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Abstract

Fishing is a hazardous activity due to stability related accidents, caused many
times by the crew lacking information related to the level of stability of the
vessel. A possible solution is offered by stability assessment systems that can
help the skipper to identify potential risks and support his decision making
process.

The metacentric height is a key parameter for vessel stability and its
real-time monitoring may be beneficial for alerting the crew about changes
in stability. The paper proposes the design of a novel stability monitoring
system that automatically detects changes in metacentric height based on
estimates of the roll natural frequency solely using the measured roll angle.
The core of the monitoring system is a combined estimation-detection system
that exploits methods in advanced signal processing and statistical change
detection to properly address issues of robustness.

To analyze the monitoring performance, a nonlinear mathematical model
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of a stern trawler is used to generate roll motion time series in beam irreg-
ular waves of different peak period and significant wave height. Estimation
and detection results obtained on the simulated data show a convincing abil-
ity of the monitoring system in discerning between safe and unsafe sailing
conditions for most of the investigated cases.

Keywords:
Fishing vessels, operational guidance, roll stability, generalized likelihood
ratio test, Hilbert-Huang transform, empirical model decomposition

1. Introduction

1.1. Motivation

Commercial fishing is internationally well-known by two main facts: the
large variety of ship types and heterogeneity of their arrangement, size, fish-
ing gear and typical operation; and the high fatal injury rate which has his-
torically affected the fishing sector. Fishing is considered as one of the most
dangerous occupations worldwide, including countries such as the United
States, Korea, or EU coastal areas, such as Spain or the United Kingdom
(Lazakis et al., 2014; Jensen et al., 2014; Petursdottir et al., 2001; European
Commission, 2009).

Accidents affecting crews of fishing vessels are of very different kinds,
and because the work is usually done on deck without any protection from
weather and in harsh environmental conditions, falling overboard or being
struck by machinery are among the most common causes of injuries. When it
comes to ship-related accidents, those caused by a stability failure leading to
capsizing (such as cargo shifting, large waves, hanging weights, overloading
or dynamic stability issues), are the most dangerous ones (Lucas and Case,
2018). Although capsizing is the least frequent event, it is responsible for the
biggest number of losses of life at sea, as it usually takes place unexpectedly
while the vessel sails in rough weather (Dickey, 2008; Oliveira-Goumas and
El Houdagui, 2000; Krata, 2008; Jensen et al., 2014; Bye and Lamvik, 2007).
Noteworthy that most of these casualties occur in accidents involving small
and medium sized fishing vessels, mainly of lengths under 12 meters (Krata,
2008; Scarponi, 2017), which represent the vast majority of the worldwide
fleet (more than an 85% of the engine-powered fishing vessels have lengths
under this value (Gudmundsson, 2013)).
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Different stakeholders agree that many of these accidents occur due to a
chain of events that usually commence with a human error and whose effects
are amplified due to the absence of a generally applied safety culture on
board (Oliveira-Goumas and El Houdagui, 2000). This situation has been
historically present in the fishing sector, as fishermen assume that there is
an inherent risk in their activity which cannot be avoided. Accidents are
usually accepted with resignation and feeling of bad luck. The situation is
worsen by the huge economical pressure fishermen are subject to, as their
income depend on their catches, thus forcing them to sail and work even in
very unfavourable weather conditions, thereby increasing the risk level of the
activity (Bye and Lamvik, 2007; Antaõ et al., 2008; Lazakis et al., 2014).

There is also another main cause for the high accident rate, which is re-
lated to the average crew training level in vessel stability matters. It has
been highlighted in different publications (Wolfson Unit, 2004) that fishing
vessel skippers usually present a lack of knowledge in stability evaluation,
and usually assess the stability level of their vessel in a subjective way based
on previous experience. Stability booklets are present in some vessels above
12 m in length, however their understanding is complex and are not prac-
tical in distress situations that require a quick evaluation of vessel stability
(Petursdottir et al., 2001; Deakin, 2005).

1.2. Literature survey

In the last two decades, it has been concluded that one plausible approach
to reduce stability-related accidents is the provision of simple and intuitive
stability information, which helps the skipper to evaluate the sailing condi-
tion of the vessel based on objective data. This fact has been materialized
in simplified on board stability guidance systems, which provide simple and
clear information about the stability of the ship, including safe loading con-
ditions and warn about situations where there may be a higher risk level
(Deakin, 2005; Womack, 2003).

One of the first approaches is the stability matrix, proposed by Womack
(2003). It consists of a colour coded matrix where different loading possibili-
ties are considered, including fish in holds, presence of free fish on deck, fuel
distribution, etc. Although this stability matrix represents a good tool for
the smallest vessels, it may become quite complex as the number of tanks
increase in larger vessels (Deakin, 2005). Similar systems, based on the use of
colour coded stability posters alone or together with the analysis of residual
freeboard, have also been proposed (Scarponi, 2017; Wolfson Unit, 2004).
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In the last decade, second generation operational guidance systems have
been developed. These are based on simplified computer systems and soft-
ware that provide an estimation of the stability level of the ship based on
the loading condition details introduced in the software by the crew during
operation. One such system is that one proposed by Tello et al. (2011), which
also provides some basic operational guidance based on IMO MSC Circular
1228 (International Maritime Organization, 2007). Mı́guez González et al.
(2012) proposed an operational guidance system that combines a naval ar-
chitecture software with a user-friendly interface, which provides stability
information following a similar colour coded approach to the aforementioned
stability posters.

All of the described alternatives rely on the use of data provided by
the crew, thus introducing subjectivity and large uncertainties within the
stability evaluation process. In the case of stability posters, subjectivity
and uncertainty appear during the selection of the loading condition from
those included in the poster which better resembles the current one, while,
in the case of computer systems, they appear while introducing the loading
condition details which are needed to evaluate the vessel stability.

Recently, in an attempt to maximize the ease of use and the objectivity
of these guidance systems, a new group of methods has been proposed. Their
main objective comprises stability evaluation by automatic real-time estima-
tion of the vessel metacentric height (GM) (Wawrzynski and Krata, 2016).
Terada et al. (2016) proposed a mathematical model to estimate the vessel
roll natural frequency (directly related to GM) together with the roll gyra-
dius from the measured vessel roll motion. Terada et al. (2018) further refined
this approach by using the Markov chain Monte Carlo (MCMC) method as
modelling tool to achieve the same objective. The authors concluded that
more validation work was needed to ensure the reliability of the obtained
results. Galeazzi and Perez (2011) proposed a model-based nonlinear ob-
server for estimating the transverse stability parameters of surface vessels.
The method was tested only on simulated data and requires the knowledge
of the roll hydrodynamic parameters, which may be hard to obtain.

Santiago Caamaño et al. (2018a) developed a method for real-time vessel
stability assessment based on the spectral analysis of roll motion using the
Fast Fourier Transform (FFT) to estimate the roll natural frequency and,
thus, the vessel metacentric height. This approach was further developed
to reduce the uncertainty of the obtained results by implementing a sequen-
tial application of the FFT, which together with an averaging, smoothing
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and fitting process of the obtained roll spectra increases the estimation per-
formance. Results of GM estimations for two similar stern trawlers using
the latter implementation, both considering roll motion from a mathemati-
cal model (Mı́guez González et al., 2017) and from real sea trials (Santiago
Caamaño et al., 2018b), were in the range of [-10 %, +20 %] to the target
value of GM . Although these results were reasonable, it was concluded that
further research was needed to enhance the reliability of the proposed system.

Decision support systems for operational guidance are becoming more
widespread across different fields of engineering as requirements for safety
and availability tightens. The maritime sector is no different and the in-
dustry has seen the proliferation of such systems for different applications.
Statistical change detection has proven to be a successful methodology for
the design of condition monitoring systems whenever timely decision under
uncertainty and robustness are paramount. Examples of such systems are
offered by Galeazzi et al. (2013, 2015) for the real-time monitoring of para-
metric roll resonance on merchant vessels; Fang et al. (2015) for the timely
detection of faults in mooring systems of offshore floating platforms; Willer-
srud et al. (2015) for the robust detection of drillstring washouts during
drilling operation for oil and gas; Hansen and Blanke (2014) for the real-time
detection of airspeed sensor faults in unmanned aerial vehicles; Ghane et al.
(2018) for wear detection in the downwind main shaft bearing of a spar-type
floating wind turbine; Pradhan and Gupta (2017) for the detection of incom-
ing vessels by measuring the ambient noise to enhance security of port and
offshore operations.

