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17 Abstract

18 Thick and electroactive biofilm is the key for successful development of microbial 

19 electrochemical technologies and systems (METs). In this study, intact anaerobic granular 

20 sludge (AGS), which are spherical and dense microbial associations, was successfully 

21 demonstrated as novel and efficient biocatalysts in METs such as microbial fuel cell 

22 (MFC). Three different strategies were explored to shift the microbial composition of AGS 

23 from methanogenic into exoelectrogenic microbes, including varying external resistance, 

24 organic loading, and manipulating anode potential. Among other strategies, only with 

25 positive anode potential, AGS was successfully shifted from methanogenic to 

26 exoelectrogenic conditions, as indicated by the significantly high current response (10.32 

27 A/m2) and 100% removal of organic carbon from wastewater. Moreover, AGS bioanode 

28 showed no significant decrease in current generation and organic removal at pH 5, 

29 indicating good tolerance of AGS to acidic conditions. Finally, 16S rRNA sequencing 

30 revealed the enrichment of exoelectrogens and inhibition of methanogens in the microbial 

31 community of AGS after anode potential control. This study provides a proof-in-concept 

32 of extracting electrical energy from organic wastes by exoelectrogenic AGS along with 

33 simultaneous wastewater treatment, and meanwhile opens up a new paradigm to create 

34 efficient and cost-effective exoelectrogenic biocatalyst for boosting the industrial 

35 application of METs.

36 Keywords: Anaerobic granular sludge; Exoelectrogenic biocatalyst; Electric energy; 16S 

37 rRNA analysis; Wastewater treatment.

38
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39 Introduction

40 Growing concerns over the intensive energy consumption for conventional wastewater 

41 treatment technologies has boosted interest in the development of energy-neutral treatment 

42 technologies1. Microbial electrochemical technologies and systems (METs) has shown 

43 promising potential in several applications spanning from renewable electricity production 

44 to biochemical and bioproducts production by using the electrons derived from waste 

45 organic matters by bacteria to perform dedicated reduction reaction2-4. Though promising, 

46 MFC technologies are still encountering a long-standing challenge to develop thick and 

47 efficient electroactive biofilm on the anode electrode. On the one hand, the limited biomass 

48 content and retention in biofilm would lead to the low capacity for organic carbon removal 

49 compared to conventional biotechnologies, and thus, extra post-treatment processes are 

50 always required5, 6, which would greatly increase the operational and maintenance cost. On 

51 the other hand, MFC reactors which rely on thin anodic biofilm can’t produce substantial 

52 quantities of power to offset the practical energy demands for wastewater treatment7, 8. 

53 Thus, the conventional ways of fabricating electroactive biocatalysts (as biofilm) on the 

54 anode do limit the wide application of MFC technology for wastewater treatment and 

55 energy generation6, 9.

56 In the past decades, anaerobic granular sludge (AGS), as aggregates of microorganism, is 

57 popular among anaerobic biocatalysts for simultaneous bioenergy production (i.e., biogas 

58 through anaerobic digestion) and wastewater treatment, due to its high organic removal 

59 capacity and good tolerance to extreme conditions (e.g., toxic compounds and acidic 

60 shocks)10-12. In a previous MFC study13, homogeneous bacterial suspension, derived from 

61 grinded AGS using a mortar and pestle followed by filtration (0.25-mm pore size sieve), 
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62 has even been demonstrated as efficient inoculum for cultivating anodic biofilm. Thus, 

63 AGS could be a potential habitat of exoelectrogenic bacteria, in addition to methanogens. 

64 More recently, it has been found that the whole microbial aggregates can be electroactive 

65 if direct interspecies electron transfer occurs among the diverse microbial consortia14, 15. 

66 Considering the essential properties of AGS with dense microbes, special channel 

67 morphology and potential conductivity, it is reasonable to hypothesize that intact AGS 

68 could function as an effective biocatalyst for an MFC if electroactive bacteria are enriched 

69 inside of granule. To date, intact AGS has never been tested as electroactive biocatalyst in 

70 the field of METs. Integration of intact AGS into anode could address the key challenge of 

71 MFC and greatly boost its capacity for electricity generation and wastewater treatment. 

72 Such combination could further strength the advantages of MFC over conventional 

73 anaerobic treatment processes, in addition to the inherent merits of mild operating 

74 conditions, high removal and energy efficiency for low strength wastewater, and easy use 

75 and transport of end product (electricity in this case)16, 17. 

76 In this context, switching intact AGS from methanogenic to exoelectrogenic is a key to 

77 achieve a successful integration. Thus, in this study, intact AGS was for the first time 

78 manipulated and explored as biocatalyst in MFC for wastewater treatment and 

79 bioelectricity generation. Several strategies to transform the intact AGS from 

80 methanogenic to exoelectrogenic, were employed, and the outcomes were evaluated in 

81 terms of organic removal, current response, and coulombic efficiency. Finally, the 

82 microbial dynamics during manipulation of anode potential and microbial composition at 

83 different sites of anode electrode were analyzed. To the best of our knowledge, it is the first 

84 time to investigate the feasibility of tailoring intact granular sludge as biocatalyst for 
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85 bioelectricity generation, which offers new insights in development of viable and 

86 sustainable technology for cost-effective and efficient wastewater treatment.

