovira i Virgili, Carrer Sant Llorenç 21, 43201 Reus, Spain (e-mail: jorge.joven@

urv.cat).

The editors and reviewers of this article have no relevant financial relationships to

disclose per the JVS policy that requires reviewers to decline review of any

manuscript for which they may have a conflict of interest.

0741-5214

Copyright � 2018 by the Society for Vascular Surgery. Published by Elsevier Inc.

https://doi.org/10.1016/j.jvs.2017.12.071

1

http://www.jvascsurg.org
mailto:jorge.joven@urv.cat
mailto:jorge.joven@urv.cat
https://doi.org/10.1016/j.jvs.2017.12.071


ARTICLE HIGHLIGHTS
d Type of Research: Histologic and proteomic analyses
of human arteries removed during surgical
revascularization

d Take Home Message: Compared with healthy con-
trols, multiple extracellular matrix proteins were
identified and validated by enzyme-linked immuno-
sorbent assay to confirm identity and expression
levels. In particular, fragments of versican and
collagen type IV allowed discrimination of peripheral
artery disease severity.

d Recommendation: Data suggest that multiple extra-
cellular matrix serum profile screening in peripheral
artery disease patients may have utility in discrimi-
nating mild to severe disease.

2 Hernández-Aguilera et al Journal of Vascular Surgery
--- 2018
extracellular matrix (ECM) provides a mechanical scaffold
and support to cell migration, which is regulated by
the correct functioning of cytokines, enzymes such asma-
trix metalloproteinases (MMPs), and growth factors.7-9

Atherosclerosis-associated remodeling and disrupted
cytoskeletal architecture are the consequence of inflam-
matory cell activity, lipid deposition, and changes in ECM
balance.10-14 We address the proteome composition and
the relative expression of ECM components in severely
affected peripheral arteries to evaluate different neoepi-
tope biomarkers of ECM degradation measured in serum
fromPADpatients to assesswhether thesemarkersmight
be associated with disease activity.

METHODS
Participants and study design. The local Ethics Com-

mittee and Institutional Review Board approved the pro-
cedures involved in this study (Epinols/12-03-09/3proj6;
Inflamet/15-04-30/4proj6). First, histologic and proteo-
mic analyses were performed in portions of superficial
femoral arteries that included the entire artery wall from
patients requiring infrainguinal limb revascularization
(n ¼ 18) and controls (n ¼ 3) obtained from road accident
victims of similar age. Written informed consent was
obtained from participants or next of kin. Demographic
and cardiovascular risk profiles of control individuals and
PAD patients used for these analyses can be found in the
Supplementary Methods and Supplementary Table I
(online only). To limit likely sex differences and because
the disease is more prevalent in men, we then recruited
men with an established diagnosis of PAD attending our
Department of Vascular Surgery. There were 195 partici-
pants included. Serum was collected at the time of in-
clusion, identified according to Fontaine classification,15

and stored at �80�C until analyses. Exclusion criteria
were clinically assessed; patients with infected lesions,
evidence of recent neoplastic disease, chronic kidney
disease, liver disease, or inflammatory disease (or
receiving anti-inflammatory drugs) were excluded.
Ankle-brachial index (ABI) was measured per standard
technique in both lower limbs, and imaging techniques
were performed according to the standard of care.

Histologic examination. To examine tissue morpho-
logic features, serial sections of tissue were obtained
from samples fixed in 10% neutral buffered formalin
and embedded in paraffin. Hematoxylin and eosin stain-
ing (Sigma-Aldrich, Steinheim, Germany) was used to
identify different cellular structures. Masson trichrome
staining (Bio Optica, Milan, Italy) was used to assess
collagen fibers, smooth muscle cells, nucleus, and cyto-
plasm, and sirius red staining (direct red 80; Sigma-
Aldrich) was used to identify collagen fibers. Images
were obtained at 200� magnification, and the intima-
media ratio was obtained by dividing the thickness of
the intima by the thickness of the mediameasured using
an optical microscope (Eclipse E600; Nikon, Madrid,
Spain) equipped with image analysis.

Untargeted proteomics. To explore the proteome
composition of the arteries, we used a nondirected pro-
teomic approach. Proteomics experiments were explor-
atory, with extensive mapping of digested peptides to
identify and to quantify as many proteins as possible,
and performed using chemical labeling to differentiate
groups. Methods were similar to those previously used
to analyze the protein secretion profile of carotid athero-
sclerotic plaques.16 Specific details may be found in the
Supplementary Methods (online only). Briefly, sample
arteries were cut into pieces and homogenized in
the presence of type 1 collagenase (Sigma-Aldrich).
Following different rounds of centrifugation and chemi-
cal treatment, precipitated proteins were vacuum dried
and dissolved. Samples were then sequentially dena-
tured, reduced, and alkylated. For digestion, samples
were incubated with sequencing-grade trypsin overnight
at 37�C. We used a liquid chromatography-mass spec-
trometry (MS) approach for quantification by performing
isobaric tag for relative and absolute quantitation
(iTRAQ) labeling with iTRAQ 8-plex reagent kits (SCIEX,
Madrid, Spain), as previously described.17 Labeled pep-
tides were then purified using an SCX column (Strata
SCX 55 mm, 70Å; Phenomenex, Torrance, Calif), desalted
and concentrated through a C18 Sep-Pak column (Wa-
ters, Bedford, Mass), and analyzed by using a C18 reversed
phase nanocolumn coupled to a trap nanocolumn for
real-time ionization and peptide fragmentation on an
LTQ Orbitrap Velos Pro mass spectrometer (Thermo
Fisher Scientific, San Jose, Calif). To identify proteins, in-
formation was obtained from tandem mass spectra with
the aid of Proteome Discoverer (version 1.4.0.288; Thermo
Fisher Scientific). All MS and tandem MS (MS/MS) sam-
ples were analyzed using Mascot (version 2.4.1.0; Thermo
Fisher Scientific). Protein quantification was performed
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by comparing the peak intensity of the reporter ions in
the MS/MS spectra to that of the selected peptides to
assess the relative abundance of the peptides. Normal-
ized concentrations (logarithmic) of selected proteins
were used to assess the increased or decreased expres-
sion of proteins in LEAD arteries.

