Modeling of Gas Solubility Using the Electrolyte Cubic Plus Association Equation of State

Sun, Li; Kontogeorgis, Georgios M.; von Solms, Nicolas; Liang, Xiaodong

Published in: Industrial and Engineering Chemistry Research

Link to article, DOI: 10.1021/acs.iecr.9b03335

Publication date: 2019

Document Version Peer reviewed version

Thermodynamics, Transport, and Fluid Mechanics

Modeling of Gas Solubility using the Electrolyte Cubic Plus Association Equation of State

Li Sun, Georgios M. Kontogeorgis, Nicolas von Solms, and Xiaodong Liang

Ind. Eng. Chem. Res., Just Accepted Manuscript • DOI: 10.1021/acs.iecr.9b03335 • Publication Date (Web): 21 Aug 2019

Downloaded from pubs.acs.org on August 24, 2019

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
Modeling of Gas Solubility using the Electrolyte Cubic Plus Association Equation of State

Li Sun, Georgios M. Kontogeorgis, Nicolas von Solms, Xiaodong Liang*

Center for Energy Resources Engineering
Department of Chemical and Biochemical Engineering
Technical University of Denmark
2800-Kongens Lyngby, Denmark

Keywords: Gas Solubility; Inorganic Salts; Electrolyte Solution; e-CPA; Multi-salt solution
Abstract

The prediction of the solubilities of carbon dioxide and methane in aqueous solutions of inorganic salts is important for geological carbon storage, enhanced oil recovery, gas hydrate formation and seawater desalination. Few electrolyte equations of state can be used for accurate gas solubility calculations over wide ranges of temperature, pressure and salt molality. This work presents a thermodynamic modeling study on the solubilities of carbon dioxide and methane in aqueous solutions of several inorganic salts with the electrolyte Cubic-Plus-Association equation of state. The binary interaction parameters between ion and gas are obtained by fitting the experimental data of gas solubility in single-salt solutions. It is shown that the equation of state can satisfactorily correlate the gas solubility over a wide range of conditions, with deviation less than the reported experimental uncertainties (7%) for most systems. The equation of state is then used to predict the gas solubility in multi-salt solutions, and a satisfactory performance is achieved. The salting-out effects resulting from ion size, charge density, and salt concentration are also extensively discussed.
1. Introduction

One important way of reducing carbon dioxide (CO$_2$) emissions is to capture and inject it into deep saline formations. The injected CO$_2$ dissolves into the saline pore water and forms an aqueous solution. That is why some inorganic salts, such as sodium chloride (NaCl), potassium chloride (KCl), calcium chloride (CaCl$_2$), magnesium chloride (MgCl$_2$), and sodium sulfate (Na$_2$SO$_4$), water (H$_2$O), and CO$_2$ are the most common species in geological fluids\(^1\). Methane (CH$_4$), another important greenhouse gas, has also been found in many geological fluids\(^2\). Some inorganic salts (such as NaCl and KCl) are common thermodynamic inhibitors for gas hydrate formation, because these salts can significantly shift the phase equilibria of hydrate and aqueous solution\(^3\). Accurate calculations of gas solubility over a wide range of conditions (temperature, pressure and salt concentration) are important for the analysis of fluid inclusion data\(^4\), geological carbon storage\(^5\), the prediction of gas hydrate formation, as well as in the applications, such as enhanced oil recovery, seawater desalination and designing certain separation equipment in the chemical industries\(^6\).

Thermodynamic modeling is an attractive approach for calculating gas solubility. Extensive thermodynamic modeling studies have been made for calculating the solubilities of CO$_2$ and CH$_4$ in aqueous solutions of inorganic salts. The so-called $\varphi - \gamma$ approach has played a vital role in these studies\(^6-24\). The equations of state (EOS) of Peng-Robinson (PR)\(^25\), Soave-Redlich-Kwong (SRK)\(^26\), Redlich-Kwong (RK)\(^27\), Virial truncated after the second term\(^16,18\), Patel and Teja (PT)\(^28\) and Perturbed-Chain statistical associating fluid
theory (PC-SAFT)29,30 have been used for modeling the fugacity coefficient (φ), while LIFAC31, extended UNIQUAC32, Non-Random Two-Liquid (NRTL)33, Pitzer’s equation34, electrolyte NRTL35,36 and empirical correlations7 are typical choices for the activity coefficient (γ). This $\varphi - \gamma$ approach usually requires many adjustable parameters (even up to 20 for a single-salt solution23), and it has not been used for modeling gas solubility in multi-salt solutions.

An electrolyte EOS for all the phases provides a more consistent framework, as well as the possibility to calculate other properties, e.g. density and surface tension. Some practices have also been done for modeling the solubilities of CO$_2$ and CH$_4$ in aqueous salt solutions37-49. Unfortunately, on one hand, a few electrolyte EOS can predict gas solubility over wide ranges of temperature, pressure and salt concentration with accuracy close to the experimental one, and fewer studies made systematic investigations. On the other hand, if the electrolyte EOS is set up for ions, it shall in principle be working for multi-salt solutions.

To the best of our knowledge, however, no research on modeling gas solubility in aqueous multi-salt solutions has been reported for electrolyte EOS. More discussion is presented in Section 4.

The electrolyte cubic plus association (CPA) EOS developed by Maribo-Mogensen et al.49 is investigated in this work for modeling the gas solubilities of CO$_2$ and CH$_4$ in single-salt and multi-salt solutions. In the rest of the paper, the model is firstly presented, and then the data and parameter estimation are discussed. And then the results are presented and discussed followed by a summary discussion. Finally, the conclusion is given.
2. Thermodynamic Model

2.1 The Electrolyte CPA EOS

The electrolyte CPA EOS (e-CPA)\(^{49}\) is an extension of the CPA EOS\(^{50}\)

\[
A^r = A^{SRK} + A^{ASSOC} + A^{DH} + A^{Born}
\]

where \(A^{SRK}\) and \(A^{ASSOC}\) are the two contributions from the original CPA, \(A^{DH}\) is from

the Debye-Hückel (DH) theory\(^{51}\), and \(A^{Born}\) is from the Born equation\(^{52}\).

In terms of residual Helmholtz energy, the cubic Soave-Redlich-Kwong EOS\(^{26}\) can be

written

\[
A^{SRK} = nRT \left[-\ln \left(1 - \frac{b}{v} \right) - \frac{a(T)}{bRT} \ln \left(1 + \frac{b}{v} \right) \right]
\]

where \(R\) is the gas constant, \(T\) is the temperature, \(v\) is the molar volume, \(n\) is the total

number of moles, and \(b\) is the co-volume parameter of the mixture

\[
b = \sum_i x_i b_i
\]

where \(x_i\) and \(b_i\) are respectively the mole fraction and the pure co-volume parameter of

component \(i\) (solvent, gas, cation, anion).