87 Materials and methods

88 MFC set up 

89 An MFC, made of nonconductive polycarbonate plates was constructed. The anode and 

90 cathode chambers with the same dimension size (4 × 5 × 5 cm) were separated by a cation 

91 exchange membrane (CEM, CMI 7000, Membrane international, NJ). Rubbers and screws 

92 were used to tighten the reactor to avoid leakage. The anode electrode was made of a carbon 

93 fiber brush wound into two twisted titanium wires (5.0 cm diameter, 5.0 cm length, Mill-

94 Rose, USA), which were heated at 450 °C for 15 minutes before use as reported 

95 previously18. A reference electrode of Ag/AgCl electrode (+0.197 V vs SHE) was placed 

96 ~ 0.3 cm close to the anode for accurate control of anode potential. The anodic chamber 

97 was filled with 80 g wet AGS, which was collected from a mesophilic upflow anaerobic 

98 sludge blanket reactor fed with potato wastewater (Colsen, Netherland). A stainless-steel 

99 mesh was used to avoid the washing out of AGS and possible blocking issues. The total 

100 volume of anode chamber was 100 ml, while the working volume was 50 ml. An external 

101 recirculation bottle (filled with 500 ml synthetic wastewater) was connected to anode 

102 chamber with a recirculation flow rate of 50 ml/min. To maintain a sufficient mixing, the 

103 recirculation bottle was stirred at 400 rpm. A titanium woven wire mesh (4×4 cm, 0.15 mm 

104 aperture, William Gregor Limited, London) coated with 0.5 mg/cm2 Pt was used as cathode 

105 electrode. In closed circuit, the anode and cathode electrodes were connected through an 

106 external resistance (1000 Ω, unless otherwise stated). During anode potential control by 
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107 potentiostat (Ivium-n-Stat, Ivium Technologies, Eindhoven, The Netherlands), three-

108 electrode cell mode was adopted; anode as working electrode, cathode as counter electrode 

109 and Ag/AgCl as reference electrode.

110 Inoculation and operational strategies

111 AGS was directly used as the inoculum for MFC start-up. The synthetic wastewater 

112 contained (in g/L of distilled water): sodium acetate, 1 (unless otherwise stated); NH4Cl, 

113 0.31; NaH2PO4∙H2O, 2.69; Na2HPO4, 4.33; KCl, 0.13; 12.5 ml mineral solution and 12.5 

114 ml vitamin solution as described before19. The final pH of synthetic wastewater always 

115 kept 7.0 ± 0.2. The anode chamber and external bottle was filled with the aforementioned 

116 synthetic wastewater, reaching a total volume of 550 ml. The cathode chamber was filled 

117 with 100 ml ferricyanide solution (50 mM, pH 7) to exclude the instability of cathodic 

118 reaction. The catholyte was 50 mM phosphate buffer solution containing 50 mM 

119 ferricyanide.

120 Multiple reactors including duplicate set-ups have been operated for the tests according to 

121 different purposes. Three strategies were employed successively in the same reactor. As 

122 summarized in Table S1 in supporting information, strategy 1 referred to the effect of 

123 external resistance on MFC performance under closed circuit. During strategy 1 operation, 

124 the sodium acetate concentration was controlled at 1500 mg/L. Thereafter, the influence of 

125 different organic loading (1000, 1500 and 3000 mg/L) on system performance was 

126 evaluated in strategy 2, during which the resistance was selected as 10 Ω. Subsequently, in 

127 strategy 3, MFC was connected to the potentiostat and chronoamperometry measurement 

128 was used to control anode potential at +20 mV (VS Ag/AgCl). During strategy 3, the 
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129 sodium acetate level was 1000 mg/L. Sequentially, to evaluate the persistence of positive 

130 effect by controlling anode potential, MFC was connected in a closed circuit with 10 Ω 

131 resistance, and fed with 1000 mg/L sodium acetate. Afterwards, the AGS were removed 

132 out of the anode chamber to evaluate the functions of AGS, denoted as Control 1. The 

133 cultivated AGS were transferred into another identical MFC with a completely new anode 

134 to explore the current generation of the removed AGS, denoted as Control 2. The 

135 transferring process was performed in an anaerobic box. The operational parameters (1000 

136 mg/L sodium acetate and 10 Ω resistance) were employed for Control 1 and Control 2. At 

137 the end, to evaluate the robust resistance to low pH conditions, same AGS were placed 

138 back to the anode chamber and operated under different initial wastewater pH varying from 

139 5 to 7. For comparison of AGS powered MFC with conventional MFC inoculated with 

140 domestic wastewater, one set of MFC reactors with same configuration was constructed 

141 (Control 3) and inoculated with domestic wastewater obtained from primary clarifier at 

142 Lundtofte Wastewater Treatment Plant (Lyngby, Denmark). For all the reactors, at the 

143 beginning of each batch, anode chamber and recirculation bottle was flushed with pure N2 

144 for 10 minutes to keep anaerobic conditions. 

145 Analytical methods and calculations

146 During strategy 1 and 2, the voltage across an external resistance was recorded by a digital 

147 multimeter (model 2700, Keithley Instruments, Inc.; Cleveland, OH) every 30 minutes. 