Enzyme-linked immunosorbent assays. The selected
biomarkers were chosen on the basis of the obtained
proteomic data, pathway analysis according to the
ConsensusPathDB-human platform, and previously
published data.18,19 Measurements were performed at
Nordic Bioscience (Herlev, Denmark) laboratories using
their developed competitive enzyme-linked immuno-
sorbent assays. Specifications of the assays are available
in Supplementary Table II (online only).

Statistical analysis. The Kolmogorov-Smirnov test was
used to assess normal distribution of the variables. We
used the Mann-Whitney U test to compare nonpara-
metric variables, Student t-test for parametric variables,
and contingency tables and the c2 test for categorical
variables. For multiple comparisons, the Kruskal-Wallis
test or analysis of variance (one-way analysis of vari-
ance) was used. The results were expressed as median
and interquartile range or percentage of the total par-
ticipants. For proteomic analyses, principal component
analysis and hierarchical clustering analysis were per-
formed using the Mass Profiler Professional software
(version 12.1; Agilent Technologies, Santa Clara, Calif). Only
proteins that appeared in >70% of the samples were
considered, and the PANTHER system (www.pantherdb.
org) was used for functional classification. We used the
Benjamini-Hochberg method to avoid false positives in
differences due to multiple testing. Analyses with
receiver operating characteristic curves, linear regression,
and binary logistic regression were performed using the
Statistical Package for the Social Sciences, version 22.0
(IBM Corp, Armonk, NY). MetaboAnalyst 3.0 (http://www.
metaboanalyst.ca/) was used to generate scores/loading
plots, heatmaps, and random forest analysis.

RESULTS
We first evaluated, combining histology and untargeted

proteomics, the differences in the integrity of arterial tis-
sue and signs of vascular remodeling, in severely lesioned
and healthy arteries, to confirm that samples from PAD
patients were representative of the pathologic state.
Atherosclerosis was evident in all samples from PAD
patients (Supplementary Fig, online only). To mitigate
run-to-run variability, we quantified samples that have
been multiplexed, covalently labeled, and then com-
bined in a single run containing multiple samples.
Peptides present in <70% of the samples in both control
and PAD arteries and those generating similar fingerprint
spectra were not considered in further data-dependent
analyses (Supplementary Table III, online only). Under
these conditions, this proteomics approach selected
81 proteins, and quantitative analysis revealed a unique
subset of 14 proteins with statistically significant
differences between diseased and healthy arteries
(Fig 1, A). Their putative functions in atherosclerosis
(Supplementary Table III, online only) disclosed that
most of these proteins were ECM or cytoskeletal compo-
nents (Fig 1, B). Hierarchical clustering analyses and prin-
cipal component analysis strongly suggest that severe
disease in PAD patients may have a specific proteome,
as illustrated in Fig 1, C-E. The identified proteins
suggested an imbalance favoring degradation of ECM
proteins. Because of histologic changes in collagen and
proteomic differences in versican, we selected specific
neoepitope fragments of proteins describing the turn-
over of the major components of vascular ECM: versican,
type IV collagen, mimecan, and laminin. Degradation
fragments of C-reactive protein and a-smooth muscle
actin were also included to investigate the influence of
the inflammatory and fibroblastic components, respec-
tively (Supplementary Table II, online only).
The clinical characteristics and laboratory measure-

ments confirmed that the cohort of patients used for
these measurements is representative of the clinical
spectrum of PAD patients seeking attention in our facil-
ities. The high prevalence of cardiovascular risk factors
(such as smoking habits) and other associated treatment
(mainly statins) did not significantly affect disease
severity, with the exception of a lower prevalence of dia-
betes in Fontaine I patients. Age was also significantly
associated with disease severity (Table I). The concentra-
tion of the selected neoepitope biomarkers in serum of
PAD patients with different Fontaine stages is indicated
in Table II. Initially, specific fragments of MMP-8- and
MMP-12-mediated degradation of versican (VCANM), of
MMP-9-mediated degradation of a5 chain of laminin
(Lam-a5), and of MMP-12-mediated degradation of a1
chain of type IV collagen (C4M) could separate patients
in different disease stages. This was further confirmed
for VCANM and C4M by using random forest analyses,
but Lam-a5 levels failed to discriminate patients with IC
from those with CLI. Serum VCANM concentration
decreased progressively and was correlated with clinical
severity. The analysis of receiver operating characteristic
curves displayed a high sensitivity and specificity to
distinguish between patients classified as type I from
those with type IV (Fig 2, A and B). A similar discrimina-
tive value was obtained for C4M, but circulating levels
were increased according to disease severity (Fig 2, C
and D). The combination of both potential biomarkers
provided specificity higher than 90% to discriminate be-
tween patients with mild IC and those with severe PAD
(Fig 2, E), and none of them were associated with age
or diabetes, the main risk factors for our PAD population.
However, the standard technique for PAD diagnosis, the
ABI, showed the best discriminant capacity (Fig 2, F).

