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Abstract 10 

Thermal comfort preferences of occupants and their interactions with building systems are top influential factors 11 

of residential space heating demand. Consequently, housing stock models are sensitive to assumptions made on 12 

heating temperatures. This study proposes a heat balance approach, inspired by the classical degree-day method, 13 

applied to an extensive urban dataset. The goal of this analysis is to determine heterogeneous characteristics, 14 

such as temperature setpoints of heating systems and thermal envelope characteristics from an overall population 15 

of residential buildings. Measured energy data are utilized for the purpose of the study from the city of Aarhus, 16 

Denmark, where the energy usage for heating of circa 14,000 households was monitored over time via smart 17 

meters. These data are combined with actual weather data as well as data extracted by a national building 18 

database. Using linear regression and heat balance models, temperature setpoints for the whole dataset are 19 

determined with a median and average of 19oC and 19.1oC, respectively. Furthermore, building related 20 

characteristics such as thermal and ventilation losses per building and overall heat transfer coefficients are 21 

extracted at urban scale. The reliability of the method over its complexity is discussed with regards to the big 22 

sample that has been applied to. In general, the overall performance of the approach is satisfactory achieving a 23 

coefficient of determination with an average of 0.8, and is found to be in line with previous findings, considering 24 
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also the high uncertainty associated with building-related input parameters. The extracted setpoint distribution 25 

should be transferrable across Scandinavia. 26 

Keywords: smart meter data, temperature setpoints, housing stock model, thermal comfort preferences, U-values, 27 

urban scale 28 

1 Introduction 29 

A number of modeling methodologies have been developed to obtain information on physical resource flows 30 

through the building stock [1]. These are mainly used to characterize and predict energy demand of residential 31 

building stocks and to estimate energy savings after energy retrofitting strategies. Housing stock models can thus 32 

play an important role in supporting energy policy-making. In order to be useful, they should be reliable, efficient 33 

and interpretable [2]. Housing stock models can be broadly classified into two categories: top-down and bottom-34 

up approaches. Top-down models rely on historical energy data and cannot model in detail individual end-uses 35 

[3]. Bottom-up models consist of engineering-based and statistical models. Statistical methods usually include 36 

macroeconomic and socio-economic effects, enable the determination of end-use energy consumption and are 37 

easy to develop and be used [4]. However, they cannot model the impact of specific technologies implemented 38 

and are less flexible. Engineering-based housing stock models use actual building physics and overcome some 39 

of the limitations induced by statistical models [2]. However, the majority of them are developed at national scale 40 

to support policy making and disregard heterogeneity within a country. They are also usually time intensive and 41 

are fully dependent on input data, hence inducing a high degree of uncertainty. Therefore, there is a need to focus 42 

on regional housing stock models that handle heterogeneity. 43 

According to the International Energy Agency in the Energy Buildings and Communities Program (IEA EBC) Annex 44 

53: Total Energy Use in Buildings, the six driving factors of energy use in building stock are : i) climate, ii) building 45 

envelope, iii) building energy and services systems, iv) indoor design criteria, v) building operation and 46 

maintenance, and vi) occupant behavior. Even though significant progress has been made in quantifying these 47 

primary drivers, more emphasis on energy related occupant behavior in buildings is needed to develop reliable 48 

and standardized methods [5, 6]. Neglecting this aspect can lead to severe miscalculations and inaccurate 49 
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conclusions about the energy performance of the building stock [7]. Occupants’ interaction with building systems 50 

affects significantly the total energy use of buildings. The occupants’ gratification with their thermal environment 51 

defines thermal comfort [8]. Therefore, the occupants' perception of comfort or satisfaction in the built environment 52 

drives them to perform various controls (e.g. on HVAC systems and window operations) [9]. The adjustment of 53 

thermostat setpoints and indoor thermal environment are the most influential factors of heating loads along with 54 

heated areas [10]. Some studies have even classified occupants as active, medium and passive users based on 55 

their heating setpoint preferences which impact the indoor thermal environment and energy consumption [11, 12]. 56 

Therefore, thermostat setpoints are crucial input parameters to building energy models due to their big influence 57 

on residential energy use [9]. Currently, the understanding of occupant behavior is still insufficient both in building 58 

design, operation and retrofit, leading to incorrect simplifications in modeling and analysis [5]. In the past, 59 

information about occupants’ interactions with systems was based on sporadic visits to households and rough 60 

estimates of thermal preferences of occupants.  61 

The increasing deployment of intelligent metering systems in buildings and district systems creates a vast amount 62 

of building energy use and occupant-related information. Following the Third Energy Package in the Electricity [13] 63 

and Gas Directive [14] issued by European Commission in 2006, European countries plan to convert part of their 64 

legacy meter stock to smart by 2020 with a focus on electricity. According to the projections, by 2020, it is expected 65 

that almost 72% of European consumers will have a smart meter for electricity and about 40% will have one for 66 

gas [15]. The enormous amount of information and data opens up endless opportunities for researchers and 67 

engineers to study building dynamics and performance at a large scale. In combination with weather data and 68 

cross-sectional data, they can be utilized to develop more accurate prediction models and detailed analyses on 69 

the drivers of building energy consumption [16]. Smart meter data can also help developing and applying control 70 