148 Current was calculated according to ohm’s law (I=U/R). Current density was normalized 

149 by the projected cathode area (16 cm2). During strategy 3, the current response was 

150 recorded by the potentiostat every 1 min. Coulombic efficiency (CE) was calculated as 

Page 7 of 43

ACS Paragon Plus Environment

Environmental Science & Technology



8

151 , where  was the total coulombs calculated by integrating current 100%CtCE
Cth

  tC

152 response with time, calculated as ,  was the theoretical amount of coulombs tC Idt  thC

153 based on the COD degradation, calculated as , where F is Faraday’s th
Fb CODC

M




154 constant (96485 C mol-1 e-), b is 4 referring to the transferred electrons per mole of oxygen, 

155 M is 32 representing the molecular weights of oxygen,  is the removed COD amounts ∆𝐶𝑂𝐷

156 (unit gram)20.

157 Total chemical oxygen demand (TCOD) was measured according to the standard method 

158 (APHA, 1999). COD removal rates were fitted assuming a first-order kinetic reaction with 

159 respect to substrate concentrations, and calculated according to the following equation:

160   Eq (1)
0

tCODLn kt
COD

 

161 where  is the initial COD concentration,  is the COD concentration at time t, 0COD tCOD

162 and k is the first-order kinetic rate coefficient. The coefficient k at varied pH was calculated 

163 and compared in section 3.2, in order to distinguish the optimal pH regarding to the fastest 

164 carbon utilization.

165 Acetate was measured via a GC with FID detection (Agilent 6890). The sample pH was 

166 immediately measured by using A PHM 210 pH meter (Radiometer). Produced gas was 

167 collected by connecting a gasbag to the headspace of recirculation bottle. The volume was 

168 measured by a 100 ml syringe. CO2 and CH4 were analyzed by a GC-TCD fitted with 

169 paralleled column of 1.1 m × 3/16 ‘Molsieve 137 and 0.7 m × 1/4’ with H2 as the carrier 

170 gas (MGC 82−12, Microlab A/S, Denmark), and H2 was determined by a GC-TCD fitted 
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171 with a 4.5 m × 3 mms-m stainless column packed with Molsieve SA (10/80), as previously 

172 described21. 

173 Mastersizer 2000 (Malvern Instruments, UK) was employed to measure the particle size 

174 distribution of the raw AGS and cultivated AGS after strategy 3. Scanning electron 

175 microscopy (SEM - FEI Quanta 200 ESEM FEG equipped with energy dispersion 

176 spectroscopy, EDS - Oxford) was used for the observation of AGS morphology. For 

177 morphological characterization, the raw AGS and AGS after strategy 3 were sampled, 

178 washed with phosphorus buffer solution (50 mM, pH 7) and fixed by soaking into 4% 

179 formaldehyde for 24 hours at 4 °C. Subsequently, the samples were washed by gradient 

180 25%, 50%, 75%, 90%, 95%, and 100% ethanol/distilled water solutions successively. 

181 Afterwards, samples were freeze-dried for overnight to get the powder specimens. The 

182 specimens were coated with a gold thin layer (Quorum sputter coater, UK) and observed 

183 by SEM-EDS at 3.0 kV.

184 Microbial community analysis

185 To characterize changes in microbial community before and after operation, the raw 

186 granules, and the enriched granules and anodic biofilm after strategy 3 were all collected 

187 by using sterilized scalpel or spoon as previously described22. Granules were sampled at 

188 either in the direct vicinity, or further away from the anode. All the samples were collected 

189 in triplicate except the biofilm which was sampled in duplicate. Total DNA extraction was 

190 performed using PowerSoil DNA Isolation Kit (MoBio PowerSoil, Carlsbad, CA, USA). 

191 Total genomic DNA amplification using universal primers 515F/806R was conducted on 
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192 V4 hypervariable region of 16S rRNA gene, and amplicons were sequenced by Illumina 

193 MiSeq desktop sequencer (Ramaciotti Centre for Genomics, Kensington, Australia). 

194 Raw data was deposited in the Sequence Read Archive database 

195 (https://www.ncbi.nlm.nih.gov/sra) under the accession number PRJNA485399. OTU 

196 clustering and taxonomy identification were performed using microbial genomics module 

197 plug of CLC Workbench software (V.8.0.2, QIAGEN) as previously described23. OTU was 

198 chosen to represent the Alpha diversity, while Principal Component Analysis (PCA) 

199 performed by STAMP software24 was selected to represent Beta diversity. The taxonomical 

200 assignments of the selected interesting OTUs (relative abundance over 0.5%) was 

201 performed including a manual comparison of CLC results with 16S ribosomal RNA 

202 sequences (Bacteria and Archaea) database at the National Center for Biotechnology 

203 Information (NCBI) by using BLAST23. Microbial relative abundance and folds change 

204 were visualized in heat maps using Multi experiment viewer software (MeV 4.9.0). 

205 Statistics regarding to the significant differences in microbial communities were identified 

206 by t-test in STAMP software.  

207 Results and discussion

208 Different strategies to enhance the electroactivity of AGS for bioelectricity generation 

209 and wastewater treatment 

210 Impact of external resistance

211 Figure 1 is here.
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212 The strategy of varying external resistance was first applied to the MFC reactor inoculated 

213 with AGS. The current density, as representative of electricity generation, showed a 

214 different behavior with different resistances (Figure 1A). When external resistance was 

215 changed from 1000 to 10 Ω, 14 fold increase of maximum current density (from 0.41 to 

216 5.84 A/m2) was observed at the same acetate level (1500 mg/L). The trend of current 

217 generation at different external resistances was consistent with previous studies25, 26. 