http://www.pantherdb.org
http://www.pantherdb.org
http://www.metaboanalyst.ca/
http://www.metaboanalyst.ca/


Fig 1. Proteomics analysis: representative results of one 8-plex array. A, Proteins showing statistically significant
differences between control group and peripheral artery disease (PAD) patients. B, Protein class (left) and
cellular component (right) percentage of selected proteins obtained by PANTHER system. C, Representation of
the fold changes obtained using normalized concentrations of selected proteins in both groups. D and E,
Principal component analysis (D) and heatmap diagram (E) of proteomics results. Q96IY4, Carboxypeptidase
B2; P01023, a2-macroglobulin; P01859, immunoglobulin g2 chain C region; P01857, immunoglobulin g1 chain C
region; P98160, basement membrane-specific heparan sulfate proteoglycan core protein; P35580, myosin 10;
Q08431, lactadherin; P13611, versican core protein; P02790, hemopexin; Q9UBX5, fibulin 5; P35555, fibrillin 1;
O75083, WD repeat-containing protein 1; P14618, pyruvate kinase isozymes M1/M2; P02545, prelamin A/C.
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DISCUSSION
The clinical and prognostic relevance of atherosclerosis

in the peripheral arteries of the lower limbs deserves
further awareness by the medical community, but
LEAD remains underdiagnosed and undertreated.20

The relevance of risk factors, the role of drug prevention,
and the causes of differential progression in noncoronary
atherosclerosis have been scarcely investigated.21 Organi-
zation models focused on a broad cardiovascular
concept are currently an unmet need, which is
hampered by the lack of biomarkers able to detect
the asymptomatic stages and to predict or to monitor
disease progression.
Our findings confirm that atherosclerosis of the lower

extremities may be a model to study arterial remodeling.
In limb arteries, the lumen loss is not due to neointima
formation but to an excessive reparative response, which
includes factors favoring ECM degradation.22 The specific
proteome we have described of severe atherosclerotic
lesions in peripheral arteries indicates that some proteins
are overexpressed. For example, a2-macroglobulin and
carboxypeptidase B2 contribute to the differences
observed between diseased and control arteries. a2-
Macroglobulin has recently been associated with plaque
vulnerability in carotid arteries using a similar iTRAQ-
based analysis,23 and carboxypeptidase B2 may be a
potential indicator of a high risk of premature PAD.24

Conversely, other proteins were significantly decreased
in diseased arteries compared with controls and are
mostly related to tissue modeling and remodeling.
Among them, low levels of lactadherin may indicate
poor adhesion of smooth muscle cells to elastin fibers.25

Decreased levels of structural proteins, which include
versican, laminin, and mimecan, are highly influenced
by MMP activity. These proteins also have defined roles
in the maintenance of normal cardiovascular function
and migration of smooth muscle cells.26-29 Taken
together, our results indicate the coexistence of multiple
mechanisms acting simultaneously in response to
atherosclerotic injury.
The results also highlight the central role of connective

tissue turnover in the structural and signaling properties
of arterial cells in LEAD.14 With the rationale that
measuring specific neoepitopes reflecting ECM turnover
in the blood of our patients might contribute to the
search for biomarkers of disease activity, we tested
selected variables for evaluation.30-33 Among these circu-
lating neoepitopes, those generated from a-smooth
muscle actin and laminin a5 showed some potential by
correlating with individual clinical end points
(Supplementary Table II, online only; Table I), but our
focus was on clinically separating patients with mild
PAD (IC, Fontaine I-II) from those with severe PAD (CLI,
Fontaine III-IV). Serum concentrations of versican
(VCANM) and type IV collagen (C4M) degradation
products were the most accurate separators. The activ-
ities of MMPs in fibroproliferative diseases are well estab-
lished and probably are partially implicated in these



Table I. Clinical characteristics, complete blood count, and biochemical characteristics of peripheral artery disease (PAD)
patients segregated by Fontaine classification

Fontaine I (n ¼ 11) Fontaine II (n ¼ 41) Fontaine III (n ¼ 34) Fontaine IV (n ¼ 109) P value

Clinical characteristics

Age, years 55 (50-69) 70 (59.25-75) 63 (55-69.25) 71 (64-77) <.001

BMI, kg/m2 28.9 (23.05-31.16) 27.3 (23-29.4) 25.5 (22.25-27.9) 24 (22-27.8) NS

Diabetes 10 69.4 45.5 79.8 <.001

Hypertension 50 63.2 57.6 75 NS

Dyslipidemia 55.6 41.7 24.2 36.7 NS

Complete blood count

Red blood cells, �1012/L 5.11 (4.41-5.4) 4.48 (3.95-4.79) 4.29 (3.74-4.53) 4.00 (3.34-4.59) <.001

Hemoglobin, g/dL 14.6 (13.23-16.35) 13.1 (11.5-15.2) 13.57 (12.02-14.07) 11.5 (10.5-13.5) .02

Leukocytes, �109/L 7.44 (6.85-10.23) 7.51 (6.3-9.42) 7.61 (6.39-9.56) 8.35 (6.4-10.1) NS

Platelets, �109/L 217.25 (186-243.5) 219 (183-268) 252 (200.5-333.65) 270 (209.5-343) .011

