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ABSTRACT 

Thermoporoelastic effects during heat extraction from low permeability geothermal 

reservoirs are investigated numerically, based on the model of a horizontal penny-shaped 

fracture intersected by an injection well and a production well. A coupled formulation for 

thermo-hydraulic (TH) processes is presented that implicitly accounts for the mechanical 

deformation of the poroelastic matrix. The TH model is coupled to a separate mechanical 

contact model (M) that solves for the fracture contact stresses due to thermoporoelastic 

compression. Fractures are modelled as surface discontinuities within a three-dimensional 

matrix. A robust contact model is utilised to resolve the contact tractions between opposing 

fracture surfaces. Results show that due to the very low thermal diffusivity of the rock matrix, 

the thermally-induced pore pressure partially dissipates even in the very low-permeability 

rocks that are found in EGS projects. Therefore, using the undrained thermal expansion 

coefficient for the matrix may overestimate the volumetric strain of the rock in low-

permeability enhanced geothermal systems, whereas using a drained thermal expansion 

coefficient for the matrix may underestimate the volumetric strain of the rock. An “effective” 

thermal expansion coefficient can be computed from the drained and undrained values to 

improve the prediction for the partially-drained matrix. 

 

Keywords: Coupled formulation; low-permeability rock; enhanced geothermal systems; 

undrained thermal expansion coefficient 
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1. INTRODUCTION 

Across a significant percentage of the Earth’s surface, the subsurface is hot enough to 

be used for geothermal electricity production (McClure and Horne, 2014). In deep 

geothermal reservoirs, the formations are typically of very low permeability, and fractures, 

natural or man-made, are needed to enhance the fluid flow within these reservoirs. Multiple 

physical processes including thermal (T), hydro (H), and mechanical (M) processes influence 

heat extraction from fractured geothermal systems (Tsang, 1991; MIT, 2006). In fractured 

geothermal systems, short-circuiting may occur due to thermoporoelastic deformation of the 

rock matrix, and a direct flow pathway may then connect the injector and producer. The rock 

formation cools down in the vicinity of the short-circuit pathway, leading to lower heat 

production from the reservoir.  

Thermal fracturing has been observed in many subsurface applications, wherein a 

relatively cold fluid has been injected into a reservoir: for instance, in water injection wells in 

the petroleum industry (Bellarby, 2009), in geothermal wells (Benson et al., 1987; Tulinius et 

al., 2000), and even in relatively soft, unconsolidated formations (Santarelli et al., 2008). In 

enhanced geothermal systems (EGS), the stimulation can occur through induced slip on pre-

existing fractures (shear stimulation), by creating new fractures using hydraulic fracturing 

(opening mode), or by a combination of the two processes (McClure and Horne, 2014). Fluid 

flow through a fracture is governed by the cubic law, which is derived from the general 

Navier-Stokes equation for flow of a fluid between two parallel plates (Zimmerman and 

Bodvarsson, 1996). Thus, variations in fracture aperture due to the changes in the normal 

and/or shear stresses acting on the fracture surfaces as a result of the THM processes strongly 

affect the fluid flow and heat transport in the fracture (Rutqvist et al., 2005). Also, the 

equivalent permeability of fractured reservoirs can be significantly affected by the choice of 

the aperture distribution model (Bisdom et al., 2016). 

Considerable efforts have been expended in developing THM models for geothermal 

reservoirs over the past several decades (McDermott et al., 2006; Ghassemi and Zhou, 2011; 

Guo et al., 2016, Wu et al., 2017). Improved injectivity and creation of flow channelling has 

been observed in several THM coupled simulations of fractured geothermal reservoirs (Hicks 

et al., 1996; Koh et al., 2011; Fu et al., 2015). The contraction of the formation due to heat 

extraction in the vicinity of the flow paths depends on the volumetric thermal expansion 

coefficient of the rock, as well as that of the fluid, if dissipation of the thermally-induced pore 

pressure is prevented – i.e., undrained conditions. In modelling low-permeability geothermal 

reservoirs such as are used in EGS, often fluid flow through the matrix is ignored, and a 

“drained” or an “undrained” thermal expansion coefficient is assumed for the saturated 

matrix. The undrained thermal expansion coefficient accounts for the poroelastic effect of the 

pressurised fluid “trapped” in the pores (McTigue, 1986). The induced fluid pressure is a 

result of the contrast between the thermal expansion of the rock and that of the fluid. 
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However, due to the very low thermal diffusivity of rocks, the condition for the fluid is 

actually not fully “undrained”, even in very low-permeability rocks in EGS projects. Using 

the undrained thermal expansion coefficient may overestimate the volumetric expansion 

(contraction) of the rock matrix, as the fluid often has a higher thermal expansion coefficient 

than the rock matrix, while using the drained thermal expansion coefficient may 

underestimate the volumetric expansion (contraction) of the rock matrix in cases of a very 

low-permeability matrix. 

The fully coupled hydromechanical (HM) and thermo-hydromechanical (THM) 

models were previously presented in Salimzadeh et al. (2017 a, b) and Salimzadeh et al. 

(2017c). The HM model was utilised for modelling hydraulic fracturing in poroelastic media 

including the interactions between multiple fractures, whereas the THM model was utilised to 

simulate conventional geothermal reservoirs with deformable fractures. In the present study, 

a new coupled thermo-hydraulic (TH) model is developed that implicitly accounts for matrix 

volumetric deformations. Mechanical deformation as well as contact stresses on the fracture 

surfaces under compression are solved separately in a mechanical contact model (M). Then, 

the two TH and M models are further coupled sequentially. Using this approach, the 

computational time is reduced and modelling of reservoirs with ultra-low permeability, as are 

used in EGS, is feasible. Fractures are modelled as 2D surface discontinuities within the 3D 

rock matrix. Separate but coupled flow/heat models are defined for the fracture and the rock 

matrix. The flow through the fractures is governed by the cubic law, and is coupled to Darcy 

flow in rock matrix using a leakoff mass exchange that is computed as a function of the 

fracture and matrix fluid pressures, and the matrix permeability. Fracture apertures are 

evaluated using the classic Barton-Bandis model (Bandis et al., 1983; Barton et al., 1986), 

where the contact stresses are imported from the mechanical contact model (M). Local 

thermal non-equilibrium is considered between the fluid in the fracture and the fluid in the 

rock matrix. Advective-diffusive heat transfer is assumed in both the fractures and rock 

matrix. Heat transfer between the fracture and matrix is allowed by conduction through the 

fracture walls, as well as by advection through the leakoff flow. The computed fluid pressures 

in the fracture and matrix, and the fluid and matrix temperatures from the TH model, are 

considered in solving the equilibrium equation for the mechanical contact model. The 

coupled model has been validated against several available solutions, and applied to 

investigate the extent of validity of the “undrained condition” assumption for the matrix fluid 

in low-permeability fractured geothermal reservoirs. 