1.3. Contributions and novelty

The paper presents a novel vessel stability monitoring system that in-
tegrates advanced signal processing methods with probabilistic learning to
achieve robust detection of transverse stability changes in near real-time. An
estimator-detector architecture is proposed to reliably extract information
about the roll natural frequency from the measured roll motion and eval-
uate when this frequency significantly deviates over time. The Empirical
Mode Decomposition (EMD) is combined with the Hilbert-Huang Trans-
form (HHT) to estimate the roll natural frequency associated with the ves-
sel’s loading condition. The estimates are then modeled as realizations of a
Weibull distributed process and a statistical change detector is designed ac-
cordingly. The detector is complemented with a situation awareness system
to inform the crew about the current stability level and how close this is to
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the critical condition. The stability monitoring system has been tested on
simulated data of a stern trawler sailing in beam seas. Results clearly show
the ability of tracking stability changes due to variation in a vessel’s loading
condition and raising a timely alarm when the critical stability condition is
crossed. The amplitude of the roll motion is recognized as a critical factor for
the situation awareness system to correctly discriminate among the proposed
stability levels.

2. Problem formulation

The classical procedure to estimate the stability parameters of a vessel
is performing an inclining experiment. It consists of creating a controlled
heel on the vessel by moving some known weights, and then obtaining the
resulting metacentric height through basic initial stability principles.

Another way to obtain the metacentric height of a vessel is to carry out a
roll decay test and, from the resulting roll motion time series, obtain the roll
spectrum. In calm water conditions and under no external excitation, the
location of the peak of the roll spectrum coincides with the roll damped natu-
ral frequency. In the case of ships, where the damping is usually quite small,
this value is very close to the vessel roll natural frequency, and both values
could be considered equivalent. From this value, the metacentric height can
be obtained by

ω0 =

√
g ·∆ ·GM
Ixx + A44

, (1)

where ω0 is the roll natural frequency, g is the acceleration of the gravity,
∆ is the vessel mass displacement, Ixx is the ship transverse mass moment
of inertia and A44 is the roll added mass. If the inertia and the added mass
are approximated by the Weiss formula (Krüger and Kluwe, 2008), the roll
natural frequency of the vessel can be obtained as

ω0 =

√
g ·GM
k2xx

(2)

with kxx being the roll gyradius of the ship, which is usually taken as 40%
of the beam of the vessel.

The inclining experiment is the method approved by the International
Maritime Organization (IMO) for estimating the vessel lightship parameters
(International Maritime Organization, 2008), while the above approach is
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proposed as possible means for carrying out approximate real-time estimates
of the vessel stability while sailing (International Maritime Organization,
1993). However, the results of both methodologies are only reliable when the
vessel is in sheltered waters, with no waves and no wind. As it is highlighted
by IMO (International Maritime Organization, 1993), this fact is especially
important in the case of the latter methodology. When an external excitation
such as waves and wind is present, its effect is present in the roll spectrum. In
these conditions the spectrum peak frequency could deviate from the vessel
roll natural frequency, and the stability estimates subsequently made could
be largely uncertain.

To understand the challenges inherent to the estimation of the roll natural
frequency for a vessel operating in open waters the roll motion of a fishing
vessel is simulated through a one degree of freedom nonlinear model subject
to an external excitation.

The model is an uncoupled one degree-of-freedom mathematical model
of roll motion, where nonlinear quadratic damping and nonlinear restoring
based on the vessel restoring arm curve (GZ) have been considered. The
structure of this model is the following

φ̈+ 2νω0φ̇+ βφ̇|φ̇|+ ω0
2GZ(φ)

GM
= ω0

2mwave(t) (3)

where φ is the roll angle, ν and β are the linear and quadratic roll damping
coefficients, GZ(φ) and GM are the righting lever curve and the metacentric
height in still water, and mwave(t) is the non-dimensional wave excitation
in irregular beam seas. The wave excitation has been modelled through the
Absolute Roll Angle Model (Bulian and Francescutto, 2006) according to the
following expression

mwave(t) =
n∑
i=1

πr(ωi)s(ωi) · cos(ωit+ ξi) (4)

where ωi is the frequency of the i-th wave component, r(ωi) is the effective
wave slope coefficient, s(ωi) is the wave steepness and ξi is the phase.

This model (Equation 3) is derived from the classical linear model of
uncoupled roll motion in waves (Bhattacharyya, 1978), and its detailed de-
scription can be found in Bulian and Francescutto (2004, 2006). In the first
reference, it is applied to estimate the capsize probability of a small fishing
vessel and a large passenger ship in irregular beam seas, while in the second
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it is used to analyze the operability and capsize probability of the same fish-
ing vessel, in regular and irregular beam waves, as a function of its static
stability parameters. In addition to these applications, this model has also
been used for characterizing the roll motion of different types of multihull
vessels in beam waves, comparing the results with scale model towing tank
tests, with good results (Bulian and Francescutto, 2009).

Fishing vessels’ operations usually take place at low speeds (while reeling
in or recovering fishing gear, and even while processing catches) and in beam
waves (as is the case of longliners). This brings about a high possibility of
suffering stability failures or experiencing pure roll resonance characterized by
large roll amplitudes due to the small roll damping at low speeds. Therefore,
the present work focuses on the operational scenario characterized by zero
forward speed and beam waves for its relevance and criticality. However, an
extension to other headings and speed would be necessary to fully assess the
performance of the methodology proposed in this paper.

The considered vessel is a medium sized stern trawler whose description
and parameters are given in Section 4. To assess the effect of an external
excitation on the resulting roll spectrum, three 1 hour simulations in beam
waves were run using a Bretschneider spectrum, with peak periods that are
under (Tp = 7 s), close to (Tp = 12.5 s) and over (Tp = 16 s) the roll natural
period of the vessel (T0 = 11.16 s, ω0 = 0.563 rad/s). Regarding significant
wave height, a constant value of Hs = 6 m has been selected, in order to
ensure that the effect of waves is sufficiently evident on roll motion. For
the sake of comparison, the results of the roll natural frequency estimation
obtained from a roll decay test (where no external excitation was present),
are also included. In order to estimate the roll natural frequency, the FFT
has been applied to each roll time series to compute the roll spectrum, and
the location of its maximum value has been taken as the natural frequency
estimate for each time series.

Figures 1-3 show the roll time series in forced and unforced conditions, the
corresponding roll spectra and the estimated roll natural frequency together
with the frequency target value (shown by the black dotted line). As expected
the roll spectrum obtained for the roll decay test (see Figure 3(d)) has a single
peak, which coincides with the vessel roll damped frequency. However, the
situation changes when wave excitation is taken into consideration.

When the wave peak frequency is close to the expected natural roll fre-
quency (Figure 3(b)), or when it is smaller (Figure 3(c)), the resulting roll
spectrum is not largely affected by the effect of waves. As it can be observed
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(a) Tp = 7 s; Hs = 6 m.

(b) Tp = 12.5 s; Hs = 6 m.

(c) Tp = 16 s; Hs = 6 m.

Figure 1: Computed roll motion time series. Irregular waves. Bretschenider spectrum.
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Figure 2: Computed roll motion time series. Roll decay. No external excitation.

in these figures, the peak frequencies of the roll spectra are very close to
the natural roll frequency of the vessel, and the different wave components,
specially those close to the peak of the wave spectrum, are of much less rel-
evance than the roll motion component. This fact is due to the dynamic
characteristics of the vessel roll motion, which tends to reduce the effects
of the excitation that does not lead to roll oscillations near the natural fre-
quency.

However, when the incident wave frequency is higher than the natural
roll frequency (see Figure 3(a)), this behaviour changes dramatically and
the resulting roll spectrum presents a scattered multi-peaked shape, which
decreases the performance of the estimation. In this case, the peaks of the
roll spectrum corresponding to the different wave frequency components, are
much larger than those corresponding to the vessel roll natural frequency. As
it can be seen, the estimated frequency value coincides with the wave peak
frequency, which is quite far from the target value, and the vessel, in these
conditions, is unable to cut down the effect of waves which lead to motions
far from the natural frequency.