Biochemical variables

Total cholesterol, mmol/L 4.06 (2.84-5.65) 4.04 (3.72-4.74) 3.95 (3.37-4.47) 3.77 (3.1-4.51) NS

HDL cholesterol, mmol/L 0.8 (0.72-1.14) 1.1 (0.86-1.29) 1.1 (0.87-1.26) 0.92 (0.74-1.14) NS

LDL cholesterol, mmol/L 2.04 (1.4-3.32) 2.41 (1.94-3.4) 2.2 (1.73-2.81) 2.18 (1.72-2.83) NS

Triglycerides, mmol/L 1.56 (1.18-4.53) 1.51 (1.14-2.56) 2.35 (1.87-3.47) 1.97 (1.37-2.86) NS

Glucose, mmol/L 6.69 (4.1-7.64) 5.93 (4.96-8.82) 5.59 (4.62-7.49) 5.77 (4.59-7.6) NS

ALT, U/L 19 (12.14-35) 21 (16-26) 22 (16-40) 21 (13-32) NS

GGT, U/L 27.5 (16.94-39.8) 28 (18-47) 24 (17.25-43) 31.5 (17-48.8) NS

AST, U/L 21 (12-27) 19 (16-22) 20 (14.75-31) 19 (15-30) NS

Fibrinogen, g/L 4.07 (3.6-5.48) 4.84 (4.12-6.43) 5.39 (4.27-6.11) 5.82 (4.44-7.78) NS

ALT, Alanine transaminase; AST, aspartate transaminase; BMI, body mass index; GGT, g-glutamyltransferase; HDL, high-density lipoprotein; LDL,
low-density lipoprotein; NS, not significant.
Nonparametric variables are shown as median (25%-75% interquartile range). Qualitative variables are expressed as percentage of total participants.
Statistical differences were assessed by Kruskal-Wallis test.

Table II. Differences in selected neoepitopes between peripheral artery disease (PAD) patients segregated by Fontaine
classification

Fontaine I (n ¼ 11) Fontaine II (n ¼ 41) Fontaine III (n ¼ 34) Fontaine IV (n ¼ 109) P value

VCANM, pg/mL 1800 (1640-1900) 1610 (1375-1830) 1530 (1055-1810) 1250 (1080-1560) <.001

C4M, pg/mL 16,530 (13,720-21,710) 21,480 (16,860-30,120) 24,790 (18,095-31,940) 31,730 (22,415-45,165) <.001

Lam-a5, pg/mL 5610 (4630-8490) 6660 (4855-9810) 6130 (3928-8278) 8710 (6755-11,960) <.001

CRPM, pg/mL 7620 (5690-11,520) 9380 (6780-14,100) 8645 (6615-11,590) 9970 (7775-12,430) NS

a-SMA, pg/mL 3870 (2830-4900) 3620 (2770-5570) 3355 (2283-4513) 3600 (2430-5100) NS

MIM, pg/mL 7600 (3600-20,370) 7430 (3770-12,090) 6770 (2795-13,635) 8070 (3885-13,290) NS

C4M, Matrix metalloproteinase (MMP)-12-mediated type IV (a1) collagen degradation; CRPM, specific fragment of MMPs 1-, 3-, 8-, and 9-, CatS/K-,
ADAMTS1-mediated degradation of C-reactive protein; Lam-a5, specific fragment of MMP-9-mediated laminin a5 chain degradation; MIM, specific
fragment of MMP-9- and MMP-12-mediated degradation of mimecan; NS, not significant; a-SMA, a-smooth muscle actin, acetylated N-terminal;
VCANM, specific fragment of MMP-8- and MMP-12-mediated degradation of versican.
Results are expressed as median (interquartile range) for nonparametric variables. Statistical differences were assessed by Kruskal-Wallis test.
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findings.34,35 Although our study is not performed in a
prospective cohort, results suggest that disease progres-
sion might be associated with a decrease in VCANM
levels and an increase in C4M levels. However, these pa-
tients are clinically complex and taking statins or other
drugs. Consequently, interpretation should be cautious.
Versican and other proteoglycans, synthesized by

vascular smooth muscle cells and influenced by growth
factors, play a fundamental role in cellular and
extracellular events associated with the pathogenesis of
vascular lesions.36,37 Circulating VCANM neoepitopes
were inversely associated with lesion progression, and re-
sults were consistent with proteomic analysis and histo-
logic findings indicating advanced fibroatheroma and
calcium accumulation. Presumably, the digestion of ver-
sican results from increasing infiltration by macrophages,
but the complex proteolytic events generating relevant
versican fragments have not been explored in vivo.



Fig 2. Candidate biomarkers. A, Receiver operating characteristic curve for VCANM measurements between
Fontaine I and Fontaine IV patients. B, Graphical representation of VCANM concentrations among Fontaine
grades. C, Receiver operating characteristic curve for C4M measurements between Fontaine I and Fontaine IV
patients. D, Graphical representation of C4M concentrations among Fontaine grades. E, Receiver operating
characteristic curve for the combination of VCANM and C4M obtained by binary logistic regression between
Fontaine I and Fontaine IV patients. F, Receiver operating characteristic curve for all the candidate biomarkers
compared with the ankle-brachial index (ABI), the standard technique to diagnose peripheral artery disease
(PAD). AUC, Area under the curve.
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Conversely, circulating C4M levels may serve as a useful
tool for tracking atherosclerosis progression in the arte-
rial wall tissue. Type IV collagen is a major component
of basement membranes,38 and these results are consis-
tent with the observed alterations of the collagen
network morphology apparently leading to deterioration
of mechanical properties and propensity to rupture of
the arterial wall. ABI showed the best discriminant ca-
pacity, but ECM markers provide complementary infor-
mation to patients who are referred because of
clinically suspected arterial disease, especially those
with normal resting ABI.39