218 During the same period (Figure 1B), The COD removal was greatly improved (from 67% 

219 to 87%) when MFC was switched from 1000 to 10 Ω. The higher COD removal rate at 10 

220 Ω indicated that the substrate oxidation rate was enhanced when subjected to lower 

221 resistance. Regarding to the biogas production rate and methane yield, it was noticeable 

222 that the methane production was significantly increased at 10 Ω (Figure 1C). The result 

223 showed that the increase of COD removal after changing resistance to 10 Ω was partly due 

224 to the anaerobic methanation. The results were different from the previous studies that 

225 methanogens activity was inhibited at lower resistance27-29. In this study, the AGS was 

226 originally cultivated for biomethanation which was different from previous MFC studies. 

227 In addition, decreasing external resistance could be an effective way to enrich 

228 exoelectrogens, but it may also facilitate interspecies electron transfer between 

229 exoelectrogens and methanogens as reported previously30. There was no significant 

230 difference in anodic potential (around -500 mV) and pH (approx. pH 7) during the 

231 operation with two different external resistances (data not shown). The influence of pH in 

232 the methanogenic activity could be neglected. Thus, strategy 1 referred to changing 

233 resistance was not an effective way to inhibit methanogenic activity. Considering the 

234 enhanced electricity production, R-10 Ω was selected for the following experiments. 
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235 Impact of substrate concentration

236 According to the previous study31, the methanogens activity could be manipulated by 

237 organic loading. Therefore, as strategy 2, the acetate concentrations ranging over 1000, 

238 1500 and 3000 mg/L was applied consecutively. As shown in Figure 1A, the current 

239 response significantly decreased when the acetate concentration increased from 1000 to 

240 1500 or 3000 mg/L. It suggested the exoelectrogens weren’t activated by elevated organic 

241 loading. The electricity production was inhibited by increasing organic loading, as the 

242 current density at 1000 mg/L was the highest among all conditions. From the COD removal 

243 performance, it was clearly observed that COD removal rate was greatly enhanced with 

244 elevated acetate concentrations. The average COD removal rate for 1000, 1500 and 3000 

245 mg/L was 70.99, 110.59 and 360.60 mg/L/d, respectively. The COD removal was probably 

246 contributed by (1) acetate oxidation by exoelectrogens; (2) acetate oxidation by 

247 methanogens; (3) acetate oxidation by aerobic microbes. On one hand, from the 

248 aforementioned current response (Figure 1A), it was clearly observed that current density 

249 didn’t increase dramatically with increasing of organic loading, which indicated that the 

250 contribution of exoelectrogens to acetate oxidation wasn’t enhanced with improved carbon 

251 loading. On the other hand, due to the anolyte was flashed with nitrogen gas before starting 

252 each test, the contribution by aerobic oxidation could be limited. Thus, the only possible 

253 reason would be due to the activity of methanogens. To confirm our speculation, the biogas 

254 production rate and methane yield were further analysed. As depicted in Figure 1C, the 

255 higher acetate concentration, the faster methane production rate was observed, suggesting 

256 the active methanogenesis process at elevated acetate concentration. Also, the methane 

257 yield increased accordingly, which indicated the unsuccessful inhibition of methanogens 
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258 activity by improving organic loading. It was noticeable that in all cases, methane contents 

259 always kept almost ten times higher than carbon dioxide. This could be due to its high 

260 solubility of CO2. Recirculation of liquid was applied in the anode, which may promote the 

261 dissolution of CO2. Overall, the above results demonstrated that the acetate concentration 

262 of 1000 mg/L was good to obtain a superior electricity generation, and the substrate 

263 concentration was not the contributing for turning methanogenic AGS into electrogenic.  

264  Impact of anodic potential 

265 Figure 2 is here.

266 In addition to external resistance and organic loading, the anode potential has been reported 

267 to impact microbial community structure and electrochemical performance29, 32. Therefore, 

268 controlling anode potential at +20 mV (VS Ag/AgCl) as the third strategy was employed. 

269 Clearly, during the period of anode potential control, the acetate was degraded rapidly in 5 

270 days (Figure 2B). In fact, after 3 days, the acetate concentration already decreased from 

271 800 to 33 mg/L, resulting in 96% removal. Correspondingly, the peak current density 

272 increased significantly to 10.32 A/m2 (Figure 2A). The high current response with fast 

273 acetate degradation indicated that anode potential motivated the exoelectrogenic reactions 

274 other than methanogenic. On the one hand, positive anode potential meant more energy to 

275 support electroactive bacterial growth. It was reported that at relatively higher anode 

276 potential, exoelectrogens can theoretically gain more energy for their growth and 

277 maintenance33, 34, according to:

278 0 0( )donorG nF Eanode E    
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279 where  is the Gibbs free energy change at standard conditions (pH 7 and 25°C), n is 0G 

280 the number of electrons transferred, F is Faraday’s constant (96485 C mol-1 e-),  is anodeE

281 the anode potential, is the standard biological redox potential of electron donor. On 0
donorE 

282 the other hand, positive anode potential may affect the electron transfer kinetics and attract 

283 bacteria to move towards the electrode to form a thick biofilm35. Therefore, when the anode 

284 potential was increased from -550 mV (measured anode potential at closed-circuit) to +20 

285 mV, both of the carbon removal and current generation were greatly enhanced. To confirm 

286 the inhibited methanogenic activity at high anode potential, biogas production rate and 

287 methane yield were analysed. As shown in Figure 2C, methane yield almost decreased to 

288 0, which indicated that the methanogenic activity was fully suppressed at high anode 

289 potential. Furthermore, it was reported that the amounts of proteins (i.e. OmcA), which are 

290 responsible for extracellular electron transfer, increased with elevating anodic potential35. 