In addition to the influence of waves on the stability estimation, which
was shown above, in a realistic seaway the vessel loading condition could
largely change with time. This change can be generated by modifications in
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(a) Irregular waves. Tp = 7 s; Hs = 6 m. (b) Irregular waves. Tp = 12.5 s; Hs = 6 m.

(c) Irregular waves. Tp = 16 s; Hs = 6 m. (d) Roll decay. No external excitation.

Figure 3: Computed roll spectra.
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the tank filling levels and especially in the amount of cargo, that can lead
to quite fast and sudden stability changes. This issue would require to carry
out the spectrum computations in shorter periods of time, thus decreasing
the resolution of the FFT and subsequently the precision of the frequency
estimation.

2.1. Constraints on the roll natural frequency

Finally, it should be said that, although during sailing the loading con-
dition of the vessel may change in a sensible way, the resulting GM , and
so the roll natural frequency should be, in reality, within more constrained
limits than 0 ≤ ωo ≤ ∞. This fact could help during the process of natural
frequency estimation, as the range of variation is largely reduced, limiting ω0

to be in the interval ω0,min ≤ ωo ≤ ω0,max.
The maximum value of the roll natural frequency (ω0,max), corresponds

to the maximum possible GM , of the vessel in all loading conditions, that if
there is no other data available, could be estimated by considering that the
vessel centre of gravity is on the base line. Thus, maximum GM would be
equal to the maximum height of the metacenter KM , that could be easily
obtained by analyzing the hydrostatical values corresponding to all drafts
between lightship and summer draft. In the case under analysis, the max-
imum natural frequency would be ω0,max = 2 rad/s. However, in this work,
as data from the stability booklet is available, ω0,max has been taken as the
one corresponding to the largest GM condition from all of those described
in this booklet, plus a 15 % margin (ω0,max = 0.925 rad/s).

Regarding the minimum roll natural frequency ω0,min , it has to be taken
into account that ship stability is not only limited by GM , and that in a real
seaway, large roll angle stability is usually more relevant. Considering that
according to SOLAS, marine engines could stop when static heel is over 15
degrees, it could be assumed that a vessel that acquires such an angle under
the effect of moderate lateral winds, would be hardly able to sail. Thus, the
minimum expected roll natural frequency (ω0,min) has been selected as the
one corresponding to the minimum GM needed to keep heel angles under 15
degrees under the action of a lateral wind of approximately 30 knots. This
lateral excitation, computed following the IMO Weather Criterion guidelines,
corresponds to a heeling lever of lwind = 0.03 m. According to the vessel char-
acteristics shown in Mı́guez González et al. (2017), the minimum expected
natural roll frequency would then be ω0,min = 0.3 rad/s. These limits provide
a conservative view of the whole range of possible natural roll frequencies.
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However, further work would be needed to obtain more realistic values from
the real operation of the ships.

In conclusion, there are two outstanding problems for the accurate esti-
mate of the vessel stability level during real operation. The first is to estimate
the roll natural frequency (and then the metacentric height) by using only
the vessel roll motion despite the effects of waves and other external exci-
tation. The second is to ensure that the estimation is able to track sudden
changes in roll natural frequency due to fast variations in the vessel loading
condition.

3. Condition monitoring system design

A condition monitoring system able to address the aforementioned prob-
lems must be based on an estimation scheme that ideally is insensitive to
wave motion and that is able to process measured data in (near) real-time.

Wave filters of different complexity have been proposed in connection with
the design of autopilots and dynamic positioning systems to mitigate the ef-
fect of wave loads on vessel actuators (Fossen and Perez, 2009; Holzhiiter,
1992; Grimble et al., 1980; Sagatun and Fossen, 1996; Strand and Fossen,
1999). Despite their proven efficacy in attenuating wave frequency compo-
nents on the measured signals, particularly when the wave peak frequency
is known, complete insensitivity to wave motion cannot be achieved in real-
ity. Further, the most powerful designs in terms of estimation accuracy are
based on knowledge of a model of the vessel. This implies that regardless of
the chosen estimation scheme the estimate of the roll natural frequency will
always present a scatter around the true value due to residual wave induced
motion, uncertainty in the vessel model parameters and possibly sensor noise.

To achieve a robust and portable stability monitoring system we propose
a design that is vessel model-free and adopts probabilistic methods to discern
among different operational conditions. In particular the monitoring system
is developed as an integrated data-driven estimator-detector that features
the following characteristics:

• real-time estimation of the roll natural frequency based solely on the
measured roll angle;

• probabilistic model of the roll natural frequency;

• on-line continuous learning;
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Figure 4: Architecture of the roll stability monitoring system.

• high sensitivity in discriminating across different loading/operational
conditions;

• timely detection of unsafe operational conditions;

• low probability of false alarms;

• no need of external inputs from the crew.

Considering the previous characteristics, the current proposal differs in
two main points from the previous work carried in (Mı́guez González et al.,
2017; Santiago Caamaño et al., 2018b). On the one hand, this work was based
on the sequential application of FFT to estimate the roll natural frequency
and directly from this value the stability of the vessel. On the other hand,
it lacked a system that provided additional information to the crew, thus
relying only on the performance of the frequency estimates.

In the newly proposed methodology the combined EMD-HHT is used
instead of the FFT to better discriminate the oscillatory modes contained in
the roll motion, avoiding the tendency of the FFT to condensate information.
In addition to this, the FFT needs a longer data batch to obtain accurate
results, which in the case under analysis may lead to hiding stability failures
that occur in very short time. Moreover, a detection system based on a
probabilistic approach has been included to distinguish between safe and
unsafe situations, increasing robustness of the generated stability guidance.
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Figure 4 illustrates the architecture of the proposed stability monitoring
system. The main building blocks are

DAQ roll motion is measured through an inertial measurement unit or a
vertical reference unit and stored in a buffer by the data acquisition
(DAQ) system;

EMD the Empirical Mode Decomposition method (Dätig and Schlurmann,
2004; Gupta et al., 2014; Huang et al., 1998) is applied to decompose
the measured roll motion into its main oscillatory modes;

HHT the Hilbert-Huang Transform is applied to each of the resulting oscilla-
tory modes to estimate their modal frequency (Dätig and Schlurmann,
2004; Huang et al., 1998). Among all of these frequencies, the vessel
roll natural frequency is selected;

W-GLRT the Weibull based Generalized Likelihood Ratio Test evaluates
the current estimate of the roll natural frequency and decides if the
vessel is operating in a safe loading conditions or not. The detector
triggers an alarm if a safety threshold is crossed;

LPF Low-pass filtering of the measured roll motion is applied when the
estimated roll natural frequency is close to the maximum roll natural
frequency. When filtering occurs then the filtered signal is processed
again through the EMD and HHT blocks.

In the following subsections each building block is described in detail.

3.1. Data acquisition and storage

The DAQ subsystem is responsible for the measuring of the vessel roll mo-
tion and storage in a buffer. To fulfill the real-time estimation requirement
a proper buffer size needs to be determined. The choice has been made as-
suming a medium sized fishing vessel and by trading-off among the minimum
data batch size to achieve a reliable estimate of the roll natural frequency, the
maximum time to detect the transition towards an unsafe operational con-
dition and the needed resolution to distinguish between different operational
conditions. Following the same asumptions made in Mı́guez González et al.
(2017), the time window length has been set to 3 minutes, which correspond
to a buffer size of 3600 samples when sampling at 20 Hz.
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In addition to this, a 75 % of overlapping between consecutive measure-
ments has been taken into account to increase the number of estimations
done by time window.

3.2. Empirical Mode Decomposition

The Empirical Mode Decomposition (EMD) is an adaptive time domain
technique that allows breaking down a multi-frequency signal into its main
oscillatory components called Intrinsic Mode Functions (IMFs). The IMF
is defined as a function with a time-varying frequency and amplitude and
with equal number of extremes and zero-crossings, and whose envelopes are
symmetric with respect to zero (Dätig and Schlurmann, 2004; Gupta et al.,
2014; Huang et al., 1998).