 

2. COMPUTATIONAL MODEL 

2.1.  Implicitly-Coupled Governing Equations 

The fully coupled poroelastic and thermoporoelastic models for discrete fractures in a 

deformable medium has been presented by Salimzadeh et al. (2017a, b) and Salimzadeh et al. 
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(2016, 2017c), respectively. The fractures are modelled as discontinuous surfaces in the 

three-dimensional matrix, and a contact model is utilised to compute the contact tractions on 

the fracture surfaces under thermoporoelastic compression. Under specific conditions, the 

fully coupled thermoporoelastic formulation can be decoupled, to reduce the computational 

cost. In this study, the mechanical deformation and contact tractions are solved in a 

mechanical contact model (M) while the non-isothermal flow though three-dimensional 

matrix with discrete fractures are solved in a thermo-hydraulic (TH) model.  

The fully coupled governing equations for non-isothermal flow through deformable 

matrix with discrete fractures can be written as (Salimzadeh et al., 2017c) 

Mechanical deformation: 

∫ [div(𝐃𝛆 − α𝑝𝑚𝐈 − 𝛽𝑠𝐾(𝑇𝑚 − 𝑇0)𝐈) + 𝐅]𝑑Ω
 

Ω
+ ∫ (𝛔𝑐 − 𝑝𝑓𝐧𝑐)𝑑Γ

 

Γ𝑐
= 0  (1) 

Fluid flow through matrix: 

∫ div (
𝐤𝑚

𝜇𝑓
(𝛁𝑝𝑚 + 𝜌𝑓𝐠)) 𝑑Ω

 

Ω
=  

∫ [𝛼
𝜕(div 𝐮)

𝜕𝑡
+ (𝜙𝑐𝑓 +

𝛼−𝜙

𝐾𝑠
)

𝜕𝑝𝑚

𝜕𝑡
− ((𝛼 − 𝜙)𝛽𝑠 + 𝜙𝛽𝑓)

𝜕𝑇𝑚

𝜕𝑡
] 𝑑Ω

 

Ω
+ ∫

𝑘𝑛

𝜇𝑓

𝜕𝑝

𝜕𝐧𝑐
𝑑Γ

 

Γ𝑐
  (2) 

Heat transfer through matrix: 

∫ div(𝛌𝑚∇𝑇𝑚)𝑑Ω
 

Ω
= ∫ [𝜌𝑚𝐶𝑚

𝜕𝑇𝑚

𝜕𝑡
− 𝛽𝑠𝐾𝑇𝑚

𝜕(div 𝐮)

𝜕𝑡
− 𝜙𝛽𝑓𝑇𝑚

𝜕𝑝𝑚

𝜕𝑡
+ 𝜌𝑓𝐶𝑓𝐯𝑚∇𝑇𝑚] 𝑑Ω

 

Ω
  

+ ∫ [λ𝑛
𝜕𝑇

𝜕n𝑐
+ 𝜌𝑓𝐶𝑓

𝑘𝑛

𝜇𝑓

𝜕𝑝

𝜕n𝑐
(𝑇𝑚 − 𝑇𝑓)] 𝑑Γ

 

Γ𝑐
      (3) 

Fluid flow through fracture: 

div (
𝑎𝑓

3

12𝜇𝑓
∇𝑝𝑓) =

𝜕𝑎𝑓

𝜕𝑡
+ 𝑎𝑓𝑐𝑓

𝜕𝑝𝑓

𝜕𝑡
− 𝑎𝑓𝛽𝑓

𝜕𝑇𝑓

𝜕𝑡
−

𝑘𝑛

𝜇𝑓

𝜕𝑝

𝜕𝐧𝑐
     (4) 

Heat transfer through fracture: 

div(𝑎𝑓𝜆𝑓∇𝑇𝑓) = 

𝑎𝑓𝜌𝑓𝐶𝑓
𝜕𝑇𝑓

𝜕𝑡
− 𝑎𝑓𝛽𝑓𝑇𝑓

𝜕𝑝𝑓

𝜕𝑡
+ 𝑎𝑓𝜌𝑓𝐶𝑓𝐯𝑓 . ∇𝑇𝑓 − λ𝑛

𝜕𝑇

𝜕𝐧𝑐
+ 𝜌𝑓𝐶𝑓

𝑘𝑛

𝜇𝑓

𝜕𝑝

𝜕𝐧𝑐
(𝑇𝑓 − 𝑇𝑚)  (5) 

in which 𝔻 is the drained stiffness matrix, 𝛆 is the strain, 𝛼 is the Biot coefficient, 𝑝𝑚 is the 

fluid pressure in the rock matrix, i.e., the matrix pressure, 𝐈 is the second-order identity 

tensor, 𝐾 is bulk modulus of rock, 𝛽𝑠 is the volumetric thermal expansion coefficient of the 

rock matrix, 𝑇𝑚 is the matrix temperature, 𝑇0 is the initial temperature, 𝐅 is the body force per 

unit volume, 𝑝𝑓 is the fracture pressure, 𝐧𝑐 is the outward unit normal to the fracture surface 