For the binary of water and gas, the classical one-fluid mixing rule is used for the

temperature dependent energy parameter of the mixture \(a(T)\)

\[
a(T) = \sum_i \sum_j x_i x_j \sqrt{a_i(T) a_j(T)} (1 - k_{ij})
\]

with

\[
a_i(T) = a_{0i} \left(1 + c_{1i} \left(1 - \sqrt{T_{ri}} \right) \right)^2
\]

where \(T_{ri}\) is the reduced temperature of component \(i\), defined as \(T_{ri} = T/T_{ci}\), and \(T_{ci}\) is

the critical temperature of component \(i\).
For the binary involving an ion, the Huron-Vidal/NRTL (HV-NRTL) mixing rule is used, due to its additional flexibility for electrolyte systems:49,53

\[
a/b = \sum_i x_i b_i - \ln 2
\]

(6)

\[
g^{E,\infty}_{RT} = \frac{\sum_i x_i b_i \exp\left(-\frac{\Delta U_{ji}}{RT}\right)}{\sum_i x_i b_i \exp\left(-\alpha_{ji} \frac{\Delta U_{ji}}{RT}\right)}
\]

(7)

where \(g^{E,\infty}_{RT}\) is the excess Gibbs energy at infinite pressure, \(\alpha_{ji}\) is the non-randomness parameter, and \(\Delta U_{ji}\) is the change in interaction energy between the unlike and the like interactions (\(\Delta U_{ji} = \Delta U_{ij} - \Delta U_{jj}\)), for which a quadratic temperature dependence is used

\[
\frac{\Delta U_{ij}}{R} = \frac{\Delta U_{ij}^{ref}}{R} + \omega_{\Delta U_{ij}} \left[1 - \frac{T}{T_{\Delta U_{ij}}}\right]^2 - \left(1 - \frac{T_{\text{ref}}}{T_{\Delta U_{ij}}}\right)^2
\]

(8)

where \(\Delta U_{ij}^{ref}\) is a binary interaction parameter between ion and solvent or gas at the reference temperature, \(\omega_{\Delta U_{ij}}\) is an adjustable parameter for the linear dependency, and \(T_{\Delta U_{ij}}\) is a parameter of the temperature dependency. \(T_{\text{ref}}\) is the reference temperature at which \(\Delta U_{ij}^{ref}\) is valid, and it is set to 298.15 K in this work.

It is worth pointing out that the HV-NRTL mixing rule has the flexibility to reduce to the classical one-fluid mixing rule, i.e. equation (4) can be integrated into equations (6) and (7). More details can be found in the book54.

The residual Helmholtz energy for association \(A^\text{ASSOC}\) is obtained from55,56,57,58

\[
A^\text{ASSOC} = RT \left[\sum_i n_i \sum_{A_i} \ln X_{A_i} - \frac{1}{2} X_{A_i} + 1 \right]
\]

(9)
\[
\frac{1}{X_{A_i}} = 1 + \sum_j \rho_j \sum_{B_i} X_{B_i} \Delta_{A,B_j}
\] (10)

where \(n_i \) is the number of moles of component \(i \), \(X_{A_i} \) is the fraction of site A on component \(i \) that is not bonded to any other site, \(\rho_j \) is the density of component \(j \), and \(\Delta_{A,B_j} \) is the association strength.

\[
\Delta_{A,B_j} = g(\rho) \left[\exp \left(\frac{\varepsilon^{A,B_j}}{k_B T} \right) - 1 \right] b_{ij} \beta^{A,B_j}
\] (11)

where \(\varepsilon^{A,B_j} \) and \(\beta^{A,B_j} \) are the association energy and the association volume, respectively. \(b_{ij} \) follows the combing rule \(b_{ij} = (b_i + b_j)/2 \), and \(g(\rho) \) is the simplified radial distribution function given by \(g(\rho) = (1 - 1.9\eta)^{-1} \), where \(\eta \) is the packing fraction equal to \(b/4v \).

The residual Helmholtz energy from the long-range ionic interactions is calculated from the DH theory, as shown in the following equation,

\[
A_{DH}^{DH} = -\frac{k_B T V}{4\pi N_A \sum n_i Z_i^2} \sum_i n_i Z_i^2 \chi_i
\] (12)

where \(k_B \) and \(N_A \) are respectively the Boltzmann constant and the Avogadro constant, \(V \) is the total volume, \(Z_i \) is the charge of component \(i \), and \(\chi_i \) is merely an auxiliary function

\[
\chi_i = \frac{1}{d_i^3} \left[\ln \left(1 + \kappa d_i \right) - \kappa d_i + \frac{1}{2} \left(\kappa d_i \right)^2 \right]
\] (13)

where \(\kappa \) is the inverse Debye screening length, and \(d_i \) is the distance of closest approach of ion \(i \).

The residual Helmholtz energy from the ion solvation is described by the Born equation.
\[A^{\text{Born}} = \frac{N_A e^2}{8\pi \varepsilon_0} \sum_i \frac{n_i Z_i^2}{r_{\text{Born},i} \varepsilon_r (\varepsilon_r - 1)} \]

(14)

where \(e \) is the elementary charge and \(r_{\text{Born},i} \) is the Born radius.

The relative static permittivity (also called dielectric constant) \(\varepsilon_r \) plays a central role in the thermodynamics of electrolyte solutions\(^{60}\). In e-CPA, the theory proposed by Maribo-Mogensen et al.\(^ {61}\) for predicting the relative static permittivity is used. For more details, the reader is referred to the work of Maribo-Mogensen et al.\(^ {49}\).

3. Data and Parameter Estimation

3.1 Data Analysis

Sometimes experimental data may represent large uncertainties because of the experimental apparatus, measurement methods and/or operations. In order to obtain accurate binary interaction parameters between ion and gas, and ensure that the model describes the actual phase behavior, experimental data have been analyzed and filtered prior to modeling.

Duan and Sun\(^ {17}\) collected and analysed the solubility data of CO\(_2\) in aqueous NaCl solution, and concluded that most experimental data sets were consistent within errors of about 7%.

Yan et al.\(^ {62}\) made an extensive review for the solubility data of CO\(_2\) in aqueous NaCl solution, and concluded that the solubility data measured by Kiepe et al.\(^ {10}\) and Drummond\(^ {63}\) were doubtful. Yan et al.\(^ {62}\) pointed out further that most solubility data of CO\(_2\) in aqueous NaCl solution at high pressure were from three data sources: Takenouchi and Kennedy\(^ {64}\), Rumpf et al.\(^ {16}\), and Koschel et al.\(^ {65}\).
Duan et al.2 reviewed the experimental data of the solubility of CH\textsubscript{4} in aqueous CaCl\textsubscript{2} solution from Blanco and Smith66, and determined the valid range, i.e. from 25 to 125 °C and from 100 to 600 bar. Duan et al.2 pointed out that the most comprehensive data reported for the solubility of CH\textsubscript{4} in aqueous NaCl solution were from Blount et al.67, while Price et al.68 pointed out an experimental error in Blount et al.'s work67, and they concluded that about 70\% of the solubility data points for pressure below 300 bar had a high deviation (10-35\%). Duan et al.2 pointed out that the data from Duffy et al.69 and Michels et al.70 showed large uncertainties. Moreover, Duan et al.2 suggested not using the solubility data of CH\textsubscript{4} in aqueous NaCl solution from Barta and Bradley71 and Drummond63. In a later work, Duan et al.72 pointed out that experimental data for the solubility of CH\textsubscript{4} in aqueous CaCl\textsubscript{2} solution from Duffy et al.69 and Michels et al.70 were unreliable, as were those in NaCl solutions, due to adopting an inaccurate pressure decline technique. Pérez-Salado et al.21 stated that the data from Kiepe et al.10 had low credibility.