The procedure to extract the IMFs is called sifting and it consists of
connecting all the time series maxima with a cubic spline and all the minima
with another one and obtaining the mean curve from both splines. If the
difference between the time series and this mean curve satisfies the conditions
of an IMF (equal number of extremes and zero-crossings and symmetry to
zero), it is subtracted from the time series and the process is started again,
until the result is a monotonic function. If the difference between the data
and the mean curve is not an IMF, the sifting continues with the modified
time series until an IMF is obtained or until one of the stopping criteria
are fulfilled (Dätig and Schlurmann, 2004; Gupta et al., 2014; Huang et al.,
1998). Algorithm 1 summarizes the sifting process.

The main objective of the EMD is decomposing the roll motion time series
into its main oscillatory modes for the subsequent application of the Hilbert
Spectral Analysis. After the application of the EMD the roll motion time
series can be represented as

φ(t) =

NIMF∑
i=1

IMFi(t) +R(t), t ∈ [t̄− 3 min, t̄] (5)

where R(t) is a monotonic function, NIMF is the total number of IMFs ex-
tracted from the measured roll motion and t̄ is the current time.

In the case of a vessel rolling under the effect of an external excitation
such as waves and wind, the extracted IMFs from the roll motion time series
usually include the oscillatory modes due to this excitation, as well as the
mode corresponding to the vessel natural frequency, sensor noise and other
possible components.
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Algorithm 1 EMD algorithm

Input: φ(t), t ∈ [t̄− 3 min, t̄] . input signal
1: max iter = 2000 . maximum number of iterations
2: imf count = 0 . current number of IMFs
3: while φ(t) is not monotonic do
4: x1(t) = φ(t)
5: σ = Inf . standard deviation
6: it = 0 . current iteration number
7: while σ > 0.1 or x1(t) is not symmetric and it < max iter do .

Stop criteria
8: get cubic spline of maxima s1(t)
9: get cubic spline of minima s2(t)

10: x2(t) = x1(t)− (s1(t) + s2(t))/2
11: σ = sum((x1(t)− x2(t))2)/sum(x21(t))
12: it = it + 1
13: end while
14: imf count = imf count + 1
15: IMF(imf count) = x1(t)
16: φ(t) = φ(t)− x1(t)
17: end while
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3.3. Hilbert-Huang transform

The Hilbert-Huang Transform (HHT) is a spectral analysis tool that
transforms a real-valued function x(t) into a complex one z(t) that is time-
variant. This new function can be written as (Dätig and Schlurmann, 2004;
Huang et al., 1998)

z(t) = x(t) + iy(t) (6)

with y(t) being the Hilbert-Huang Transform of x(t).
HHT provides a representation of the signal in the time-frequency-energy

paradigm. Another advantage of this method is that the new signal is
strongly analytical, which means that it can be described in terms of instan-
taneous amplitude (a(t)), phase (θ(t)) and frequency (ω(t)). The definitions
of each of these parameters are respectively (Dätig and Schlurmann, 2004;
Huang et al., 1998)

a(t) ,
√
x(t)2 + y(t)2 (7)

θ(t) , arctan

(
y(t)

x(t)

)
(8)

ω(t) ,
d θ(t)

d t
(9)

The Hilbert-Huang transform is applied to each IMF extracted from the
roll motion in order to compute the associated instantaneous frequency, which
in general is time varying. To obtain a constant frequency estimate for each
IMF the mean instantaneous frequency is then computed according to (Xie
and Wang, 2006)

ω̂i =

Lφ∑
k=1

ωi(k)a2i (k)

Lφ∑
k=1

a2i (k)

, i = 1, . . . , NIMF (10)

where Lφ is the number of samples included in the time window [t̄− 3 min, t̄]
given the sampling frequency Fs; ωi and ai are the instantaneous frequency
and amplitude of the i-th IMF.

Once the mean instantaneous frequencies ω̂j of all IMFs are estimated, it
is necessary to identify the roll natural frequency among them. The ordered
vector ΩIMF = [ω̂1, ω̂2, . . . , ω̂NIMF

]T is created where ω̂1 > ω̂2 > . . . > ω̂NIMF
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according to IMF extraction sequence of the EMD algorithm. Each element
in ΩIMF is then assessed to be in the interval [ω0,min, ω0,max] and the estimates
that fall outside are discarded. At this point, it is assumed that the current
roll natural frequency is the largest frequency, i.e. ω̂0 = max ΩIMF. This
assumption is based on observations made on preliminary tests, which showed
that most of the signal energy is associated with the first (and sometimes
second) frequency in ΩIMF. The rest of the components could therefore be
neglected.

3.4. Weibull GLR detector

To take into account the inherent uncertainty of the estimation process,
a statistical characterization of the estimated roll natural frequency is pur-
sued by identifying the parametric probability distribution that best fit the
estimates ω̂0 across different loading conditions and sea states.

Figure 5 shows the probability plot of four distributions (logistic, t-
location scale, Weibull and double Weibull) fitted to a sequence of 90 es-
timates of roll natural frequency for loading conditions LC1, LC4 and LC6
(Table 2) and Sea State 1 (Table 3). As it can be seen in Table 2 LC1 is a
safe condition, LC4 is the critical condition (the one with the minimum IMO
required GM) and LC6 is a risky situation.

The probability plot shows that the Weibull distribution provides the
most accurate fit to the estimates of the roll natural frequencies in all con-
sidered cases. The Weibull distribution describing ω̂0 is given by

W(ω̂0) =
κ

λ

(
ω̂0

λ

)κ−1
exp

(
−
(
ω̂0

λ

)κ)
(11)

where κ is the shape parameter and λ is the scale parameter. The proba-
bilistic median of the Weibull distribution is a robust estimator of the roll
natural frequency, i.e.

ω̂0 = λ(ln 2)
1
κ (12)

Further, it is function of both shape and scale parameters whose values
change with variation in vessel loading condition, as shown in Fig. 5. This
suggests that by designing a detector able to trail changes of κ and λ then it
is possible to monitor variations in roll natural frequency, thereby evaluate
the vessel stability condition in real-time.

The detection problem is set up as sequential hypothesis testing, where
two competing hypotheses are evaluated for each batch of data. The null
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Figure 5: Probability plot of the roll natural frequency estimates for loading conditions
LC1, LC4 and LC6, where ω0 = 0.804 rad/s, ω0 = 0.563 rad/s and ω0 = 0.514 rad/s respec-
tively, and Sea State 1. Logistic, t-location scale, Weibull and double Weibull distributions
are fitted to the data.

hypothesis H0 represents the safe condition and the alternative hypothesis
H1 corresponds to the unsafe condition, i.e.

H0 : λ0(ln 2)
1
κ0 ≥ ω0c

H1 : λ̂1(ln 2)
1
κ̂1 < ω0c (13)

In ship stability, the safety of a loading condition depends on several pa-
rameters including GM , the heeling lever curve, the area under this curve,
the freeboard, possible free surfaces, the ship-wave interaction, and few oth-
ers. In this work the distinction between the two scenarios is done only using
GM . The limiting GM value between the safe and unsafe case has been taken
as 0.350 m, which is the minimum required GM for fishing vessels accord-
ing to IMO (International Maritime Organization, 2012). Therefore, using
Equation (2), the critical roll natural frequency of the vessel corresponding
to the GMmin = 0.350 m is ω0c = 0.563 rad/s.

Since the median of the Weibull distribution is function of the shape and
scale parameters, the detection problem in Equation (13) can be rewritten
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as a standard parameter test

H0 : θ = θ0

H1 : θ 6= θ0 (14)

where θ = [λ, κ]T is the vector of parameters of the Weibull distribution and
θ0 is its representation under the H0 hypothesis.

This corresponds to a composite hypothesis testing problem, since the
alternative hypothesis H1 is not completely defined, as the parameters of
the Weibull distribution which characterize this condition are unknown. In
order to decide between the two competing hypotheses from a data set, the
Generalized Likelihood Ratio Test (GLRT) is adopted. It is a statistical test
based on the Neyman-Pearson theorem that maximizes the probability of
detection for a desired probability of false alarms (Kay, 1998).

Let Ω0 = [ω̂0,k−N , . . . , ω̂0,k]
T the vector containing the N latest estimates

of roll natural frequency. Assuming that the elements of Ω0 are independent
and identically distributed (i.i.d.), then its distribution reads

W(Ω0;θ) =
( κ
λκ

)N N−1∏
i=0

[
Ωκ−1

0,i exp

(
−
(

Ω0,i

λ

)κ)]
(15)

The detector then decides that the current condition corresponds to H1 if:

LG(Ω0) =
W(Ω0; θ̂1,H1)

W(Ω0;θ0,H0)
> γ (16)

where θ̂1 is the maximum likelihood estimate (MLE) of the parameter vector
θ under the hypothesis H1 and γ is the threshold for a given probability of
false alarms.