291 More direct electron transfer-related protein at positive potential helped to stimulate an 

292 electroactive-biofilm formation35. 

293 To examine the persistence of this strategy for electroactive bacteria enrichment, the 

294 reactor was subsequently switched to MFC mode (without potential control) again. It was 

295 shown that the peak current density increased from 3.30 (before potential control) to 6.41 

296 A/m2 (after potential control) when it was fed with 1000 mg/L acetate (Figure 2A). The 

297 acetate removal efficiency increased from 50% (9 days) to 100% (8 days), indicating 

298 effectiveness of anode potential control on enrichment of exoelectrogens. The pH was quite 

299 stable (around pH 7 during each batch run, data not shown) before and after potential 

300 control. The contribution of capacitive effect to the high current generation after potential 

301 control could be neglected, since the maximum stable current generation lasted for a few 
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302 hours while discharging behaviour is normally around few seconds to minutes. To further 

303 explore the contribution of AGS in electricity generation and carbon removal, the 

304 performance of both MFC after removing AGS from anode chamber (Control 1) and new 

305 MFC anode with removed AGS (Control 2) were investigated, respectively. In control 1, 

306 the peak current density immediately decreased from 6.59 to 0.52 A/m2, suggesting that 

307 the AGS was partially involved in electron transfer. Accordingly, the acetate concentration 

308 decreased from 731 to 166 mg/L after 7 days, resulting in 77% acetate removal. Since no 

309 methane was produced in control 1, the contribution of methanogens to acetate removal 

310 could be excluded. The current response and carbon removal observed in control 1 could 

311 be due to small amount of residual AGS on anode since it is impossible to remove all AGS 

312 from the anode. As shown in Figure S1, a completely new anode with cultivated AGS 

313 produced a maximum current density of 1.11 A/m2 after 1 day, which was higher than 

314 control 1. But it didn’t recover to the level observed before moving. The results of two 

315 controls indicated that both AGS and formed biofilm on electrode played a 

316 vital/cooperative role for the current generation. Even the AGS was exoelectrogenic, the 

317 last step of electron transfer from bulk solution to solid electrode may still require an 

318 electroactive biofilm as electron conduit.

319 To short conclude, the above results indicated that anode potential controlled at +20 mV is 

320 effective to facilitate electroactive species growth and electron transfer in AGS. 

321 Methanogens are well known strict anaerobes i.e. they require very low potential to grow 

322 (<-300 mV). Therefore, exoelectrogens could dominate and got exclusively the chance to 

323 use acetate as substrate.
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324 Acid resistance

325 Figure 3 is here.

326 In the previous studies, the most common inoculum for MFC electroactive biofilm 

327 enrichment was domestic wastewater, which was either attached on anode or suspended in 

328 liquid36, 37. Comparatively, the AGS with diverse microbes and intrinsic granular structure 

329 was used as inoculum in our work. It was previously reported that wastewater pH would 

330 significantly affect MFC performance29. Thus, in this section, the effect of pH shock on the 

331 electrogenic capacity of the enriched AGS anode was investigated. Figure S2 depicts 

332 acetate removal rates which showed good agreement with the current output at different 

333 pH ranging over 5 to 7 (Figure S2). The maximum current density at each condition was 

334 shown in Figure 3. The highest maximum current density (5.21 A/m2) was observed at pH 

335 7 in AGS-MFC. When pH was decreased from 7 to 5, the ability of electron production 

336 was significantly deteriorated for both reactors. It was reported that exoelectrogens 

337 couldn’t survive in the acidic environment when pH was lower than 5.538. Although both 

338 of reactors were negatively affected by the acid pH, AGS-MFC showed a relatively 

339 stronger resistance to low pH compared to typical MFC inoculated with wastewater. 

340 Assuming first-order kinetics, the rate coefficient was calculated according to Eq. (1), as 

341 displayed in Figure 3. In both reactors, the rate coefficient showed a similar trend to pH 

342 variations. The highest rate of 0.35 d-1 was obtained at pH 7 in AGS-MFC. In AGS-MFC, 

343 when pH was decreased from 7 to 5, the rate coefficient decreased correspondingly from 

344 0.35 to 0.20 d-1, indicating diminished substrate degradation at acidic environment. 

345 Similarly, for control MFC, the rate coefficient decreased from 0.20 to 0.12 d-1. The rate 

346 coefficient at pH 5 in AGS-MFC was even close to the value of control reactor at pH 7, 
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347 meaning a superior performance of acetate oxidative reaction in AGS-MFC even at 

348 unfavourable pH conditions. Clearly, neutral pH conditions proved to be the optimal 

349 environment for the exoelectrogenic bacteria. AGS inoculated MFC would have better 

350 resistance considering that the biofilm from AGS might become even thicker during long-

351 term operation.