strategies to improve building energy performance and efficiency [17]. Therefore, they can be utilized to decrease 71 

uncertainty related to building energy performance and occupant behavior and provide detailed information on 72 

energy monitoring.  73 

National building databases and registers can support housing stock energy analysis, by providing information 74 

about building typologies and construction characteristics. These databases are usually created with regards to 75 
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building regulations and schemes. In some cases, information from building owners via questionnaires has also 76 

been collected. Building information can be updated by local authorities and by citizens. However, occupants’ 77 

interventions on the building fabric (i.e. energy renovation measures) are not regularly reported to building 78 

databases. Therefore, there is a significant gap between the data that has been registered and the real energy 79 

performance of the building. 80 

This study aims at utilizing a big urban dataset, consisting of smart meter data from more than 14,000 households 81 

in a Danish city, to estimate temperature setpoints and thermal transmittances on building level. In addition, actual 82 

weather data, as well as data collected from a national building register and a geographic information system (GIS) 83 

have been utilized. A heat balance approach is implemented to the measured energy data of one year applying 84 

linear regression analysis to extract parameters that represent the whole heating season and the total building 85 

envelope. This approach has been inspired by the degree-day theory and aims at providing a new useful tool for 86 

utilities and researchers to extract building and thermal comfort-related characteristics at urban scale based on 87 

smart meter data. The data used allows us to capture the full range of heterogeneous behavior among people, 88 

through their temperature preferences. The estimation of people’s variation enables the development of 89 

customized solutions and messages for them. The estimated thermal transmittance of the building envelope 90 

indicates the refurbishment state of the building and thus, provides more accurate insights into the building stock. 91 

The generated results -in the form of distributions- can be used to improve urban building energy models for the 92 

Scandinavian housing stock. 93 

The rest of the article is organized as follows. In section 2, related works and methods to predict room temperature 94 

setpoints are summarized. In Section 3, we present and apply the heat balance model to the smart meter dataset. 95 

In Section 4, the dataset is presented and basic information about the examined housing stock is described. In 96 

Section 5, the results are compared and validated with previous findings and relevant literature. The applicability 97 

of the methods with regards to the considerations made and the data used is discussed in Section 6. Section 7 98 

summarizes the research findings. 99 
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2 Background 100 

To evaluate the potential impact of different energy retrofitting scenarios in urban areas, bottom-up urban building 101 

energy models (UBEM) have been introduced over the past years. UBEMs have the potential to become key 102 

planning tools for utilities, municipalities and urban planners [18]. A key input of UBEM models are building 103 

characteristics of a given building stock from thermal envelope properties to usage patterns including the number 104 

of occupants, equipment loads and schedules as well as thermostat settings. Some of those information may be 105 

derived from census data. However, there is generally a surprising lack of data available related to the thermal 106 

performance of buildings. A useful source of information can be derived from individual building energy audits [19]. 107 

In [19], the authors used the Monte Carlo method and created a physics-based housing stock model for energy 108 

performance prediction, where inputs were probability distributions based on an Energy Performance Certification 109 

national database. Another source are nationwide building databases which include information such as floor 110 

areas, construction materials, age of construction, etc. Nevertheless, these databases may have flaws or may not 111 

be updated frequently enough. Therefore, there is high uncertainty related to input parameters of UBEMs.  112 

Several studies have been conducted on district or urban scale making use of statistical models and data mining 113 

techniques in order to extract hidden useful knowledge from building-related data, as well as to forecast energy 114 

consumption. The authors of [20] presented a data-driven approach to modeling end user consumption based on 115 

data from 6,500 buildings in Cambridge, Massachusetts, using linear regression analysis and Gaussian process 116 

regression. In [21], electric energy data of thousands of buildings were investigated to extract specific features 117 

based on socio-economic information.  In [17], a data mining method was proposed to analyze building-related 118 

data in order to establish building energy demand predictive models and examine the influence of occupant 119 

behavior on energy consumption. Older studies had also made use of regression analysis based on billing data to 120 

determine household energy. A study by [22] used monthly energy billing data to decompose energy use to 121 

weather and non-weather dependent elements, as well as explain anomalies in energy use of some households.  122 

Determining the internal temperatures or temperature setpoints has been of particular interest, especially in 123 

residential buildings in mostly heating dominated climate since the main source of building energy demand is 124 

driven by heating which in term directly depends on the temperature difference between inside and outside. 125 
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Temperature setpoints and heating duration may differentiate across dwellings based on their preferred thermal 126 

comfort range, which affect the resulting internal temperatures. Nevertheless, many top-down urban scale models 127 

assume the same constant temperature setpoints for the whole building stock, while the rest calculate internal 128 

temperatures as a function of building envelope, occupancy and systems [23].  129 

Most of the existing literature puts emphasis on predicting internal temperatures or measuring household room 130 

temperatures at district scale based on temperature recordings [24]. For example, the authors in [25] collected 131 

temperature and humidity data from 1,604 study dwellings in order to determine the effect of dwelling and 132 

household characteristics on indoor temperature variation. The median standardized daytime living room 133 

temperature was calculated to be 19.1oC, while the night time bedroom temperature was found to be 17.1oC. 134 