The MLE θ̂1 is obtained maximizing W(Ω0;θ) under the hypothesis H1,
that is

∂ ln(W(Ω0; θ̂1,H1))

∂θj
= 0 (17)

Hence, the parameters λ̂1 and κ̂1 can be estimated as:

λ̂1 =

[
1

N

N−1∑
i=0

Ωκ̂1
0,i

] 1
κ̂1

(18)

1

κ̂1
+

1

N

N−1∑
i=0

ln(Ω0,i)−
∑N−1

i=0 Ωκ̂1
0,i ln(Ω0,i)∑N−1

i=0 Ωκ̂1
0,i

= 0 (19)

21



The following explicit expression of the detector, can be derived by taking
the natural logarithm of both sides of Equation (16)

ln

(
κ̂1

λ̂
κ̂1
1

)N∏N−1
i=0

[
Ωκ̂1−1

0,i exp

(
−
(∑N−1

i=0 Ω0,i

λ̂1

)κ̂1)]
(
κ0
λ
κ0
0

)N∏N−1
i=0

[
Ωκ0−1

0,i exp
(
−
(∑N−1

i=0 Ω0,i

λ0

)κ0)] > ln γ (20)

Simplifying the previous Equation (20), the GLRT becomes:

N ln

(
κ̂1λ

κ0
0

κ0λ̂
κ̂1
1

)
+ (κ̂1 − κ0)

N−1∑
i=0

ln(Ω0,i)−

(∑N−1
i=0 Ω0,i

λ̂1

)κ̂1

+

(∑N−1
i=0 Ω0,i

λ0

)κ0

> γ′

(21)

The threshold γ′ = ln(γ) has been selected to maximize the probability of
detection, according to the Neyman-Pearson theorem (Kay, 1998)

PFA =

∫
{Ω0:LG(Ω0)>γ′

W(Ω0; θ0,H0) dx (22)

The detector raises an alarm only when the risky condition is met. To
provide greater awareness to the crew about the current vessel stability con-
dition an intuitive situation awareness system is designed. Its objective is
to provide information to the skipper about how far the vessel is from the
critical condition, which will help him to adopt corrective measures. The
situation awareness system compares the actual robust estimate of the roll

natural frequency (λ̂1(ln 2)
1
κ̂1 ) with the frequency ω0c identifying the critical

situation. Thresholds are then established to determine the stability mar-
gin of the vessel. In order to simplify even more the information that the
skipper is receiving, the situation awareness’ output is color coded from dark
green (safe situation) to red (very risky condition). The color related to each
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threshold has been defined the following way

λ̂1(ln(2))
1
κ̂1

ω0c

≥ 1.3→ dark green

1.3 >
λ̂1(ln(2))

1
κ̂1

ω0c

≥ 1.1→ green

1.1 >
λ̂1(ln(2))

1
κ̂1

ω0c

≥ 1.05→ yellow

1.05 >
λ̂1(ln(2))

1
κ̂1

ω0c

≥ 1→ orange

1 >
λ̂1(ln(2))

1
κ̂1

ω0c

→ red

3.5. Filtering

In cases where ω0 is close to ω0max , the Weibull distribution is no longer
a good fit to the estimates of roll natural frequency. This is due to the
fact that the estimates are scattered around the true value, as it can be
seen on the tails of the distribution. Following the process of identifying the
roll natural frequency from the mean instantaneous frequencies, the values
that are larger than ω0max are neglected. That is, smaller values that do
not correspond with the roll natural frequency are taken as estimates. This
translates into a cutoff of the right tail of the Weibull distribution and the
resulting probability distribution becomes bi-modal.

This fact can be appreciated in Figure 6, where the histograms of two
different loading conditions of a fishing vessel under irregular waves are plot-
ted. In Figure 6(a), the histogram of the roll natural frequency estimates
corresponding to a loading condition that is far from the maximum expected
frequency is displayed. As it can be seen, this histogram fits well with the
Weibull probability distribution function. Figure 6(b) shows the histogram
corresponding to a loading condition that is close to ω0max . As it was men-
tioned, it can be appreciated that the right tail is smaller and the distribution
becomes bi-modal.

In order to correct this issue, a filtering process of the roll motion signal
has been designed to reduce the dispersion in the estimates and to retain the
validity of the Weibull distribution as statistical model of the roll natural
frequencies estimates across all loading conditions. The employed filter is
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Figure 6: Histograms of ω̂0. (a) Loading condition far from ω0max
; (b) loading condition

near ω0max (b) without filtering; (c) loading condition near ω0max after filtering. The blue
line is the fitted Weibull distribution.

an eighth order lowpass Butterworth filter with zero phase distortion. This
filtering process is applied to the stored 3 minutes batches of data, thus
allowing the use of zero phase distortion techniques. The cutoff frequency is
the highest roll natural frequency of the loading conditions described in the
stability booklet (ω0max).

Figure 6(c) shows the effect of filtering on the histogram of the estimated
roll natural frequencies. By comparing with the histogram in Figure 6(b) it
can be seen that filtering attenuates significantly the presence of outliers in
the estimates and the Weibull distribution is again a good fit to the data.

As filtering is needed only in the described case, it is necessary to define
its application limits. If the histogram in Figure 6(a) is taken into consider-
ation, some dispersion can be observed. However, when the current loading
condition natural roll frequency and its maximum expected value (ω0max)
are close to each other, the right tail of the resulting probability distribution
starts to be cut and the dispersion in the results becomes larger. Therefore,
the limit δ that determines the use of filtering or not is defined as

δ , ω0max −
σω̂0

2
(23)

where σω̂0 is the variance of the roll natural frequency estimates.
In conclusion, filtering of the measured roll motion is applied when the

median of the Weibull distribution is greater than δ. In this case, the EMD
and HHT have to be applied again to the filtered signal to obtain ω̂0.
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Table 1: Test vessel: main characteristics.

Overall Length 34.50 m
Beam 8.00 m
Depth 3.65 m
Draft 3.34 m
Hull Volume 448 m3

Linear Roll Damping Coefficient (ν) 0.0187
Quadratic Roll Damping Coefficient (β) 0.0393 1/rad
Minimum roll natural frequency (ω0min) 0.300 rad/s
Maximum roll natural frequency (ω0max) 0.925 rad/s

4. Test and validation

4.1. Fishing vessel model

To evaluate the performance and sensitivity of the monitoring system, a
set of different loading conditions have been analyzed and compared. Fur-
thermore, the impact of the sea state on the performance of the proposed
methodology has also been evaluated by comparing the results obtained in
different sea states.

Roll motion time series have been obtained by using the 1 degree-of-
freedom nonlinear mathematical model described in Section 2. This model
computes the vessel roll motion under the excitation of beam irregular seas
at zero forward speed.

The vessel used to carry out this study is a mid-sized stern trawler, typical
from the Spanish fishing fleet, which has been already taken as a test vessel
in other scientific works (Mı́guez González et al., 2017; Mı́guez González and
Bulian, 2018). Table 1 shows the main dimensions and characteristics of the
vessel, together with roll damping coefficients obtained from roll decay tests
of a scale model (Mı́guez González and Bulian, 2018).

The vessel hull form is shown in Figure 7. Figure 8 illustrates the vessel
righting lever curve for the loading condition with minimum required GM
(LC4 in Table 2). The effective wave slope coefficient needed for the com-
putation of the wave exciting moment mwave(t) is shown in Figure 9, which
has been obtained by using the linear hydrodynamics alternative as shown
in Mı́guez González and Bulian (2018).

In order to verify how the detection system performs and how fast it
recognizes possible changes in vessel stability, a set of 6 loading conditions
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Figure 7: Hull form of the mid-sized sern trawler.

