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Abstract 

The toxicity of some per- and polyfluoroalkyl substances (PFASs), such as perfluorooctane 

sulfonate (PFOS) and perfluorooctanoic acid (PFOA) has been studied thoroughly, showing 

that systemic PFASs targets the lungs. However, regulators lack data to assess the impact of 

other PFASs on the lungs and alternative methods to test substances for lung toxicity are 

needed. We combined two in vitro models to assess toxicity to the respiratory system; i) a 

lung surfactant (LS) function assay to assess the acute inhalation toxicity potential, and ii) a 

cell model with human bronchial epithelial cells to study pro-inflammatory potential and 

modulation of inflammatory responses. We tested salts of four PFASs: perfluorobutane 

sulfonate (PFBS), perfluorohexane sulfonate (PFHxS), PFOS, and PFOA as well as the 

fluorotelomer 8:2 FTOH. The results show that PFHxS, PFOA and PFOS can inhibit LS 

function. High PFOS concentrations induced a pro-inflammatory response, measured as 

increased IL-1α/β release. Moderate concentrations of PFOS suppressed release of the 

chemokines CXCL8 and CXCL10, whereas both PFOS and PFOA stimulated the release of 

the pro-inflammatory cytokine IL-1β in immune stimulated human bronchial epithelial cells. 

These findings support the concern that some PFASs may increase the risk of acute lung 

toxicity and of airway infections. 

Introduction 

Per- and polyfluoroalkyl substances (PFASs) have diverse technical applications due to their 

superior surface-active properties. Emerging evidence shows a link between exposure to 

indoor air pollutants, like PFASs, and lung diseases (Qin et al., 2017,Impinen et al., 2018). In 

addition, epidemiological studies indicate an association between prenatal PFAS exposure 

and increased number of infections in children (Granum et al., 2013,Dalsager et al., 

2016,Impinen et al., 2018,Impinen et al., 2019) and lower vaccination response (Granum et 
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al., 2013,Grandjean et al., 2017), suggesting that PFASs have an immunosuppressive effect. 

Although PFAS exposure and the risk of developing asthma has been studied, the relation is 

not clear (Humblet et al., 2014,Impinen et al., 2018,Impinen et al., 2019). 

 

The respiratory system is a target for PFAS toxicity, both by inhalation and systemically from 

the circulating blood. Volatile PFASs, such as fluorotelomer alcohols (FTOHs), can be 

measured at relatively high levels in indoor air. In addition, consumer products containing 

PFASs such as fluorinated ski wax, cosmetic sprays or impregnation products may lead to 

inhalation exposure and add to the total PFAS body burden (Freberg et al., 2010,Haug et al., 

2011b,Nilsson et al., 2013a, b,Padilla-Sanchez et al., 2017). Inhaled PFASs can have both 

portal of entry effects as well as systemic effects. The pulmonary epithelium and the layer of 

lung surfactant (LS) covering the cells are physical barriers between the outside environment 

and blood circulation, and are the primary portal of entry targets of inhaled pollutants. PFASs 

are synthetic surfactant molecules and have therefore the potential to interfere with the 

integrity of the surface-active interfacial films formed by natural surfactant in the alveolar 

spaces. LS has several functions, but the most important is to maintain very low surface 

tension at  the air–liquid interface in the lungs during respiration, particularly at the end of 

exhalation, to facilitate breathing mechanics (Zuo et al., 2008,Perez-Gil and Weaver, 2010). 

For this reason, this study focuses on minimum surface tension during cycling, however for a 

comprehensive review of the structure function relationship of LS and the study of LS 

hysteresis along compression-expansion cycling we suggest reading (Notter et al., 

1982,Lopez-Rodriguez and Perez-Gil, 2014,Sosnowski, 2018,Autilio and Perez-Gil, 2019). 

 

While inhalation adds to the local exposure in the lungs as well as to the total PFAS level in 

blood, the main contribution to the blood levels of the different PFASs in the general 
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population is from food and drinking water (Emmett et al., 2006a,Haug et al., 2011a). Many 

PFASs have long terminal half-lives in humans and are persistent in the environment (Haug 

et al., 2009,Olsen et al., 2017). Consequently, high levels of PFASs can be measured in blood 

from heavily exposed populations, which leads to chronic systemic exposure of organs, 

including the lungs (Haug et al., 2009,Haug et al., 2011a). In a mouse study, the level of 

PFOS was shown to be higher in lung tissue than in blood in both perinatal and adult mice, 

suggesting the lung to be a target of PFOS toxicity (Borg et al., 2010). 