To our knowledge, this is the first study identifying
neoepitope biomarkers of ECM remodeling as bio-
markers for disease activity in LEAD. These measure-
ments correlate with clinical end points and apparently
provide clinically relevant information on processes
reflecting atherosclerosis progression in lower extremity
arteries. Exploring and re-evaluating the relationship
between measurable biologic processes and clinical
outcomes is crucial for deepening our knowledge on
the role of arterial pathophysiologic changes in response
to atherosclerosis. Whether these data reflect causality
or document ECM changes during disease progression
remains unknown.
The next level of evaluation needs other designs to

ascertain predictive power in patients with asymptom-
atic PAD, and surrogate marker-defined efficacy calls
for phase 4 follow-up studies. In this exploratory study,
main limitations are the type of study and the common
association of the disease with other cardiovascular dis-
turbances. Future studies in prospective cohorts should
consider the inclusion of women as well as the exclusion
of coincident cardiovascular diseases and the usefulness
of these markers after surgery. We envision that our pro-
posed, laboratory-measured biomarkers may have the
potential to speed drug development and to improve
clinical awareness of the disease in primary care.

CONCLUSIONS
Severe lesions in PAD have a specific proteome

compared with healthy arteries of age-matched controls.
Our proteomics analysis indicates that inflammation and
ECM turnover (ie, vascular remodeling) are the most
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quantitatively important processes in diseased arteries.
We propose versican and type IV collagen degradation
products as potential laboratory-measured biomarkers
of disease activity.
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Supplementary Methods
Tissue collection, handling, and preservation
We have limited our study to samples obtained from

superficial femoral arteries with occlusion or severe
stenosis. This is because there are significant differences
between femoral, superficial femoral, and tibial vessels
in terms of size and pathophysiologic and morphologic
features of the plaque. Portions of the artery included
the entire artery wall. In diseased arteries, timing,
handling, and preservation conditions were the same in
all cases per protocol. Differences in timing were un-
avoidable for control arteries obtained in road accident
victims. Age and anatomic area were especially consid-
ered. Handling and preservation of arterial specimens
of deceased individuals and participants were kept to a
minimum with immediate freezing and maintenance
at �80�C until the analyses.
Proteomics protocol
Tissue processing and protein preparation. Stored

frozen pieces of arteries were cut in 100-mg pieces and
placed into tubes with 8 mg of type 1 collagenase in 2mL
of tris-CaCl2 buffer. Samples were incubated at 37�C for
30 minutes with shaking. They were then centrifuged at
5000 rpm at 4�C, supernatants were stored at �80�C,
and pellets were resuspended in 1.5 mL of urea lysis
buffer þ0.1% sodium dodecyl sulfate. Samples were ho-
mogenized using Precellys 24 (Bertin Technologies,
Montigny-le-Bretonneux, France) at 5000 rpm for
10 seconds. Immediately, they were sonicated and then
centrifuged again at 2100 rpm for 10 minutes at 4�C.
Pellets were discarded, supernatants were transferred
into new tubes and centrifuged at 14,000 rpm for 1 hour
at 4�C, and proteins were precipitated with trichloro-
acetic acid. Samples were placed at 4�C for 24 hours and
then centrifuged at 5000 rpm for 10 minutes at 4�C.
Supernatants were rejected and pellets resuspended in
1 mL of cold acetone. Samples were again centrifuged at
5000 rpm for 10 minutes at 4�C, supernatants were
rejected, and pellets were resuspended in 0.5 M triethy-
lammonium bicarbonate (TEAB) at pH 8.5. Protein
quantification was performed, and samples were stored
at �80�C.
Protein digestion and validation. After being vacuum

dried, samples were resuspended in 0.5 M TEAB at pH
7, and 2% sodium dodecyl sulfate was added to dena-
ture proteins. Samples were reduced using 5 mM
tris(2-carboxyethyl)phosphine in 50 mM TEAB at pH 7.9
for 1 hour at 60�C and then alkylated with 3.65 mM
iodoacetamide during 30 minutes at room temperature
in the dark. For the digestion, samples were incubated
with 1 mg/mL sequencing-grade trypsin in 500 mM TEAB
at pH 7.9 overnight at 37�C. Digestions were checked by
analyzing a small aliquot using matrix-assisted laser
desorption ionization time-of-flight mass spectrometry
(MS) or nano-liquid chromatography. Peptides were
separated onto a C18 reversed phase nanocolumn
(75-mm inner diameter [ID], 15-cm length, 3-mm particle
diameter; Nikkyo Technos Co LTD, Tokyo, Japan) coupled
with a trap nano-column (100-mm ID, 2-cm length, 5-mm
particle diameter; Thermo Fisher Scientific, San Jose,
Calif). Digested samples were analyzed by injecting an
18-mL sample, using a continuous acetonitrile gradient of
0% to 35% in 13 minutes, 35% to 80% in 7 minutes, and
80% to 100% in 5 minutes. In all the analysis, a flow rate
of 300 nL/min was used to elute peptides for real-time
ionization and peptide fragmentation on an LTQ Orbi-
trap Velos Pro mass spectrometer (Thermo Fisher). An
enhanced Fourier transform (FT)-resolution spectrum
(resolution ¼ 30,000 full half-maximum width [FHMW])
followed by data-dependent tandem MS (MS/MS) scan
(R ¼ 15,000 FHMW) from most intense 10 parent ions
with a charge state rejection of 1 was analyzed along the
chromatographic run. The MS/MS scan was acquired in
the FT analyzer using a higher energy collision dissocia-
tion collision cell with a normalized collision energy of 45
and dynamic exclusion of 0.5 minute.
Isobaric tag for relative and absolute quantitation