Temperatures were affected by the building envelope characteristics, thermal efficiency, number and age of 135 

occupants. The socio-economic status was not strongly related to them. In [26], temperature recordings from 821 136 

English dwellings were collected and analyzed, which were monitored in different zones within the dwellings. The 137 

standardized internal temperatures were estimated by regressing the mean hourly indoor temperatures on outdoor 138 

temperature. The results showed that more efficient buildings have higher indoor temperatures at all outdoor 139 

conditions, as well as that households with children were the warmest. In another study [23], internal temperatures 140 

were predicted at high temporal resolution using panel methods based on data from 280 households. Temperature 141 

recordings were taken every 45 minutes for 6 months, while the model was generated using mean daily 142 

temperature data. It was concluded that thermostat settings play an important role in reducing total energy 143 

consumption. Moreover, centrally heated dwellings and detached homes had lower internal temperatures, while 144 

for each additional person living in a household the mean internal temperature increased by ~0.25oC. In another 145 

study [27], internal temperature recordings were gathered by 54 households in China, which were found to be on 146 

average 13.5oC for living rooms and 12.7oC for bedrooms. These are far outside the ASHRAE steady state thermal 147 

comfort zone, highlighting the differences among climates in terms of construction and cultural behavior. 148 

Furthermore, the effect of the climate is pronounced on these findings, as this study referred to the ‘hot summer-149 

cold winter’ climatic zone of China being characterized by relatively low ambient temperatures during winter 150 

season -which is quite limited- and very high temperatures during the rest of the year. However, these winter 151 

climate conditions are comparable to the ones in UK. The very low internal temperatures noticed in this study are 152 
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a result of the fact that domestic heating is operated part-time-part-space in that region of China, meaning that 153 

only specific rooms are heated up instead of the whole house and only for a shorter time than a usual heating 154 

season duration. 155 

Apart from the measurement of internal temperatures, some studies have tried to predict them. Most of them refer 156 

to smaller cases and make use of simple heat balance models. The authors in [28] used the Domestic Energy and 157 

Carbon Model [DECM] to estimate among others the annual internal temperatures in different types of English 158 

dwellings, which were on average 18.4oC. The mean internal temperature was also found to be highly correlated 159 

with the CO2 emissions of each dwelling and outweighed the effect of climate and building fabric construction. The 160 

authors of [29] proposed a method to explore future transformations in the UK housing stock based on the English 161 

House Condition Survey data. Besides energy demand prediction, they used the heat-balance method to infer the 162 

appropriate modeling temperatures for a base year in UK. In particular, the profiles for the internal temperatures 163 

varied from 14.1 to 18.7oC for one of the two modeled zones, while these temperatures were 3oC lower for the 164 

other zone. The study by [30] modeled 37 dwellings employing the BREDEM algorithms [31] and predicted the 165 

annual internal temperatures and the heating demand temperatures which equals the temperature setpoint in most 166 

cases. It should be noted that most of the afore-mentioned studies refer to the UK housing stock, while there is a 167 

lack of similar literature for Scandinavian or Danish building stock. 168 

In cases where internal temperatures are not available, degree-days have been used as a tool to assess and 169 

analyze weather related energy consumption in buildings for over seven decades. The concept originates from 170 

agricultural research, where variation in outdoor air temperature is also important which is also the case for building 171 

energy use [32]. Degree-days can be defined as the summation of differences between the outdoor temperature 172 

and a building reference temperature (base) over a specified time period for both heating and cooling systems. 173 

The simplicity of the concept of heating degree-days (HDD) has led to a plethora of studies in the area of building 174 

energy use analysis. The influence of HDD and heating degree hour (HDH) on hourly electricity consumption of 175 

hundreds of Norwegian households was investigated and concluded that HDD achieve a slightly higher goodness 176 

of fit compared to HDH [33]. The authors in [34] proposed a city-scale degree-day method, according to which 177 

they extracted the average building heat loss rate and a city-scale base temperature for the area of Strasbourg in 178 
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order to estimate the aggregate heating energy demand, while accounting for the urban heat island effect. In 179 

addition, residential heating energy requirements and fuel consumption for the city of Istanbul were estimated 180 

making use of HDD method and air temperature records, while studying different construction types [35]. A study 181 

by [36] utilized energy data to estimate the base temperature of a single building along with the heat loss coefficient 182 

and subsequently heating degree-days using Bayesian inference. The performance line method and energy 183 

signature method were presented in [37] to estimate the building’s base temperature based on daily energy data 184 

and outdoor temperatures and to extract degree-days.  185 

3 Method 186 

The method applied in the current experiment takes an existing heat balance approach a step further. The 187 

temperature setpoints and total heat loss coefficients are estimated from smart meter data for thousands of 188 

buildings. The granularity of energy data is hourly and the sample of buildings covers a large share of a Danish 189 

urban building stock, as opposed to previous studies that have been found in literature and cover much smaller 190 

building samples. This allows to draw conclusions about the applicability and accuracy of the method applied.  191 