352 Morphological characteristics and elemental composition of AGS

353 Figure 4 is here.

354 The morphological image of single AGS taken after strategy 3 was depicted in Figure 4. 

355 As shown in Figure 4A, an AGS has a spherical rough surface and macroporous carbon 

356 architecture. A zoomed in image of the surface is shown in Figure 4B, in which the entire 

357 surface of AGS was covered with compact rod-shaped bacterial cells. The porous structure 

358 and rough surface would be beneficial for microbial growth and biofilm formation39. In 

359 addition to the excellent porous structure, granules exhibit good mechanical strength for 

360 microbes to resist the changes of surrounded environments (such as extreme pH or organic 

361 loading shock) compared to the conventional flocs or biofilm12, 40. High-resolution of SEM 

362 images of AGS channels (Figure 4C) demonstrated deep channels of ca. 1 um diameter, 

363 with rod-shaped bacteria aligned on the channel sides. It revealed that the bacterial cells 

364 were densely adhered not only to AGS surface, but also interior sections of AGS, indicating 

365 the porous structure of AGS permitted sufficient substrate exchange from outside to inside 

366 to support internal biofilm growth41. All of these attractive properties (the porous structure, 

367 rough surface and dense microbes) enabled AGS as an ideal inoculum candidate for MFC 

368 exoelectrogens enrichment.
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369 According to the EDS results (Figure 4D), the raw AGS contained high levels of carbon 

370 (53%) and oxygen (32%), and small amounts of minerals such as silicon, calcium and other 

371 traditional metals including iron. These minerals were reported as the main skeleton of 

372 granular structure, and may be involved in the electrical double layer formation of AGS as 

373 reported before42, 43. After strategy 3, the cultivated AGS contained higher amounts of 

374 carbon, which could be assigned to the increasing biomass contents. The low deviation 

375 suggested a homogeneous mineralized granular structure. To get further information of the 

376 granule size, Mastersizer 2000 was used to measure the particle size distribution (Figure 

377 4E). It was found the mean diameter based on the volume weighted was significantly 

378 increased from 122 (raw AGS) to 760 μm (cultivated AGS). It means over 50% granules 

379 had the diameter of 760 μm after anode potential control. The bigger size demonstrated 

380 that granulation of AGS was enhanced after being shifted from methanogenic to 

381 electrogenic condition44. This is also consistent with the higher energy gain of bacteria at 

382 higher anodic potential which would inevitably result in higher cell biomass.

383 The influence of anode potential manipulation in microbial community dynamics 

384 After the selection and comparison of three strategies, strategy 3 (anode potential) was 

385 demonstrated to be the most effective to inhibit methane production and improve current 

386 generation. To gain an insight into microbial communities residing in granules and in 

387 biofilm of carbon brush, 16S rRNA gene analysis was employed. 

388 According to alpha diversity results shown in Figure S3 (Supporting Information), an 

389 increase in microbial diversity (represented as OTU) regardless of sampling position was 

390 observed after potential control. The results indicate that a more diverse microbiome was 
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391 enriched after a positive anode potential. Beta diversity shown in Figure S4A demonstrated 

392 a distinct microbial dynamic change before and after anode potential control. A dramatic 

393 change was found between raw granules and enriched granules/biofilms after strategy 3 

394 based on the principal percentage (PC1 and PC2) (Figure S4A). When taking further 

395 analysis of PC3, AGS taken from different positions (close and far from anode) were also 

396 different from each other in microbial community compositions. Same distinct difference 

397 was observed between granules and anodic biofilm. The above results were in agreement 

398 with previous findings that the anode potential significantly affected the microbiome 

399 clustering in anode34.

400 Figure 5 is here.

401 High throughput 16S RNA amplicon sequencing was used to analyze the microbial 

402 dynamics in AGS and attached anodic biofilm, and the relative abundance of taxa over 0.5% 

403 is illustrated in Figure 5A. The vast majority of raw AGS microbial community was 

404 composed of 90% bacteria (based on the average relative abundance). Bacteroidetes (23%), 

405 Firmicutes (23%), Proteobacteria (12%), followed by Synergistetes (9%), and others 

406 (23%), were the most dominant phyla (Figure S5). The microbial composition in raw AGS 

407 was in agreement of common mesophilic AGS as reported before45. Bacteroidetes, 

408 Firmicutes and Proteobacteria has always been detected in MFC, which were supposed to 

409 be responsible for electricity generation32, 46. Thus, the raw AGS probably already 

410 contained electroactive bacteria in the innate microbial community, which could enable its 

411 utilization as biocatalyst in an MFC.

412 To get an insight into how the microbial community composition in MFC, the changes 

413 between the raw and enriched AGS after manipulating anode potential were compared. The 
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414 results are shown in Figure 5B. As illustrated, in a cluster of taxa (Figure 5B, Group 1), 

415 increasing significantly in relative abundance after manipulating anode potential was 

416 mainly composed by exoelectrogenic bacteria. For example, Synergistaceae spp. (5 and 6) 

417 increased from 0.2% to over 10% of relative abundance in both the granules and biofilm, 

418 indicating that the proliferation of species belonging to Synergistaceae was due to the 

419 improved anode potential. The family Synergistaceae was often found in MFC anode47. It 

420 was noticeable that the strain of Arcobacter butzleri spp. (16 and 8), known as 

421 exoelectrogens48, appeared after the potential control (accounting for 6.5% of relative 

422 abundance in the biofilm sample), strongly supported the enrichment of exoelectrogens. 