(iTRAQ) labeling. iTRAQ 8-plex labeling reagents (SCIEX,
Madrid, Spain) were added to samples according to the
manufacturer’s instructions and incubated at room tem-
perature for 2 hours. Quantification results are expressed
as ratios of the different labeling tags vs a control tag, and
these ratios were used for statistical purposes.
Labeled samples were purified using an SCX column

(Strata SCX 55 mm, 70Å; Phenomenex, Torrance, Calif).
Then, they were desalted and concentrated through a
C18 Sep-Pak column (Waters, Bedford, Mass). Eluted pep-
tides were dried and resuspended in 0.1% (v/v) formic
acid for nano-liquid chromatography-MS/MS detection.
Labeled iTRAQ peptides were separated onto a C18
reversed phase nanocolumn (75-mm ID, 15-cm length,
3-mm particle diameter; Nikkyo Technos Co LTD) coupled
to a trap nanocolumn (100-mm ID, 2-cm length, 5-mm
particle diameter; Thermo Fisher Scientific). All samples
were analyzed in triplicate. For each analysis, 2 mg of
sample was injected using a continuous acetonitrile
gradient consisting of 0% to 5% B in 4 minutes, 5% to
15% B in 60 minutes, 15% to 35% B in 60 minutes, and
35% to 95% B in 10 minutes, which was maintained for
20 minutes (A ¼ water, 0.1% formic acid; B ¼ acetonitrile,
0.1% formic acid). In all the analysis, a flow rate of 300 nL/min
was used to elute peptides for real-time ionization and
peptide fragmentation on an LTQ ObritrapVelo sPro
mass spectrometer (Thermo Fisher). An enhanced FT-
resolution spectrum (resolution ¼ 30,000 FHMW) fol-
lowed by data-dependent MS/MS scan (R ¼ 15,000
FHMW) from most intense parent ions was analyzed
throughout the chromatographic run. The MS/MS scan
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was acquired in the FT analyzer using a higher energy
collision dissociation collision cell with normalized colli-
sion energy of 45%, a precursor mass window selection
of 2 m/z, a charge state rejection of þ1, and a dynamic
exclusion of 0.5 minute.
Protein identification analysis. Tandem mass spectra

were extracted and charge state deconvoluted by Prote-
ome Discoverer version 1.4.0.288 (Thermo Fisher Scienti-
fic). All MS and MS/MS samples were analyzed using
Mascot (version 2.4.1.0; Thermo Fisher Scientific). Mascot
was set up to search SwissProt_2012_03.fasta database
(535248 entries), restricting for human taxonomy (26944
sequences) and assuming trypsin digestion. Two missed
cleavages were allowed, and an error of 0.02 Da for frag-
ment ion mass and 10.0 ppm for a parent ion were
allowed. Oxidation of methionine, acetylation of N-
termini, and iTRAQ 8-plex were specified as variable
modifications, whereas carbamidomethylation of
cysteine was set as static modification. The false discov-
ery rate and protein probabilities were calculated by
Target Decoy PSM Validator working between 0.01 and
0.05 for strict and relaxed, respectively. For proteins
identified with only one peptide, visual verification of
fragmentation spectra was done.
Quantitative proteome analysis. In tandem MS

mode, which isolates and fragments peptides, each tag
generates a unique reporter ion used for a relative
quantification. Protein quantification compares the
peak intensity of the reporter ions in the MS/MS spectra
to assess the relative abundance of the peptides and
the proteins from which they are derived. The quantifica-
tion method allows normalization with filters to measure
the abundance of proteins in the sample using unique
peptides of each protein.
Enzyme-linked immunosorbent assay protocol. The

enzyme-linked immunosorbent assays were technically
validated according to the Nordic Bioscience standard
operating procedures. Linearity, lower limit of detection,
intravariation and intervariation, spiking recovery, and
assay stability were assessed. Protocols and buffers differ
among assays. In general, a 96-well streptavidin pre-
coated plate was coated with the selected biotinylated
synthetic peptide dissolved in specific buffer and incu-
bated. The peptide calibrator or sample was added to
appropriate wells, followed by the horseradish
peroxidase-conjugated monoclonal antibody, and again
incubated. Finally, 3,30,5,50-tetramethylbenzidine devel-
oper (cat.438OH; Kem-En-Tec, Taastrup, Denmark) was
added, and the plate was incubated in the dark. All these
incubation steps included shaking. After each incubation
step, the plates were washed in washing buffer. The re-
action was stopped by adding stopping solution
(0.1 M H2SO4) and measured at 450 to 650 nm. A stan-
dard calibration curve was also plotted.