3.1 Main considerations 192 

To treat this urban-scale sample of buildings, the following considerations were made. Firstly, only the coldest 193 

days of the year were considered. In particular, only the data that correspond to days when average daily ambient 194 

temperature was lower than 15oC were taken into account. In this way, a normal operation of the heating system 195 

would be ensured. Moreover, solar gains are reduced in Denmark especially during winter time. This results in 196 

transient phenomena being less dominating. Thus, steady-state conditions would be applicable. The investigated 197 

buildings are small enough that uniform air mixing was assumed. All households were treated as single-zone 198 

models in order to reduce complexity and computation times. In addition, the investigated housing stock is 199 

homogeneous with regards to building type (consisting only of single-family houses), allowing a somewhat 200 

accurate estimate of occupant density and construction standard. As no information about specified occupancy 201 

schedules was available either, internal heat gains were defined according to the Danish Building Research 202 

Institute guidelines [38] as 5 W/m2 (corresponding to external floor areas), which is a sum for people loads and 203 

equipment loads for a residential building. This value was used as an average for all different spaces in households 204 
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(kitchen, living room, bedrooms etc.), so that it is in line with the single-zone model approach. Furthermore, the 205 

‘equivalent’ temperature setpoint, which represents the volume-weighted mean temperature across all conditioned 206 

and unconditioned spaces in every household, was assumed to be constant throughout the heating season that 207 

we investigated.  208 

3.2 Calculation of equivalent thermostat heating temperatures and U-values 209 

Inspired by the classical degree-day method and based on the steady-state heat balance for a room, the following 210 

formula (equation 1) can be derived. According to that, total energy loads for building space heating over a 211 

specified period are directly proportional to the building heat losses that vary with the change in the current indoor-212 

outdoor air temperature gradient (i.e. natural ventilation and air infiltration, wall heat conduction). Similar equations 213 

to the following heat balance model, solved for QH, have been traditionally used to calculate the heat output of well 214 

controlled heating systems [37]. 215 

 
𝑇𝑜 = 𝑇𝑖 −

𝑄𝐻 + 𝑄𝑆𝐺 + 𝑄𝐼𝐺

𝑈𝐴 + 𝑐𝑝 𝜌 𝑛 
 

(1) 

where Ti is the equivalent internal temperature in oC, To is the ambient temperature in oC, QH is the heating demand 216 

in W, QSG stands for solar gains in W, QIG represents the internal heat gains from occupants and equipment in 217 

W/m2, U is the overall heat transfer coefficient across the building envelope in W/m2K, A is the total envelope area 218 

in m2, n is the ventilation or infiltration rate in m3/s, cP is the specific heat capacity for air under constant pressure 219 

which equals to 1000 J/kg K and ρ is the density of air which equals to 1.2 kg/m3. The heat loss factor due to the 220 

air change can be also simplified to equal 0.33 𝑁 𝑉 , where N is the ventilation rate in air changes per hour (ACH) 221 

and V is the volume of the building in m3. 222 

Due to the extensive data quantity both in terms of number of monitored buildings and data granularity, complicated 223 

approaches would be less suitable. So, the methodology applied in this case was simple linear regression analysis. 224 

The ordinary least squares (OLS) method was used and run for each household’s data. According to [39], the OLS 225 

method is the most efficient for urban scale models having the lowest deviation from measured data.  226 
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The four main statistical assumptions regarding OLS method were tested to prove whether they were satisfied on 227 

building level: the regression is linear in parameters, the sampling of observations is random, the conditional mean 228 

is zero and there is no multi-collinearity. 229 

Thus, in the current model, the ambient temperature To was modeled as an affine function of the total energy load, 230 

so that 𝑇𝑜 = 𝑇𝑖 −
𝑙𝑜𝑎𝑑

𝑙𝑜𝑠𝑠𝑒𝑠
 , where 𝑙𝑜𝑎𝑑 =  𝑄𝐻 + 𝑄𝐼𝐺 + 𝑄𝑆𝐺  and 𝑙𝑜𝑠𝑠𝑒𝑠 = 𝑈𝐴 + 0.33 𝑁 𝑉 . The internal temperature or 231 

temperature setpoint and the losses are expressed by the intercept and the slope of the linear model, respectively. 232 

The losses represent the envelope and ventilation losses. The energy load quantity will always be positive. QH 233 

represents the space heating consumption of the households which was given on hourly resolution. However, in 234 

order to account for latent thermal mass effects in the buildings, it was decided to aggregate the hourly energy 235 

data on daily basis and report the aggregate value of energy consumption (heating). Thus, internal temperatures 236 

in equation 1 refer to the mean of internal temperatures recorded, representing the relative heating profile of a 237 

dwelling. The internal gains were also aggregated on a daily resolution based on the indicated hourly values.  238 

In the afore-described model, the heat losses are mainly attributed to conduction through the building envelope 239 

and to ventilation losses. For that reason, we are focusing only on the winter time or heating season when the 240 

ambient temperatures are low; furthermore, the solar gains are significantly lower.  Thus, as mentioned before, 241 

the regression model was restricted to periods when the mean ambient temperature was less than 15oC. 242 