It is known from Takenouchi and Kennedy73 and Tödheide and Franck74 that the change of the solubility of CO\textsubscript{2} with pressure at temperatures above 538 K differs sharply from that at temperatures below 538 K. In this work, therefore, the modelling temperature is set to lower than 538 K. Moreover, the range of salt molality of most collected data follows the work of Maribo-Mogensen et al.49 i.e. NaCl: 6 mol/kg water, KCl: 6 mol/kg water, CaCl\textsubscript{2}: 3 mol/kg water, MgCl\textsubscript{2}: 2 mol/kg water, and Na\textsubscript{2}SO\textsubscript{4}: 2 mol/kg water.

The solubility data of CO\textsubscript{2} in aqueous solutions of salts other than NaCl and CaCl\textsubscript{2}, and the solubility data of CH\textsubscript{4} in aqueous solutions of salts other than NaCl, KCl and CaCl\textsubscript{2} are
limited. Moreover, the overlapping space is very small, and a clear conclusion cannot be reached regarding the reliability of these data sets. For the gas solubility in aqueous multi-salt solutions, the experimental data are limited and scattered. Therefore, all these collected data of aqueous multi-salt solutions are considered reliable.

3.2 Parameter Estimation

As presented above, e-CPA is set up for ions, i.e. the model parameters are by nature ion specific. The pure component e-CPA parameters of an ion are: \(b_i, \Gamma_i = \frac{a_{ii}}{Rb_i}, c_{1i}, \epsilon_i^{A_i^B_i}, \beta_i^{A_i^B_i}, d_i \) and \(r_{Born,i} \). The binary interaction parameters of ion and another species are: \(\alpha_{ij}, \Delta U_{ij}^{ref}, \omega_{\Delta U_{ij}} \) and \(T_{\Delta U_{ij}} \). In order to minimize the number of parameters, the following assumptions have been made:\(^{49}\) the CPA reduced energy parameter \((\Gamma_i) \) and the temperature dependence parameter \((c_{1i} \text{ in Eq. (5)}) \) of ions are both set to zero; the ions are assumed to be non-associating, thus eliminating the two association parameters; the three size parameters \(b_i, d_i \) and \(r_{Born,i} \) are connected with only one adjustable parameter left\(^{75}\). The NRTL non-randomness factor and the ion-ion interaction parameters are set to zero. In this work, ion-solvent and ion-gas interaction parameters are transformed to cation/anion-solvent, and cation/anion-gas interaction parameters, which means that the interaction parameter \(\Delta U_{\text{cation-solvent}} \) is equal to \(\Delta U_{\text{anion-solvent}} \), and \(U_{\text{cation-gas}} \) is equal to \(\Delta U_{\text{anion-gas}} \).

The objective function used for the regression is

\[
F = \sum \left[\frac{x_i^{\text{cal}} - x_i^{\text{exp}}}{x_i^{\text{exp}}} \right]^2
\]

(15)
where x_i^{cal} represents the calculated solubility (mole fraction), and x_i^{exp} represents the experimental solubility (mole fraction of gas in liquid phase).

The results are typically listed as absolute average deviation (AAD) defined by

$$AAD\% = \frac{1}{N_p} \sum_{i}^{N_p} \left| \frac{y_i^{cal} - y_i^{exp}}{y_i^{exp}} \right| \times 100\%$$ \hspace{1cm} (16)

where N_p is the number of data points, y_i^{cal} and y_i^{exp} respectively represent the calculated results and experimental value of any property, e.g. solubility, osmotic coefficient, or water activity.

The gas solubility in aqueous solutions is calculated by a two-phase PT-flash with the successive substitution method54,76. The physical properties and pure component e-CPA parameters are taken from literature and summarized in Tables S1-S2 of Supporting Information.

4. Results and Discussion

4.1 Binary Systems

Before modelling the H$_2$O-salt-gas ternary systems, the performance of e-CPA on H$_2$O-gas, and H$_2$O-salt binary systems has been evaluated. Gas solubility is the maximum quantity of gaseous solutes that can dissolve in a certain quantity of solvent at a specified temperature and pressure77. CO$_2$ and CH$_4$ are not very soluble in H$_2$O. The dissolution of CO$_2$ in H$_2$O contains an additional equilibrium of two acids, which can increase the solubility of CO$_2$ in H$_2$O78. The evaluation results are presented in Table 1 together with temperature-dependent binary interaction parameters, and CO$_2$ is considered as a non-associating fluid in this work. On one hand, e-CPA can satisfactorily correlate the solubility...
of CO$_2$ in water with the binary interaction parameter from literature, and large deviations are only found at low pressure and high temperature. On the other hand, with the published interaction parameters79, e-CPA cannot describe the solubility of CH$_4$ in H$_2$O accurately for the experimental data collected in this work. This might be because the temperature range and data used in correlation are different, and it leads to a new correlation as given in Table 1. It needs to be pointed out that the existence of two liquid phases has not been taken into account in this work, and the same strategy is applied for the modelling of ternary systems below.

Table 1. Modelling performance of gas solubility in pure H$_2$O with e-CPA*.

<table>
<thead>
<tr>
<th>Gas</th>
<th>k_{ij}</th>
<th>T [K]</th>
<th>Evaluation results</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>T [K] P [MPa]</td>
<td>Np</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>-0.15508+0.000877 T80</td>
<td>298.15-273.75-0.095-</td>
<td>328</td>
<td>8.3</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>0.6769-213.5/T79</td>
<td>473.0</td>
<td>444.26</td>
<td>100.0</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>0.8243-245.33/T</td>
<td>274.19-274.19-0.101-</td>
<td>206</td>
<td>4.5</td>
</tr>
</tbody>
</table>

* The first T [K] is the temperature range used in the binary interaction parameter regression.

Np is the number of data points. The data of H$_2$O-CO$_2$ and H$_2$O-CH$_4$ are taken from
literature \cite{7,10,62,73,81-87} and literature \cite{88-94}, respectively.