 

The production and use of perfluorooctanoic acid (PFOA) and its salts and precursor 

substances are regulated in a REACH restriction that will apply from 2020 (European 

Chemicals Agency, 2017b). In addition, perfluorooctane sulfonate (PFOS) and 

perfluorooctane sulfonyl fluoride (POSF) have been listed under the Stockholm Convention 

on Persistent Organic Pollutants (POP) for a global restriction since 2009 (Stockholm 

Convention, 2008) and PFOA as well as perfluorohexane sulfonate (PFHxS), and their 

precursors are currently being evaluated for listing (UN Environment, 2017,Stockholm 

Convention, 2018a, b). Recently, Denmark proposed a restriction on some PFAS-related 

compounds, in different types of spray products to prevent consumer exposure to these 

compounds via inhalation as they can inhibit LS function and cause acute inhalation toxicity 

(Nørgaard et al., 2014,European Chemicals Agency, 2017a,Sørli et al., 2017). As a 

consequence of these restrictions, production and use have shifted towards shorter chain 

compounds (C4 and C6), and many novel PFASs have been developed to replace long-chain 

PFASs. According to the CAS Registry (OECD, 2018), more than 4,600 PFASs are 

potentially on the global market. The high number of novel PFASs manufactured poses a 

challenge for regulators, and there is an obvious need for efficient screening for potential 

lung toxicity.  
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In the present study, we have used two in vitro screening strategies to measure effects of 

PFASs on central mechanisms of the respiratory system. Firstly, we used a LS function assay 

to screen PFASs for acute inhalation toxicity potential. Dynamic LS function was measured 

in the constrained drop surfactometer (CDS), where the effect of a chemical can be screened 

rapidly and at low cost (Da Silva and Sørli, 2018). The assay has previously been used to 

show a link between inhibition of LS function and induction of acute inhalation toxicity in 

vivo by impregnation products and inhaled pharmaceutical enhancers (Sørli et al., 2015,Sørli 

et al., 2017). Secondly, we studied the immunomodulatory effects of PFASs. Bronchial 

epithelial cells were exposed to PFASs with and without priming with the highly pro-

inflammatory toll-like receptor 3 (TLR3) ligand polyinosinic:polycytidylic acid (Poly I:C), a 

synthetic double stranded RNA analogue often used to mimic virus infection. Chemical 

exposures may sensitize the cells to additional pro-inflammatory insults (Øvrevik et al., 

2013,Bach et al., 2014,Øvrevik et al., 2014) or inhibits the pro-inflammatory effects normally 

induced by Poly I:C (Müller et al., 2013).  

 

The substances examined for LS inhibition and immune modulatory effects were the salts of 

PFASs of differing chain lengths: potassium perfluorobutane sulfonate (PFBS), potassium 

PFHxS, potassium PFOS, ammonium PFOA, as well as the fluorotelomer alcohol 

1H,1H,2H,2H-perfluoro-1-decanol (8:2 FTOH). Screening the compounds for their potential 

for affecting LS function, can be used to rank the PFASs in relation to their potency, whereas 

measurements of cytokine release might suggest which PFASs are likely to modulate 

immune responses from bronchial epithelial cells at human relevant concentrations. This 

information can support risk assessment of acute inhalation toxicity for data-poor substances 

and prioritization of substances for further testing.  
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Materials and Methods 

Chemicals 

Lipopolysaccharides (LPS; from Escherichia coli), Poly I:C, dimethyl sulfoxide (DMSO) and 

PFASs (Tab. 1) were purchased from Sigma-Aldrich (Oslo, Norway). Gibco LHC-9 medium 

was purchased from Thermo Fisher Scientific (Oslo, Norway).  

 

Table 1: Abbreviation, CAS number and structures of PFASs analysed 

Substance CAS# Structure 

Potassium perfluorobutanesulfonate 

(PFBS) 

29420-49-3 O

OF
F

F

S
O-

F
F
F

K+

F

F

F
 

Potassium perfluorohexanesulfonate 

(PFHxS) 

3871-99-6 O

O
F

F
F

K+

F

F

F

F

F
F

S
O-

F

FF

F

 

Potassium perfluorooctanesulfonate 

(PFOS) 

2795-39-3 

O
K+

F

F F F F

OF
F FFF

F F

S
O-

F

F F F F
 

Ammonium perfluorooctanoate 

(PFOA) 

3825-26-1 

NH4
+F

F F F F
F F F

F
FFF

F F F

O

O

-
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1H,1H,2H,2H-perfluoro-1-decanol 

(8:2 FTOH) 

678-39-7 

F

F F F F
F F F

F
FFF

F F F

OH

F

F

H
H

H
H

 

 

Preparation of native lung surfactant 

Native LS was prepared and the phospholipid content determined as described previously 

(Taeusch et al., 2005). LS was isolated from bronchoalveolar lavage of porcine lungs by 

multiple centrifugations, including a density gradient ultracentrifugation that cleans potential 

blood contaminants from the surfactant. The method consistently yields surfactant 

preparations with highly reproducible batch-to-batch biophysical performance. To perform 

the described LS function assay, lyophilized LS was diluted to 5 mg/mL in a buffer 

containing 0.9% NaCl, 1.5 mM CaCl2, and 2.5 mM HEPES, adjusted to pH 7.0 (Valle et al., 

2015). 