Information concerning building characteristics and occupancy were retrieved by the national building database 243 

and by national building regulations, where no detailed information was available. Actual weather data on hourly 244 

resolution were acquired for the area of Aarhus covering the examined period (2014-2015) and included ambient 245 

temperature, solar radiation and relative humidity. 246 

The calculation of solar gains was based on the actual weather data available for the area consisting of direct and 247 

diffuse radiation. An exemplary building was made in DIVA software [40], which is a daylighting and energy 248 

modeling plug-in for Rhinoceros, according to a Radiance calculation, where time-integrated solar irradiance on 249 

each surface was calculated as presented in [41, 42]. Radiance is a backward raytracer that was originally 250 

developed at Lawrence Berkeley National Laboratory [43]. An average value of integrated solar irradiance for all 251 
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four surfaces of an exemplary building was taken, which was then inserted into the model. According to the 252 

following equation (2), the solar gains are calculated as the product of overall solar heat gain coefficient (SHGC), 253 

projected area of fenestration Af in m2 and incident total irradiance Et in W/m2. 254 

 𝑄𝑆𝐺 = 𝑆𝐻𝐺𝐶𝑡  𝐴𝑓 𝐸𝑡 (2) 

To estimate the equivalent overall heat transfer coefficient of the building envelope for each household, the losses 255 

factor in equation 1 had to be determined. The geometry of the houses (i.e. envelope areas) was available through 256 

an additional dataset consisting of GIS data at city scale. Therefore, the ventilation and infiltration rate had to be 257 

determined taking into account the type of mechanical systems installed in each house, possible insulation state 258 

of building envelope and air leakages. 259 

4 Data  260 

4.1 Typical dwelling characteristics in Denmark 261 

Approximately 45% of Danish dwellings are detached houses [44], although their share is significantly less in 262 

larger cities (e.g. Copenhagen or Aarhus). A large share of heating (namely 63%) in private Danish houses is 263 

provided by district heating, which covers both space heating and domestic hot water demand [45]. Hydronic 264 

systems are the most common heat emission systems found in residential buildings. Mechanical cooling and 265 

ventilation is mostly available in commercial buildings. The national average energy consumption for Danish 266 

single-family houses constructed in the period before 1980 is 151 kWh/m2 per year and 102 kWh/m2 per year for 267 

houses constructed between 1980 and 2000 [46]. That gives an indication of the energy efficiency of the 268 

investigated building stock.  Moreover, according to the Danish building regulations, there should be a sufficient 269 

amount of thermal mass and insulation layer in newer buildings, which results in more airtight building envelopes. 270 

More information and typical building construction examples of Danish single-family houses can be found in [47].  271 

4.2 Description of smart meter data 272 

Our approach is evaluated on basis of smart meter data collected initially from 15,063 households in Aarhus, 273 

Denmark at a 60-minute granularity of one full year. The data is provided by Aarhus AffaldVarme (AVA), which 274 

supplies district heating to the inhabitants of Aarhus. The data ranges from August 2014 to August 2015. The data 275 
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contains the heating consumption of residential AVA customers. The households are all single-family houses 276 

(SFH). The periods that the data cover range depending on when each of the smart meters was installed. There 277 

is a slightly smaller number of smart meters that have recordings for the whole investigated period. Thus, energy 278 

data from 14,182 households are utilized in the experiment, which correspond to the whole examined period. The 279 

data has been cleansed and aggregated at a daily time scale and the results of this analysis are presented in the 280 

results’ section. 281 

4.3 Building characterization 282 

The dataset covers a big spectrum of single family houses in Aarhus, ranging from buildings constructed in 1800 283 

to 2015. The floor areas range from 25m2 to 504m2, with a mean of 134m2. The number of floors varies between 284 

1 and 3, with the majority of the buildings being single-floor houses. These information are presented in Figure 1. 285 

 286 

5 Results 287 

The afore-mentioned method was applied to smart meter data of 14,182 households over one full year and the 288 

results are presented hereafter.  289 

5.1 Variables’ distributions 290 

Figure 2 presents the main results of this study, which are the temperature setpoint distribution and the distribution 291 

of the total envelope and ventilation loss factor for all examined households, as estimated according to equation 292 

1. As it can be seen, the mean equivalent temperature setpoint that was calculated for the whole sample of 293 

buildings was 19.1oC, while the median value was 19oC. The standard deviation was 1.54oC. This temperature is 294 

Figure 1. Building information of dataset 
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a bit lower than the expected indoor temperature value, which would be close to 20oC according to estimations of 295 

the Danish Building Research Institute [48] included in Danish Standards [49]. It can be attributed to two reasons. 296 

First, every household is modelled as a single-zone, which means that any unconditioned spaces are also included 297 

and represented with this specific equivalent parameter. Second, this figure refers to equivalent temperature 298 

setpoint, which is inferred over a whole season. So, unoccupied periods and hours with night-setback are also 299 

included in this estimation. The internal heat gains that were assumed in the model proved to have a decisive 300 

impact on the temperature results, so higher internal gains than the ones defined in the standard would lead to 301 

higher temperatures. Nevertheless, the uncertainty associated with the internal and solar gains did not result in 302 

high inaccuracy of the model. Daily internal heat gains ranged from 5 kWh to 110 kWh among the different 303 

households. The temperature setpoint distribution seems to approach normality, while the building envelope and 304 

ventilation losses graph approximates a log-normal distribution curve. The mean building envelope and ventilation 305 

losses were calculated to be 0.1 kW/K with a standard deviation of 0.03 kW/K. Additional conclusions can be 306 

drawn on how close to expectation the current used model has performed and the goodness of the accuracy that 307 

can be achieved at such a large scale. Despite the steady-state heat balance model that was applied on the 308 

building sample and the considerations that were made about input parameters, the results indicate a reasonable 309 

range of temperature setpoints and loss factor across the dwellings. In order to interpret the thermal environment 310 

and thermal comfort that occupants perceive based on the estimated equivalent internal temperature, the 311 