(on both sides of the fracture), 𝛔𝑐 is the contact traction on the fracture surface, 𝐤𝑚 is the 

intrinsic permeability tensor of the rock matrix, 𝜇𝑓 is the fluid viscosity, 𝐠 is the vector of 

gravitational acceleration, 𝜌𝑓 is the fluid density, 𝐮 is the displacement vector of the rock 

matrix, 𝜙 is the rock matrix porosity, 𝑐𝑓 and 𝛽𝑓 are coefficients of the fluid compressibility 

and volumetric thermal expansion, respectively, 𝑘𝑛 is the intrinsic permeability of the rock 
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matrix in the direction normal to the fracture (in the direction of 𝐧𝑐), 𝛌𝑚 is the average 

thermal conductivity tensor of the matrix, 𝐶𝑓 is the fluid heat capacity, 𝐯𝑚 is the fluid velocity 

in matrix, 𝜌𝑚 is the average density of the matrix (saturated rock), 𝐶𝑚 is the average matrix 

heat capacity, 𝜆𝑛 is the average thermal conductivity of the rock matrix along the direction 

normal to the fracture (in the direction of 𝐧𝑐), 𝑎𝑓 is the fracture aperture, 𝑇𝑓 is the 

temperature of the fluid in fracture, 𝐯𝑓 is the fluid velocity in fracture, and 𝛌𝑓 is the thermal 

conductivity tensor of the fluid. The last terms in Eqs (2-4) represent the mass and heat 

transfer between the fracture and matrix (Salimzadeh and Khalili, 2015; 2016). 

It can be noted that fluid flow and heat transfer equations for the matrix, Eqs. (2) and 

(3), contain a term for the rate of volumetric strain, 𝜕(div 𝐮) 𝜕𝑡⁄ , which is defined in terms of 

the displacement vector. For subsurface flow engineering problems, the volumetric strain can 

be implicitly defined based on the matrix pressure and temperature as follows. The effective 

stress for a rock matrix saturated with a single-phase fluid is defined as (Biot, 1941) 

𝛔′ = 𝛔 + 𝛼𝑝𝑚𝐈                                                              (6) 

where 𝛔′ is the effective stress, and the Biot coefficient is defined as 

𝛼 = 1 −
𝐾

𝐾𝑠
       (7) 

where 𝐾𝑠 is the bulk modulus of rock matrix material (Zimmerman, 2000). In many 

subsurface flow engineering problems, the total stress in the rock matrix remains unchanged 

during the lifetime of the process (Khalili and Valliappan, 1991), so the change in effective 

stress will be a function of the change in matrix pressure, according to 

𝑑𝛔′ = 𝛼𝑑𝑝𝑚𝐈                                                              (8) 

The stress-strain relationship for thermoporoelasticity is written as (Khalili and 

Selvadurai, 2003) 

𝛔′ = 𝔻𝛆 − 𝛽𝑠𝐾(𝑇𝑚 − 𝑇0)𝐈     (9) 

and the volumetric strain of the rock matrix can be written as  

div 𝐮 =
1

𝐾
σ′̅ + 𝛽𝑠(𝑇𝑚 − 𝑇0)     (10) 

where σ′̅ = (σ′
1 + σ′

2 + σ′
3) 3⁄  is the mean effective stress. Finally, the rate of change of 

the volumetric strain of the matrix can be written as 

𝜕(div 𝐮)

𝜕𝑡
=

𝛼

𝐾

𝜕𝑝𝑚

𝜕𝑡
+ 𝛽𝑠

𝜕𝑇𝑚

𝜕𝑡
     (11) 

When two surfaces of a fracture are in partial contact at the micro-scale, the mean 

aperture of the fracture is a function of the normal contact stress. In this study, the classic 

Barton-Bandis model (Bandis et al., 1983; Barton et al., 1986) is used to calculate the 

fracture aperture under contact stress: 

𝑎𝑓 = 𝑎0 −
𝑎𝜎𝑛

1+𝑏𝜎𝑛
     (12) 
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where 𝜎𝑛 is the normal contact stress, 𝑎0 is the fracture aperture at zero contact stress, and a 

and b are model parameters. The normal contact stress is directly given by the contact 

tractions in the contact mechanical model. In the fracture flow model (Eq. 4), the change in 

aperture can be approximated from the change in the fluid pressure in the fracture as 

𝜕𝑎𝑓

𝜕𝑡
=

1

𝐾𝑛

𝜕𝑝𝑓

𝜕𝑡
      (13) 

in which Kn is the fracture tangent stiffness (normal), given by  

𝐾𝑛 = −
𝜕𝜎𝑛

𝜕𝑎𝑓
=

(1+𝑏𝜎𝑛)2

𝑎
    (14) 

Finally, the implicitly-coupled thermo-hydro-mechanical model can be written as 

follows. 

Mechanical deformation: 

∫ [div(𝐃𝛆) + 𝐅]𝑑Ω
 

Ω
= ∫ [div(α𝑝𝑚𝐈)]𝑑Ω

 

Ω
+ ∫ [div(𝛽𝑠𝐾(𝑇𝑚 − 𝑇0)𝐈)]𝑑Ω +

 

Ω

∫ (𝑝𝑓𝐧𝑐 − 𝛔𝑛)𝑑Γ
 

Γ𝑐
       (15) 

Fluid flow through matrix: 

∫ div [
𝐤𝑚

𝜇𝑓
(𝛁𝑝𝑚 + 𝜌𝑓𝐠)] 𝑑Ω

 

Ω
= ∫ [(

𝛼2

𝐾
+ 𝜙𝑐𝑓 +

𝛼−𝜙

𝐾𝑠
)

𝜕𝑝𝑚

𝜕𝑡
+ 𝜙(𝛽𝑠 − 𝛽𝑓)

𝜕𝑇𝑚

𝜕𝑡
] 𝑑Ω

 

Ω
+

∫
𝑘𝑛

𝜇𝑓

𝜕𝑝

𝜕𝐧𝑐
𝑑Γ

 

Γ𝑐
         (16) 

Heat transfer through matrix: 

∫ div(𝛌𝑚∇𝑇𝑚)𝑑Ω
 

Ω
= ∫ [(𝜌𝑚𝐶𝑚 − 𝛽𝑠

2𝐾𝑇𝑚)
𝜕𝑇𝑚

𝜕𝑡
− (𝛼𝛽𝑠 + 𝜙𝛽𝑓)𝑇𝑚

𝜕𝑝𝑚

𝜕𝑡
+

 