423 Also, Desulfurmonadales spp. appeared after improving anode potential, suggesting a 

424 strong correlation to the potential change. The Desulfurmonadales spp. (22 and 65) showed 

425 a 97% similarity to Pelobacter propionicus and Geobacter chapellei. Pelobacter 

426 propionicus was known as propionate producer from acetate, while no propionate was 

427 detected during the experiment. Therefore, the high similarity of the strain was very likely 

428 affiliated to Geobacter chapellei, which was reported as Fe(III) reducer49. Since iron-

429 reducing bacteria are known to use electrode as electron acceptor, we deduce that 

430 Desulfurmonadales spp. represented by Geobacter chapellei may also have been involved 

431 in direct electron transfer to anode35. Furthermore, the strain affiliated to the family 

432 Marinilabiliaceae also increased in abundance, which has been previously found in MFC 

433 bioanode50. Interestingly, another known species Methanobacterium beijingense was 

434 dominant after improving anode potential. M. beijingense was known as hydrogenotrophic 

435 methanogens using H2/CO2
51. However, since no methane was detected, the species might 

436 contribute mainly to maintain the granular structure by acting as the nucleation center, as 

Page 20 of 43

ACS Paragon Plus Environment

Environmental Science & Technology



21

437 described elsewhere52. It has to be mentioned that although the enrichment of 

438 exoelectrogens was demonstrated at positive anodic potential, the microbial community 

439 was different from the previous findings. The predominance of Geobacter species was 

440 typically reported for the acetate-fed MFCs53, 54, while in this study, the microbial 

441 community was more diverse with relatively fewer numbers of Geobacter. It was mainly 

442 due to the different inoculum sources53, 55. In this study, methanogenic AGS was used as 

443 the inoculum, while the domestic wastewater was often reported as the inoculum when 

444 Geobacter was the most abundant in the acetate-fed exoelectrogenic biofilms. 

445 Comparatively, a cluster of taxa decreased significantly in relative abundance, which 

446 demonstrated that the transition from low anode potential (-550 mV) to high anode 

447 potential (+20 mV) created a hostile habitat to these taxa. More specifically, Mesotoga 

448 infera, which was involved in the conversion of acetate to H2/CO2
56, decreased from 9% 

449 close to 0%, indicating that this pathway was negatively affected by increasing anode 

450 potential. This was further supported by the undetectable H2 throughout the whole 

451 experiment. Similarly, Methanosaeta concilii, known as acetoclastic methanogens that has 

452 ability of interspecies electron transfer with Geobacter species for CO2 reduction into CH4, 

453 was diminished from 2.89% to 0.15%. This significant decrease indicated its inability to 

454 survive at high anode potential +20 mV. It has been reported that methanogens require a 

455 reductive environment where potential should be less than -527 mV (vs SHE) for its 

456 growth57. That simply explained the inhibition of methanogens at +20 mV. In a more recent 

457 work58, long-term open circuit was found preferable for the growth of methanogens in the 

458 cathode of acetogenic microbial electrosynthesis process, which implies the important role 

459 of circuit potential on the microbial communities on the electrode.

Page 21 of 43

ACS Paragon Plus Environment

Environmental Science & Technology



22

460 Furthermore, regarding the competition between exoelectrogens and methanogens, it has 

461 been proposed that a special structure of tightly packed aromatic amino acids enabled a 

462 long-range electron transport between Geobacter and Methanosaeta15. In the 

463 methanogenic aggregates, the known role of Geobacter species is converting acetate to 

464 CO2 with electrons generating. Through the metallic-like conductive pili, electrons are 

465 released and flow to Methanosaeta for CO2 reduction. The final electron sink is methane. 

466 The direct interspecies electron transfer way is broken down at positive anode potential 

467 since the Methanosaeta is not able to survive/active at high potentials59. Thus, when 

468 inserting a conductive electrode in the aggregates, the realised electrons from Geobacter 

469 metabolism would flow to the electrode instead of being involved in the methane 

470 production. In the exoelectrogenic condition, the solid electrode substitutes the 

471 Methanosaeta as the electron acceptor.

472 Figure 6 is here.

473 In order to elucidate the difference between the microbial community composition in 

474 anodic biofilm (taken from carbon brush), enriched AGS closed to anode electrode and 

475 enriched AGS far from anode, significant analysis based on the overall taxa were 

476 performed (Figure 6A and B). Distinct consortia were formed in enriched AGS samples 

477 and anodic biofilm. Compared to the anodic biofilm, a significant increase in relative 

478 abundance of 9 bacterial taxa was observed in the enriched AGS close to carbon brush. 

479 Particularly, well-known electrogenic bacteria such as Marinilabiliaceae spp., 

480 Anaerobineaceae spp., and Desulfovibrionales spp. were found significantly increased in 

481 the AGS close to carbon brush. Besides, the significantly high abundance of Synergistaceae 

482 sp., which was previously demonstrated to be potentially electrogenic, was in accordance 
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483 with the electricity generation of Control 1 (MFC after removing granules). Comparatively, 

484 no significant difference was observed between AGS far from carbon brush and anodic 

485 biofilm, except one strain. 