Predicted Mean Vote (PMV) and Predicted Percentage Dissatisfied (PPD) indices proposed by Fanger [50] were 312 

used.  The average PMV was calculated to be -0.6, which corresponds to PPD equal to 12.9%. Based on these 313 

estimations, the thermal environment falls into Category C out of the three desired thermal environment categories 314 

as described in [51]. 315 
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  316 

Figure 2. Distribution of temperature setpoint (left) and total building envelope and ventilation losses (right) 317 

To assess the goodness of the fit for the simple linear regression models, the coefficient of determination (R2) was 318 

utilized to estimate the variance of the predictable variable from the independent variable. The results are 319 

presented in Figure 3. It has to be noted that a relatively high R2 is achieved with respect to the nature of the 320 

experiment, which regards end users energy use. The mean and median value of the coefficient of determination 321 

were found to be 0.8 and 0.83, respectively, with a standard deviation of 0.11. That confirms the good fit of the 322 

linear regression models to the smart meter data, as well as a quite consistent model, considering the large amount 323 

of data that has been used.  324 

 325 

Figure 3. Distribution and boxplot for R2 for all houses’ fits  326 

In Figure 4, the residual standard deviation distribution is illustrated, which can indicate the variability of predictions 327 

in the regression. This shows the deviation of the errors and not the errors of the regression themselves. It can be 328 
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observed that the deviation of the residuals has a mean of 1.53, which is satisfactory considering also the big 329 

building sample.  330 

 331 

Figure 4. Residual standard deviation distribution for all houses 332 

5.2 Exemplary households 333 

The regression models for two randomly selected households are presented hereafter. The intercept of the models 334 

represents the estimated temperature setpoint, while the slope stands for the coefficient of envelope and 335 

ventilation losses. The coefficient of determination for these two cases were R2=0.84 and R2=0.8, respectively. 336 

The estimated temperature setpoints for these two models were 19.39oC and 18.91oC, respectively. Both models 337 

are quite similar, with the household presented to the right having a bit more scattered energy use data and higher 338 

number of outliers.  339 

 340 

Figure 5. Regression fit for two random households 341 
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5.3 Regression diagnostics 342 

The main assumptions of OLS were tested for numerous randomly selected models and the following conclusions 343 

were drawn. First, normality was tested by checking the probability plot of the standardized residuals against the 344 

values expected under normality, concluding that the normality assumption is satisfied. Second, the residuals did 345 

not have non-linear patterns, confirming the linearity condition. Third, the constant variance assumption was met, 346 

since the residuals were spread equally and randomly along the ranges of predictors. The errors of the regression 347 

models had zero mean as required by the Gauss-Markov theorem. The independence assumption was also 348 

satisfied. Lastly, the outliers that were influential to the regression results were determined. That means that these 349 

may be influential to the regression analysis and the results will change if we exclude these cases.  350 

5.4 Estimation of equivalent total U-value of building envelope 351 

After the total loss factor for each household was calculated, the equivalent overall heat transfer coefficient, U-352 

value, for the building envelope was calculated. This would provide additional valuable information for the 353 

insulation state of the buildings and indicate any possible energy refurbishments. Thus, the ventilation and 354 

infiltration rate on building level had to be determined. According to [52], the infiltration rates for Danish single-355 

family houses vary between 0.1 and 1 ACH. These were estimated for each household in accordance with 356 

available information about the age of the building and construction characteristics extracted from the national 357 

building register. Specifically, an algorithm was used according to which the infiltration rate took values in [0.1, 1] 358 

based on the construction year of the building and a binary variable that indicated if the house had undergone any 359 

energy renovation that has been registered in the national building database. These two factors would collectively 360 

indicate any thermal bridges on the building envelope affecting the infiltration rate. The estimated infiltration rate 361 

for each household was assumed to be constant throughout the course of the day. The mean value of natural 362 

ventilation rate for the investigated building stock was estimated to be 0.5 ACH. Rough information for the 363 

geometry of the houses and the envelope areas on building level was available through the Danish Building 364 

Register (BBR) [53]. BBR is a nationwide register including data for the majority of Danish buildings and 365 

households. Nowadays, it contains information about 1.6 million properties, 3.8 million buildings and 2.7 million 366 

dwellings and commercial units [54]. It was originally set up in 1977 by collecting information from building owners 367 
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via questionnaires. Since then, it has been updated by local authorities and by citizens [55]. Data contained in 368 

BBR -provided for every registered house- are categorized into areas, building constructions and installations. 369 