 

Lung surfactant function analysis using the constrained drop surfactometer 

 

LS inhibition analysis 

Inhibition of LS function by PFASs in vitro was tested using the CDS (Sørli et al., 2015,Valle 

et al., 2015,Sørli et al., 2017) by mixing the LS with increasing concentrations of the 

different PFASs. The final concentration of LS was 2.5 mg/ml in all experiments. Each 

experimental series started with a control, where water was added to LS to reach a final 

concentration of 2.5 mg/ml. A small drop (10 µl) of LS was placed on the hollow based 

pedestal, and dynamically cycled at 20 cycles/min and less than 25% compression rate 

(between 18 and 24% for all experiments), to mimic the frequency and percentage area 
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change as in the breathing lungs. The same LS suspension was used in all the subsequent 

experiments. The pedestal and tubing were cleaned between each testing of the different 

PFASs. The individual PFASs were tested by dissolving in DMSO at a concentration of 200 

mM, and further diluted in water before mixing with LS, with the exception of 8:2 FTOH that 

was diluted in PBS to avoid precipitation. The LS-PFAS mixture was tested as described for 

the control LS. The PFAS content was halved with each dilution, the concentration of DMSO 

in each sample depended on the amount of PFAS being tested. Prior to removing 10 µl of the 

mixture for testing, the vial was vortexed for 30 seconds and each concentration was 

measured at least 3 times. Images were continuously taken of the drop and analysed by 

axisymmetric drop shape analysis (ADSA) software and surface tension of the drop was 

recorded (Yu et al., 2016). The CDS was kept at 23°C inside a heating box for all 

measurements (with the exception of the highest concentration tested for PFBS, in this case 

the CDS was heated to 32°C). The surface tension was recorded for the first 10 cycles, and 

the minimum surface tension of the 10 first cycles was found.  

Control for system interference from other factors than PFASs. 

To exclude that the observed inhibition of function was from the DMSO in which all PFASs 

were dissolved, the solvent effect on surface tension function was assessed. Inhibition caused 

by DMSO could be excluded as the concentration of DMSO that inhibited LS function was 

60 times higher than the concentrations used in any of the inhibitory dilutions of PFASs, and 

for PFASs that did not cause inhibition of the function, the DMSO concentration approached 

the concentration where pure DMSO showed inhibition (data not shown). LS function is also 

affected by extreme pH, and the optimal pH range is between 4 and 7 (Amirkhanian and 

Merritt, 1995), therefore the dilutions of PFASs in water were tested using pH indicator strips 

(Alkalit, Merck). All solutions had a pH of 6, therefore pH was excluded as a cause of LS 

function inhibition.  
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Critical micelle concentration (CMC) determination 

The aggregation state of the PFASs can affect the distribution of surfactants in the test 

solutions, therefore the CMC was determined for all PFASs in water. The CMC was 

measured in the absence of LS. The CMCs were determined by recording the surface tension 

of a drop of water with different concentrations of the specific PFAS in the CDS. The drop 

was cycled using water in the syringe, 3 min were recorded during which the surface area 

change was 30% and at 3 sec cycles. The PFASs were dissolved in DMSO at 200 mM, and 

dilutions between 1.25 mM and 80 mM in water (except 8:2 FTOH that was diluted in PBS 

and for which the highest dilution was 40 mM, because of precipitation in water and at higher 

concentrations) were tested in triplicate. The average surface tension measured was plotted 

against the concentration of PFAS, and this plot was used to determine CMC (See 

supplementary figure 1). CMC was determined by drawing a superimposed line on the points 

of the graphs where surface tension dropped with increasing PFAS concentration. A second 

line was drawn through the points on the graph where the surface tension did not decrease 

with increasing PFAS concentration. The PFAS concentration at the point where these two 

lines intersect is the CMC, and this has been summarized in table 2 for each PFAS under 

“CMC”. 

Cell culture 

HBEC3-KT human bronchial epithelial cell line (ATCC CRL-4051) was grown in serum free 

LHC-9 medium in collagen-coated flasks (PureCol
TM

) in a humidified atmosphere at 37°C 

with 5% CO2. The medium was changed every 2-3 days. Prior to exposure, cells were plated 

in 35 mm 6-well culture dishes (220,000 cells per well), grown to near confluence in serum 

free LHC-9 medium and exposed as described below. 
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Cell culture exposures 

Stock solutions of 100 mM PFAS in DMSO were diluted in culture medium prior to cell 

exposure. HBEC3-TK cells were exposed to concentrations ranging from 0.13 µM to 60 µM 

of PFOS, and 0.13 µM to 10 μM of the remaining PFASs. DMSO (0.02%) in culture medium 

was used as vehicle control. In a pilot experiment the release of CXCL8 after PFOS exposure 

was investigated after 24 and 48 h, and the 48 h exposure resulted in higher concentration-

response pattern. Therefore, the remaining exposures were performed for 48 h. In parallel to 

the exposure to PFASs, the cells were incubated with 5 µg/ml Poly I:C or with 

Lipopolysaccharide (LPS) 3 h prior to exposure to PFASs. 