Supplementary Fig (online only). Representative histologic findings in peripheral arteries from control group
and peripheral artery disease (PAD) patients (magnification �200). Hematoxylin and eosin (A), Masson tri-
chrome (B), and sirius red (C) stains were used for assessment. The tunica intima was disorganized and thicker,
and the presence of lipid vacuoles and cholesterol crystals and other histologic features were consistent with
the higher (P < .0001) intima-media ratio observed in PAD patients (median, 2.10 [interquartile range, 1.33-3.22])
with respect to that of age-matched donors (median, 0.16 [interquartile range, 0.13-0.65]). Smooth muscle cells,
normally located in the media, were also present in the intima of atherosclerotic arteries. The distribution of
collagen fibers was also disrupted. BF, Broken fibers of collagen; CC, cholesterol crystals; LV, lipid vacuoles; SMC,
smooth muscle cells.
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Supplementary Table I (online only). Clinical characteristics, complete blood count, and biochemical characteristics of
control individuals and peripheral artery disease (PAD) patients

Controls (n ¼ 3) PAD patients (n ¼ 18) P value

Clinical characteristics

Age, years 75 (0.707) 69 (12) NS

BMI, kg/m2 26.7 (2.3) 26.3 (6.0) NS

Diabetes 1 13 .05

Hypertension 1 9 NS

Dyslipidemia 1 9 NS

Complete blood count

Red blood cells, �1012/L 4.46 (0.21) 3.36 (0.33) NS

Hemoglobin, g/dL 13.3 (1.2) 10.6 (0.7) NS

Leukocytes, �109/L 8.6 (0.9) 9.6 (4.7) NS

Platelets, �109/L 246 (27) 204 (12) NS

Biochemical variables

Total cholesterol, mmol/L 6.01 (1.72) 5.2 (0.28) NS

Triglycerides, mmol/L 1.62 (1.14) 0.86 (0.31) NS

Glucose, mmol/L 6.16 (0.92) 7.9 (2.2) NS

Fibrinogen, g/L 5.92 (1.53) 5.80 (1.95) NS

BMI, Body mass index; NS, not significant.
Nonparametric variables are shown as mean (standard deviation). Qualitative variables are expressed as number of total participants. Statistical
differences were assessed by Mann-Whitney U test.

Supplementary Table II (online only). Overview of measured biomarkers to assess extracellular matrix (ECM) degradation
in serum

Biomarker Measurement Reference

Upper normal
level in general

population, pg/mL

VCANM Specific fragment of MMP-8- and MMP-12-mediated degradation of versican 1 1500

CRPM Specific fragment of MMPs 1-, 3-, 8-, and 9-, CatS/K-, ADAMTS-mediated
degradation of C-reactive protein

2 7500

C4M Specific fragment of MMP-12-mediated type IV collagen (a1) 3 21,500

Lam-a5 Specific fragment of MMP-9 mediated laminin (a5) Unpublished 10,166

a-SMA Acetylated N-terminal fragment of a-smooth muscle actin 4 1480

MIM Specific fragment of MMP-9- and MMP-12-mediated degradation of mimecan 5 5050

MMP, Matrix metalloproteinase.
1. Barascuk N, Genovese F, Larsen L, Byrjalsen I, Zheng Q, Sun S, et al. A MMP derived versican neo-epitope is elevated in plasma from patients with
atherosclerotic heart disease. Int J Clin Exp Med 2013;6:174e184.
2. Skjøt-Arkil H, Schett G, Zhang C, Larsen DV, Wang Y, Zheng Q, et al. Investigation of two novel biochemical markers of inflammation, matrix
metalloproteinase and cathepsin generated fragments of C-reactive protein, in patients with ankylosing spondylitis. Clin Exp Rheumatol
2012;30:371e379.
3. Sand JM, Larsen L, Hogaboam C, Martinez F, Han M, Røssel Larsen M, et al. MMPmediated degradation of type IV collagen alpha 1 and alpha 3 chains
reflects basement membrane remodeling in experimental and clinical fibrosisdvalidation of two novel biomarker assays. PLoS One 2013;8:e84934.
4. Papasotiriou M, Genovese F, Klinkhammer BM, Kunter U, Nielsen SH, Karsdal MA, et al. Serum and urine markers of collagen degradation reflect
renal fibrosis in experimental kidney diseases. Nephrol Dial Transplant 2015;30:1112e1121.
5. Barascuk N, Vassiliadis E, Zheng Q, Wang Y, Wang W, Larsen L, et al. Levels of circulating MMCN-151, a degradation product of mimecan, reflect
pathological extracellular matrix remodeling in apolipoprotein E knockout mice. Biomark Insights 2011;6:97e106.
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Supplementary Table III (online only). Proteins identified in human healthy control arteries and peripheral artery disease
(PAD) arteries by untargeted proteomics (in alphabetical order)

Swiss-prot ID Compound name Biologic function

P60709 Actin, cytoplasmic 1 ATP binding

P63267 Actin, g-enteric smooth muscle ATP binding

P01009 a1-Antitrypsin Glycoprotein, protease and binding

P01023 a2-Macroglobulin Enzyme, growth factor and protease binding

O43707 a-Actinin 4 Involved in vesicular trafficking through its association with the
CART complex

P04114 Apolipoprotein B-100 Cholesterol transporter activity

P02649 Apolipoprotein E Mediates the binding, internalization, and catabolism of
lipoprotein particles

P25705 ATP synthase subunit a, mitochondrial Transmembrane transporter activity

P02730 Band 3 anion transport protein Transporter mediates electroneutral anion exchange across the
cell membrane