Information about areas can be summarized to the following: total building/residential/commercial area, built-up 370 

area, number of storeys, attic and total basement area. The information extracted for the current analysis was the 371 

building footprint area and the number of floors for each building. This information was then coupled and validated 372 

with an open-source GIS dataset for the city of Aarhus [56]. Thus, the total envelope area for each building was 373 

extracted, as well as the total building volume.  374 

The results of this analysis are presented in Figure 6. The distribution approximates a log-normal curve. The mean 375 

value of the equivalent U-values for the examined residential building stock is calculated to be 0.58 W/m2K with a 376 

standard deviation of 0.22 W/m2K. The median value is 0.54 W/m2K. This finding gives insight into the state of the 377 

building envelopes across Danish SFH, as well as their current energy refurbishment state. According to the 378 

Danish Building Research Institute [57], the average area-weighted U-values of Danish single family houses -as 379 

calculated with regards to the national building regulations- mainly vary from 0.3 to 0.65 W/m2K depending on the 380 

construction age of the building.  It should be noted that the majority of the investigated single-family houses were 381 

constructed in the 1960’s, which have an average area-weighted U-value of 0.52 W/m2K according to [57]. The 382 

overall heat transfer coefficients of the buildings do not always comply with the ones defined in the national building 383 

databases or introduced by the building regulations. Therefore, the calculated U-values can determine the level of 384 

energy refurbishment that might have been implemented to the buildings. Such updated information, although very 385 

important for energy calculations, is missing from the majority of the Danish building register [58]. The results from 386 

this study can also validate existing values in building databases. In addition, since this equivalent U-value 387 

summarizes the heat transfer coefficient for the whole building structure, no specific conclusions can be drawn for 388 

the particular building components. However, they can be assessed in combination with the rest of building 389 

characteristics and reveal valuable information about the building energy performance of the stock. 390 
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 391 

Figure 6. Distribution of equivalent U-values for the building stock 392 

6 Discussion 393 

The proposed method aims at investigating the applicability of a simplified heat balance approach on smart meter 394 

data to derive temperature setpoints and thermal transmittances at urban scale. Our analysis focused on fitting 395 

the overall heating energy distribution across the investigated building stock. The lack of information about the 396 

share of heated and unheated space resulted in the use of an equivalent temperature setpoint, which represented 397 

the volumetric mean temperature indoors. That means that there may be rooms that are warmer (i.e. occupied 398 

spaces) and rooms that are cooler in a building.  However, the scope of our analysis was to treat the whole building 399 

as an entity. In Danish building regulations and directives, a dimensioning internal temperature of 20oC is 400 

commonly used for the majority of Danish houses. However, it is also mentioned that in older poorly insulated 401 

houses, the room temperature can be even lower than 20oC or some rooms are unheated to reduce the heating 402 

costs [48]. The thermal environment evaluation was conducted assuming that the living spaces (i.e. whole house) 403 

were heated. However, if unheated spaces were to be evaluated, the desired thermal environment follows a 404 

different classification.  According to steady-state conditions of the model, changes in temperature sepoints were 405 

not taken into account. The use of a steady-state model resulted in extreme conditions and transient states not 406 

being taken into account. If a transient model was to be used instead, the temperature setpoint would no longer 407 

be represented by a single value for the whole heating season but replaced possibly with daily or even hourly 408 
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ones. Moreover, the assumptions on constant infiltration rates throughout the day and over the heating season 409 

and constant internal gains throughout the day and among the different households would have to be adjusted. In 410 

particular, varying heat flow rates from occupants and appliances could be used based on hourly schedules and 411 

differentiating between weekdays and weekends. Nevertheless, the current study aimed at producing results that 412 

could be utilized subsequently by urban building energy models or housing stock models, which in their majority 413 

require a single heating temperature setpoint per building or zone. Thus, it would be outside the scope of this work 414 

to calculate dynamic temperature setpoints. In addition, this would increase the computational complexity 415 

enormously and subsequently the computation time for urban-scale or district-scale building stocks.  416 

The biggest uncertainty on the total energy load factor comes from the internal gains and solar gains factor. Internal 417 

gains were assumed to differentiate according to floor area based on Danish standards. As a result, the residents 418 

of the investigated area were assumed to have the same occupancy patterns. Internal gains depend on occupancy 419 

behavior and schedules, as well as cultural patterns that can be estimated but not be predicted accurately at a 420 

large scale. Thus, a certain amount of assumptions based on recommendations by standards had to be taken, 421 

which resulted in a higher uncertainty in the housing stock model predictions. Solar gains had comparatively 422 

smaller impact on the energy load and the assumption about an average orientation did not seem to affect 423 

significantly the results. This should be considered in combination with the local climate, which in this case is 424 

characterized by relatively low solar radiation during the heating season and low ambient temperatures.  425 

Despite the considerations that were made regarding the envelope properties, the performance of the proposed 426 

approach was satisfactory compared to existing knowledge and statistical values included in literature. The 427 

analysis was run on a private scientific cloud (SciCloud) using a web-based interface to interact with the data [59]. 428 