Figure 8: GZ curve in calm water. Figure 9: Effective wave slope coefficient.

were defined. LC 1 and LC 2 are two of the mandatory loading conditions
contained in the stability booklet, being respectively ”Departure from the
fishing grounds with full catch and fishing gear, 35% of fuel and stores and
no ice” and ”Arrival at home port with full catch and fishing gear, 10%
of fuel and stores and no ice”. In addition, LC 1 represents the loading
condition with the expected maximum roll natural frequency (corresponding
to the highest GM). LC 4 is the critical loading condition (the one with
the minimum required metacentric height of GM = 0.350m) and LC 3 is an
intermediate situation. All of them are under the H0 hypothesis.

LC5 and LC6 loading conditions belong to the alternative hypothesis,
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Table 2: Loading condition parameters of the tested vessel.

Parameter LC1 LC2 LC3 LC4 LC5 LC6

∆ (t) 489 465 489 448 448 448
T (m) 3.295 3.199 3.484 3.340 3.294 3.294
GM (m) 0.659 0.661 0.501 0.350 0.331 0.291
ω0 (rad/s) 0.804 0.798 0.701 0.563 0.548 0.514
kxx 0.395 0.399 0.395 0.411 0.411 0.411

that is, they are supposed to be unsafe situations where GM values are
below the minimum required value. Due to the fact that these conditions
do not fulfill the minimum stability requirements of the IMO for fishing
vessels (International Maritime Organization, 2012), they are not contained
in the compulsory stability booklet, and have been defined by the authors.
The main objective of these last two loading conditions is to evaluate if the
detector is able to identify them as dangerous situations and trigger the
alarm. The main parameters of these loading conditions are shown in Table
2. In order to set up the model, righting lever curves in still water for the
six loading conditions have also been computed by using a naval architecture
software.

4.2. Test conditions

Environmental conditions were selected considering the possible influ-
ence of the wave encounter frequency in the estimation of the roll natural
frequency. The range of tested waves covers all the relevant scenarios, that
is, from a peak encounter frequency lower than the critical one, to a peak
encounter frequency greater than the expected maximum. Waves have been
generated using a Bretschneider spectrum (International Towing Tank Con-
ference, 2002), considering the significant wave height (Hs), peak frequency
(ωω) and wave steepness (Sω) summarized in Table 3.

4.3. Tuning of the condition monitoring system

To theoretically determine the threshold γ′ of the detector the components
of vector Ω0 have to be i.i.d. (independent and identically distributed). If this
condition is not met, the performance of the detector cannot be guaranteed
from a theoretical standpoint and empirical methods for tuning should be
pursued. Figure 10 shows the auto-correlation function of Ω0 under the null
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Table 3: Tested wave parameters.

Sea State Hs (m) ωω (rad/s) Sω

1 12.810 0.491 1/20
2 9.720 0.563 1/20
3 7.080 0.660 1/20
4 4.830 0.798 1/20
5 3.030 1.008 1/20
6 1.650 1.369 1/20
7 8.520 0.491 1/30
8 6.480 0.563 1/30
9 4.710 0.660 1/30
10 3.240 0.798 1/30
11 2.010 1.008 1/30
12 1.320 1.369 1/30
13 2.550 0.491 1/100
14 1.950 0.563 1/100
15 1.410 0.660 1/100
16 0.960 0.798 1/100
17 0.600 1.008 1/100
18 0.330 1.369 1/100
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Figure 10: Auto-correlation function of the driving signal.

hypothesis. It can be seen that the data are uncorrelated and therefore the
i.i.d. conditioned is fulfilled. Furthermore, this condition is also met when
filtering is needed.

The threshold for a desired false alarm probability (PFA) is obtained from

1− PFA = 1− exp

(
−
(
γ′

λ0

)κ0)
(24)

γ′ = λ0(− ln(PFA))
1
κ0 (25)

For the hypothesis H0 shown in Figure 11, a false alarm probability of
PFA = 0.0000001 is obtained for a threshold γ′ = 0.8407.

As explained in Section 3.4, the W-GLRT is based on the assumption
that the hypothesis H0 is already known, which is not usually true. In fact,
it is supposed that when the vessel leaves port and the monitoring system
is started, the loading condition should have changed from the last time the
system was used.

However, since a key feature of the monitoring system is the ability to
operate automatically without inputs from the crew, an estimation of the
parameter vector θ0 is done each time the system starts running. So, two
different operation stages of the system can be distinguished.

Estimation stage This stage takes places immediately after the system is
started, and ideally when the vessel is leaving port in protected waters.
In this phase, during a time window Test, the system is only collecting
roll natural frequency estimates. Once this time is over, the parameter
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vector θ0 is calculated according to Equations (18)-(19). If the prob-

abilistic median of the Weibull distribution (λ0(ln 2)
1
κ0 ) is lower than

ω0c , an alarm is raised and a message should be displayed to the skipper
to inform him about too low metacentric height for sailing. Conversely,
θ0 is stored as the reference value to be used during sailing.

In this paper, a Test = 20 min is proposed, as during this period a
large enough number of roll natural frequency estimates can be made.
Furthermore, during this time the vessel is leaving the port, and con-
sidering that she is not facing a rough weather, the risk of suffering
stability issues remains lower than in open seas.

Detection stage During this stage, the system is fully operational. H0 is
already known and consequently H1 can be evaluated and compared
against it, following the procedure described in Section 3.4. As it was
previously done with θ0, another time window (Tdet) is necessary to
make the estimation of θ̂1. During this stage, ensuring the requirement
of real-time is crucial. So, a detection time window of Tdet = 5 min has
been selected, together with a 40% of overlapping between consecutive
measurements. This leads to the GLRT releasing a new value every
3 minutes, thus fulfilling the real-time requirement described in Sub-
section 3.1 and providing enough roll natural frequency estimates to
perform the MLE.

4.4. Evaluation of monitoring performance

The roll motion time series, corresponding to each of the sea states, have
been obtained by stitching together those of the 6 loading conditions, in order
from the safest to the most risky one, to simulate long record history (6.75
h). Then, the estimation of the roll natural frequency was done and, at the
same time, the GLRT detector was applied. Thus, the performance of the
frequency estimation subsystem (EMD and HHT modules) and the detection
subsystem (W-GLRT) can be analyzed. To address in detail the impact of the
wave encounter frequency in the estimation and detection performance, two
different wave situations are used as study cases. In addition, the complete
results for all the sea states contained in Table 3 are shown in Table 6.

Figure 11 is based on Sea State 7, Table 3, and it shows the roll motion
time series, the roll natural frequency estimates, the output of the detector
and the output of the awareness alarm in a case in which the wave encounter
frequency is below the expected maximum roll natural frequency. As it can
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detector_we_near.png

Figure 11: Top to bottom. Roll motion time series, natural roll frequency estimations,
output of the detector and output of the awareness alarm in irregular waves. Sea State 7.
Hs = 8.520 m, ωw = 0.491 rad/s, Sw = 1/30.
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be seen the roll amplitude is large during the whole simulation. This is
mainly due to the high significant wave height. Regarding the performance
of the frequency estimation subsystem, some dispersion around the natural
frequency of each loading condition can be observed. This dispersion becomes
larger when the value of the natural frequency is smaller. The W-GLRT is
quite sensitive and all loading conditions could be perfectly distinguished
without delay looking at its output. Its performance is also very good, as all
loading conditions are correctly classified and no false alarms appear or miss-
detections take place. It could be also appreciated that the detector confuses
the critical loading condition with a situation of danger, and subsequently
triggers the alarm. Nevertheless, looking at the output of the awareness
alarm, the critical condition could be clearly differentiated. In fact, the
perception of risk is increasing as advancing through the loading conditions.
Then it could be concluded that the awareness alarm performs adequately,
although in some circumstances more than one color appears, which is due
to the dispersion of the estimates.

Figure 12 is based on Sea State 17 and it illustrates again the roll motion
time series, the roll natural frequency estimates, the output of the detector
and the output of the awareness alarm but for a sea state in which the wave
encounter frequency is greater than the maximum roll natural frequency.
In this case, the roll amplitude decreases considerably, as wave height is
quite small. The dispersion in the roll natural frequency estimates increases,
specially in the loading conditions with the smallest rolling amplitudes (LC4,
LC5 and LC6). Nonetheless, the performance of the detector is still quite
good, adequately identifying safe and unsafe conditions. No false alarms
arise and no miss-detections take place. However, the awareness alarm is
not capable of correctly recognizing the changes in loading conditions, and
it is only able to differentiate between safe and dangerous situations. As
aforementioned, the complete results for all of the sea states are summarized
in Table 4 and Table 6.