P98160 Basement membrane-specific heparan
sulfate proteoglycan core protein

Metal ion and protein C-terminus binding

P51911 Calponin 1 Regulation of smooth muscle contraction

P00915 Carbonic anhydrase 1 Arylesterase activity

Q96IY4 Carboxypeptidase B2 Metallocarboxypeptidase activity

P07339 Cathepsin D Aspartic-type endopeptidase activity

P00450 Ceruloplasmin Chaperone and copper ion binding

P10909 Clusterin Chaperone, misfolded protein, and ubiquitin protein
ligase binding

P00488 Coagulation factor XIII A chain Metal ion binding

P12109 Collagen a1(VI) chain Platelet-derived growth factor binding

Q99715 Collagen a1(XII) chain Extracellular matrix structural constituent conferring tensile
strength

Q05707 Collagen a1(XIV) chain Extracellular matrix structural constituent

P08123 Collagen a2(I) chain Extracellular matrix structural constituent

P12110 Collagen a2(VI) chain Collagen VI acts as a cell-binding protein

P12111 Collagen a3(VI) chain Serine-type endopeptidase inhibitor activity

P01024 Complement C3 C5L2 anaphylatoxin chemotactic receptor, cofactor,
endopeptidase inhibitor, and lipid binding

P07360 Complement component C8 g chain Retinol binding

P02748 Complement component C9 Constituent of the membrane attack complex

P00403 Cytochrome c oxidase subunit 2 Cytochrome c oxidase activity

P60981 Destrin Actin polymerization or depolymerization

P35555 Fibrillin 1 Extracellular matrix constituent conferring elasticity

P02671 Fibrinogen a chain Metal ion binding

P02675 Fibrinogen b chain Chaperone binding

P02679 Fibrinogen g chain Cell adhesion molecule binding

P02751 Fibronectin Heparin, integrin, mercury ion, protease, and collagen binding

Q9UBX5 Fibulin 5 Calcium, integrin, protein C-terminus binding

P21333 Filamin A Promotes orthogonal branching of actin filaments and links actin
filaments to membrane glycoproteins

P06396 Gelsolin Actin, calcium, myosin II, and protein domain specific binding

P04406 Glyceraldehyde-3-phosphate
dehydrogenase

Microtubule binding

P00738 Haptoglobin Hemoglobin binding

P69905 Hemoglobin subunit a Oxygen transporter activity

P68871 Hemoglobin subunit ba Oxygen transporter activity

(Continued on next page)
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Supplementary Table III (online only). Continued.

Swiss-prot ID Compound name Biologic function

P02790 Hemopexin Metal ion binding

O60814 Histone H2B type 1-K DNA binding

P01876 Ig a1 chain C region Antigen binding

P01857 Ig g1 chain C region Antigen binding

P01859 Ig g2 chain C region Antigen binding

P01765 Ig heavy chain V-III region TIL Antigen binding

P01834 Ig k chain C region Antigen binding

P01617 Ig k chain V-II region TEW Antigen binding

P01619 Ig k chain V-III region B6 Antigen binding

P04433 Ig k chain V-III region VG (fragment) Antigen binding

P01717 Ig l chain V-IV region Hil Antigen binding

P0CG04 Ig l1 chain C regions Antigen binding

A0M8Q6 Ig l7 chain C region Antigen binding

P01871 Ig m chain C region Antigen binding

Q14624 Inter-a-trypsin inhibitor heavy chain H4 Serine-type endopeptidase inhibitor and endopeptidase
inhibitor activity

Q08431 Lactadherin Phosphatidylethanolamine and phosphatidylserine binding

O15230 Laminin subunit a5 Integrin binding

P11047 Laminin subunit g1 Extracellular matrix structural constituent

Q16853 Membrane primary amine oxidase Cell adhesion protein

P35580 Myosin 10 Actin filament binding

P35749 Myosin 11 DNA binding

P59665 Neutrophil defensin 1 Has antimicrobial activity against gram-negative and
gram-positive bacteria

Q15063 Periostin Metal, cell adhesion molecule, and heparin binding

P32119 Peroxiredoxin 2 Antioxidant and thioredoxin peroxidase activity

P00747 Plasminogen Apolipoprotein binding

P02545 Prelamin A/C Structural molecule activity

Q9NQH7 Probable Xaa-Pro aminopeptidase 3 Aminopeptidase and metallopeptidase activity

P02760 Protein AMBP Inhibits calcium oxalate crystallization

P14618 Pyruvate kinase isozymes M1/M2 Glycolytic enzyme

Q13228 Selenium-binding protein 1 Selenium binding

P02787 Serotransferrin Transport of iron from sites of absorption and heme
degradation to those of storage and utilization

P02743 Serum amyloid P-component Calcium ion, virion, unfolded protein, and carbohydrate binding

P24821 Tenascin Syndecan binding

P07996 Thrombospondin 1 Adhesive glycoprotein that mediates cell-to-cell and
cell-to-matrix interactions

P29401 Transketolase Cofactor and metal binding

P68366 Tubulin a4A chain Structural constituent of cytoskeleton

O00159 Unconventional myosin Ic ATP binding

P13611 Versican core protein Calcium, carbohydrate, glycosaminoglycan, and hyaluronic
acid binding

P08670 Vimentin Vimentin is attached to the nucleus, endoplasmic reticulum,
and mitochondria

P04004 Vitronectin Vitronectin interacts with glycosaminoglycans and proteoglycans

O75083 WD repeat-containing protein 1 Induces disassembly of actin filaments in conjunction with
ADF/cofilin family proteins

ADF, Actin-depolymerizing factor; ATP, adenosine triphosphate; CART, cytoskeleton-associated recycling or transport; Ig, immunoglobulin.
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