The binary systems of H$_2$O-NaCl, H$_2$O-KCl, H$_2$O-CaCl$_2$, H$_2$O-MgCl$_2$, and H$_2$O-Na$_2$SO$_4$ have been investigated previously. The modelling performance of e-CPA on mean ionic activity coefficients and osmotic coefficients of these systems are shown in Figure 1, and more details can be found in Table S3 of Supporting Information. It is readily seen that e-CPA with the binary interaction parameters from literature\cite{49} can correlate the mean ionic activity coefficients and osmotic coefficients of H$_2$O-salt binary systems very well.

It is worth mentioning that the mean ionic activity coefficients and osmotic coefficients of aqueous solutions of NaCl, KCl, CaCl$_2$, MgCl$_2$ and Na$_2$SO$_4$ exhibit different trends. The activity coefficients for aqueous solutions of CaCl$_2$ and MgCl$_2$ decrease first and then increase sharply as the salt concentration increases. These properties of the aqueous Na$_2$SO$_4$ solutions are smaller than those of other systems.
Figure 1. Experimental and calculated mean ionic activity coefficients and osmotic coefficients for binary systems at 298.15 K: H$_2$O-NaCl95,96; H$_2$O-KCl97; H$_2$O-CaCl$_2$98; H$_2$O-MgCl$_2$99, H$_2$O-Na$_2$SO$_4$100. Dash lines are for mean ionic activity coefficients and solid lines are for osmotic coefficients. $\gamma^m_{m\pm}$ and Φ represent mean ionic activity coefficients and osmotic coefficients, respectively.

4.2 H$_2$O-salt-gas Ternary Systems

The temperature dependency $T_{\Delta u_{ij}}$ was respectively set to 340 K and 300K for chloride salts and sulfate salts in the work of Maribo-Mogensen et al.49. In this work, three fitting approaches have been investigated for the regression of the ion-gas binary interaction parameters, as listed in Table 2. Approach A has 3 adjustable parameters (including 2 temperature-dependent parameters), Approach B has 2 adjustable parameters (including 1
temperature-dependent parameter), and Approach C has 1 adjustable parameter (no
temperature-dependent parameters).

Table 2. Fitting approaches of ion-gas interaction parameters used in this work.

<table>
<thead>
<tr>
<th>Approaches</th>
<th>$\Delta U_{ij}^{ref}/R$ [K]</th>
<th>$T_{\Delta U_{ij}}$ [K]</th>
<th>$\omega_{\Delta U_{ij}}$ [K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>adjustable</td>
<td>adjustable</td>
<td>adjustable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>340 K (for chloride salts)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>adjustable</td>
<td></td>
<td>adjustable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300 K (for sulfate salts)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>adjustable</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3 summarizes the ion-gas binary interaction parameters and the performance of e-CPA on correlating the gas solubility with Approach A. It can be seen, on one hand, that the energy interaction parameters $\Delta U_{ij}^{ref}/R$ of ion-CO$_2$ and ion-CH$_4$ follow the same order: NaCl>KCl>CaCl$_2$>MgCl$_2$, and $\Delta U_{ij}^{ref}/R$ of Na$_2$SO$_4$-CO$_2$ has the highest value: 1449.66 K. On the other hand, the deviations (AAD%) are very satisfactory, less than the aforementioned experimental uncertainty 7% for most of the investigated systems. For the results of H$_2$O-NaCl-CH$_4$ system, the larger deviations of the solubility of CH$_4$ might be from high temperatures (up to 513.15 K), as the binary interaction parameters between CH$_4$ and H$_2$O are obtained by fitting the data up to 444.26 K, in a combination of the doubtful data as discussed above.
Table S4 of Supporting Information lists the details of the modelling results for all three approaches. Approach A shows an overall better performance than Approaches B and C, which is to be expected as there are more adjustable parameters. It needs to be pointed out that Approach A, from a mathematical point of view, is in general more sensitive to the data used in the parameter fitting than the two other approaches. Approach A and Approach B can be recommended when there are enough data over a wide range of temperature available, while Approach C is recommended if limited data are available and extrapolations are required. With Approach C, the binary interaction parameters of Na\(^+\)/Cl\(-\)-CO\(_2\) and that of Na\(^+\)/Cl\(-\)-CH\(_4\) are not the same but close to what were reported by Maribo-Mogensen et al.\(^{49}\) (\(\Delta U_{ij}^{ref}/R = 816.4\) K versus 724.8 K for Na\(^+\)/Cl\(-\)-CO\(_2\), and \(\Delta U_{ij}^{ref}/R = 1329\) K versus 1128 K for Na\(^+\)/Cl\(-\)-CH\(_4\)). The small differences are due to the different binary interaction parameters between H\(_2\)O and gas, as well as the different experimental data. It is a good indication that Approach C is not so sensitive to the data, and with this approach Maribo-Mogensen et al.\(^{49}\) showed the predictive capability of e-CPA for the solubility of CO\(_2\) and CH\(_4\) in NaCl containing systems. In the following part of this work, Approach A is used except for the H\(_2\)O-MgCl\(_2\)-CH\(_4\) system which is modeled with Approach C because of the limited number of data points.
Table 3. Ion-gas interaction parameters and model performance of e-CPA on correlating the gas solubility.

<table>
<thead>
<tr>
<th>Gas</th>
<th>T [K]</th>
<th>P [MPa]</th>
<th>m [mol/kg water]</th>
<th>Np a</th>
<th>Interaction Parameters</th>
<th>AAD b [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\Delta U_{ij}^{ef}/R$ [K]</td>
<td>$T_{\Delta U_{ij}}$ [K]</td>
</tr>
<tr>
<td>H$_2$O-NaCl-gas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO$_2$</td>
<td>273.15-523.15</td>
<td>0.101-141.855</td>
<td>0.1-6.0</td>
<td>435$^{16,62,64,65,101-105}$</td>
<td>644.84</td>
<td>251.07</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>298.15-513.15</td>
<td>2.413-89.632</td>
<td>0.349-5.71</td>
<td>137106,107</td>
<td>1107.70</td>
<td>282.46</td>
</tr>
<tr>
<td>CH$_4^c$</td>
<td>298.15-398.15</td>
<td>2.413-61.606</td>
<td>0.5-4.0</td>
<td>57106,107</td>
<td>1110.46</td>
<td>276.18</td>
</tr>
<tr>
<td>CH$_4^c$</td>
<td>373.15-513.15</td>
<td>48.26-89.632</td>
<td>0.349-5.71</td>
<td>807</td>
<td>849.42</td>
<td>305.29</td>
</tr>
<tr>
<td>H$_2$O-KCl-gas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO$_2$</td>
<td>273.35-433.1</td>
<td>0.101-15.81</td>
<td>0.1-4.5</td>
<td>14021,101,103,108</td>
<td>510.80</td>
<td>449.22</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>298.15-373.21</td>
<td>0.419-9.791</td>
<td>0.5-4.0</td>
<td>98107,109</td>
<td>1060.34</td>
<td>338.89</td>
</tr>
<tr>
<td>H$_2$O-CaCl$_2$-gas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO$_2$</td>
<td>309.28-424.43</td>
<td>1.53-71.21</td>
<td>0.117-3.0</td>
<td>154$^{101,108,110-112}$</td>
<td>199.49</td>
<td>703.17</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>298.15-398.15</td>
<td>2.413-60.795</td>
<td>0.50-2.0</td>
<td>3966,107</td>
<td>612.76</td>
<td>714.10</td>
</tr>
<tr>
<td>System</td>
<td>CO₂</td>
<td>CH₄</td>
<td>CO₂</td>
<td>AAD</td>
<td>Molar Mass</td>
<td>Molar Mass</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>H₂O-MgCl₂-gas</td>
<td>309.58-424.63</td>
<td>1.25-34.93</td>
<td>0.333-2.0</td>
<td>96.71</td>
<td>378.86</td>
<td>4588.76</td>
</tr>
<tr>
<td>H₂O-Na₂SO₄-gas</td>
<td>313.11-433.16</td>
<td>0.422-15.0</td>
<td>0.333-2.0</td>
<td>1449.66</td>
<td>82.56</td>
<td>17.63</td>
</tr>
</tbody>
</table>