The performance of the frequency estimation subsystem has been eval-
uated by computing the median (Medω̂0), the standard deviation (σω̂0) and
the 95th and 5th percentiles (P95ω̂0

and P5ω̂0
) of the roll natural frequency

estimates, which have been included in Table 6. The frequency estimation
subsystem well performs except in those situations where the wave frequency
is greater than the expected roll natural frequency and roll motions are of
small amplitude. In these cases the combined EMD-HHT module largely
overestimates the roll natural frequency of the vessel, which results in a
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Figure 12: Top to bottom. Roll motion time series, natural roll frequency estimations,
output of the detector and output of the awareness alarm in irregular waves. Sea State
17. Hs = 0.600 m, ωe = 1.008 rad/s, Sw = 1/100.
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degradation of the performance of the detector and the awareness alarm. In
order to illustrate this fact, Figure 13 has been included, where the median
and the standard deviation corresponding to all loading conditions and sea
states from 1 to 6 (those with a wave steepness of Sω = 1/20) are shown. In
this figure, it can be observed that in Sea State 4 and Sea State 6, the esti-
mated natural roll frequency is largely over the target value for the conditions
with a lower GM (LC4, LC5 and LC6), while in the other load cases and sea
states, obtained results are much closer to the corresponding target values.
This situation also takes place in Sea States 10, 12, 16 and 18. In these cases,
wave height is very low, vessel roll motions are also of very small amplitude
(similarly to the time series displayed in Figure 12) and, in addition, wave
frequency is very far over the expected vessel natural roll frequency. This
phenomenon is the same as the one represented in Figure 3 (a) .

In order to analyze the performance of the detector (PD), the total num-
ber of true detections (TD) and the total number of false detections (FD)
have been obtained, and are included in Table 4. These values represent
the number of times that the detector is able to adequately recognize if the
loading condition under consideration is safe or not (TD) and those in which
it is not (FD). From the obtained results, it could be observed that in the
two loading conditions with better stability (LC1 and LC2), the detector
performs very well in all sea states, and no false detections are made; results
in LC3, although some false detections take place in Sea State 8, are still
quite good. As the level of stability goes under the critical condition (LC4),
the performance of the detector starts decreasing, but it still works fine in
most of the sea states. However, in Sea State 6, Sea State 12 and Sea State
18, a very large number of false detections takes place in LC5 and LC6. Un-
der these circumstances, as it was previously described, the EMD+HHT is
hardly able to estimate the natural roll frequency which is why the perfor-
mance of the detector gets worse. Despite of this fact, the detector is still
able to distinguish between safe and not safe situations with a good accuracy
even in situations in which the accuracy of the EMD+HHT is not extremely
good.

In the case of the critical condition (LC4), the detector is unable to clas-
sify the loading condition as safe in most of the Sea States. However, and
due to the fact that this situations represents the frontier between safe and
unsafe, the obtained results could be acceptable as they represent a slightly
conservative approach.

As a summary of the performance of the detector, the confusion matrix
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Figure 13: Median and standard deviation of natural roll frequency estimations. All load
cases. Sea States 1 to 6.

is shown in Table 5.

4.5. Discussion

From the presented results, it can be concluded that the proposed vessel’s
stability monitoring system displays a good-to-very good performance. It
is capable of detecting potential risky situations and also of giving some
information about how far the current condition from the safety limit is.

The combined EMD-HHT module can estimate the roll natural frequency
of the vessel with an acceptable degree of dispersion. However, there is a
number of sea states and loading conditions, which correspond to those with
a lower level of stability and a wave peak frequency far from the expected roll
natural frequency, where the module’s performance decreases in comparison
to the other situations.

This behaviour could be explained due to some of the fundamental as-
sumptions which have been taken while developing the method. In order
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Table 4: Summary of results of the W-GLRT detector.

Sea
State

LC 1 LC 2 LC 3 LC 4 LC 5 LC 6
Total 16 Total 23 Total 23 Total 23 Total 23 Total 21
TD FD TD FD TD FD TD FD TD FD TD FD

1 16 0 23 0 23 0 13 10 23 0 21 0
2 16 0 23 0 23 0 1 22 23 0 21 0
3 16 0 23 0 23 0 0 23 23 0 21 0
4 16 0 21 2 23 0 2 21 18 5 5 16
5 16 0 23 0 20 3 0 23 23 0 21 0
6 16 0 23 0 23 0 23 0 0 23 0 21
7 16 0 23 0 23 0 0 23 23 0 21 0
8 16 0 23 0 1 22 0 23 23 0 21 0
9 16 0 23 0 23 0 1 22 22 1 21 0
10 16 0 23 0 15 8 0 23 23 0 10 11
11 16 0 23 0 23 0 0 23 23 0 21 0
12 16 0 23 0 18 5 17 6 5 18 3 18
13 16 0 23 0 23 0 0 23 23 0 21 0
14 16 0 23 0 23 0 1 22 23 0 21 0
15 16 0 23 0 23 0 0 23 23 0 21 0
16 16 0 23 0 23 0 2 21 22 1 1 20
17 16 0 23 0 23 0 0 23 23 0 21 0
18 16 0 23 0 23 0 23 0 0 23 0 21

Table 5: Confusion matrix for the W-GLRT detector.

True condition
Condition
positive

Condition
negative

Predicted
condition

Condition positive 1159 178
Condition negative 371 614

75.8% 77.5%
Sensitivity Specificity
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to estimate the vessel roll natural frequency, it has been considered that it
should be coinciding (or at least very close) to the roll spectrum peak fre-
quency. This assumption could be made due to the ship roll dynamics, which
tend to mitigate the effect of excitation which do not generate motions close
to the roll natural frequency. However, when the observed roll motions are
small, the roll spectrum may present additional peaks to that of the roll
natural frequency, or even present a single peak shifted to the excitation
frequency, thus masking the expected natural frequency value.

This issue could be addressed through the integration of systems for sea
state estimation to determine the prevailing wave characteristics (e.g. (Pas-
coal et al., 2007; Tannuri et al., 2003; Nielsen, 2006, 2017; Iseki and Ohtsu,
2000)). Such systems would provide an estimate of the current wave fre-
quency which could be used to improve the accuracy of the roll natural
frequency selection among all the MIFs.

In the case of the W-GLRT detector, a similar behaviour to that of the
frequency estimation subsystem is observed, although the fact that its per-
formance is not only dependent on estimated roll frequency makes it work
well in most of the sea states. It adequately detects a potentially unsafe sit-
uation in real-time and the percentage of false alarms generated is generally
low.

The last point of discussion is the situation awareness system. Its per-
formance is highly related to the accuracy of the roll natural frequency es-

timates. So, if there is little dispersion on these data, then λ̂1(ln 2)
1
κ̂1 is

computed more accurately and the situation awareness system is capable of
distinguishing the changes in the loading condition, showing good results.
When the quality of the estimates decreases, the system becomes more in-
sensitive, only identifying large changes in loading condition.

5. Conclusions

The implementation of on-board stability monitoring systems for fishing
vessels could reduce the high rate of stability-related accidents. This type of
systems usually requires the interaction with the crew, whose scarce insight
may increase the uncertainty of the provided stability estimations.

In this work, a new method for providing stability information to the
crew has been described. The approach is based on a real-time estimation
of the roll natural frequency of the vessel and on the detection of possible
changes in this parameter. In this way, both the stability level of the ship in
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a given sailing situation and the effects of changes in the loading condition,
can be evaluated.

The first part of the method is focused on the real-time estimation of
the roll natural frequency from the monitored roll motion time series. The
Empirical Mode Decomposition combined with the Hilbert-Huang Transform
is used to estimate the roll natural frequency. The second part consists
on a detection scheme based on the Weibull distribution together with the
Generalized Likelihood Ratio Test. Its purpose is to decide if the current
estimates belong to a safe or to a hazardous condition, thus providing an
indication of the safety of the current loading condition. Furthermore, a
colour code warning produced by a situation awareness system is used to
provide the stability level to the crew in a clear and understandable way.

To analyze the suitability of the entire procedure, roll time series obtained
using a nonlinear mathematical model of roll motion in irregular beam waves
of a medium sized stern trawler, in 6 loading conditions and 18 sea states,
have been used.