Cell viability analysis  

Cell viability was measured using AlamarBlue cell viability reagent (ThermoFisher 

Scientific, Oslo, Norway) according to the manufacturer's protocol. 

 Cytokine analysis 

Cell culture medium was centrifuged to remove cell debris, and stored at -70°C prior to 

analysis of cytokines. Concentrations of CXCL8 (IL-8), IL-6 (both from Invitrogen, 

ThermoFisher Scientific, Oslo, Norway), CXCL10 (IP-10), IL-10, IL-1α and IL-1ß (all from 

R&D Systems, Minneapolis MN, USA) in cell culture medium were determined by enzyme-

linked immunosorbent assay (ELISA), according to the manufacturer's instructions. 

Absorbance was measured using a plate reader (TECAN Sunrise, Phoenix Research Products, 

Hayward, CA, USA) equipped with Magellan (v1.10) software. 

Statistical evaluation  

The LS function data were analysed by calculating the statistical difference between the 

minimum surface tension at the 10
th

 cycle of the control and the treated sample using 

ANOVA in the statistical platform R (version 3.4.1). If there was a significant difference 
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between the control and the treated sample, and the minimum surface tension was higher, a t-

test with Bonferroni correction was performed to find the group(s) different from control. 

The sample with the lowest concentration and statistical difference from the control was 

determined to be the lowest observed adverse effect concentration (LOAEC) of the PFAS. 

 

For the cell culture study, statistical analysis of differences in cytokine secretion was 

performed by one-way ANOVA with Dunnett’s post-test for multiple comparisons. Non-

normally distributed data were log-transformed. All calculations were performed using 

GraphPad Prism 5.04 software (GraphPad Software, Inc., San Diego, CA). 

Results 

LS function analysis 

LS function was tested by mixing the individual PFASs with LS (in molar ratios between 

0.04 and 24:1, PFAS: LS, using the molecular weight of DCCP), and measuring the reduction 

in surface tension during the first 10 rounds of compression-expansion cycling. The LOAEC 

was defined as the lowest concentration of a given PFAS producing a minimum surface 

tension at the 10
th

 round of compression/expansion that was significantly different from the 

minimum surface tension of the control LS in the absence of the compound (Tab. 2). As a 

negative control, LS was diluted with water, except for 8:2 FTOH, where the control was 

diluted in PBS. For PFBS and 8:2 FTOH an inhibitory concentration could not be found. 8:2 

FTOH could not be tested at higher concentrations than 40 mM, above this concentration the 

sample precipitated.  
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CMC determination 

The CMC for each PFAS was determined in water at 32°C for all PFAS using the CDS (Tab. 

2) to be able to control for potential influence of micelle formation on the function of LS. The 

data shows that for the LOAEC was below CMC for the compounds where a LOAEC could 

be found. For the PFBS and 8:2 FTOH a LOAEC could not be found, the tested 

concentration of PFAS was at least twice the CMC (Tab. 2). 

 

Table 2: LOAEC and CMC values for five PFASs  

 Substance LOAEC, mM CMC in water at 32°C, mM 

PFBS >80 22 

PFHxS 1 12 

PFOS 0.5 7 

PFOA 0.5 14 

8:2 FTOH* >40 20 

*diluted in PBS; All substances were dissolved in DMSO (200 mM) and then diluted in water (or PBS) before 

mixing with LS to determine LOAEC. The PFAS in DMSO was diluted in water (or PBS) prior to analysis to 

determine CMC. 

 

 

Human bronchial epithelial cell analyses 

The human bronchial epithelial HBEC3-KT cells were exposed to the different PFASs and 

cytokine release was measured. Furthermore, modulation of cytokine release was analyzed 

after pre-treatment of the cells with the immune stimulants Poly I:C or LPS.  

Cell viability 

The effects of the PFASs on cell viability was measured using the AlamarBlue assay. In an 
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initial experiment, cells were exposed to a large concentration range of PFOS for 48 h to 

determine the effect on viability. The data showed no apparent reduction in cell viability at 

concentrations ≤ 30 µM (Fig. 1A). Furthermore, the other PFASs did not show any reduced 

cell viability at the highest tested concentration (10 µM) (Fig. 2, Fig. S2).  