Ω

𝜌𝑚𝐶𝑚𝐯𝑚∇𝑇𝑚] 𝑑Ω + ∫ [λ𝑛
𝜕𝑇

𝜕𝐧𝑐
+ 𝜌𝑓𝐶𝑓

𝑘𝑛

𝜇𝑓

𝜕𝑝

𝜕𝐧𝑐
(𝑇𝑚 − 𝑇𝑓)] 𝑑Γ

 

Γ𝑐
    (17) 

Fluid flow through fracture: 

div (
𝑎𝑓

3

12𝜇𝑓
∇𝑝𝑓) = (

1

𝐾𝑛
+ 𝑎𝑓𝑐𝑓)

𝜕𝑝𝑓

𝜕𝑡
− 𝑎𝑓𝛽𝑓

𝜕𝑇𝑓

𝜕𝑡
−

𝑘𝑛

𝜇𝑓

𝜕𝑝

𝜕𝐧𝑐
     (18) 

Heat transfer through fracture: 

div(𝑎𝑓𝜆𝑓∇𝑇𝑓) = 

𝑎𝑓𝜌𝑓𝐶𝑓
𝜕𝑇𝑓

𝜕𝑡
− 𝑎𝑓𝛽𝑓𝑇𝑓

𝜕𝑝𝑓

𝜕𝑡
+ 𝑎𝑓𝜌𝑓𝐶𝑓𝐯𝑓 . ∇𝑇𝑓 − λ𝑛

𝜕𝑇

𝜕𝐧𝑐
+ 𝜌𝑓𝐶𝑓

𝑘𝑛

𝜇𝑓

𝜕𝑝

𝜕𝐧𝑐
(𝑇𝑓 − 𝑇𝑚) (19) 

 

2.2. Finite Element Approximation 

The governing equations 15 to 19 are solved numerically using the finite element 

method. The Galerkin method and finite difference techniques are used for spatial and 

temporal discretisation, respectively. The displacement vector u is defined as the primary 

variable in the mechanical contact model, whereas the fluid pressures, pm and pf, and matrix 

and fracture fluid temperatures, Tm and Tf, are defined as the primary variables in the TH 
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model. Using the standard Galerkin method, the primary variable 𝕏 within an element is 

approximated from its nodal values as 

𝕏 = 𝐍𝕏̂       (20) 

where N is the vector of shape functions, and 𝕏̂ is the vector of nodal values. Using the finite 

difference technique, the time derivative of 𝕏 is defined as 

𝜕𝕏

𝜕𝑡
=

𝕏𝑡+𝑑𝑡−𝕏𝑡

𝑑𝑡
       (21) 

where 𝕏𝑡+𝑑𝑡 and 𝕏𝑡 are the values of 𝕏 at time t + dt and t, respectively. The set of 

discretised equations can be written in matrix form as 𝕊𝕏 = 𝔽, in which 𝕊 is the element’s 

general stiffness matrix, and 𝔽 is the vector of right-hand-side loadings. The discretised 

equations are implemented in the Complex Systems Modelling Platform (CSMP++, also 

known as CSP), an object-oriented application programme interface (API), for the simulation 

of complex geological processes and their interactions (formerly CSP, cf. Matthäi et al., 

2001). Quadratic unstructured elements are used for spatial discretisation of surfaces 

(quadratic triangles) and volumes (quadratic tetrahedra). The triangles on two opposite 

surfaces of a fracture are matched with each other, but do not share nodes, and duplicate 

nodes are defined for two sides of a fracture. The triangles are matched with faces of the 

tetrahedra connected to the fractures, and they share the same nodes. Fracture flow and heat 

equations are solved only on one-side of the fracture, whereas, the matrix deformation, fluid 

flow and heat transfer equations are accumulated over the volume elements. The ensuing set 

of linear algebraic equations 𝕊𝕏 = 𝔽 is solved at each timestep using the algebraic multigrid 

method for systems, SAMG (Stüben, 2001). 

 

2.3. Mechanical Contact Model  

In the present study, fractures are modelled as surface discontinuities within a three-

dimensional matrix; therefore, the contact problem arises and the contact stresses (normal and 

shear) need to be computed in order to avoid the penetration of the fracture surfaces into the 

opposite matrix, under compressive loading. The Augmented Lagrangian (AL) method has 

been successful for accurately enforcing the contact constraint, by combining the Lagrange 

multiplier and penalty methods to exploit the merits of both approaches (Wriggers and 

Zavarise, 1993; Puso and Laursen, 2004). A sophisticated algorithm is used for the treatment 

of frictional contact between the fracture surfaces, based on isoparametric integration-point-

to-integration-point discretisation of the contact contribution. Contact constraints are 

enforced by using a gap-based AL method developed specifically for fractured media (Nejati 

et al., 2016). In this model, penalties are defined at each timestep as a function of local 

aperture, so that they are larger away from the fracture tips, and decrease to zero at the tips. 

The mechanical contact (M) and TH models are coupled iteratively, such that in each 

timestep, the TH model is run using the fracture apertures computed in the previous step, and 
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the new nodal values of pressures and temperatures are computed. Then, the contact model is 

run with new pressures and temperatures, and the contact stresses and fracture apertures are 

updated. The contact model is run in the “stick” mode, which means that sliding along the 

opposing fracture surfaces is not allowed. 

 

3. Simulation of a Low-Permeability Geothermal System 

The proposed model has been previously validated against several analytical solutions 

and sets of experimental data, including hydraulic fracturing examples in the viscosity, 

toughness and leakoff regimes (Salimzadeh et al., 2017 a, b), heat propagation from a single 

fracture (Salimzadeh et al., 2017c), and double-notch crack propagation experiments (Usui et 

al., 2017). The example used in this study is adopted from Guo et al. (2016), and the present 

model results are also validated against their results. In this example, heat is produced from a 

horizontal penny-shaped fracture in a low-permeability hot crystalline rock, which roughly 

resembles the Habanero project in the Cooper Basin, Australia (Chopra and Wyborn, 2003; 

Baisch et al., 2009; Llanos et al., 2015). The geometry consists of a fracture with radius of 