SciCloud consists of 18 physical servers with 80 cores and 564 GB of memory, as well as 4.2 TB of node storage, 429 

plus 1.2 TB of network storage. The environment used for the data analysis was R. The computation time for the 430 

whole housing stock analysis did not exceed two hours, due to the low complexity of the heat balance models and 431 

the OLS method. Therefore, the proposed model is expected to balance predictive accuracy and parsimony. If 432 

more complicated heat transfer phenomena were to be included in the model, the computation time would increase 433 

significantly. The big amount of historical measured energy data led to statistically significant results and 434 
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strengthened our methodology. On the other hand, such large-scale energy data are mostly available to utilities 435 

and less to the research community due to privacy issues. Anonymization techniques can be applied and facilitate 436 

significantly the data acquisition and publishing process. 437 

Measurements of internal temperatures for a smaller sample of the examined building stock would validate this 438 

methodology. The installation of smart sensors in newly constructed buildings measuring internal temperatures in 439 

rooms would allow this. However, the share of newly constructed buildings remains quite low in the city of Aarhus 440 

and the employment of smart sensors in the existing building stock would be a relatively long and costly procedure. 441 

Moreover, the application of the proposed method on a much smaller sample, which more detailed building and 442 

occupant-related information (i.e. infiltration rates, occupancy schedules) would be available for, would be a next 443 

step to continue this study. In this direction, occupant data could be used to approximate internal heat gains more 444 

accurately. The current sample is a relatively homogeneous building stock, including only single-family houses in 445 

the same urban area. Their thermal envelope characteristics varied a lot, though, in terms of building envelope 446 

insulation, construction materials and geometry. Thus, a wide range of building construction types was covered.  447 

Our method proved to work reliably on the examined stock with regards to the number of assumptions that were 448 

made. This resulted in the estimated parameters including high second-order uncertainty. To cope with this 449 

uncertainty, probabilistic methods would be required which would be less attractive for this case of thousands of 450 

buildings.  Despite the uncertainty included in the input variables and estimated parameters, heterogeneous 451 

preferences of occupants regarding thermal comfort were determined successfully.  Nevertheless, further work 452 

needs to be carried out to investigate how it can be expanded upon more diverse building stocks. Finally, the 453 

Danish climate is characterized by decreased solar gains and cold winters, which make the transient phenomena 454 

being less dominating. If this work was to be reproduced to different climates with increased solar gains, the quasi-455 

steady-state conditions would be less valid. Also, equation (1) would have to be adjusted accordingly so that a 456 

utilization factor for solar heat gains (e.g. function of time constant) is included that accounts for the dynamic heat 457 

flows within the building.   458 
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7 Conclusion 459 

This study has utilized an urban dataset of more than 14,000 households in Aarhus, Denmark to derive 460 

temperature setpoints and overall heat transfer coefficients at house level. This dataset comprised of measured 461 

daily heating energy data, actual weather data, basic building typological data and geometry information extracted 462 

from a building register and GIS data. A heat balance model –inspired by the degree-day theory- was proposed 463 

and applied in combination with linear regression analysis. The results showed that a good fit was achieved overall 464 

in the majority of the examined households. The results provided distributions of i) equivalent temperature 465 

setpoints, ii) a factor for building envelope and ventilation losses, as well as iii) equivalent U-values for the building 466 

envelopes. The average equivalent temperature setpoint was calculated to be 19.1oC across the investigated 467 

Danish dwellings, considering both heated and unheated spaces in the buildings. This value represented the mean 468 

volumetric temperature indoors. The mean overall heat transfer coefficient for the total building envelope of all 469 

houses was estimated to be 0.58 W/m2K. The mean value of the coefficient of determination (R2) was 0.8, 470 

indicating a good fit of the linear regression models. It was found that Danish homes differed in heating setpoint 471 

temperatures and envelope insulation state. The energy data was proven to be highly correlated with the weather 472 

data (consisting of ambient temperature and solar radiation), as expected. Statistically significant results have 473 

been reported due to the big sample size and the consistent and granular energy measurements. Therefore, the 474 

proposed steady-state approach is applicable and recommended for urban-scale building samples when a uniform 475 

setpoint temperature is adequate to be extracted for the whole heating season. Furthermore, overall heat transfer 476 

coefficients for the whole building envelope can be used to determine any possible energy retrofit measures that 477 

have been applied to the envelope. Moreover, this method enabled the capturing of the full range of heterogeneous 478 

behavior among people, as reflected on their temperature preferences. These findings are important to 479 

characterize the thermal comfort preferences of occupants and their interactions with the building systems, which 480 

are top influential factors of residential heating energy loads.  481 

The interest of using this method goes beyond the results that are presented here. The study provided insights 482 

that will help direct future research in identifying ways to estimate temperature setpoints, assess indoor thermal 483 

comfort and consequently improve urban building energy models. Thus, customized messages and solutions for 484 
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occupants can be developed. Furthermore, it provided better understanding of the Danish building stock and its 485 

occupants, which is crucial in building energy demand calculations. Thus, the given methodology can be applied 486 

to large scale smart meter datasets to acquire building-related and thermal comfort-related characteristics. In 487 

addition, it can provide valuable information to utilities to further optimize their network and apply advanced 488 

technologies (i.e. virtual storage on district heating network) based on the temperature setpoint distribution of the 489 

district. The proposed simplified approach opens up new possibilities of building performance analysis at urban 490 

scale. Next step would be to couple this energy dataset with internal temperature recordings, which would enable 491 

the validation of the estimated variables at urban scale. In that way, the current findings could be utilized to 492 

challenge assumptions used in Scandinavian housing stock models regarding heating patterns and mostly, 493 

temperature setpoints throughout the heating period. 494 
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