Cytokine release  

Pro-inflammatory responses were analyzed in the initial experiment that included high PFOS 

concentrations. As shown in Fig. 1, exposure to PFOS alone did not induce any biologically 

significant changes in CXCL8 secretion at the tested concentrations. However, at 

concentration ≥30 µM, IL-1α and IL-1ß releases were increased.  

 

 

 

Fig. 1: Cell viability and cytokine release induced by PFOS in an initial concentration-response 

experiment. Human bronchial epithelial cells, HBEC3-KT, were exposed for 48 h to PFOS. A-C) concentration 

in medium of the cytokines CXCL8, IL-1α and IL-1β. D) Cell viability as measured by AlamarBlue staining. n 

= 1-5 within each treatment group.  
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Subsequently, all PFASs were tested at non-cytotoxic concentrations relevant to human 

exposures, ranging from 0.13 µM to 10 µM, with and without priming with an immune-

stimulating agent (Fig. 2). Two pro-inflammatory agents were tested, Poly I:C and LPS, 

mimicking virus and bacterial infection, respectively. In response to LPS, only a modest 

increase of cytokine release was observed in the HBEC3-KT cells (data not shown), whereas 

exposure to Poly I:C resulted in a marked upregulation of cytokine release (Fig. 2). Poly I:C 

was thus used in the subsequent co-exposure experiments.  
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Fig. 2: Cytokine release. A) PFOS, B) PFOA. White bars are without and black bars with immune stimulation 

by the toll-like receptor 3 (TLR3) ligand Poly I:C, n = 5-6 (PFOS) and 4 (PFOA). *P < 0.05 significantly 

different from Poly I:C stimulated control, one-way ANOVA followed by Dunnett’s post hoc test.  

 

None of the PFASs tested induced significant changes in release of the cytokines measured at 

non-cytotoxic concentrations in unstimulated cells (Fig. 2 and Fig. S2).  

CXCL8

PFOA (µM)

p
g
/m

l

Ctr 0.13 0.4 1.1 3.3 10
0

20

40

60

80

1000

2000

3000

4000

5000

CXCL10

PFOA (µM)

p
g
/m

l

Ctr 0.13 0.4 1.1 3.3 10
0

20

40

60

5000

10000

15000

IL-6

PFOA (µM)

p
g
/m

l

Ctr 0.13 0.4 1.1 3.3 10
0

5

10

15
50

100

150

200

IL-1

PFOA (µM)

p
g
/m

l

Ctr 0.13 0.4 1.1 3.3 10
0

50

100

150

IL-1

PFOA (µM)

p
g
/m

l

Ctr 0.13 0.4 1.1 3.3 10
0

5

10

15

20

*

Alamarblue

PFOA (µM)

%
 o

f 
c
o
n
tr

o
ll

Ctr 0.13 0.4 1.1 3.3 10
0

50

100

150

B 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 

18 
 

As can be seen from Fig. 2, Poly I:C induced a marked induction of all tested cytokines 

except IL-10 that remained below the limit of quantification for all treated samples (data not 

shown). PFOS exposure resulted in a statistical significant concentration-dependent reduction 

of Poly I:C-induced CXCL8 and CXCL10 secretion. Furthermore, the IL-6 release seemed to 

have a concentration-dependent reduction, but without reaching statistical significant 

difference from Poly I:C stimulated control. On the other hand, PFOS significantly enhanced 

the increase of IL-1α release, and both PFOS and PFOA enhanced the IL-1β release in 

response to stimulation with Poly I:C. The remaining PFASs (PFBS, PFHxS and 8:2 FTOH) 

did not induce any statistically significant changes in cytokine release at the concentrations 

tested (Fig. S2).  

Discussion  

PFASs represent a versatile group of ubiquitously occurring chemicals of increasing 

regulatory concern. For many of the PFASs, public information on their hazardous properties, 

environmental fate and transport, exposure, and toxic effects is still very limited, and in the 

public domain they remain largely unassessed and unregulated (Wang et al., 2015,Wang et 

al., 2016,Wang et al., 2017). PFASs can easily be synthesized in multiple forms, and 

screening the toxic potential of all novel PFASs is a daunting task. However, as these 

substances emerge on the market, regulators, producers and importers of the products 

containing them, still have to do a hazard assessment. Traditional hazard assessment is 

performed on experimental animals, however, this is time-consuming, costly and ethically 

questionable. We have tested two mechanism based in vitro screening procedures that assess 

the effects of PFASs on the respiratory system. The relative potencies of substances may be 

used in an integrated alternative approach to support hazard assessment and testing 

prioritization. We studied the effects of PFASs on LS function of which inhibition can cause 
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acute inhalation toxicity. We also studied the immunomodulatory effects of PFASs on 

bronchial epithelial cells, in the presence or absence of pro-inflammatory priming with Poly 

I:C.  