500 m, in the centre of a 3×3×3 km cubic block. The injection and production wells intersect 

the fracture, and are located 500 m apart, as shown in Figure 1. The initial pressure and 

temperature are set to 34 MPa and 200˚C, respectively. Injection is simulated through a 

constant rate of 0.0125 m3/s of water at a temperature of 50˚C, while production is simulated 

through a constant pressure of 34 MPa at the producer. The rock and fluid properties are 

given in Table 1. The fluid density is considered to be pressure- and temperature-dependant, 

using the following function: 

𝜌𝑓 = 𝜌𝑟𝑒[𝛽𝑓(𝑝𝑓−𝑝𝑟)−𝛼𝑓(𝑇𝑓−𝑇𝑟)]    (22) 

where 𝜌𝑟=887.2 kg/m3, 𝑝𝑟=34 MPa, and 𝑇𝑟=200˚C are the reference (initial) density, pressure 

and temperature, respectively. The fracture aperture is defined as a function of the contact 

stress, using the Barton-Bandis model. Two reference points are assumed to evaluate the 

model parameters a and b, where the fracture aperture at zero contact stress a0 is assumed 

equal to a/b. The two reference points are: af = 0.24 mm for n = 30 MPa, and af = 0.72 mm 

for n = 5 MPa. For these given data, the model parameters a and b are 1.6×10-10/Pa and 

1.333×10-7/Pa, respectively, and the aperture function takes the form of 

𝑎𝑓 = 0.0012 −
1.6×10−10𝜎𝑛

1+1.333×10−7𝜎𝑛
    (23) 

The domain is discretised spatially using 39,957 quadratic tetrahedra and triangles for 

the matrix volume and fracture surface, respectively. Several cases are simulated for the 

injection of cold water, for a duration of thirty years, and the results are presented and 

discussed in the following subsections. 
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3.1.  The Effect of Matrix Permeability 

The rock matrix permeability in enhanced geothermal systems (EGS) usually is very 

low, ranging from micro-Darcies (10-18 m2) to nano-Darcies (10-21 m2). Therefore, fluid flow 

through the matrix is frequently ignored in the numerical simulations, and the heat transfer 

through the matrix is assumed to occur only through conduction (Zhao et al., 2015; Sun et al., 

2017). The average values for matrix thermal conductivity (𝛌𝑚), density (𝜌𝑚) and heat 

capacity (𝐶𝑚) are calculated from arithmetic average of the corresponding values for the rock 

solid (𝛌𝑠, 𝜌𝑠, 𝐶𝑠) and the fluid (𝛌𝑓, 𝜌𝑓, 𝐶𝑓) as 

𝛌𝑚 = (1 − 𝜙)𝛌𝑠 + 𝜙𝛌𝑓     (24) 

𝜌𝑚𝐶𝑚 = (1 − 𝜙)𝜌𝑠𝐶𝑠 + 𝜙𝜌𝑓𝐶𝑓     (25) 

More accurate models of the effective thermal conductivity can also be used (Zimmerman, 

1989). The volumetric matrix thermal expansion coefficient of the solid (s) is modified for a 

low permeability matrix using the expression given by McTigue (1986), for undrained 

thermal expansion of a rock-fluid system: 

𝛽𝑢 = 𝛽𝑠 + 𝜙𝐵(𝛽𝑓 − 𝛽𝑠)     (26) 

where 𝛽𝑢 is the effective thermal expansion coefficient of a fluid-saturated rock under 

undrained conditions, and B is the Skempton coefficient (Jaeger et al., 2007). Similar 

expressions for the undrained thermal expansion coefficient can be extracted from the 

governing equations given in this study. Under undrained conditions, the increment in the 

fluid pressure in the matrix due to an increment in the temperature, in the absence of leakoff, 

can be computed from the governing equation for the flow through matrix (Eq. 16) as 

∆𝑝𝑚 =
𝜙(𝛽𝑓−𝛽𝑠)

𝛼2

𝐾
+𝜙𝑐𝑓+

𝛼−𝜙

𝐾𝑠

∆𝑇𝑚      (27) 

Then, the increment in the volumetric strain of the matrix due to an increment in the 

temperature can be computed from Eq. (11) as 

∆𝜀𝑣 = [𝛽𝑠 +
𝛼𝜙(𝛽𝑓−𝛽𝑠)

𝛼2+𝐾𝜙𝑐𝑓+(𝛼−𝜙)(1−𝛼)
] ∆𝑇𝑚    (28) 

and the equivalent thermal expansion coefficient (𝛽𝑒𝑞) can be written as 

𝛽𝑒𝑞 = 𝛽𝑠 +
𝛼𝜙(𝛽𝑓−𝛽𝑠)

𝛼2+𝐾𝜙𝑐𝑓+(𝛼−𝜙)(1−𝛼)
     (29) 

and by setting 𝛽𝑒𝑞 = 𝛽𝑢, the coefficient B can be evaluated as 

𝐵 =
𝛼

𝛼2+𝐾𝜙𝑐𝑓+(𝛼−𝜙)(1−𝛼)
     (30) 

For the given bulk modulus, porosity, and fluid compressibility used in this example, 

the undrained volumetric thermal expansion, assuming  =1, is u = 3.0×10-5 /˚C. Although 

the rock has a very low porosity (𝜙 = 0.01), the undrained thermal expansion coefficient is 
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nevertheless 25% greater than the rock volumetric thermal expansion. This is due to the fact 

that water has a much higher thermal expansion coefficient than the rock (by a factor of about 

thirty). Using the undrained thermal expansion coefficient, a good match is found between 

the present model results for the fluid temperature at the producer versus time, and the results 

given by Guo et al. (2016) for the case of a homogeneous initial aperture, as shown in Figure 

2. The good match validates our simulator, as well as the mesh used in the present model. 

Included in this figure is also the case with drained volumetric thermal expansion coefficient 

(i.e., equivalent to that of rock solid, s). Using the drained thermal expansion coefficient for 

the matrix reduces the temperature drop at the producer, such that the breakthrough time for 

water with a temperature of 130˚C, for instance, extends from less than 21 years for the 

undrained case, to 27.6 years for the drained case. Lower thermal expansion results in lower 

volumetric contraction of the matrix, and as a result, a smaller increase in the fracture 

aperture during the heat extraction from the reservoir. The variation of the fracture aperture at 

the injection point versus time is shown in Figure 2. 