a. Np is the number of data points; b. AAD of gas solubility (molality of gas, [mol/kg water]); c. separate regression with different data sets as indicated by the references; d. Approach C.
Figure 2. Comparison of the model results against the experimental data of the solubility of (a) CO$_2$ in aqueous NaCl solution at 323.15 K62,65,102, (b) CH$_4$ in aqueous NaCl solution at 298.15 K107.
Figure 2 presents the solubilities of CO$_2$ and CH$_4$ in aqueous NaCl solution as a function of pressure at different salinity and a constant temperature. Figure 2 (a) shows that the solubility of CO$_2$ decreases as the NaCl concentration increases, which is a typical ‘salting-out’ effect, defined as the reduction of the solubility of a gas due to the presence of ionic species in a solvent113. Carvalho et al.114 and Wiebe et al.82 found that the increase of the brine’s salinity leaded to a reduction of CO$_2$ dissolution, regardless of the system pressure and temperature. They explained the reduction of the solubility of CO$_2$ in a brine solution on ‘solvation’ terms: involvement of H$_2$O molecules in ions solvation made the dissolved CO$_2$ out of the interstice of water molecules. They also pointed out that the salting-out effect was not that pronounced at low salinities, and the pressure dependency of the solubility reduced as the pressure increases82,114.

Similar with CO$_2$, it can be seen from Figure 2 (b) that e-CPA can correlate very well the solubility of CH$_4$ in aqueous NaCl solution, and the solubility of CH$_4$ decreases as the NaCl concentration increases. Combining with Figure S1, which presents the solubility of CH$_4$ in aqueous NaCl solution at different salinity and temperatures, it is also observed that the solubility of CH$_4$ decreases as temperature increases and pressure decreases, which is consistent with the literature106,107.

Figure S2 in the Support Information show the calculated gas solubility in aqueous KCl solution as a function of pressure at different salinity and temperatures. It can be seen, similar to the aqueous NaCl solution, that gas solubility in aqueous KCl solution decreases as temperature increases and as pressure decreases. As the molality of KCl increases,
gas solubility decreases significantly, which means that KCl has a salting-out effect on the gas solubilities of CO$_2$ and CH$_4$ in H$_2$O.

Figures 3 (a) and (b) present the modeling results of the solubilities of CO$_2$ and CH$_4$ in the aqueous CaCl$_2$ solution, respectively. More modeling results of this system are presented in the Figures S3 in the Support Information. It can be seen that CaCl$_2$ also has a significant salting-out effect on the solubilities of CO$_2$ and CH$_4$ in H$_2$O. The solubilities of both gases again increase as pressure increases. It is surprising that e-CPA can accurately capture the intersection of the solubility of CO$_2$ in aqueous CaCl$_2$ solution at 349.15K and 374.15K. This indicates that the temperature dependence of the salt-outing effect will depend on the pressure, which can also be deduced from Figure 3 (a). The solubility of CH$_4$ in aqueous CaCl$_2$ solution decreases as temperature increases.

Figures 4 (a) and (b) show the comparison of the modeling results and experimental data of the solubilities of CO$_2$ and CH$_4$ in aqueous MgCl$_2$ solution. Figure 4 (a) clearly shows that the solubility of CO$_2$ decreases as temperature increases at a constant pressure and salinity, and the solubility of CH$_4$ increases as pressure increases. A significant salting-out effect is also observed. It can be seen that e-CPA can accurately correlate the solubilities of CO$_2$ and CH$_4$ in aqueous MgCl$_2$ solution. It is worth pointing out that the molality of CaCl$_2$ and MgCl$_2$ is smaller than that of NaCl and KCl, and a more detailed comparison is given below.
Figure 3. Comparison of the modelling results against the experimental data of the solubility of (a) CO\textsubscript{2} in aqueous CaCl\textsubscript{2} solution at 349.15 K and 374.15 K112; (b) CH\textsubscript{4} in aqueous CaCl\textsubscript{2} solution at 298.15 K66,107.
Figure 4. Comparison of the modelling results against the experimental gas solubility in aqueous MgCl₂ solution: (a) CO₂ at 15 MPa108, (b) CH₄ at 298.15 K107.

(a) Solubility of CO₂ at 15MPa

(b) Solubility of CH₄ at 298.15 K
It can be seen from Figure 5 that e-CPA can satisfactorily correlate the solubility of CO\textsubscript{2} in aqueous Na\textsubscript{2}SO\textsubscript{4} solution, and a similar behavior of the intersection of different temperatures occurring at higher pressures might be suspected, as seen from Figure 3 (a).

![Figure 5. Comparison of the modelling results against the experimental solubility of CO\textsubscript{2} in aqueous Na\textsubscript{2}SO\textsubscript{4} solution.](image)

4.3 Extension to Multi-salt Systems

In this work, within the e-CPA framework, there are no binary interaction parameters between ions, and the parameters for single H\textsubscript{2}O-salt and salt-gas can be applied to multi-salt solutions without new adjustable parameters, provided that the anion and cations are compatible, i.e. having the same cation or same anion. Maribo-Mogensen et al.49 used the binary interaction parameters of from aqueous single-salt solutions to calculate the osmotic coefficients of aqueous multi-salt solutions (KCl+NaCl, Na\textsubscript{2}SO\textsubscript{4}+NaCl,
NaCl+KCl+MgCl$_2$) and reasonably good predictions were obtained in all cases. Table 4 lists the predictions of the osmotic coefficients and water activity for aqueous multi-salt solutions. It can be seen from Table 4 that e-CPA can give good agreement with water activity and osmotic coefficients of aqueous multi-salt solutions, except for the system H$_2$O-CaCl$_2$-MgCl$_2$. The large deviation of this system is because the salt molality goes far beyond the correlation range, or saying the maximum effective molality range, and the ion-pairing effect may have become an important contribution, which is not considered in e-CPA. It can be concluded that the model with single-salt (cation/anion)-H$_2$O interaction parameters can be used for aqueous multi-salt solutions.