  

The LS lowers surface tension at the air-liquid interface of the alveoli, in a particular way that 

minimizes tension to values <2mN/m at the end of compression (upon exhalation), when the 

risk of lung collapse is maximum. This is possible due to extensive structural reorganizations 

occurring at the interfacial surfactant films during the reduction of respiratory area that 

occurs upon expiration. Surfactant structure supports these recurrent compression-driven 

structural transitions thanks to very defined lipid and protein composition that include 

coexistence of condensed and expanded lipid phases and the particular action of specialized 

surfactant proteins to impart proper dynamics (Lopez-Rodriguez and Perez-Gil, 2014,Autilio 

and Perez-Gil, 2019)Surfactant also provides some protection against hazardous inhaled 

substances (Zuo et al., 2008). However, surfactant structure and performance is sensitive to 

accumulation of deleterious components with potential to integrate into the hydrophobic 

environment provided by lipid/protein complexes, or with intrinsic surface activity that 

results in accumulation at the air-liquid interface. Damage to LS function causes the alveoli 

to collapse and the respiratory bronchioles to fill with liquid, making breathing laboured. 

PFASs can potentially disrupt the structure of the LS film and thereby inhibit its function. We 

tested five different PFASs to determine the lowest concentration where inhibition of LS 

function was observed, defined as the LOAEC value. PFHxS, PFOS and PFOA inhibited the 

LS function at comparable concentrations (1, 0.5 and 0.5 mM, respectively). For PFBS and 

8:2 FTOH, a LOAEC could not be found. PFAS concentrations above CMC might affect the 

formation and stability of the LS film at the air-liquid interface in the CDS. Determination of 

the CMC is not trivial and values from literature could only be found for PFOS (1.13 mM 
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(Roberts et al., 2016) and 8 mM (Harada et al., 2005)) and PFOA (16 mM (Roberts et al., 

2016), 30 mM (Lopez-Fontan et al., 2005) and 25 mM (Harada et al., 2005)). We determined 

the CMC for PFOS and PFOA to be 7 and 14 mM, respectively. The LOAEC was lower than 

the CMC for the three PFAS that inhibited LS function, discarding that their deleterious 

action could have to do with a “detergent-like” effect of PFAS micelles across the surface 

film, removing surface-active molecules from the interface. The two remaining PFASs 

(PFBS and 8:2 FTOH), with no evident inhibitory action, were tested at concentrations at 

least twice the CMC. Thus, the CMC of these PFASs did not appear to directly determine the 

effect of the PFASs on LS function, because if that would be the case, one would expect 

qualitative differences on surfactant inhibition at concentrations above and below the 

respective CMC values. 

 

Preliminary results have been published in an abstract where PFBS, PFHxS, PFOA and 

PFOS were tested for their ability to inhibit LS function in the captive bubble surfactometer 

(CBS) (Gordon et al., 2007). The CBS setup is different from the CDS, therefore direct 

comparison of concentrations is impossible. However, the authors found that all the PFASs 

inhibited LS function. At the highest concentrations of PFASs, a low minimum surface 

tension could not be reached, while at the lowest concentration tested, a low minimum 

surface could only be obtained with very large compression of the surface area (Gordon et al., 

2007). A main difference is that the captive air bubble of the CBS has a limited air phase, 

while the sessile drop of the CDS is exposed to an open air compartment that mimics better 

the situation in the alveoli. How PFOA and PFOS partitions into a model of LS 

(dipalmitoylphosphatidylcholine, DPPC) has been studied in detail (Xie et al., 2010a,Xie et 

al., 2010b). PFOS and PFOA incorporate into the lipid layers more readily than their 

corresponding hydrocarbon surfactants (Xie et al., 2007).  
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Inhalation of impregnation spray products containing PFASs is a known cause of acute 

toxicity in humans (Duch et al., 2014,Scheepers et al., 2017,Sørli et al., 2017). These 

products cause acute symptoms such as coughing, shortness of breath, chest pain and reduced 

oxygenation of the blood. The acute symptoms evolve into lung inflammation. In most cases, 

the symptoms resolve within days of the exposure, but in some cases, the problems continue 

for months after the exposure (Schicht et al., 1982,Burkhart et al., 1996,Ota et al., 

2000,Wallace and Brown, 2005,Khalid et al., 2009,Fukui et al., 2011,Kikuchi et al., 

2015,Sørli et al., 2017). Impregnation product toxicity was recently studied using the CDS 

approach. The study compared the in vitro and in vivo toxicity of impregnation products and 

found a strong correlation between inhibition of LS function in vitro and observed toxicity by 

inhalation in humans or mice (Sørli et al., 2017). We show here that some PFASs inhibit LS 

function in a similar way as the impregnation products. It is likely that inhaling contaminated 

air (e.g. during ski waxing or spraying of products containing PFASs) can cause acute 

inhalation toxicity. There can be local build-up of PFASs, but the extent is not known since 

the clearing rate in the lung tissue has not been reported. This may lead to a significant 

alveolar collapse and reopening of the alveoli. The long term consequences of repeated acute 

inhalation toxicity are not known, but there are indications of adverse effects on the lungs, 

such as development of asthma, fibrosis, COPD or other lung pathologies (Devendra and 

Spragg, 2002).  