Although neglecting fluid flow through the matrix may reduce the computational 

effort, selection of the volumetric thermal expansion coefficient (whether it is under drained 

or undrained conditions) can significantly affect the outcome of the simulation. To 

investigate the flow regime in the matrix, several cases with varying matrix permeability have 

been simulated. The matrix permeability ranges between 10-17 m2 to 10-22 m2, corresponding 

to the range of rock permeabilities observed in the majority of EGS projects, while the 

drained volumetric thermal expansion coefficient (i.e., equivalent to that of rock solid, s) is 

used for matrix. The results for the fluid temperature at the production well, and the fracture 

aperture at the injection well, for these cases are also presented in Figure 2. Fluid leakoff 

from the fracture into the matrix can be assumed to be negligible, due to the very low 

permeability of the matrix, except for the cases with permeabilities of 10-17 m2 and 10-18 m2. 

In the presence of fluid leakoff, the heat extraction from the matrix significantly improves, 

which in turn delays the cold-water production at the producer (Ghassemi et al., 2011; 

Salimzadeh et al., 2017c). Furthermore, the leakoff flow increases the fluid pressure in the 

matrix, leading to expansion of the matrix and development of a so-called back-stress 

(Salimzadeh et al., 2017a, b). The back-stress closes the fracture, and reduces the fracture 

aperture, as can be seen in Figure 2 for cases with permeability of 10-17 m2 and 10-18 m2. In 

other low-permeability cases, the variation in the results is primarily due to the variation in 

fluid pressure trapped in the matrix pores. As heat propagates through the matrix, the 

temperature in the matrix decreases, the rock and the fluid constituents undergo volumetric 

contractions, but as the fluid thermal expansion is much higher than that of the rock, the 

volume change in the fluid constituent is much higher than change in the pore volume. 

Therefore, the fluid pressure changes in response to the constraint imposed by the relatively 

stiffer pore volume. As the permeability decreases, the condition for the fluid in the matrix 
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approaches undrained conditions, and the results for both fluid temperature at the production 

well, and the fracture aperture at the injection point, approach the undrained solution. The 

case with matrix permeability km = 10-22 m2 shows a good match to the undrained results, 

both for the fluid temperature at the production well, and the fracture aperture in the injection 

point, as shown in Figure 2. 

The matrix pressure distribution at the end of the simulations (30 years), on a vertical 

cut-plane passing through the injection and production points, is shown in Figure 3. For the 

two high permeability cases (km = 10-17 m2 and 10-18 m2), fluid leakoff occurs, and so the fluid 

pressure in the matrix increases, with the highest pressure at the fracture. As the matrix 

permeability decreases, the rate of fluid diffusion reduces, and the region with increased fluid 

pressure shrinks. For cases with matrix permeability less than km = 10-18 m2, a region with 

reduces fluid pressure develops, and the magnitude of the depleted pressure increases with 

reduction in the matrix permeability. The low-pressure region is located close to the fracture, 

and shows the region affected by the cooling of the matrix (Figure 4), and is not drained. The 

pressure depletion is a result of cooling of the matrix. The distribution of matrix temperature 

on the same vertical plane after 30 years for different cases is shown in Figure 4. It can be 

seen that the variation in the permeability of the matrix has a small effect on the temperature 

distribution, confirming that heat transfer in the matrix is mainly conductive. Furthermore, 

heat transfer in the matrix is mainly one-dimensional, except for the edges of the temperature 

plume. The aperture distributions on the fracture for different cases at the end of the 

simulations are shown in Figure 5. Thermoporoelastic stresses develop higher fracture 

apertures in the vicinity of the injection point. The region with increased aperture points 

towards the producer. As the permeability of the matrix decreases, the pressure depletion due 

to cooling of the matrix increases, which leads to more contraction of the deformable matrix, 

and an increased aperture. The increased aperture facilitates fluid flow towards the producer, 

resulting in lower heat extraction rate from the system, and faster temperature reduction at the 

producer. The maximum aperture occurs not at the injection point, but at a point behind the 

injection well, away from the production point and towards the fracture tip. This is due to the 

stress redistribution over the fracture and surrounding matrix. 

The vertical effective stress distribution on a horizontal plane passing through the 

fracture, for the case with km = 10-20 m2, is shown in Figure 6. The cooling of the matrix 

reduces the vertical effective stress over the parts of the fracture that contain cold flowing 

fluid. This results in an increased vertical stress on the vicinity of the cooled area, as can be 

seen in Figure 6. The region with increased stress extends beyond the fracture and over the 

rock matrix on the left side of the injection point (away from the production point). 

Therefore, the location of the minimum vertical stress, i.e., maximum aperture, moves 

towards the left side of the injection well. 
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The results of the present model show that the matrix permeability used in this 

example, km = 10-20 m2, does not allow the persistence of undrained conditions, and the 

results for this value of matrix permeability are actually closer to those which occur under 

drained conditions. This is due to the relatively slow diffusion process of heat in the matrix. 

For a one-dimensional diffusive process in a column of height h, the time needed for 

completion of the process can be defined in terms of dimensionless time (tD) as (Carslaw and 

Jaeger, 1959) 

𝑡𝐷 =
𝛼𝐷𝑡

ℎ2       (31) 

in which D is the diffusion coefficient, and t is elapsed time. A value of tD = 0.001 

corresponds to 3% completion of the process and tD = 1.0 corresponds to 94% completion of 

the diffusive process (Carslaw and Jaeger, 1959). So, for developing undrained conditions, 

for a given time, the dimensionless time of the hydraulic diffusion (tDh) should be 

significantly smaller than the dimensionless time of the heat diffusion process (tDT). 