486 To get an additional insight into the difference between two AGS samples (one taken close 

487 to carbon brush and the other taken far from carbon brush), the statistical analysis was 

488 performed as well (Figure 6C). Clearly, 10 bacterial taxa were observed in significantly 

489 higher relative abundance in AGS close to carbon brush compared to the AGS far from 

490 carbon brush. The most significant increase was found in Arcobacter butzleri, which was 

491 characterized to be capable of transfer electrons from acetate to the electrode60. Therefore, 

492 the above results strongly implied the AGS close to carbon brush might play more 

493 important role in the electricity generation than the AGS far from carbon brush. 

494 Implications

495 This study demonstrated the proof concept of using intact AGS as biocatalyst in an MFC 

496 for simultaneous carbon removal and electricity generation. Compared to the conventional 

497 biocatalyst (e.g., domestic wastewater), the AGS has several merits. Firstly, the large 

498 surface area of AGS enabled a substantial electrogenic bacterial growth. Secondly, the 

499 MFC inoculated with AGS generated much higher current compared to the conventional 

500 MFC at same level of substrate. Lastly, the coulombic efficiency improved from 13.62% 

501 (before potential control, 1g/L, 10 Ω) to 33.82% (with potential control, 1 g/L) as indicated 

502 in Table S2. Although small improvement, the coulombic losses from methanogenic 

503 process were diminished. The relatively low value (34%) might be due to other process 

504 such as the cathodic oxygen diffusion or competition from other biological species61, 62.
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505 Meanwhile, it must be pointed out that though AGS contributed the major part of current 

506 generation, the biofilm derived from AGS on the surface of anode electrode is also crucial, 

507 as it might play a role of conduit for electron transfer between bulk AGS and electrode. 

508 The results indicate that it is possible to boost the current generation of MFC by employing 

509 AGS as biocatalyst, but a thin biofilm between ASG and electrode is still needed and may 

510 play an important role to efficiently harvest the energy generated by AGS. The special 

511 conductive property between AGS and the electrode may open up many other intriguing 

512 applications. For instance, the exoelectrogenic AGS could be used as the bed electrodes in 

513 METland (wetland plus MET) and other fluidized bed reactor systems63.

514 Furthermore, more efforts should be made to further boost the application of AGS for 

515 energy recovery and simultaneous wastewater treatment. For instance, the mechanisms of 

516 electron transfer among granules should be explored to get better understanding of the 

517 system. In that case, how to accelerate the long distance of electron transfer in bacterial 

518 community could be identified and addressed well. Another interesting focus could be the 

519 studying of layer bacterial distribution in the granules and their involvements in the 

520 electron transfer. Further work should also focus on the continuous operation mode and 

521 reactor configuration, for example up flow MFC to optimize the settlement of granules for 

522 the future potential up scaling, or utilizing gas diffusion air cathode to bringing MFC closer 

523 to practical applications64.

524 Supporting Information 

525 Table S1, Figure S1, Figure S2, Figure S3, Figure S4, and Figure S5 as noted in the text. 

526 This material is available free of charge via the Internet at http://pubs.acs.org/
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726 List of figure captions

727 Figure 1 Current density (A), TCOD removal (B) and biogas production rate and methane 

728 yield (C) over time at different external resistance and different acetate concentrations. Red 

729 line and green line refer to the performance of R-10 ohm, 1500 mg/L in Strategy 1 and 

730 Strategy 2, respectively.

731 Figure 2 Current density (A), acetate concentrations (B) and average biogas production rate 

732 and methane yield (C) with time in different reactors. Control 1: MFC with only carbon 

733 brush (after potential control and moving granules out).

734 Figure 3 The maximum current density and COD removal rate coefficient at varied pH 

735 conditions. AGS-MFC: MFC after potential control; Control 3: MFC inoculated with 

736 domestic wastewater.

737 Figure 4 SEM image of the surface structure of single GAS after anodic potential 

738 control:(A) an intact granule; (B) high-resolution of SEM image of granular surface 

739 showing the massive microbial colonization; (C) showing the rod-shape microbes aligned 

740 on the side of deep channels. (D) Energy-dispersive X-ray (EDS) results of AGS before 

741 and after strategy 3. (E) Particle size distribution of raw AGS and cultivated AGS after 

742 strategy 3.

743 Figure 5 Microbial community compositions in raw AGS (G1), and enriched AGS after 

744 anode potential control and close to carbon brush (G2), enriched AGS far from carbon 

745 brush (G3), and biofilm on carbon brush (Biofilm). Relative abundance (%) and folds 

746 change were reported in (A) and (B), respectively. Group 1: the taxa increased in relative 
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747 abundance after anode potential control. Group 2: the taxa decreased in relative abundance 

748 after anode potential control.

749 Figure 6 OTUs that changed significantly (p < 0.05) in the comparison between G2 

750 (enriched AGS taken from close to carbon brush after strategy 3) and Biofilm (A), between 

751 G3 (enriched AGS taken far from carbon brush after strategy 3) and Biofilm (B), and 

752 between G3 and G2 (C), respectively. 

753
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