The general performance of the method is promising. The frequency
estimation subsystem has shown good accuracy in estimating the roll natural
frequency of the ship in real-time for most of the sea states in those loading
conditions with largest GM , and for the low stability loading conditions
in those sea states with peak frequencies smaller than the expected ship
roll natural frequency. However, the methodology performed less good in
the conditions with smallest GM and for sea states with peak frequencies
larger than the natural frequency target value. A similar behaviour has been
reflected in the performance of the GLRT detector, although it was able to
distinguish between safe and unsafe situations even in conditions in which the
performance of the EMD-HHT module was not optimal, thus increasing the
number of situations in which the crew can obtain an indication of whether
their current loading condition is safe or not.
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Appendix

Table 6: Summary of of the roll natural frequency estimates for different loading conditions
and sea states.

LC 1 LC 2 LC 3 LC 4 LC 5 LC 6
ω0 (rad/s) 0.804 0.798 0.701 0.563 0.548 0.514

Sea
State 1

Medω̂0 (rad/s) 0.738 0.697 0.716 0.616 0.589 0.554
σω̂0(rad/s) 0.040 0.053 0.026 0.037 0.040 0.048
P95ω̂0

(rad/s) 0.775 0.735 0.745 0.646 0.617 0.591

P5ω̂0
(rad/s) 0.673 0.614 0.660 0.565 0.497 0.456

Sea
State 2

Medω̂0 (rad/s) 0.772 0.723 0.722 0.594 0.578 0.555
σω̂0(rad/s) 0.038 0.024 0.026 0.031 0.026 0.029
P95ω̂0

(rad/s) 0.815 0.762 0.753 0.623 0.600 0.582

P5ω̂0
(rad/s) 0.712 0.685 0.675 0.526 0.528 0.492

Sea
State 3

Medω̂0 (rad/s) 0.781 0.749 0.728 0.607 0.589 0.577
σω̂0(rad/s) 0.035 0.048 0.043 0.041 0.038 0.028
P95ω̂0

(rad/s) 0.826 0.785 0.761 0.634 0.624 0.609

P5ω̂0
(rad/s) 0.727 0.671 0.621 0.509 0.497 0.537

Sea
State 4

Medω̂0 (rad/s) 0.802 0.755 0.760 0.672 0.669 0.748
σω̂0(rad/s) 0.055 0.053 0.055 0.037 0.059 0.066
P95ω̂0

(rad/s) 0.833 0.779 0.796 0.714 0.780 0.831

P5ω̂0
(rad/s) 0.733 0.696 0.579 0.597 0.590 0.600

Sea
State 5

Medω̂0 (rad/s) 0.828 0.772 0.814 0.481 0.503 0.503
σω̂0(rad/s) 0.030 0.044 0.075 0.141 0.111 0.088
P95ω̂0

(rad/s) 0.857 0.801 0.894 0.883 0.827 0.621

P5ω̂0
(rad/s) 0.765 0.699 0.710 0.359 0.368 0.368

Sea
State 6

Medω̂0 (rad/s) 0.852 0.845 0.689 0.621 0.690 0.695
σω̂0(rad/s) 0.081 0.124 0.092 0.097 0.091 0.099
P95ω̂0

(rad/s) 0.902 0.903 0.839 0.804 0.842 0.833

P5ω̂0
(rad/s) 0.779 0.493 0.524 0.505 0.567 0.470

Sea
State 7

Medω̂0 (rad/s) 0.778 0.741 0.695 0.576 0.545 0.518
σω̂0(rad/s) 0.032 0.030 0.057 0.039 0.042 0.030
P95ω̂0

(rad/s) 0.818 0.770 0.720 0.605 0.575 0.538

P5ω̂0
(rad/s) 0.715 0.682 0.643 0.496 0.448 0.461

Sea
State 8

Medω̂0 (rad/s) 0.793 0.748 0.696 0.566 0.552 0.525
σω̂0(rad/s) 0.031 0.034 0.043 0.018 0.041 0.025
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P95ω̂0
(rad/s) 0.816 0.783 0.713 0.591 0.577 0.555

P5ω̂0
(rad/s) 0.729 0.703 0.669 0.530 0.476 0.489

Sea
State 9

Medω̂0 (rad/s) 0.798 0.741 0.703 0.571 0.579 0,544
σω̂0(rad/s) 0.028 0.033 0.029 0.021 0.034 0.039
P95ω̂0

(rad/s) 0.831 0.774 0.728 0.593 0.617 0.585

P5ω̂0
(rad/s) 0.748 0.686 0.646 0.521 0.525 0.472

Sea
State 10

Medω̂0 (rad/s) 0.804 0.779 0.730 0.639 0.626 0.703
σω̂0(rad/s) 0.039 0.035 0.051 0.050 0.061 0.058
P95ω̂0

(rad/s) 0.832 0.804 0.778 0.706 0.697 0.800

P5ω̂0
(rad/s) 0.714 0.724 0.680 0.517 0.501 0.609

Sea
State 11

Medω̂0 (rad/s) 0.818 0.782 0.765 0.493 0.536 0.534
σω̂0(rad/s) 0.033 0.054 0.041 0.130 0.158 0.120
P95ω̂0

(rad/s) 0.844 0.805 0.813 0.853 0.907 0.873

P5ω̂0
(rad/s) 0.750 0.681 0.670 0.374 0.340 0.378

Sea
State 12

Medω̂0 (rad/s) 0.841 0.841 0.622 0.614 0.636 0.641
σω̂0(rad/s) 0.058 0.073 0.080 0.099 0.103 0.110
P95ω̂0

(rad/s) 0.888 0.888 0.766 0.772 0.842 0.847

P5ω̂0
(rad/s) 0.785 0.676 0.500 0.479 0.506 0.458

Sea
State 13

Medω̂0 (rad/s) 0.764 0.713 0.715 0.590 0.563 0,530
σω̂0(rad/s) 0.032 0.047 0.028 0.029 0.037 0.042
P95ω̂0

(rad/s) 0.811 0.753 0.742 0.610 0.591 0.559

P5ω̂0
(rad/s) 0.701 0.655 0.640 0.518 0.478 0.401

Sea
State 14

Medω̂0 (rad/s) 0.764 0.724 0.698 0.598 0.581 0.563
σω̂0(rad/s) 0.025 0.030 0.031 0.026 0.033 0.034
P95ω̂0

(rad/s) 0.794 0.760 0.716 0.621 0.607 0.588

P5ω̂0
(rad/s) 0.702 0.669 0.628 0.527 0.489 0.478

Sea
State 15

Medω̂0 (rad/s) 0.790 0.728 0.734 0.607 0.594 0.565
σω̂0(rad/s) 0.030 0.037 0.037 0.038 0.034 0.038
P95ω̂0

(rad/s) 0.830 0.765 0.758 0.644 0.622 0.618

P5ω̂0
(rad/s) 0.722 0.665 0.662 0.526 0.516 0.488

Sea
State 16

Medω̂0 (rad/s) 0.808 0.778 0.741 0.657 0.665 0.720
σω̂0(rad/s) 0.027 0.043 0.034 0.049 0.072 0.042
P95ω̂0

(rad/s) 0.834 0.814 0.787 0.739 0.722 0.774

P5ω̂0
(rad/s) 0.748 0.685 0.710 0.585 0.497 0.638

Sea
State 17

Medω̂0 (rad/s) 0.828 0.780 0.792 0.505 0.494 0.508
σω̂0(rad/s) 0.022 0.035 0.035 0.131 0.124 0.092
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P95ω̂0
(rad/s) 0.856 0.807 0.825 0.863 0.843 0.715

P5ω̂0
(rad/s) 0.782 0.715 0.738 0.363 0.340 0.417

Sea
State 18

Medω̂0 (rad/s) 0.855 0.819 0.630 0.644 0.663 0,676
σω̂0(rad/s) 0.038 0.045 0.097 0.117 0.095 0.107
P95ω̂0

(rad/s) 0.904 0.871 0.763 0.833 0.804 0.821

P5ω̂0
(rad/s) 0.785 0.729 0.441 0.470 0.490 0.476
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Mı́guez González, M., Caamaño Sobrino, P., Ted́ın Álvarez, R., Dı́az Casás,
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