Assuming tDh ≤ 0.01 tDT for undrained behaviour, the hydraulic and thermal diffusion 

coefficients are related by 

𝛼𝐷ℎ ≤ 0.01𝛼𝐷𝑇      (32) 

where 𝛼𝐷ℎ = 𝑘𝑚 𝜇𝑐𝑡⁄  and 𝛼𝐷𝑇 = 𝜆𝑚 𝜌𝑚𝐶𝑚⁄  are the hydraulic and thermal diffusion 

coefficients, respectively, and 𝑐𝑡 = 𝛼2 𝐾⁄ + 𝜙𝑐𝑓 + (𝛼 − 𝜙) 𝐾𝑠⁄  is the total compressibility of 

the fluid-saturated matrix. Using the given parameters in the example, and setting  =1, the 

matrix permeability should be smaller than 

𝑘𝑚 ≤ 8.43 × 10−23 m2     (33) 

Thus, in order to satisfy the conditions of undrained behaviour, the matrix permeability 

should be less than 8.43×10-23 m2, whereas the given value of km = 10-20 m2 in the example 

results in  𝑡𝐷𝑝 = 1.2 𝑡𝐷ℎ , in which case the assumption of undrained behaviour is not 

acceptable. 

 

3.2. The Effects of Poroelastic Coupling and Matrix Porosity 

The Skempton coefficient B, as given by Eq. (30), is dependent on several parameters, 

including the Biot coefficient of poroelasticity () and matrix porosity (). Matrix porosity 

also influences the contribution of the fluid constituent to the thermal properties of the 

saturated rock. In this section, further simulations are run with varied Biot coefficients and 

matrix porosities, to investigate the effect of these two parameters on the response of the low-

permeability saturated rock to the temperature perturbation during heat extraction from the 

example of the EGS project. 

The Biot coefficient can never be less than 3/(2+) (Zimmerman, 2000), and 

generally decreases with a decrease in matrix porosity (Tan and Konietzky, 2017). In the next 
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set of simulations, the Biot coefficient is reduced to  = 0.2, which is more realistic for 

granite having a very low porosity. The results for temperature at the producing well versus 

time, as well as the fracture aperture at the injection well versus time, are shown in Figure 7. 

The lower Biot coefficient reduces the volumetric contraction due to the change in matrix 

pressure, and so the fracture aperture decreases as the Biot coefficient decreases, and hot fluid 

is produced for an extended period of time. The undrained volumetric thermal expansion 

coefficient is also reduced to 𝛽𝑢= 2.81×10-5 /˚C for  = 0.2, and the results for the 

temperature at the production well, and the fracture aperture at the injection point, for the 

drained and undrained cases, are also shown in Figure 7. The results for the undrained case 

move closer to those for the drained case; however, there is still a large gap between the two 

behaviours. For instance, the temperature of the fluid at the producer reaches 130˚C in about 

22.4 years, whereas in the drained case this requires 27.6 years, and for the case of km = 10-20 

m2 it requires 26.1 years. To satisfy the condition for undrained behaviour, as defined earlier, 

𝛼𝐷ℎ ≤ 0.01𝛼𝐷𝑇, the matrix permeability should be smaller than 2.6×10-23 m2, which is 

smaller than the corresponding critical value when  = 1.0. So, for low values of the Biot 

coefficient, the condition of the fluid in the matrix is much closer to the drained condition 

than to undrained condition, for the given permeability. 

In another simulation case, the porosity of the matrix has been increased to  = 0.10, 

while the Biot coefficient is set to  = 0.2. The results for the fluid temperature at the 

producer versus time, and the fracture aperture at the injection point versus time, are shown 

in Figure 8. The higher porosity increases the contribution of the fluid thermal expansion 

coefficient in the undrained thermal expansion coefficient, as shown in Eq. (26). As the 

thermal expansion coefficient of the fluid is much higher than that of the rock, the undrained 

thermal expansion coefficient becomes larger for larger porosity, i.e. 𝛽𝑢= 3.21×10-5 /˚C for  

= 0.1. The average heat storage (𝜌𝑚𝐶𝑚) also increases, from 2.05×106 J/m3˚C to 2.72×106 

J/m3˚C, when the porosity increases from 0.01 to 0.1. This is due to the higher heat storage of 

the fluid (𝜌𝑓𝐶𝑓) compared to that of the rock (𝜌𝑠𝐶𝑠). Thus, under drained conditions, the 

matrix experiences lower temperature reduction, lower matrix contraction, and higher heat 

production at the producer. In undrained conditions, the elevated volumetric thermal 

expansion dominates the results, matrix contraction increases, the fracture aperture increases, 

and the temperature of the produced water decreases faster than in the case with lower 

porosity. As a result, the gap between the drained and undrained solutions increases, such that 

the temperature of the produced water reaches 130˚C in 20.6 years for the undrained case, 

compared to 28.6 years for the drained case, and 25.4 years for the case with a permeability 

km = 10-20 m2. Again, to satisfy the condition for undrained behaviour, Dh ≤ DT, the matrix 

permeability would need to be smaller than 9.2×10-23 m2. 
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3.3. Thermal Expansion Coefficient for Partially-Drained Matrix 

The thermal diffusion coefficient of rocks ranges between DT =5×10-7 m2/s to 11×10-

7 m2/s (Jaeger et al., 2007). While the thermal diffusion coefficient for different rocks does 

not vary widely, the hydraulic diffusion coefficient for low-permeability rocks (km = 1×10-18 

m2 to 1×10-21 m2) saturated with water ( = 1×10-3 m2/s to 1×10-4 Pa s) can vary by several 

orders of magnitude, from DT =1×10-8 m2/s to 1×10-4 m2/s. Thus, hydraulic diffusivity can in 

some cases be comparable to thermal diffusivity, and so a fully undrained behaviour 

(DhDT < 0.001-0.01) is not expected, for most EGS projects. The flow condition is in fact 

expected to be somewhere between the drained and undrained conditions, i.e., partially 

drained condition.  

As the full thermoporoelastic simulations are computationally expensive, it would be 

convenient if simulations could be conducted without using the full thermoporoelastic model, 

but with an “effective” thermal expansion coefficient that accounts for the effect of “partial 

drainage”. From the simulation results presented earlier in this study, a degree of drainage 

can be quantified using the fracture aperture at the injection point at the end of the simulation, 

as follows: 

𝛿𝐷 =
𝑎𝑓−𝑎𝑓𝐷

𝑎𝑓𝑈−𝑎𝑓𝐷
      (34) 

where afD is the fracture aperture calculated using the drained thermal expansion coefficient, 

and afU is the fracture aperture calculated using the undrained thermal expansion coefficient. 