 

The European Food Safety Authority (EFSA) report on PFOS and PFOA recognizes immune 

suppression as one of their critical effects (European Food Safety Authority (EFSA), 2018). 

Thus, a screening approach to determine the potential for immunomodulation of the currently 

used PFASs and their potential substitutions is needed. In the present study, non-cytotoxic 
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PFAS concentrations, up to 10 µM, caused no significant effects on cytokine release (Fig. 2, 

Fig. S2). However, in immune stimulated cells (with Poly I:C) exposed to PFOS, a dose 

related suppression of CXCL8 and CXCL10 release was observed. A similar tendency was 

observed for IL-6, but this was not statistically significant. Cytokine suppressive effects has 

also been reported by Corsini and co-workers (Corsini et al., 2011,Corsini et al., 2012) that 

investigated the effect of PFAS exposures on cytokine release by human immune cells 

stimulated with LPS or phytohemagglutinin. The authors demonstrated reduced release of 

both pro- and anti-inflammatory cytokines, including CXCL8 and IL-6, depending on 

substance and cell type. PFOS was generally more potent than PFOA (Corsini et al., 2011). 

All PFASs tested were shown to decrease LPS-induced NF-κB activation (Corsini et al., 

2014). Furthermore, IL-2 secretion from stimulated human T-cells or the Jurkat T-cell line 

was decreased in response to PFOS, but not PFOA exposure (Midgett et al., 2015).  

 

Since the HBEC3-TK bronchial epithelial cell culture responded weakly to LPS stimulation, 

we used Poly I:C for priming prior to PFAS exposure. In contrast to the impaired release of 

CXCL8 and CXCL10, in the present study PFOS exposure led to enhanced Poly I:C 

stimulated secretion of IL-1α and IL-1β and PFOA induced an increase in IL-1β release (Fig. 

2). Increased transcription and release of several pro-inflammatory cytokines, including IL-6, 

CXCL8 and IL-1β has also been observed in a study with mast cells exposed to PFOA (Singh 

et al., 2012). Furthermore, exposure of a gastric cell line to perfluorodecanoic acid (PFDA) 

induced inflammasome assembly and secretion of IL-1β and IL-18 (Zhou et al., 2017). 

Finally, assays analyzing immunomodulatory activity of several PFASs and their salts are 

reported in ToxCast database (EPA's National Center for Computational Toxicology, 2018) 

where the salts of PFOS and PFOA were active in eight and three of a total of 82 cytokine 

assays, respectively. PFOS, PFOA and PFHxS were reported to induce a slight enhancement 
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of CXCL8 and a downregulation of CXCL10 release in immune stimulated cells. PFOS was 

also reported to reduce the release of IL-1α.  

 

The differential regulation of cytokines reported in literature, as well as in the present study, 

points to a likely cell type dependent regulation of cytokines in response to different PFASs. 

The mechanism behind such a complex regulation is not clear, but may be related to 

differences in regulation of cytokine release. Inhibition of NF-κB activation was shown to be 

related to the suppressive effects of PFASs on cytokine transcription in human leucocytes 

(Corsini et al., 2012,Corsini et al., 2014). Notably, the IL-1β is synthesized as a precursor 

protein, stored in the cytoplasm, and is released in response to proteolytic activity (Ozaki et 

al., 2015). This suggests that various cell types relevant for lung tissue respond differently to 

the PFASs, but also that the cytokines are induced and/or released via different mechanisms 

in the same cell type. 

 

Lung cells are affected by inhaled PFASs as well as by circulating PFAS, so the local 

concentrations in the respiratory system may be higher for some substances than the systemic 

concentrations. According to the recent EFSA report on PFOS and PFOA (European Food 

Safety Authority (EFSA), 2018) the range of blood concentrations of PFOS in adults is from 

0.06 to 392 ng/mL, whereas for PFOA the range is 0.03 to 81 ng/ml. We have exposed 

bronchial epithelial cells to concentrations between 0.13 and 10 µM, corresponding to 65 

ng/ml and 5000 ng/ml, in the case of potassium PFOS. This means that the lowest exposure 

concentration of PFOS in the culture medium is within the range of general human serum 

concentrations. The higher concentrations used are within the range of exposures reported 

among high exposed populations through drinking water and in production workers (Emmett 

et al., 2006b,Olsen, 2015,Li et al., 2018). The data thus supports the concern that modulation 
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of immune responses by some PFASs may occur at human relevant exposures. The 

comparison of PFAS concentrations in culture media and serum are not trivial, since protein 

binding of PFASs in the culture medium is not characterized and protein binding may have 

an impact on their potential effect on immune responses.  