Table 4. e-CPA performance for osmotic coefficients and water activity of aqueous multi-salt solutions.

<table>
<thead>
<tr>
<th>Salt</th>
<th>T [K]</th>
<th>I_{max}^a [mol/kg water]</th>
<th>Np</th>
<th>AAD [%]</th>
<th>ϕ</th>
<th>a_W^b</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl+KCl</td>
<td>298.15</td>
<td>12115,116</td>
<td>57</td>
<td>2.3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>KCl+CaCl$_2$</td>
<td>298.15</td>
<td>14.6117</td>
<td>1</td>
<td>-</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>CaCl$_2$+MgCl$_2$</td>
<td>298.15-323.15</td>
<td>17.0119</td>
<td>71</td>
<td>9.1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NaCl+KCl+MgCl$_2$</td>
<td>298.15</td>
<td>14.01117</td>
<td>2</td>
<td>-</td>
<td>2.7</td>
<td></td>
</tr>
</tbody>
</table>

a. I_{max} is the maximum ionic strength; b. a_W is the water activity.
Compared to the solubility data of CO$_2$ in aqueous single-salt solutions, the sources of the solubility data in aqueous multi-salt solutions are much limited, and the predictions are presented in Table 5 and Figures 6-8. There are only few scatter data120 of the solubility CH$_4$ in aqueous multi-salt solutions, Table S5 of Supporting Information lists the results of these scatter data (AAD=5.9%). It can be seen from Tables 5 and S5 and Figures 6-8 that e-CPA can very reasonably predict the gas solubility in aqueous solutions over a wide range of salt mixtures. It needs to be pointed out that Liu et al.101 did not clearly state which scale they used to report the solubility data, which are assumed to be salt-free in our modeling.

Table 5. Modelling performance of e-CPA for the solubility of CO$_2$ in aqueous multi-salt solutions with the binary interaction parameters from Table 3.

<table>
<thead>
<tr>
<th>Salts</th>
<th>T [K]</th>
<th>P [MPa]</th>
<th>Ia</th>
<th>Np</th>
<th>AAD b [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl+KCl</td>
<td>308.9-424.67</td>
<td>1.07-17.16</td>
<td>1.053, 1.69</td>
<td>22101,110</td>
<td>4.8</td>
</tr>
<tr>
<td>NaCl+CaCl$_2$</td>
<td>318.15</td>
<td>2.46-16.02</td>
<td>2.45</td>
<td>8101</td>
<td>4.2</td>
</tr>
<tr>
<td>KCl+CaCl$_2$</td>
<td>318.15</td>
<td>2.09-15.87</td>
<td>2.25</td>
<td>8101</td>
<td>5.0</td>
</tr>
<tr>
<td>NaCl+KCl+CaCl$_2$</td>
<td>308.15-328.15</td>
<td>1.34-15.85</td>
<td>1.00-3.20</td>
<td>75101</td>
<td>6.1</td>
</tr>
<tr>
<td>NaCl+KCl+CaCl$_2^+$</td>
<td>297</td>
<td>0.52-14.12</td>
<td>1.70, 2.65</td>
<td>84121</td>
<td>15.7</td>
</tr>
<tr>
<td>MgCl$_2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a ionic strength [mol/kg water]; b for gas solubility in molality.
Figure 6. Comparison of the modelling results against the experimental solubility of CO$_2$ in aqueous solutions of two salts at T= 318.15 K. The weight percentage of the two salts are given in the Figure legend.

Figure 7. Comparison of the modelling results against the experimental solubility of CO$_2$ in the aqueous solutions of three salts at T=308.15 K and different mass fraction of salts. The weight ratio of NaCl, KCl and CaCl$_2$ is 1:1:1.
Figure 8. Comparison of the modelling results against the experimental solubility of CO$_2$ in two aqueous salt solutions: Brines A (mNaCl=1.001, mKCl=0.101, mCaCl$_2$=0.100, mMgCl$_2$=0.100, all in mol/kg water), Brines B (mNaCl=1.396, mKCl=0.047, mCaCl$_2$=0.339, mMgCl$_2$=0.061, all in mol/kg water) at 297 K.

4.4 Discussion

4.4.1 Salting Effects of Different Salts

It is known that different salts have different salting-out effects, and the ion concentration and ion charge are believed the two main factors. The studies of the ion hydration and ion-H$_2$O molecule interactions122,123 demonstrated that ions with smaller size and higher charge density bind H$_2$O molecules stronger, which weakens the capacity of helping solvent trap dissolved gas molecules. Anions usually have larger ionic radii than cations, so the hydration of cations is usually much stronger than that of anions124. In order to analyze the
salting-out effect of different salts in detail, the solubilities of CO\(_2\) and CH\(_4\) in different aqueous salt solutions are compared in Figures 9 and 10.

![Graph showing solubility of CO\(_2\) and CH\(_4\) in different salts](image)

(a) different salts with same molality (1.0 mol/kg water)

![Graph showing solubility of CO\(_2\) and CH\(_4\) in different salts](image)

(b) different salts with same ionic strength (1.0 mol/kg water)

Figure 9. Comparison of the solubility of CO\(_2\) in aqueous solutions of different salts at 323.15 K\(^{62,65,108,111}\).
It can be seen from Figure 9 (a) that different salts exhibit different salting-out effects, and the salting-out effects on CO\textsubscript{2} follow a sequence of KCl<NaCl<CaCl\textsubscript{2} ≈ MgCl\textsubscript{2}<Na\textsubscript{2}SO\textsubscript{4} with the same molality. This is consistent with the findings from Jacob and Saylor121. Na\textsubscript{2}SO\textsubscript{4} shows the strongest salting-out effect on the solubility of CO\textsubscript{2} mainly because 1 mol Na\textsubscript{2}SO\textsubscript{4} has 2 mol Na+, and this is similar to the salting-out effect on the solubility of amino acids in water125.

For KCl, NaCl, CaCl\textsubscript{2} and MgCl\textsubscript{2}, the salting-out effect is significantly greater with divalent cations, because the ion charge is more important than ion size in relation to the salting-out effect in these aqueous solutions with the same salt molality.

KCl shows the weakest salting-out effect, mainly because K+ has a low charge density and it binds H\textsubscript{2}O weakly, and there are more intervals to accommodate gas molecules101,108,122,123. The low charge density of K+ comes from that K+, with charge of ‘+1’, has a relatively bigger size than Na+, Mg2+ and Ca2+ (Pauling Radius: K+-1.33 Å; Na+-0.95 Å; Ca2+-0.99 Å; Mg2+-0.65 Å). Kiepe et al.10 observed that the salting-out effect of KCl is smaller than that of NaCl on the solubility of CO\textsubscript{2}.