The values for D are plotted versus the non-dimensional diffusion ratio 𝜉𝐷 = 1 −

log(𝛼𝐷ℎ 𝛼𝐷𝑇⁄ ) in Figure 9. Only positive values for D are considered, as negative values are 

assumed to be representative of leakoff. Thus, the value of D varies between 0 for a fully 

drained situation, to 1 for a fully undrained situation. The data plotted in Figure 9 show a 

linear correlation between the dimensionless diffusion ratio and dimensionless drainage ratio. 

To validate this relationship, a test case was built using a new set of parameters:  = 0.05,  = 

0.40, km = 2×10-21 m2. The corresponding values for hydraulic and thermal diffusion 

coefficients are Dh = 3.87×10-7 m2/s, and DT =1.42×10-6 m2/s, respectively, and the 

dimensionless diffusion ratio is 𝜉𝐷= 1.568. Using the linear correlation given in Figure 9, the 

dimensionless drainage ratio is calculated as D = 0.509. The dimensionless drainage ratio is 

used to modify the undrained thermal expansion coefficient as 

𝛽𝑒𝑞 = 𝛽𝑠 + 𝛿𝐷𝜙𝐵(𝛽𝑓 − 𝛽𝑠)     (35) 

such that eq = s if D = 0, and eq = u if D = 1. For the given parameters, the undrained 

thermal expansion coefficient is u = 3.62×10-5/˚C, the equivalent thermal expansion 

coefficient for D = 0.509 is eq = 3.02×10-5/˚C, and the drained thermal expansion coefficient 

is s = 2.40×10-5/˚C, which is equal to the rock volumetric expansion coefficient. The results 

for the fluid temperature at the producer as well as the fracture aperture at the injection point 

versus time are shown in Figure 10 for the drained, undrained, and semi-drained cases. The 



15 

 

results show that the case with a modified thermal expansion coefficient (eq) provides a 

better prediction of the actual results from the thermoporoelastic model (full model), 

compared to both other cases, with drained or undrained thermal expansion coefficients. 

Also, the calculated dimensionless drainage ratio for the test case (full thermoporoelastic 

model) computed from the fracture aperture at the injection point at time t = 30 years is D = 

0.507, which is almost equal to the predicted value from the linear correlation (D = 0.509), 

which is shown with a blue circle in Figure 9. The case with a modified thermal expansion 

coefficient (eq), however, cannot exactly capture the full thermoporoelastic model, as shown 

with a red cross (×) in Figure 9. The reason is that the dimensionless drainage ratio is not 

constant, but varies during the simulation, decreasing as time elapses. Therefore, the drainage 

ratio calculated from the results at t = 30 years is lower than the average value during the 30 

years, and as such the predicted aperture is lower than that predicted by the full 

thermoporoelastic model. 

 

4. Conclusions 

A coupled thermo-hydraulic (TH) model that accounts for the mechanical 

deformation of the matrix has been presented. The TH model is coupled to a rigorous 

mechanical contact model that solves for the contact tractions on fracture surfaces under 

compressive thermoporoelastic compression. The model has been applied to investigate the 

effect of thermoporoelasticity during heat extraction from a low-permeability fractured 

geothermal reservoir. The results show that the assumption of undrained conditions for the 

fluid trapped in the low-permeability matrix may not be accurate, due to the low thermal 

diffusivity of the matrix. The thermal diffusion coefficient could be as small as the hydraulic 

one, in which case the fluid is partially drained. This is important, as the fluid usually has a 

relatively higher thermal expansion coefficient than the rock, so the undrained thermal 

expansion coefficient is higher than the drained thermal expansion coefficient. As a result, 

assuming undrained conditions for the saturated low-permeability matrix in EGS projects 

may overestimate the volumetric contraction of the matrix, whereas using a drained thermal 

expansion coefficient may underestimate the volumetric contraction of the matrix. An 

“equivalent” thermal expansion coefficient can be calculated from the drained and undrained 

coefficients that can be used to make a better prediction of the poroelastic effect of the 

partially-drained matrix.   
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Table 1- The rock and fluid properties used in the simulations 

Parameter Value Unit 

Matrix porosity () 0.01 - 

Matrix permeability (km) 1×10-20 m2 

Solid density (s) 2500 kg/m3 

Young’s modulus (E) 50 GPa 

Poisson’s ratio () 0.25 - 

Specific heat capacity of the solid (Cs) 790 J/kg˚C 

Specific heat capacity of the fluid (Cf) 4460 J/kg˚C 

Volumetric thermal expansion coefficient of the solid (s) 2.4×10-5 /˚C 

Volumetric thermal expansion coefficient of the fluid (f) 7.66×10-4 /˚C 

Fluid dynamic viscosity (f) 1.42×10-4 Pa s 

Fluid compressibility (cf) 5.11×10-10 Pa-1 

Thermal conductivity of the solid (s) 3.5 W/m˚C 

Thermal conductivity of the fluid (f) 0.6 W/m˚C 
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Figure 1. The geometry of the model for the EGS example and the mesh used for the fracture  
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Figure 2. The fluid temperature at producer and the fracture aperture at injection point versus 

injection time for different matrix permeabilities  
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Figure 3. The fluid pressure distribution on a vertical plane passing through the injection and 

production points for different matrix permeabilities after 30 years 
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Figure 4. The matrix temperature distribution on a vertical plane passing through the injection 

and production points for different matrix permeabilities after 30 years   
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Figure 5. The fracture aperture distribution for different matrix permeabilities after 30 years   
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Figure 6. The vertical effective stress distribution on a horizontal plane (a) and on a vertical 

plane (b) passing through the injection and production points for the case with km = 10-20 m2 

and  = 1 after 30 years   
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Figure 7. The fluid temperature at producer and the fracture aperture at injection point versus 

injection time for different Biot coefficients   
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Figure 8. The fluid temperature at producer and the fracture aperture at injection point versus 

injection time for different matrix porosities 
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Figure 9. Dimensionless drainage parameter D versus dimensionless diffusion parameter D. 

Blue circle shows the test case simulated using the full thermoporoelastic model, the red 

cross shows the test case simulated using the modified thermal expansion coefficient 
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Figure 10. The fluid temperature at producer and the fracture aperture at injection point 

versus injection time for the test case with modified thermal expansion coefficient 