 

Oral exposure of mice to radioactively labelled PFOS and PFBS has shown that these PFASs 

readily distribute to the lungs (Borg et al., 2010,Bogdanska et al., 2011,Bogdanska et al., 

2014), although to a lesser extent for PFBS (Bogdanska et al., 2014). When pregnant mice 

and rats were exposed to PFOS or PFOA, the pups died shortly after birth (Lau et al., 

2003,Lau et al., 2006). Impaired lung function has been proposed to contribute to the 

neonatal death (Borg et al., 2010). In line with this hypothesis, it has been shown that the 

alveolar walls in the lungs of rat pups exposed to PFOS during gestation were thicker than in 

the controls, but neither the LS composition nor the amount were changed (Grasty et al., 

2005). Our results show that several PFASs can disrupt LS function, which may in turn 

contribute to impaired neonatal lung function.   

 

There are some limitations to the methods employed in the present study. The acellular in 

vitro assay does not completely reflect the conditions in the lungs. Firstly, using air 

concentrations from literature, the deposited concentrations in the alveoli by a person 

inhaling contaminated air will be much lower than the concentrations tested in the CDS. In 

addition, the LS film would encounter aerosolized PFASs rather than being mixed in the 

liquid sub-phase. Mimicking such air-driven PFASs exposure of surfactant films is 

challenging, as the compound are very hazardous. Secondly, we do not know the retention 

time of the PFASs in the LS layer in the lungs, thus accumulation after exposure may occur. 

This combined with LS turnover in the lungs makes estimating local PFAS doses difficult. 
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Even with these limitations the method has proven to be able to predict toxicity and correctly 

rank chemicals in earlier experiments with aerosolized impregnation products (Sørli et al., 

2017), or bile salts (Sørli et al., 2018). The method has also been used to correlate in vitro 

and in vivo effects of nanomaterials (Yang et al., 2018). We therefore think that the LS test 

provides valuable information on the relative acute lung toxicity potencies of the tested 

PFASs. Concerning the use of human cells for determining immunomodulatory potential in 

vitro, available data strongly suggest the need to include both immune cells and epithelial 

cells relevant for lung tissue responses as the responses appears to be cell type dependent.  

 

Conclusion 

In this project, we have used two in vitro test systems: i) an in vitro surfactant assay that is 

being developed as an acellular test for acute lung toxicity, and ii) an in vitro human 

bronchial epithelial cell model of inflammatory responses. These two assays are promising 

tools for the development of an in vitro integrated screening approach for acute inhalation 

toxicity and immunotoxicity of PFASs, respectively. However, additional cell types of the 

respiratory tract should be included in a screening strategy since they may differ in their 

responses to PFAS exposures. Both test systems support that PFASs may be toxic to the 

respiratory system and points to PFOS and PFOA as the two most potent substances.  
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Supplementary material 

 

Supplementary Fig. 1. The surface tension of different PFAS in water was plotted against the concentration to 

determine the critical micelle concentration (CMC) for each compound. To determine CMC, a line was drawn 

between concentrations with decreasing surface tension, and a line was drawn for the concentrations where the 

surface tension did no longer decrees. For each PFAS the CMC was assigned as the concentration where the two 

lines crossed. PFBS: green filled circles, PFHxS: blue open triangles, PFOS: teal filled squares, PFOA: red 

crosses, 8:2 FTOH: purple open squares.  
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Supplementary Fig. 2. Cytokine release. A) PFBS; B) PFHxS; C) 8:2 FTOH. White bars are without and 

black bars with immune stimulation by the toll-like receptor 3 (TLR3) ligand Poly I:C. n = 4 (PFBS) and 4-6 

(PFHxS, 8:2 FTOH). *P < 0.05 significantly different from control, one-way ANOVA followed by Dunnett’s 

post hoc test. 
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Highlights 

 Both inhibition of lung surfactant function and modulation of immune response 
contribute to define acute lung toxicity of PFASs 

 PFHxS, PFOS and PFOA inhibited lung surfactant function, PFBS or 8:2 FTOH did not at 
the concentrations tested 

 PFOS suppressed the release of CXCL8 and CXCL10 from immune stimulated human 
bronchial epithelial (HBEC3-KT) cells  

 PFOS and PFOA enhanced the release of IL-1α/β from immune stimulated HBEC3-KT 
cells 

 Both in vitro assays point to PFOS and PFOA as the most potent of the tested PFASs 
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