Figure 9 (b) shows that the salting-out effects on CO\textsubscript{2} follow a sequence of KCl<CaCl\textsubscript{2}<MgCl\textsubscript{2}<NaCl with the same ionic strength, and this is consistent with the work of Zhao et al.108.

It can also be observed from both Figures 9 (a) and (b) that MgCl\textsubscript{2} and CaCl\textsubscript{2} have similar salting-out effects. Portier et al.8 pointed out that the salting-out effect of CaCl\textsubscript{2} or MgCl\textsubscript{2} on the solubility of CO\textsubscript{2} in aqueous solutions is lower than that of NaCl of equivalent ionic...
strength, because Ca\(^{2+}\) and Mg\(^{2+}\) tended to form ion pairs easier.

Figure 10 shows that the salting-out effects on the solubility of CH\(_4\) follow a sequence of KCl<NaCl<MgCl\(_2\) ≈ CaCl\(_2\) with the same molality, and MgCl\(_2\) and CaCl\(_2\) have similar salting-out effects.

Figure 10. Comparison of the solubility of CH\(_4\) in different electrolyte aqueous solutions with the same molality (1.0 mol/kg water) at 298.15 K and P=2.41 MPa\(^{107}\).
4.4.2 Comparison with Literature Electrolyte EOS

Table 6 shows a comparison of different electrolyte EOS for gas solubility calculations in aqueous solutions of inorganic salts. In these electrolyte EOS, Zuo and Guo40, Sun and Dubessy45, Tan et al.42, and Ji et al.48 assumed that the dielectric constant of electrolyte solution is equal to that of the solvent. Other models37-39,41,43,46,47 take the effect of salt presence on dielectric constant into account. e-CPA uses a theoretical model for dielectric constant calculation, which eliminates the kinetic depolarization. Søreide and Whitson37, Aasberg-Petersen et al.39, Haghighi et al.41, and Sun and Dubessy44,45 did not explicitly take the ion solvation contribution into account, while other models included the ion solvation contribution via the Born term, which is believed important for salting-out effects and thermodynamic modeling of other properties and behavior. Temperature dependency of ion-gas interactions is used in some works, and the most studied system is H\textsubscript{2}O-NaCl-CO\textsubscript{2}. Both Harvey and Prausnitz38 and Rozmus et al.46 stated that their models can be applied to multi-salt solutions flexibly. To be best of our knowledge, however, no electrolyte EOS has been really applied for calculating the gas solubility in aqueous multi-salt solutions. In this work, e-CPA has been extended to multi-salt systems without new adjustable parameters.
Table 6. Summary of modelling of gas solubility in aqueous solutions with electrolyte EOS.

<table>
<thead>
<tr>
<th>Ref</th>
<th>EOS</th>
<th>Elect. Terms</th>
<th>Ion-Gas IPs</th>
<th>Salts</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>PR</td>
<td>None</td>
<td>CO₂: 6 (T-dep)</td>
<td>NaCl</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H₂S: 2 (T-dep)</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>P-LJ</td>
<td>MSA+Born</td>
<td>1 (T-ind)</td>
<td>NaCl, CaCl₂</td>
</tr>
<tr>
<td>39</td>
<td>ALS</td>
<td>DH</td>
<td>1 (T-ind)</td>
<td>NaCl, CaCl₂</td>
</tr>
<tr>
<td>40</td>
<td>PT</td>
<td>DH</td>
<td>1 (T-ind)</td>
<td>NaCl, CaCl₂</td>
</tr>
<tr>
<td>[TW, 49]d</td>
<td>CPA</td>
<td>DH+Born</td>
<td>3 (T-dep)</td>
<td>NaCl, CaCl₂, KCl, MgCl₂, Na₂SO₄, multi-salt</td>
</tr>
<tr>
<td>41</td>
<td>CPA</td>
<td>DH</td>
<td>5 (T-dep)</td>
<td>NaCl, CaCl₂, KCl, MgCl₂</td>
</tr>
<tr>
<td>42</td>
<td>CPA</td>
<td>PMSA+Born</td>
<td>3 (T-dep)</td>
<td>NaCl</td>
</tr>
<tr>
<td>43</td>
<td>CPA</td>
<td>MSA+Born</td>
<td>3 (T-dep)</td>
<td>NaCl</td>
</tr>
<tr>
<td>42</td>
<td>PC-SAFT</td>
<td>PMSA</td>
<td>3 (T-dep)</td>
<td>NaCl</td>
</tr>
<tr>
<td>45</td>
<td>SAFT-LJ</td>
<td>MSA</td>
<td>3 (T-dep)</td>
<td>NaCl</td>
</tr>
<tr>
<td></td>
<td>PPC-</td>
<td>MSA+Born</td>
<td>Neglected</td>
<td>NaCl</td>
</tr>
<tr>
<td>46</td>
<td>SAFT-VR</td>
<td>MSA+Born</td>
<td>3 (T-dep)</td>
<td>NaCl</td>
</tr>
<tr>
<td>48</td>
<td>SAFT1</td>
<td>RPM</td>
<td>1 (T-ind)</td>
<td>NaCl</td>
</tr>
</tbody>
</table>
a. T-dep: Temperature-dependent; b. Short-range perturbed term with Lennard-Jones potential; c. T-ind: Temperature-independent; d. TW: This work;

Most of the electrolyte EOS listed in Table 6 perform satisfactorily at low salt molality. Harvey-Prausnitz model38 overestimates CO\textsubscript{2} solubility (AAD \approx 10-20%) at high salt molality. The model (ALS+DH) proposed by Aasberg-Petersen et al.39 slightly overpredicts gas solubility at high salt molality, and the deviation between calculated and experimental values may in certain cases be 10-15%, while the deviations are somewhat larger for the aqueous CaCl\textsubscript{2} solution. The MPT EOS40 shows inaccurate results for the CO\textsubscript{2} solubility in aqueous NaCl solution, and it can only be applied over narrow temperature ranges, probably because the temperature-dependent parameters have not been used. Although the Søreide-Whitson model37 is relatively simple, it uses two different sets of interaction parameters. Thus, it is essentially an inconsistent thermodynamic model, and it cannot satisfactorily describe the solubility of CO\textsubscript{2} in aqueous solutions with high salt molality (by more than 20% at 50 °C in NaCl solution with molality=2 mol/kg water, and at pressures=100 bar). Tan et al.’s model42 (CPA+PMSA) performs poorly at high molality and pressure. Courtial et al.43 used some unreliable experimental data for modelling, and the deviations of solubility are large. Sun and Dubessy44, 45 applied their model (SAFT-LJ+MSA) to calculate the solubility of CO\textsubscript{2} in aqueous NaCl solution (range from 273 to 573 K, from 0 to 1000 bar, and from 0 to 6 mol/kg NaCl). The deviation for the solubility of CO\textsubscript{2} with NaCl molality lower than 4 mol/kg is 3%. Schreckenberg et al.47 stated that
the performance of their model for calculating the solubility of CO$_2$ is not good at high salt molality. It is easy to notice that the solubility of CO$_2$ is higher than that of CH$_4$ in the same system under the same condition, which as mentioned above is probably because of the CO$_2$ dissociation. The chemical equilibria have not been taken into account in this work. For modelling the solubility of CO$_2$ with an electrolyte EOS considering chemical equilibria, readers might be referred to126,127. It would be interesting to make a fair and systematic comparison for these two approaches in term of easiness of parameterization, predictive capability and flexibility of extension to multi-salt solutions.

5. Conclusion

The solubilities of CO$_2$ and CH$_4$ in several aqueous solutions of inorganic salts have been studied systematically with the e-CPA EOS. In this work. It can be concluded that e-CPA gives accurate agreements with the experimental solubility data of H$_2$O-gas and H$_2$O-salt binary systems. With temperature-dependent ion-gas interaction parameters, e-CPA gives excellent agreement with the experimental gas solubility data over wide ranges of temperature, pressure and salt molality. e-CPA also predicts satisfactory agreements with the experimental gas solubility data in aqueous multi-salt solutions, without new adjustable parameters. Moreover, e-CPA shows a good performance on the salting-out effects from temperature and pressure as well as from ion size, charge density and salt concentration.
Acknowledgments

This work is supported by the Department of Chemical and Biochemical Engineering, Technical University of Denmark and China Scholarship Council (No. 201608320224).

Supporting Information

Support Information consists of three parts: Properties and pure component parameters for e-CPA; Modelling performance of mean ionic activity coefficients and osmotic coefficients for water-salt binary systems; Modelling performance for gas solubility in aqueous single-salt and multi-salt solutions.

Author Information

Corresponding author:

E-mail address: xlia@kt.dtu.dk, Tel.: 0045-4525 2877.
Reference

(2) Duan, Z.; Møller, N.; Greenberg, J.; Weare, J. H. The prediction of methane solubility in natural waters to high ionic strength from 0 to 250 °C and from 0 to 1600 bar. *Geochimica et Cosmochimica Acta* 1992, 56, 1451-1460.

(8) Portier, S.; Rochelle, C. Modelling CO2 solubility in pure water and NaCl-type waters from 0 to 300 °C and from 1 to 300 bar: Application to the Utsira Formation at Sleipner. *Chemical Geology* 2005, 217, 187-199.

(9) Li, J.; Topphoff, M.; Fischer, K.; Gmehling, J. Prediction of gas solubilities in aqueous electrolyte systems using the predictive Soave− Redlich− Kwong model. *Industrial &
engineering chemistry research 2001, 40, 3703-3710.

(23) Duan, Z.; Møller, N.; Weare, J. H. An equation of state for the CH4-CO2-H2O system: II. Mixtures from 50 to 1000 C and 0 to 1000 bar. Geochimica et Cosmochimica Acta 1992,
56, 2619-2631.

46, 3251-3258.

(42) Tan, S. P.; Yao, Y.; Piri, M. Modeling the solubility of SO2+ CO2 mixtures in brine at elevated pressures and temperatures. *Industrial & Engineering Chemistry Research* 2013, 52, 10864-10872.

(47) Schreckenberg, J. M.; Dufal, S.; Haslam, A. J.; Adjiman, C. S.; Jackson, G.; Galindo,

(54) Michelsen, M. L.; Mollerup, J. Thermodynamics models; fundamentals and computational aspects. *1996*.

(64) Takenouchi, S.; Kennedy, G. C. The solubility of carbon dioxide in NaCl solutions at

(78) Reid, R. C.; Prausnitz, J. M.; Poling, B. E. The properties of gases and liquids. **1987**.

(80) Tsivintzelis, I.; Kontogeorgis, G. M.; Michelsen, M. L.; Stenby, E. H. Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part II: Binary mixtures

(82) Wiebe, R.; Gaddy, V. The solubility in water of carbon dioxide at 50, 75 and 100, at pressures to 700 atmospheres. *Journal of the American Chemical Society* 1939, 61, 315-318.

(83) Valtz, A.; Chapoy, A.; Coquelet, C.; Paricaud, P.; Richon, D. Vapour–liquid equilibria in the carbon dioxide–water system, measurement and modelling from 278.2 to 318.2 K. *Fluid phase equilibria* 2004, 226, 333-344.

(84) Bamberger, A.; Sieder, G.; Maurer, G. High-pressure (vapor+ liquid) equilibrium in binary mixtures of (carbon dioxide+ water or acetic acid) at temperatures from 313 to 353 K. *The Journal of Supercritical Fluids* 2000, 17, 97-110.

(85) Wiebe, R.; Gaddy, V. The solubility of carbon dioxide in water at various temperatures from 12 to 40 and at pressures to 500 atmospheres. Critical phenomena. *Journal of the American Chemical Society* 1940, 62, 815-817.

(87) Lin, W.; Delahaye, A.; Fournaison, L. Phase equilibrium and dissociation enthalpy for

(90) Dodson, C.; Standing, M. In *Tilte*1944; American Petroleum Institute.

(104) Messabeb, H.; Contamine, F. o.; Cézac, P.; Serin, J. P.; Gaucher, E. C.

(108) Zhao, H.; Dilmore, R. M.; Lvov, S. N. Experimental studies and modeling of CO2 solubility in high temperature aqueous CaCl2, MgCl2, Na2SO4, and KCl solutions. *AIChe Journal* 2015, 61, 2286-2297.

(110) Tong, D.; Trusler, J. M.; Vega-Maza, D. Solubility of CO2 in aqueous solutions of CaCl2 or MgCl2 and in a synthetic formation brine at temperatures up to 423 K and pressures up to 40 MPa. *Journal of Chemical & Engineering Data* 2013, 58, 2116-2124.

(111) Messabeb, H.; Contamine, F. o.; Cézac, P.; Serin, J. P.; Pouget, C. m.; Gaucher,

(119) Christov, C. Isopiestic determination of the osmotic coefficients of an aqueous MgCl2+ CaCl2 mixed solution at (25 and 50)°C. Chemical equilibrium model of solution behavior and solubility in the MgCl2+ H2O and MgCl2+ CaCl2+ H2O systems to high concentration at (25 and 50)°C. *Journal of Chemical & Engineering Data* **2008**, 54, 627-635.

(125) Held, C.; Reschke, T.; Muller, R.; Kunz, W.; Sadowski, G. Measuring and modeling aqueous electrolyte/amino-acid solutions with ePC-SAFT. *The Journal of*
Chemical Thermodynamics 2014, 68, 1-12.

Symbols: Experimental Data; Lines: e-CPA Results